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Abstract: The objective of this paper is to investigate a multi-objective linear quadratic Gaussian
(LQG) control problem. Specifically, we examine an optimal control problem that minimizes a
quadratic cost over a finite time horizon for linear stochastic systems subject to control energy
constraints. To tackle this problem, we propose an efficient bisection line search algorithm that
outperforms other approaches such as semidefinite programming in terms of computational efficiency.
The primary idea behind our algorithm is to use the Lagrangian function and Karush–Kuhn–Tucker
(KKT) optimality conditions to address the constrained optimization problem. The bisection line
search is employed to search for the Lagrange multiplier. Furthermore, we provide numerical
examples to illustrate the efficacy of our proposed methods.
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1. Introduction

Optimal control of dynamical systems has long been one of the fundamental prob-
lems in the control community [1–4]. Among various optimal control scenarios, the linear
quadratic Gaussian (LQG) control problem is our main concern. It covers various appli-
cations such as mobile robots, an industrial quality control system, and flight control to
name just a few. The LQG problem can be efficiently solved using the classical dynamic
programming and Riccati equation [1,2]. In many applications, however, there exist several
possibly competing objectives that require behaviors that mediate among them. Some-
times, those multiple objectives can be formulated as constraints; for instance, bounds
on different objectives, risk measures or costs. In the classical dynamic programming,
multiple objectives can be encoded into the cost to be minimized. However, since they
are blended into a single cost, designing a policy that satisfies constraints or minimizes
multiple objectives is challenging. In this respect, an optimization-based multi-objective
LQG design provides more potentials than the traditional dynamic-programming-based
approaches by leveraging the existing constrained optimization algorithms and theories [5].

The emergence of convex optimization [5] and semidefinite programming (SDP) [6]
techniques in control analysis and design promoted new optimization formulations of
control problems [7–19]. They have also provided greater convenience and flexibility in
control design with various objectives and constraints. However, when the size of the
problem is large, the computational complexity of such SDP-based algorithms is known to
explode quickly, and it makes the problem numerically inefficient.

Motivated by the discussions above, this paper’s primary objective is to investigate a
numerically efficient algorithm for linear quadratic Gaussian (LQG) problems that have an
energy constraint, utilizing optimization theory and Lagrangian duality. The problem has
many applications such as the building control problems [20–22], where limited resources
are allowed for the control task. To find an optimal solution to the problem, we suggest a
simple and efficient bisection line search algorithm whose computational complexity is in
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general lower than SDP-based methods. The main idea is to formulate a constrained opti-
mization problem, and then use the Lagrangian function and Karush–Kuhn–Tucker (KKT)
optimality conditions [23] to solve the constrained optimization problem. The Lagrange
multiplier is searched using the bisection line search. A numerical example of a building
control problem is given to demonstrate the effectiveness of the proposed methods.

Some lists of related works are summarized as follows. Ref. [24] presented a tech-
nique to compute the explicit state-feedback solution to both the finite and infinite horizon
optimal linear quadratic regulator (LQR) problem subject to state and input constraints.
They showed that this closed form solution is piecewise linear and continuous. Ref. [25] de-
veloped efficient algorithms to compute such piecewise linear solutions of the constrained
LQR problems. The constrained LQR problem was also considered for hybrid systems
in [26]. Ref. [27] presented an efficient algorithmic solution to the infinite horizon LQR
problem for a discrete-time SISO plant subject to constraints on a scalar variable. The
solution to the corresponding quadratic programming problem is based on the active set
method and on dynamic programming. Ref. [28] considered a feedback control problem
such that the controlled signals have a guaranteed maximum peak value in response to
arbitrary but bounded energy exogenous inputs. Ref. [29] proposed a new SDP formulation,
where the finite-horizon LQG problem was converted into the optimal covariance matrix
selection problem, and addressed energy constrained LQG. Other SDP formulations of
control problems with various constraints have been developed in several papers [7,29–32]
to name just a few.

Considering types of constraints, systems, and problems, the most related previous
work is [29], which considers energy bounds on the weighted state and control input,
and uses SDP solutions. Our main contribution is the development of a simple and
numerically efficient algorithm for the energy bounded LQG problem, which does not rely
on SDPs. The new method uses a simple and efficient bisection line search algorithm whose
computational complexity is in general lower than SDP-based methods. We demonstrate
the efficiency of the algorithm through a numerical example.

Notation 1. The adopted notation is as follows: N and N+: sets of non-negative and positive
integers, respectively; R: set of real numbers; R+: set of non-negative real numbers; R++: set of
positive real numbers; Rn: n-dimensional Euclidean space; Rn×m: set of all n×m real matrices;
AT : transpose of matrix A; A−T : transpose of matrix A−1; A � 0 (A ≺ 0, A � 0, and A � 0,
respectively): symmetric positive definite (negative definite, positive semi-definite, and negative
semi-definite, respectively) matrix A; In: n× n identity matrix; Sn: symmetric n× n matrices; Sn

+:
cone of symmetric n× n positive semi-definite matrices; Sn

++: symmetric n× n positive definite
matrices; and Tr(A): trace of matrix A.

2. Finite-Horizon LQG Problem

Consider the stochastic linear time-invariant (LTI) system

x(k + 1) = Ax(k) + Bu(k) + w(k), (1)

where k ∈ N, A ∈ Rn×n, B ∈ Rn×m are system matrices, x(k) ∈ Rn is the state vector,
u(k) ∈ Rm is the input vector, x(0) ∼ N (z, V) and w(k) ∼ N (0, W) are mutually indepen-
dent Gaussian random vectors so that E[x(0)] = z, E[w(k)] = 0, E[(x(0)− z)(x(0)− z)T ] =
V, and E[w(k)w(k)T ] = W. In this paper, we consider the following multi-objective finite-
horizon LQG problem:
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Problem 1 (Multi-objective LQG problem). Solve

min
F0,...,FN−1∈Rm×n

E[x(k)TQ f x(k)] +
N−1

∑
k=0

E
[[

x(k)
u(k)

]T[Qk 0
0 Rk

][
x(k)
u(k)

]]
subject to

x(k + 1) = Ax(k) + Bu(k) + w(k),

u(k) = Fkx(k),

E[x(k)TQ̃ f x(k)] +
N−1

∑
k=0

E
[[

x(k)
u(k)

]T[ Q̃k 0
0 R̃k

][
x(k)
u(k)

]]
≤ γ.

Note that the second objective is encoded into the inequality instead of the objective
function. The problem may be useful in many optimal control applications, for example,
the building control problem [20–22], where the goal is to reduce the indoor temperature
tracking error as much as possible while using limited energy for the control input within a
certain time horizon.

Example 1. Consider a room’s thermal dynamic model expressed as (1) with

A =


0.9500 0.0250 0.0250 0
0.0250 0.9750 0 0

0 0 1 0
0 0 0 1

, B =


0.0250

0
0
0

,

where x1(k) is the indoor air temperature (◦C), x2(k) is the wall temperature (◦C), x3(k) is the
outdoor air temperature (◦C), x4(k) is the reference temperature (◦C), u(k) (W) is the control input,
which represents the amount of energy injected into the room. For instance, when the goal is to
heat the room, u(k) > 0, while u(k) < 0 when the objective is to cool the room. The outdoor air
temperature and reference temperature are kept constant (30 ◦C and 24 ◦C, respectively) over time.
To this end, the initial state should be deterministic and fixed, and the last element of the noise w(k)
should be zero over time. In this case, the initial state should be set to be

x(0) =
[

x1(0) x2(0) 30 24
]T

where x1(0) is the initial indoor air temperature, and x2(0) is the initial wall temperature. We want
to enforce the indoor temperature to track the reference temperature 24 ◦C as close as possible while
satisfying the total input energy constraint

E
[

N−1

∑
k=0

u(k)2

]
≤ γ,

The problem can be formulated as Problem 1 with

Q f =Qk =
[

1 0 0 −1
]T[ 1 0 0 −1

]
,

Rk =0, k ∈ {0, 1, . . . , N − 1}

and
Q̃ f = Q̃k = 0, R̃k = 1, k ∈ {0, 1, . . . , N − 1}

The cost function enforces the indoor temperature to track the desired reference temperature.

Another important remark is that the control policy in Problem 1 is restricted to a
linear state-feedback law. It is well-known that the optimal solution to the LQG problem
without the energy constraint is a linear state-feedback policy. However, more careful
attention should be paid to the constrained case. If it admits a nonlinear optimal solution,
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then Problem 1 may give only a suboptimal linear solution. Fortunately, the SDP design
method in [29] suggests that the optimal solution of the energy constrained problem is also
linear so that no conservatism exists in Problem 1.

Throughout the paper, we assume that there exists a strictly feasible solution, i.e., there
exists a solution such that the strict inequality constraint is satisfied. The following is a
summary of the assumptions that will be utilized throughout this paper.

Assumption 1. The following assumptions are made:

1. Q f � 0, Q̃ f � 0, Qk � 0, Q̃k � 0, Rk + λR̃k � 0 for all k ≥ 0 and λ > 0;
2. V � 0, W � 0.

The assumptions V � 0 and W � 0 imply that all elements of x(0) and w(k) are
stochastic. For the deterministic case, we need to set V = 0 and W = 0, and if some of
the elements of x(0) and w(k) are partially deterministic, then we need to set V � 0 and
W � 0. These cases will be briefly addressed later.

If we define the covariance of the augmented vector [x(k)T , u(k)T ]T ∈ Rn×m

Sk = E
[[

x(k)
u(k)

][
x(k)
u(k)

]T
]

, k ∈ {0, . . . , N − 1},

then, Problem 1 can be equivalently converted to the matrix equality constrained optimiza-
tion problem or the covariance selection problem.

Problem 2 (Covariance selection problem). Solve

J∗p := min
S0,...,SN−1∈Sn+m ,F0,...,FN−1∈Rm×n

Jp({Sk}N−1
k=0 )

subject to

Φ(Fk, Sk−1) = Sk k ∈ {1, . . . , N − 1},[
In
F0

]
(V + zzT)

[
In
F0

]T

= S0,

C({Sk}N−1
k=0 ) ≤ γ,

where

Jp({Sk}N−1
k=0 ) :=Tr

(
Q f

([
AT

BT

]T

SN−1

[
AT

BT

]
+ W

))
+

N−1

∑
k=0

Tr
([

Qk 0
0 Rk

]
Sk

)

C({Sk}N−1
k=0 ) :=Tr

(
Q̃ f

([
AT

BT

]T

SN−1

[
AT

BT

]
+ W

))
+

N−1

∑
k=0

Tr
([

Q̃k 0
0 R̃k

]
Sk

)

Φ(F, S) :=
[

In
F

]([
AT

BT

]T

S
[

AT

BT

]
+ W

)[
In
F

]T

In Problem 2, the matrix equality constraints represent the covariance updates. Since
Problem 1 is strictly feasible, we can prove that Problem 2 is also strictly feasible. Since this
fact will be used later, we make a formal assumption for convenience.

Assumption 2 (Strict feasibility). There exists at least one set of matrices {(Sk, Fk)}N−1
k=0 such

that all the equalities in Problem 2 are satisfied and all inequalities are strictly satisfied.

Based on the assumptions and definitions in this section, we will address the main
results in the next section.
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3. Main Results

In this section, we present the main results of this paper. We first present the KKT
condition [23] for the optimization Problem 2, and find potential optimal solution candi-
dates satisfying the KKT condition. Then, we find the set of optimal solutions and their
properties. Based on the analysis, a bisection algorithm is developed.

3.1. Lagrangian Solution

For any P0, . . . , PN−1 ∈ Sn+m
+ and λ ∈ R+, define the Lagrangian function of Problem 2

L({(Sk, Fk, Pk)}N−1
k=0 , λ) :=Jp({Sk}N−1

k=0 ) +
N−1

∑
k=1

Tr((Φ(Fk, Sk−1)− Sk)Pk)

+ Tr

(([
I

F0

]
(V + zzT)

[
I

F0

]T

− S0

)
P0

)
+ λ(C({Sk}N−1

k=0 )− γ),

where P0, . . . , PN−1 ∈ Sn+m
+ are called the Lagrangian multipliers or dual variables.

Rearranging some terms, it can be rewritten as

L({(Sk, Fk, Pk}N−1
k=0 , λ) =Jd({Pk, Fk}N−1

k=0 )

+ Tr

(([
AT

BT

]
(Q f + λQ̃ f )

[
AT

BT

]T

− PN−1

+

[
QN−1 0

0 RN−1

]
+ λ

[
Q̃N−1 0

0 R̃N−1

])
SN−1

)
+

N−1

∑
k=1

Tr((Γk(Fk, Pk, λ)− Pk−1)Sk−1) (2)

where

Jd({Pk, Fk}N−1
k=0 ) :=Tr

([
I

F0

]
(V + zzT)

[
I

F0

]T

P0

)
+

N

∑
k=1

Tr

([
I

Fk

]
W
[

I
Fk

]T

Pk

)

and

Γk(F, P, λ) :=
[

AT

BT

][
I
F

]T

P
[

I
F

][
AT

BT

]T

+

[
Qk 0
0 Rk

]
+ λ

[
Q̃k 0
0 R̃k

]
Based on the Lagrangian function, the KKT condition can be summarized as

1. Primal feasibility condition:[
I

F0

]
(V + zzT)

[
I

F0

]T

= S0,

Φ(Fk, Sk−1) = Sk, k ∈ {1, 2, . . . , N − 1} (3)

J̃p({Sk}N−1
k=0 ) ≤ γ. (4)

2. Complementary slackness condition:

λ(C̃({Sk}N−1
k=0 )− γ) = 0. (5)

3. Dual feasibility condition:

λ ≥ 0. (6)
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4. Stationary condition ∇Sk ,Fk L({(Sk, Fk, Pk)}N−1
k=0 , λ) = 0:

PN =

[
Q f + λQ̃ f 0

0 0

]
, ΓN(0, PN , λ) = PN−1 (7)

Γk(Fk, Pk, λ) = Pk−1, k ∈ {1, 2, . . . N − 1} (8)

(V + zzT)(P0,12 + FT
0 P0,22) + (PT

0,12 + P0, 22F0)(V + zzT) = 0 (9)

Mk(Pk+1,12 + FT
k+1Pk+1,22) + (PT

k+1,12 + Pk+1,22Fk+1)Mk = 0 (10)

k ∈ {1, 2, . . . , N − 1}

where Mk =
[
A B

]
Sk
[
A B

]T
+ W.

Using the KKT condition, we establish a modified Riccati equation for solving the
multi-objective problem in the following.

Proposition 1. Suppose that λ ≥ 0 is fixed and arbitrary. Consider the Riccati equation

ATXλ
k+1 A− ATXλ

k+1B(Rk + λR̃k + BTXλ
k+1B)−1BTXλ

k+1 A + Qk + λQ̃k = Xλ
k (11)

for all k ∈ {0, . . . , N − 1} with Xλ
N = Q f + λQ̃ f , and define {(Sλ

k , Fλ
k , Pλ

k )}
N−1
k=0 with

Fλ
k =− (Rk + λR̃k + BTXλ

k+1B)−1BTXλ
k+1 A,

Sλ
k =Φ(Fλ

k , Sλ
k−1), S0 =

[
I

Fλ
0

]
(V + zzT)

[
I

Fλ
0

]T

,

Pλ
k =

[
Qk + λQ̃k + ATXλ

k+1 A ATXλ
k+1B

BTXλ
k+1 A Rk + λR̃k + BTXλ

k+1B

]
, (12)

where the superscript λ is included to designate the dependence on λ. Then, {(Sλ
k , Fλ

k )}
N−1
k=0 is

a primal feasible point of Problem 2 uniquely satisfying the primal feasibility condition (3) and
{(Pλ

k , Fλ
k )}

N−1
k=0 uniquely satisfies the stationary condition (7)–(10).

Proof. Using Assumption 1, V � 0 implies that V + zzT is nonsingular, and consequently, (9)
implies PT

0,12 + P0, 22F0 = 0. Similarly, W � 0 with (10) implies PT
k,12 + Pk, 22Fk = 0 for all

k ∈ {0, 1, . . . , N− 1}. On the other hand, (7) and (8) with the assumption that Rk + λR̃k � 0
for any λ > 0 in Assumption 1 ensure Pk, 22 is nonsingular for all k ∈ {0, 1, . . . , N}. Therefore,
the feedback gains are uniquely determined by Fk = −P−1

k, 22PT
k,12 for all k ∈ {0, 1, . . . , N − 1}.

Plugging this expression into (7) and (8) leads to the construction in (12) with the Ric-
cati Equation (11). Note that under Assumption 1 and fixed λ > 0, the KKT point is
uniquely determined.

If the inequality constraint is removed and λ = 0, then the Riccati equation in (11)
is reduced to the standard Riccati equation. In this case, it is clear that the solution that
satisfies the KKT condition is unique. Therefore, the solution obtained from the Riccati
equation is the unique optimal solution, which is a well-known fact.

Proposition 2. Consider Problem 2 without the inequality constraint. Then, {(S0
k , F0

k )}
N−1
k=0 is the

unique optimal solution of Problem 2.

Proof. It is clear that the tuples {S0
k , F0

k , P0
k }

N−1
k=0 uniquely satisfy the KKT condition. Since

the KKT condition is a necessary condition for optimality, it is a unique optimal solution of
Problem 2 without the inequality constraint.

Proposition 1 tells us that the Riccati equation can be induced from the Lagrangian
function and KKT condition in optimization theory instead of the classical argument from



Mathematics 2023, 11, 1857 7 of 16

the value function and HJB equation. Moreover, we can see that the solution of the multi-
objective LQG defined in Problem 1 is nothing but the solution of a standard LQG problem
with modified weight Q f + λQ̃ f , Qk + λQ̃k, Rk + λR̃k and an appropriately chosen λ > 0.
Let us now focus on how to determine the Lagrange multiplier λ satisfying the KKT
condition. We need to consider the following three scenarios:

1. If the strict inequality C({S0
k}

N−1
k=0 ) < γ is already satisfied with {F0

k }
N−1
k=0 obtained

using the standard Riccati equation, then λ = 0 solves the complementary slackness
condition. We do not need to do anything in this case.

2. Moreover, if the equality C({S0
k}

N−1
k=0 ) = γ is satisfied with {F0

k }
N−1
k=0 obtained using

the standard Riccati equation, then any λ ≥ 0 solves the complementary slackness
condition. However, when λ > 0, the corresponding {Sλ

k , Fλ
k , Pλ

k }
N−1
k=0 may be different

from {S0
k , F0

k , P0
k }

N−1
k=0 . Therefore, to use the variables obtained in Proposition 1 as a

solution to the KKT condition, we need to set λ = 0.
3. Lastly, assume that C({S0

k}
N−1
k=0 ) > γ holds with {F0

k }
N−1
k=0 obtained using the standard

Riccati equation. Then, some λ > 0 solves the complementary slackness condition if
C({Sλ

k }
N−1
k=0 ) = γ. Suppose that λ∗ > 0 is such a number. Then, the corresponding

tuple (λ∗, Sλ∗
k , Fλ∗

k , Pλ∗
k ) satisfies the KKT condition.

For simplicity of the presentation, we only focus on the last case because the other
cases are trivial, and we formalize it in the following assumption.

Assumption 3 (Nontrivial scenario). Throughout the paper, we assume that C({S0
k}

N−1
k=0 ) > γ

holds with {F0
k }

N−1
k=0 obtained using the standard Riccati equation.

To proceed further, we need to establish some properties of the function f : R+ → R
defined as

f (λ) := C({Sλ
k }

N−1
k=0 )− γ, λ ≥ 0,

which evaluates the error in the inequality constraint. In the following, we study various
properties of f , which play important roles throughout this paper.

Proposition 3 (Properties of f ). Define the function f : R+ → R as

f (λ) := C({Sλ
k }

N−1
k=0 )− γ

Then, the following statements hold:

1. f is continuous over R+;
2. f (λ) ≤ f (λ + ε) holds for any ε > 0;
3. If f (λ) = f (λ + ε) holds for some ε > 0, then Jp({Sλ

k }
N−1
k=0 ) = Jp({Sλ+ε

k }N−1
k=0 );

4. f (0) > 0;
5. There exists a λ > 0 such that f (λ) < 0;
6. Define the set-valued mapping T : (V, W) 7→ {λ > 0 : f (λ) = 0}. Then, T(V, W) is a

closed line segment.

Proof. 1. From the definition, Pλ
k is linear in λ, Fλ

k is rational, whose entries are finite for
a finite λ ∈ R+ because the inverse matrix (Rk + λR̃k + BTXλ

k+1B)−1 in Fλ
k = −(Rk +

λR̃k + BTXλ
k+1B)−1BTXλ

k+1 A is finite for all λ ∈ R+. Therefore, from the definition,
Sλ

k is also rational and finite over λ ∈ R+, which implies that Sλ
k is continuous in

λ ∈ R+. This completes the proof.
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2. We only need to prove the inequality for C({Sλ
k }

N−1
k=0 ). By contradiction, suppose that

C({Sλ+ε
k }N−1

k=0 ) > C({Sλ
k }

N−1
k=0 ) holds. For a fixed λ, we see from the KKT condition

that the problem is nothing but the optimization

J∗p := min
S0,...,SN−1∈Sn+m ,F0,...,FN−1∈Rm×n

Jp({Sk}N−1
k=0 ) + λ[C({Sk}N−1

k=0 )− γ] (13)

subject to

Φ(Fk, Sk−1) = Sk k ∈ {1, . . . , N − 1},[
In
F0

]
W f

[
In
F0

]T

= S0

with an augmented objective. Since {Sλ
k }

N−1
k=0 is the optimal solution corresponding to

λ, it follows that

Jp({Sλ
k }

N−1
k=0 ) + λ[C({Sλ

k }
N−1
k=0 )− γ] ≤ Jp({Sλ+ε

k }N−1
k=0 ) + λ[C({Sλ+ε

k }N−1
k=0 )− γ] (14)

where {Sλ+ε
k }N−1

k=0 is the optimal solution corresponding to ε ← λ + ε. On the other
hand, we have

Jp({Sλ+ε
k }N−1

k=0 ) + (λ + ε)[C({Sλ+ε
k }N−1

k=0 )− γ]

≤ Jp({Sλ
k }

N−1
k=0 ) + (λ + ε)[C({Sλ

k }
N−1
k=0 )− γ] (15)

which leads to

Jp({Sλ+ε
k }N−1

k=0 ) + λ[C({Sλ+ε
k }N−1

k=0 )− γ]

≤Jp({Sλ
k }

N−1
k=0 ) + λ[C({Sλ

k }
N−1
k=0 )− γ] + ε[C({Sλ

k }
N−1
k=0 )− C({Sλ+ε

k }N−1
k=0 )] (16)

Combining (16) with (14) yields

0 ≤ ε[C({Sλ
k }

N−1
k=0 )− C({Sλ+ε

k }N−1
k=0 )]

which contradicts with our hypothesis. This completes the proof.
3. Assume f (λ) = f (λ + ε) holds for some ε > 0. Then, (14) leads to Jp({Sλ

k }
N−1
k=0 ) ≤

Jp({Sλ+ε
k }N−1

k=0 ), while (15) yields Jp({Sλ+ε
k }N−1

k=0 ) ≤ Jp({Sλ
k }

N−1
k=0 ). Combining the two

inequalities leads to the desired conclusion.
4. The fourth statement is true due to Assumption 3.
5. Note that the objective in (13) can be replaced with λ−1 Jp({Sλ

k }
N−1
k=0 ) + C({Sλ

k }
N−1
k=0 )−

γ without changing the optimal solutions. As λ → ∞, the objective converges to
C({Sλ

k }
N−1
k=0 )− γ = f (λ), which implies C({Sλ

k }
N−1
k=0 )− γ = f (λ) < 0 as λ→ ∞ due

to the strict feasibility assumption in Assumption 2. Since f is continuous over R+

from the first statement, there should exists λ > 0 such that f (λ) < 0.
6. Define a = arg sup{λ > 0 : f (λ) = 0} and b = arg inf{λ > 0 : f (λ) = 0}. From

the continuity of f , the supremum and infimum are attained; otherwise, f should
be discontinuous. Therefore, we can define a = max{λ > 0 : f (λ) = 0} and
b = min{λ > 0 : f (λ) = 0}. From the second statement, we see that f (λ) = 0 for all
λ ∈ [b, a]. It completes the proof.

Proposition 3 suggests that f is monotonically decreasing over the non-negative real
numbers. Moreover, we can choose a λ̄ > 0 such that f (λ) < 0, ∀λ ∈ [λ̄, ∞). Let λ̃ ∈ [λ̄, ∞).
Then, f (λ) is a monotonically decreasing over λ ∈ [0, λ̃], which connects f (λ̃) < 0 and
f (0) > 0. The graph of f is illustrated in the following example.
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Example 2. Let us consider Example 1 again. With γ = 3 and N = 10, the function value f (λ) is
plotted in Figure 1, demonstrating the monotonically non-increasing property and the zero crossing
property in Proposition 3.

0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

λ

f(
λ
)

Figure 1. f (λ) for different λ ∈ [0, 5].

Based on Proposition 3, we can characterize the set of the KKT points. In partic-
ular, it turns out that the KKT point corresponding to λ should satisfy the constraint
C({Sλ

k }
N−1
k=0 ) = γ·

Proposition 4. The set of variables satisfying the KKT condition is all tuples (λ, Sλ
k , Fλ

k , Pλ
k )

N−1
k=0

such that λ > 0 and C({Sλ
k }

N−1
k=0 ) = γ.

Proof. If C({Sλ
k }

N−1
k=0 ) > γ, the KKT condition is obviously not satisfied because the

complementary slackness condition (5) is not satisfied with λ > 0. If C({Sλ
k }

N−1
k=0 ) < γ,

then the complementary slackness condition is not satisfied with λ > 0. Only the case
that KKT is satisfied with λ > 0 is the case that C({Sλ

k }
N−1
k=0 ) = γ holds. This completes

the proof.

Proposition 4 gives us a clue on how to decide the KKT point. However, since the KKT
condition is a necessary condition for the optimality, there is no guarantee that a KKT point
found is actually an optimal solution. Fortunately, we can prove that all the KKT points
characterized in Proposition 4 constitute the optimal solutions.

Proposition 5. Consider any tuples (λ, Sλ
k , Fλ

k , Pλ
k )

N−1
k=0 such that λ > 0 and C({Sλ

k }
N−1
k=0 ) = γ.

The set of such tuples is formally defined as

Λ := {(λ, Sλ
k , Fλ

k , Pλ
k )

N−1
k=0 : λ > 0, C({Sλ

k }
N−1
k=0 ) = γ}

Then, the corresponding {(Sλ
k , Fλ

k )}
N−1
k=0 with (λ, Sλ

k , Fλ
k , Pλ

k )
N−1
k=0 ∈ Λ is an optimal solution of

the constrained LQG problem in Problem 2.

Proof. From Proposition 4, we conclude that Λ is the set of all KKT points. Therefore, there
exists at least one (λ∗, Sλ∗

k , Fλ∗
k , Pλ∗

k )N−1
k=0 ∈ Λ such that the corresponding {(Sλ

k , Fλ
k )}

N−1
k=0

is an optimal solution of the constrained LQG problem in Problem 2. From statement 3)
of Proposition 3, other elements in Λ have the same objective function value Jp({Sλ

k }
N−1
k=0 ).

Therefore, for all (λ, Sλ
k , Fλ

k , Pλ
k )

N−1
k=0 ∈ Λ, the corresponding {(Sλ

k , Fλ
k )}

N−1
k=0 is an optimal

solution of the constrained LQG problem in Problem 2. This completes the proof.

Proposition 5 tells us that if we can find a root λ > 0 satisfying f (λ) = 0, then we can
find an optimal solution of Problem 2. Therefore, the problem is reduced to finding a root
of f (λ) = 0. Our next goal is to develop a simple algorithm to solve the multi-objective
LQG problem.
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3.2. Algorithm

A natural way is to perform a line search over λ ≥ 0 until C({Sλ
k }

N−1
k=0 ) = γ holds.

For instance, we can gradually increase λ from 0 with a certain step size ∆λ > 0 until
f (λ) = 0 holds. Another way is to perform a bisection line search over a certain interval
λ ∈ [0, λ̄], λ̄ > 0 and find a root λ > 0 satisfying f (λ) = 0. In this paper, we adopt the
bisection search summarized in Algorithm 1. Note that the bisection search is valid because
f is monotone in its argument, which is reduced to the monotonicity of C({Sλ

k }
N−1
k=0 ).

Moreover, Algorithm 1 can be seen as a primal-dual method because they alternate the
primal and dual variables updates to estimate f . In Algorithm 1, f can be computed using
Algorithm 2.

Algorithm 1 Primal-Dual Method with Bisection Line Search.

1: Input: accuracy ε > 0, line search interval λ̃ > 0
2: Compute f (0) = Eval(0).
3: if f (0) ≤ 0 then
4: Stop and output 0.
5: end if
6: Let a = 0 and b = λ̃.
7: for k ∈ {0, 1, . . .} do
8: Compute f (a) = Eval(a), f (b) = Eval(b), c = (a + b)/2, and f (c) = Eval(c)
9: if |(b− a)/2| ≤ ε then

10: Stop and output c
11: end if
12: if sign( f (c)) = sign( f (a)) then
13: a← c
14: else
15: b← c
16: end if
17: end for

Algorithm 2 Policy evaluation f (λ) = Eval(λ).

1: Input: λ
2: Dual update: Perform the recursion (Riccati equation)

ATXλ
k+1 A− ATXλ

k+1B(Rk + λR̃k + BTXλ
k+1B)−1BTXλ

k+1 A + Qk + λQ̃k = Xλ
k

for all k ∈ {0, . . . , N − 1} with Xλ
N = Q f + λQ̃ f .

3: Primal update: Compute the feedback gains

Fk =− (Rk + λR̃k + BTXk+1B)−1BTXk+1 A, k ∈ {0, . . . , N − 1}

4: Primal update: Perform the recursion

Φ(Fk, Sk−1) = Sk, k ∈ {1, . . . , N − 1},

with
[

In
F0

]
(V + zzT)

[
In
F0

]T
= S0.

5: Compute

J̃p({Sλ
k }

N−1
k=0 ) :=Tr

(
Q̃ f

([
AT

BT

]T

Sλ
N−1

[
AT

BT

]
+ W

))
+

N−1

∑
k=0

Tr
([

Q̃k 0
0 R̃k

]
Sλ

k

)

6: Output: f (λ) = J̃p({Sλ
k }

N−1
k=0 )− γ



Mathematics 2023, 11, 1857 11 of 16

3.3. Suboptimality

Once an approximate λ is found from Algorithm 1, the corresponding solution
{Sλ

k , Pλ
k , Fλ

k }
N−1
k=0 can be easily found. The solution obtained by Algorithm 1 is ε-accurate

in terms of λ, while it does not guarantee the ε-accuracy in terms of the objective f (λ) or
other variables {Sλ

k , Pλ
k , Fλ

k }
N−1
k=0 induced from the ε-accuracy of λ, which depend on their

sensitivities in λ. From the structures of f (λ) or {Sλ
k , Pλ

k , Fλ
k }

N−1
k=0 , we can conclude that

if λ is ε-accurate, then f (λ) is ρ(ε)-accurate, i.e., | f (λ)| ≤ ρ(ε) for some function ρ such
that ρ(ε)→ 0 as ε→ 0. The function ρ depends on the system parameters such as (A, B),
Q f , Qk, Rk, Q̃ f , Q̃k, R̃k, k ≥ 0, and N.

Due to the finite precision error in the bisection search, it is hard to satisfy the equality
C({Sλ

k }
N−1
k=0 ) = γ or f (λ) = 0 exactly. Assume that f (λ) is ρ-accurate, i.e., | f (λ)| ≤ ρ.

This implies
C({Sλ

k }
N−1
k=0 )− γ =: a ∈ (−ρ, ρ)

Then, such λ > 0 is the dual variable such that

C({Sλ
k }

N−1
k=0 ) = γ + a

is satisfied, and the corresponding tuple {λ, Sλ
k , Pλ

k , Fλ
k }

N−1
k=0 satisfies the KKT condition

with γ ← γ + a. We can conclude that {Sλ
k , Fλ

k }
N−1
k=0 is an optimal solution of Problem 2

with γ replaced with γ + a ∈ (γ− ρ, γ + ρ).

Proposition 6. Suppose that given λ > 0, f (λ) is ρ-accurate, i.e., | f (λ)| ≤ ρ, and define

C({Sλ
k }

N−1
k=0 )− γ =: a ∈ (−ρ, ρ)

Then, for the corresponding tuple {λ, Sλ
k , Pλ

k , Fλ
k }

N−1
k=0 , {Sλ

k , Fλ
k }

N−1
k=0 is an optimal solution of

Problem 2 with γ replaced with γ + a ∈ (γ− ρ, γ + ρ).

Proof. The corresponding tuple {λ, Sλ
k , Pλ

k , Fλ
k }

N−1
k=0 satisfies the KKT condition with the

complement slackness condition replaced with λ( J̃p({Sk}N−1
k=0 )− γ− a) = 0. The proof is

concluded using Proposition 5.

Proposition 6 suggests that the solution obtained by using Algorithm 1 is a suboptimal
solution of Problem 2 with γ replaced with γ + a.

3.4. Computational Efficiency

The number of variables in the problem is upper bounded by O(n2 · N). If we use
an SDP to solve the multi-objective problem using interior point algorithms, the time
complexity is known to be upper bounded by O(n6 · N3 · log(1/ε)) to obtain an ε-accurate
solution [33]. Therefore, the computational time may explode cubically as N → ∞. On
the other hand, the bisection line search is known to find an ε-accurate solution within the
number of iterations bounded by O(log(ε0/ε)), where ε0 = |b− a| is the initial bracket size.
The time complexity of the proposed algorithm per iteration is O(n2 · N). Therefore, the
overall time complexity is bounded by O(n2 ·N · log(ε0/ε)), which is linear in N. Assuming
that both notions of the ε-accuracy is reasonably compatible for fair comparisons, the
proposed bisection algorithm may perform much faster than the interior-point algorithms,
especially when N is large, which is the case in most applications. In particular, when
the model predictive control is applied, where Problem 2 is solved at every iteration, the
proposed scheme could play an important role. The compatibility of the ε-accuracy of both
approaches is hard to address within the scope of this paper. We will provide a numerical
comparative analysis at the end of this paper to demonstrate the efficiency of the algorithm.
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3.5. Deterministic Cases

The previous results assume that the noises are stochastic and the covariance matrices
V and W are positive definite. However, it does not cover important applications where
some variables are deterministic or fixed. To cover more practical cases, we will extend the
results to the generic case that some elements of the noise vectors are deterministic. In this
case, V � 0, W � 0 should be relaxed to V � 0, W � 0. Note that if V � 0, W � 0, then the
KKT point in Proposition 1 uniquely satisfies the KKT condition for any fixed λ > 0. For
the deterministic case V = W = 0 or V �, W � 0, it still satisfies the KKT condition, while
it may not be a unique solution. Therefore, we cannot preserve the optimality arguments in
Proposition 5. Fortunately, the previous results hold in this case under mild assumptions.

Proposition 7. Suppose that the second condition, V � 0, W � 0, in Assumption 1 is relaxed
to V � 0, W � 0. Assume that f is a bijection for the given V � 0, W � 0. Consider any
tuples (λ, Sλ

k , Fλ
k , Pλ

k )
N−1
k=0 such that λ > 0 and C({Sλ

k }
N−1
k=0 ) = γ. Then, the corresponding

{(Sλ
k , Fλ

k )}
N−1
k=0 is an optimal solution of the constrained LQG problem in Problem 2.

Proof. We first prove the continuity of (λ, Sλ
k , Fλ

k , Pλ
k )

N−1
k=0 as a function of V and W, and

denote them by (λ, Sλ,V,W
k , Fλ,V,W

k , Pλ,V,W
k )N−1

k=0 . First of all, suppose that λ > 0 is fixed.
Then, Fλ,V,W

k and Pλ,V,W
k do not depend on V and W, and hence are continuous as functions

of (V, W). Moreover, Sλ,V,W
k depends on (V, W) linearly, and thus, is continuous in (V, W).

Similarly, so are JV,W
p and CV,W as functions of (V, W). Now, f V,W is also continuous as

a function of (V, W) and λ. Consider the set-valued mapping T : (V, W) 7→ {λ > 0 :
f V,W(λ) = 0}. If f is bijective for V � 0 and W � 0, then the output of T is singleton,
and T(V, W) is the point on the graph of f V,W , which crosses zero because the Lagrange
multiplier λ∗ > 0, which solves the KKT condition as a root of f V,W(λ). Therefore, from
the continuity of f V,W on (V, W) and λ ≥ 0, we can prove that T : Rn×n ×Rm×m → R++

is also continuous as follows. First of all, note that by the continuity of f V,W on (V, W),
f V,W is a bijection for all (V′, W ′) around (V, W). In the sequel, assume that (V′, W ′)
always lies inside such a set. Note also that T(V, W) = ( f V,W)−1(0) and ( f V,W)−1(y) is
continuous in y by the continuity of f V,W(λ) in λ. We will show that for any ε > 0, there
exists δ > 0 such that ‖V −V′‖2 + ‖W −W ′‖2 < δ implies |T(V, W) − T(V′, W ′)| < ε.
To proceed, let us define T(V, W) = ( f V,W)−1(0) = λ∗ and T(V′, W ′) = ( f V′ ,W ′)−1(0) =
λ′. By the continuity of f V,W in V and W, for any ε′ > 0, there exists δ > 0 such that
‖V −V′‖2 + ‖W −W ′‖2 < δ implies | f V,W(λ∗) − f V′ ,W ′(λ∗)| < ε′. Moreover, by the
continuity of ( f V,W)−1(y) in y, for any ε > 0, there exists ε′ > 0 such that |x − y| < ε′

implies |( f V′ ,W ′)−1(x)− ( f V′ ,W ′)−1(y)| < ε. With x = f V,W(λ∗), y = f V′ ,W ′(λ∗), we have

|( f V′ ,W ′)−1( f V,W(λ∗))− ( f V′ ,W ′)−1( f V′ ,W ′(λ∗))|

=|( f V′ ,W ′)−1(0)− λ∗|

=|( f V′ ,W ′)−1(0)− ( f V,W)−1(0)|
<ε

Therefore, this proves the continuity of T(V, W) = ( f V,W)−1(0) in V and W. Hence,
(λ, Sλ,V,W

k , Fλ,V,W
k , Pλ,V,W

k )N−1
k=0 is continuous as a function of V and W. Note that λ is also

a function of (V, W). As the next step, consider a sequence (Vi, Wi)
∞
i=0 such that Vi =

V + (0.5)i I and Wi = W + (0.5)i I so that (Vi, Wi) → (V, W) as i → ∞ and Vi � 0, Wi � 0
for all i ≥ 0. Then, the corresponding (Sλi ,Vi ,Wi

k , Fλi ,Vi ,Wi
k )N−1

k=0 is the unique optimal solution
corresponding to Vi and Wi, where λi is the Lagrange multiplier corresponding to Vi and Wi.
From the continuity of the KKT point in (V, W), we can arrive at the desired conclusion.
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3.6. Example

In this section, we will provide a simple example to illustrate the validity and effi-
ciency of the proposed approach. The numerical example was treated with the help of
MATLAB R2020a. The SDPs were solved with SeDuMi [34] and Yalmip [35]. Let us consider
Example 1 again with the following setting:

N = 1000, γ = 25, 000, V = 0, W = 0.01I, z =


25
25
30
24


Running the proposed algorithm with the initial search interval [0, λ̃] = [0, 100] and

the accuracy ε = 0.000001 leads to λ∗ = 0.2448 with the elapsed time 1.83 seconds. With
the obtained control policy, the evolution of the indoor temperature x1(t) (◦C), reference
temperature x4(t) (◦C), input u(t) (◦C), and the histograms of the objective function and
constraint cost are depicted in Figure 2. The histogram has been obtained over 3000 samples,
and the empirical average of the constraint cost is 25,129, which meets the inequality
constraint approximately.

Figure 2. With γ = 25,000, the top figures show evolution of the indoor temperature x1(t), reference
temperature x4(t), and the input u(t). The bottom figure depicts the histograms of the objective
function and constraint cost.

Running the proposed algorithm with the same setting except for γ = 10,000 leads to
λ∗ = 0.8959. The corresponding simulation results are given in Figure 3. The empirical
average of the constraint cost from samples in histogram is 9956, which meets the inequality
constraint approximately.
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Figure 3. With γ = 10, 000, the top figures show evolution of the indoor temperature x1(t), reference
temperature x4(t), and the input u(t). The bottom figure depicts the histograms of the objective
function and constraint cost.

A semidefinite programming problem (SDP) for solving the same problem, Problem 2
is given by

max
Sk ,k∈{0,1,...,N},λ≥0

N

∑
k=0

TrSk − λγ

subject to[
Qk + λQ̃k 0

0 Rk + λR̃k

]
+

[
ATSk+1 A− Sk ATSk+1B

BTSk+1 A BTSk+1B

]
� 0, k ∈ {0, 1, . . . , N}

with SN+1 = 0, QN = Q f , Q̃N = Q̃ f , RN = R̃N = 0, which can be readily obtained by
modifying the results in [29]. The histograms of the elapsed times of the proposed algorithm
and the above SDP problem to solve the building problem are shown in Figure 4 over
30 samples.

Figure 4. The histograms of the elapsed times of the proposed algorithm and the SDP problem.

The average elapsed times are 1.7551 s and 11.8987 s for the proposed method and
the SDP problem, respectively. The result demonstrates that the proposed algorithm is
computationally more efficient than the SDP approach.
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4. Conclusions

In this paper, we have studied a multi-objective linear quadratic Gaussian (LQG)
control problem subject to an input energy constraint. To solve this problem efficiently, we
have proposed a bisection line search algorithm based on optimization and Lagrangian
theories. Our approach has been thoroughly investigated by analyzing optimal solutions
using the Karush–Kuhn–Tucker (KKT) condition, and we have proven the convergence
guarantees of the algorithm. We have also demonstrated the applicability and efficiency of
the proposed algorithm by applying it to a building control problem.

The proposed algorithm has the potential to be applied to fast model predictive
control and to provide new insights into LQG problems. However, we acknowledge that
the bisection line search algorithm may become inefficient in multi-constraint scenarios due
to the high-dimensional search space. Hence, in future work, we aim to investigate and
develop new algorithms that can efficiently handle problems with multiple constraints.
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