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Abstract: An off-lattice agent-based model of tumor growth is presented, which describes a tumor as a
network of proliferating cells, whose dynamics depend on the stress generated by intercellular bonds.
A numerical method is introduced that ensures the smooth dynamics of the cell network and allows
for relative numerical cheapness while reproducing the effects typical of more complex approaches
such as the elongation of cells toward low-pressure regions and their tendency to maximize the
contact area. Simulations of free tumor growth, restricted only by the stress generated within
the tumor, demonstrate the influence of the tissue hydraulic conductivity and strength of cell–cell
interactions on tumor shape and growth rate. Simulations of compact tumor growth within normal
tissue show that strong interaction between tumor cells is a major factor limiting tumor growth.
Moreover, the effects of normal tissue size and strength of normal cell interactions on tumor growth
are ambiguous and depend on the value of tissue hydraulic conductivity. Simulations of tumor
growth in normal tissue with the account of nutrients yield different growth regimes, including
growth without saturation for at least several years with the formation of large necrotic cores in
cases of low tissue hydraulic conductivity and sufficiently high nutrient supply, which qualitatively
correlates with known clinical data.

Keywords: mathematical oncology; agent-based modeling; biomechanics
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1. Introduction

From the point of view of the basic unit of life—the cell—the evolutionary struggle
results in radically different optimal strategies in unicellular and multicellular organisms.
In the latter, cells have to cooperate with each other according to a rigorous program
embedded in their genome and are controlled by intercellular signaling pathways [1]. This
cooperation even includes a cell’s readiness to sacrifice itself for the good of the whole
organism [2]. However, if the cell represents a whole organism by itself, its optimal strategy
is the opposite and consists of staying alive by any means necessary and proliferating
as quickly as possible in order to distribute its genes. Although cancers can emerge in
multicellular organisms, the malignant cells prefer to adhere to unicellular organisms,
which requires hacking the cooperation program and relying more on primitive selfish
behavior patterns [3]. Notably, all the established distinguishing features of cancer are
focused on increasing its proliferation rate either directly or by adjusting the conditions of
its microenvironment [4,5].

A cancer cell can thus proliferate almost without limits under favorable conditions.
However, for a tumor growing in living tissue, such conditions cannot be achieved by
all cancer cells, except in the very early stages of tumor growth only. As cancer cells
require material, energy, and free space for their proliferation, nutrient deficiency and
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elevated stress are the main factors than limit tumor growth. Although cancer cells have the
mechanisms to counteract these restrictions, their effect is inevitably limited and generally
supports only a fraction of malignant cells. For example, cancer cells generally have low
sensitivity to the mechanical stress generated due to their proximity with other cells, which,
in a normal case, should prevent the tissue from excessive proliferation [6]. However, local
stress is not alleviated fast enough, e.g., through tissue displacement, a proliferating cancer
cell ultimately reaches the point where its act of division is impossible since its cytoskeleton
cannot withstand unlimited load during mitosis [7]. Therefore, the increase in solid stress
as a result of the proliferation of tumor cells further inhibits their proliferation rate [8].

In order to overcome nutrient deficiency, cancer cells stimulate angiogenesis, i.e., the
formation of new capillaries that supply them with nutrients [9]. However, as a rule, new
capillaries are concentrated only near the tumor rim, whereas in deeper parts of the tumor,
the capillary network is usually poor due to the collapse and rupture of microvessels caused
by elevated stress [10]. The invasion of tumor cells into the surrounding tissue allows them
to move away from the nutrient-deprived zones but obviously helps only a fraction of cells
that have acquired this ability.

Solid stress and nutrient availability in tumors, therefore, are interesting from a
therapeutic perspective. Antiangiogenic therapy has been used in clinics since 2004 [11] and
various mechanotherapeutic approaches are gaining popularity in preclinical oncological
studies [12,13]. The effects of these types of treatments, however, can be difficult to predict
and vary widely. A prominent example is the clinically detected stimulation of tumor
progression toward increasingly invasive phenotypes through antiangiogenic therapy [14].
Moreover, the efficiency of antiangiogenic therapy varies widely for the different types of
tumors [11].

A relatively cheap and fast way to obtain insights into the reasons for the behaviors
of different tumors and decipher the mechanisms of their reaction to various external
factors is the investigation of mathematical models. In these models, a tumor and its
microenvironment are considered a single complex system. This approach allows for not
only an explanation of the observed effects [15,16] but also ideas for the direction of further
experimental and clinical research [17,18].

There are two ways to mathematically model tumor growth when accounting for solid
stress [19]. The first is continuous modeling, which involves partial differential equations
to govern the model. In relatively simple cases, related works consider tissue a liquid-
like medium [20,21]. More complex methods are adapted from solid mechanics [22,23].
However, such methods are associated with significant theoretical difficulties, as living
tissues, especially those susceptible to significant deformations, are very different from non-
living solids. Tumor cells divide and die, and the network of interconnected cells, as well as
the extracellular matrix, undergo constant remodeling in response to deformations, which,
in turn, affects the stress distribution [24]. Notably, the consideration of nutrient dynamics
does not present significant difficulties and the use of reaction–diffusion equations for this
purpose represents a natural, physiologically-based method.

The second way of mathematical modeling is discrete modeling, wherein the dynamics
of each cell are considered separately, in particular, its position and speed are monitored.
With this formulation, the behavior of the network of interconnected cells can be simulated
quite naturally. However, these methods are typically significantly more computation-
ally expensive than continuous modeling methods, in which the cell density and other
observable parameters are averaged in space. However, discrete approaches have recently
become very popular due to the rapid development of computer technologies. Notably,
when nutrients are considered explicitly in such models, their dynamics are almost always
still modeled using continuous reaction–diffusion equations.

Various discrete methods of varying complexities exist that have been applied to
solutions of a broad range of tasks related to oncology (see, e.g., [25,26] for review). The
simplest and most popular approach is a cellular automaton, where a regular, generally
non-deformable, spatial lattice is introduced, of which each element can be occupied by a
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cell [27]. In the more complex, cellular Potts model approach, each cell occupies several
elements of a regular lattice [28], which allows for the consideration of explicitly varying
cell shapes but inevitably requires much more computational power.

Since the constraint of fixed-space lattice significantly limits the consideration of
mechanical effects, the most popular approach for the modeling of tumor growth when
accounting for solid stress is the use of off-lattice agent-based models in which continuous
space is considered (see the reviews in [29,30]). The most frequent basic assumptions of
this type of modeling are as follows. The cells are represented by elastic spheres or circles,
which exert a certain force on nearby cells. Two cells push each other apart if they are too
close and attract each other if they are far enough, with the interaction force vanishing at
a certain distance. The forces applied to each cell cause the cell to move in the direction
of its sum. The cell network structure undergoes remodeling due to cell movement, with
new bonds forming between close cells and old bonds disappearing between distant cells.
Such an approach can reproduce basic experimental phenomena such as the transition
from exponential to sub-exponential growth at sufficiently large tumor sizes [31], as well
as more specific phenomena such as the infiltration of inert microspheres into a tumor
spheroid via advection from its surface [32]. Thorough calibration of such models enables
obtaining quantitative correspondence between the model behavior and experimental
data dependent on parameter variations (for cell numbers up to 106) [33]. In particular,
such calibration reproduces the quantitative response of cell population dynamics to the
variation of externally applied mechanical stress [34]. Furthermore, such models allow
for the proposal of new hypotheses at a qualitative level. For example, the work in [35]
suggests that an increase in tissue stiffness can promote the aggressive morphology of
tumor invasion despite slowing down the overall tumor proliferation rate, which is similar
to the possible outcomes of antiangiogenic therapy mentioned above.

The key problems with such models are the descriptions of the processes of cell growth
and cell division, as well as the description of the mechanism of influence of mechanical
stress on these processes. One simple solution to these problems describes cell growth via
the increases in its radius and division via its instantaneous transformation into two smaller
round cells, which are displaced either in a direction where there is enough free space [36]
or merely in a randomly chosen direction, implying that cells can overlap [32,33]. In the first
case, local stress influences cell division only implicitly, whereas in the second case, it does
not affect it. Obviously, such a description of cell division infers an abrupt change in the
shape of a dividing cell and, therefore, an abrupt change in the interaction forces between
it and the cells with which it is connected to. A way to overcome such abrupt changes
is to model cell division via duplication of a cell, with two daughter cells immediately
replacing it and almost completely overlapping at first [35]. Technically, due to the already
introduced law of repulsion, this should enact a great repulsion force between these new
cells, which should lead to a fast cell divergence that yields strong local deformations.
These deformations could be smoothened by restricting the value of the repulsion force, but
under significant local stress that counteracts the divergence of new cells, this would lead to
the practical inability of cells to completely divide. A smooth process of cell growth can be
ensured by regarding it as a separate process with specific laws. However, abandoning the
typical spherical shape of cells and considering their more complex geometries significantly
increases computational costs [37]. A computationally cheap solution would be to consider
a cell as two overlapped spheres or circles that diverge at a moderate speed, corresponding
to the typical tumor cell proliferation rate if the external stress is not too high [31]. However,
this approach requires modifying the laws of connection between cells, as a direct account
of the connections between each pair of spheres or circles is unnatural in this setting.
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In this work, an off-lattice agent-based model of tumor growth is introduced, which in-
cludes a modification to ensure the smooth dynamics of the cell network while maintaining
relative computational efficiency. We use this model to simulate tumor growth under three
settings and explore its responses to variations in the biomechanical parameters. The first
setting involves free tumor growth, which is only limited by the residual stress generated
within the tumor due to the interconnection of tumor cells. In real tumors, this stress
remains, even after the excision of tumors from tissue [38]. The second setting involves
tumor growth within normal tissue, which adds the effect of external stress on tumor
growth. The third setting considers the dynamics of a nutrient whose local level affects the
behavior of tumor cells.

The computational code was implemented in C++ and can be found in the
Supplementary Materials.

2. Free Tumor Growth

In this section, the model of a two-dimensional tumor growing freely, i.e., in the
absence of normal tissue, is introduced and the results of its simulations are presented
and discussed. As normal tissue is not yet considered, nutrient dynamics is also not taken
into account and it is assumed that the behavior of tumor cells depends solely on the solid
stress applied to them. Such a setting may correspond roughly to the growth of a tumor
cell colony in a Petri dish with constantly replenished nutrients.

2.1. Model
2.1.1. Major Assumptions

The most basic model assumptions are quite general for this type of agent-based
modeling and were described in Section 1. Briefly, cells are represented by circles, which
push each other apart when too close and attract each other when not too distant from each
other. Emerging forces cause cell movement and remodeling of the cell network structure.
In the absence of cell division and death, the above description covers all the main features
of cell dynamics on a qualitative level. However, for proliferating tumor cells, additional
assumptions are introduced into the considered model.

In this work, a homogeneous tumor cell population is considered, where all tumor
cells are identical and obey the same laws with the same set of corresponding parameters.
Each of the circles that represent tumor cells never exists alone in this model—it is always
paired with another circle and together they represent a growing and dividing tumor cell.
This combination of two circles is referred to as a tumor cell pair, whereas each of the
individual circles is still referred to as a tumor cell. Please note that this terminology is used
for the convenience of the formulations and does not strictly correspond to the underlying
biological foundation. In addition, please also note that the term “couple of cells” is used to
refer to the unpaired cells, i.e., the ones that do not form a dividing tumor cell but have to be
considered together. The paired tumor cells always overlap, i.e., the distance between their
centers is lower than the sum of their radii. In the absence of external forces, the paired cells
diverge from each other at a constant speed. When they stop overlapping, they become
connected (and at first, repulse each other) and each of the cells becomes paired with a
newly introduced one whose position is just a tiny bit shifted from its own. The forces
applied to the paired cells due to the connections with other cells can slow down their
divergence to a complete stop. Additionally, due to the external forces, paired cells move
in space, with this movement being a combination of parallel transfer and rotation with
respect to their center of mass. However, this method of considering tumor cells creates
certain difficulties in defining bonds between cells and calculating the corresponding forces,
which are explained below together with a solution.

In real tumors, solid stress is exerted on cells not only by other cells but also by the
extracellular matrix. In this model, the extracellular matrix is not considered explicitly.
However, implicitly, its density is assumed to influence the value of tissue hydraulic
conductivity and thus the speed of cell displacement. Moreover, in Section 3, restricted
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tumor growth is considered, corresponding to the growth of benign tumors in capsules
consisting of extracellular matrix elements.

2.1.2. Mathematical Formulation

The model simulations considered in this section represent a cyclic sequence of the
following stages, with each cycle happening during a specific time period τ. The values of
the parameters introduced below are provided in Section 2.1.3.

The first stage is cell movement. Each pair of tumor cells participates in three separate
types of movement: cell divergence, rotation, and parallel transfer. The divergence of cells
mimics the increase in tumor cell volume before mitosis and, eventually, this process results
in overall tumor growth. Each of them is influenced by the forces external to the considered
pair of cells. The specific way of calculating these forces is explained below, but suffice
it to say that they are directed along the lines that connect the centers of cells (recall that
each of the circles is referred to as a cell) and the value of each force is a product of several
coefficients, whose own product is positive, and the stress σ, whose value depends on the
length of bond l. In considering free tumor growth, all the cell radii r are constant and
equal to r0. The following function of stress is used, which is adapted from the works that
use continuous models [21,22] and is illustrated in Figure 1.

σ(l) = kT [c− c0][c− cbr]
2/
√

cin f − c, c = {2r0/[2r0 + l]}3

c0 = c(l0), cbr = c(lmax), cin f = c(−l0).
(1)

Figure 1. Dependence of solid stress σ on the length of the bonds between cells l, expressed in
Equation (1), for designated values of kT . The parameter values are based on the basic parameter set,
which is listed in Table 1, where ls is the bond length at which cell attraction is the strongest for any
value of kT .

This function assumes that at the normal bond length, l = l0, cell interaction yields
zero stress. If cells are pushed together, l < l0 and a repulsive interaction appears. If cells
are pulled apart, l > l0 and an adhesive interaction at first strengthens and then weakens
with the increase in the bond length, which corresponds to the sequential ruptures of
individual intercellular contacts. For sufficiently separated cells at l > lmax, there is no
interaction between them. Parameter c roughly corresponds to the volume fraction that
cells would locally occupy in a three-dimensional space under all cell bonds equal to l in
that location (neglecting the specific form of cells, i.e., assuming that under l = 0, the whole
volume is occupied by cells). The bond length can be negative; thus, the non-paired cells
can overlap, which may be related to cell compressibility. However, as seen in Figure 1,
this overlapping is not encouraged. Note that as cells approach each other, the repulsive
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response takes place before direct cell–cell contact (l = 0), which reflects the fact that it is
caused not only by the elastic deformation of cell membranes but also by the interaction of
receptors and ligands attached to cell membranes [39].

Cell divergence. In the absence of external forces, paired cells move apart with a constant
speed of vdiv = v along the line that connects their centers. When external forces are present
(which was almost always true during the calculations), cell divergence slows down. It
is assumed that cells cannot diverge under large enough pressure applied against the
direction of cell displacement. That is, if an outer cell is bound with one of the considered
paired cells in such a way that the centers of the three cells are on a single line and the outer
bond length yields a pressure that exceeds σcr, then the considered paired cell cannot be
displaced (its pair is, however, free to move apart if no external forces are applied to it). In
general cases, the speed of divergence of cell X is

vX
div = v ·min(1, max(0, 1− σX

D /σcr)), (2)

which is a non-negative value not exceeding v. Therefore, during each cycle, each cell
X is moved using a numerical algorithm by the distance dRX

div = vX
divτ. Here, σX

D is the
sum of the projections of all forces acting on cell X on the vector starting at its center
and pointing at the center of its pair x, divided by the normalized area of the surface of
interaction between two cells. The definition of this surface area in a two-dimensional
case is a non-obvious task in itself so it is only accounted for implicitly. It is assumed
that it depends only on the radii of the interacting cells, as discussed below, whereas its
alterations due to the changes in the intercellular distance are not accounted for as they
should bring only quantitative corrections to the stress function when they are multiplied.
Since the stress function itself is of only a qualitative nature, such a refinement would be
excessive. For two cells with radii r0, however, the interaction surface area is considered to
be normalized to unity. As cells diverge, the effective fractional area f X

S = f x
S of each cell is

monitored, which is defined so that 2 f X
S πr2 ∈ (πr2, 2πr2) is the area occupied on the plane

by the overlapped paired cells. It can be calculated from simple geometric reasoning that

fS = 1 +
sin α− α

2π
, α = 2 arccos

D
2r

, (3)

where D is the distance between cell centers (superscripts denoting cells are omitted here
and elsewhere for brevity).

Cell transfer. The external forces applied to a pair of cells X and x cause their par-
allel transfer, which is expressed in a traditional form reflecting the friction-dominated
overdamped motion. This component of displacement is the same for both paired cells,
which move along the direction of the sum of external forces applied to both of them, FX,x,
and during each cycle, they pass the distance

∆Rtr = KFX,xτ/[2 fSπr2], (4)

where the coefficient K is referred to as the tissue hydraulic conductivity, or tissue con-
ductivity for simplicity. The denominator corresponds to the mass of a tumor cell pair,
reflecting the assumption that greater cells are harder to move. The specific cell mass is not
calculated explicitly but it is assumed that it should be proportional to the cell area. It can
be speculated that the corresponding coefficient of proportionality is hidden in K since the
tumor mass is only used in this model in similar fractions that involve tissue conductivity.

Cell rotation. During each time step, the paired cells rotate around their center of mass,
which is located in the middle of the line segment connecting their centers, with the rotation
angle being

∆φ = KTτ/I, I =
r2

4

{
2[D2 + 2r2]

[
π − arccos

D
2r
]
+ 3D

√
4r2 − D2

}
(5)
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Here, T represents the total torque about the cells’ center of mass, which is calculated
directly, and I denotes the corresponding moment of inertia (note that the cell mass is
implicitly accounted for here). It can be proven that the same coefficient K should be used
in this formula by considering a limit case of a point body rotating around an infinitely
distant axis, where the formulas for cell rotation and parallel transfer should yield the
same results.

Redefinition of bonds. After cells have changed their positions, the distances between
them change, which influences the length of each bond l and its existence or non-existence
due to breaking. The most direct algorithmic way to track the bonds would involve
checking each couple of non-paired cells during every cycle. However, a large number of
cells would lead to a colossal number of operations during each time step (proportional
to the square of the number of cells) and a vast amount of memory. In order to optimize
the bond tracking, a less direct approach is used here, where operations with bonds are
divided into the stages of bond redefinition (which includes their breaking) and new bond
formation. The former deals with already existing bonds, the list of which can be found at
the beginning of this stage.

As mentioned above, the consideration of paired tumor cells creates certain difficulties,
which are considered now using the method illustrated in Figure 2, where dark gray circles
represent paired tumor cells and light gray circles represent single normal cells (not present
under free tumor growth but useful to consider). During the stage of redefining the bonds,
the program goes through existing intercellular bonds and modifies the information about
them. Each of the bonds is identified by two indices of interacting cells X and Y. Each bond
is a line segment lying on the line that connects the centers of interacting cells and its ends
are situated on the circumferences of the circles that represent these cells. The distance
between the bond’s ends in a general case is modified during this stage, as DX,Y − rX − rY,
where DX,Y is the actual distance between cell centers and rX, rY are their actual radii.
If the bond does not go through cells that are paired with X and Y (see, e.g., the bond
between tumor cell 6 and normal cell 8 in Figure 2), the length of the bond lX,Y is taken
to be equal to the distance between the bond’s ends. These bonds are referred to here as
“open bonds”. An important assumption of the model is that a tumor cell can interact with
an outer cell with which its paired cell already interacts so tumor cell 7 and normal cell 8
are also connected. Note that if only the closest cell in a pair could interact with an outer
cell, this could lead to abrupt reconnections during simulations. Such an approach could
yield numerical difficulties when the whole cell network is considered, such as artificial
oscillations of cells and rapid changes in the directions of cell rotation. The approach
suggested here aims to avoid such abrupt changes and ensure the smooth dynamics of the
cell network.

If only cells 6, 7, and 8 are considered, it is clear that the bonds with normal cell 8
should hold tumor cells in a position where the line connecting the centers of tumor cells 6
and 7 is perpendicular to the line connecting their center of mass with the center of cell 8.
Such a feature corresponds to maximizing the contact area between cells, which can be
explicitly implemented in cellular Potts models (see, e.g., [40]). In order to account for the
increase in the cell contact area during the divergence of the tumor cells, the formula for the
force generated by each bond accounts for the effective tumor cell fractional area fS. For a
general case, the force generated by a bond between cells X and Y is calculated as follows:

FX,Y = σ(lX,Y) · kX,Y
l · f X

S · f Y
S ·min(rX , rY)/r0, (6)

where σ(lX,Y) is the stress that was defined in Equation (1) and kX,Y
l is the coefficient of the

bond strength that is equal to 1 for open bonds. The last multiplier represents the implicit
account of the area of the cell interaction surface. It accounts for the fact that smaller cells
should have a smaller contact area and is equal to 1 when all cells have equal radii of r0
(which is true during free tumor growth, as noted above). The effective fractional area of
normal cells is always equal to 1. Therefore, when tumor cells 6 and 7 have just begun
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to diverge and thus their positions practically coincide in space, they exert a total force
equal to σ(lX,Y) on cell 8, which is identical to the force that would be generated by a single
normal cell in the same position under the same solid stress function. When the tumor cells
are ready to separate, each of them acts with the same force on cell 8, provided that the
bond lengths are kept the same.

Figure 2. Illustration of the method used to calculate the forces between cells. While circles are
normal cells, gray circles are dividing tumor cells. Green lines correspond to adhesive interactions,
with the length of the bonds l > l0, and these lines become more transparent as l → lmax. Orange and
red lines denote repulsive interactions, with the length of the bonds l < l0, and these lines become
darker with decreasing l. Dashed lines denote “hidden” parts of bonds. Coefficients of tumor cells
area fS and coefficients of bond strengths kl are calculated according to Equations (3) and (7). For
further explanations, see the text.

If the bond between cells X and Y goes through at least one of the cells x and y
that are paired with X and Y, this bond is considered a “closed bond” and its length is
lX,Y = DX,Y − rX − rY − LX,Y

Hx − LX,Y
Hy , where the last two terms represent the lengths of the

parts of this bond that lie within x and y. They are referred to here as “hidden bond parts”
and can be calculated through direct geometric reasoning. The hidden parts are marked
with dashed lines in Figure 2, where the solid lines correspond to the “visible parts” whose
lengths are equal to the defined bond lengths.

Consider normal cell 1 and tumor cells 2 and 3 whose centers are located on the
same line. Note that the open bond between cells 1 and 2 and the visible part of the bond
between cells 1 and 3 coincide. Imagine that tumor cells diverge while the lengths of
bonds l1,2 = l1,3 remain constant. In order to produce the constant total force with which
tumor cells act on cell 1 in this case, the closed bond between cells 1 and 3 is assigned a
coefficient k1,3

l = [1− f 3
S ]/ f 3

S . Thus, the sum of two corresponding forces, calculated using
Equation (6), is maintained equal to σ(l1,2) during tumor cell divergence. A similar thought
experiment for two tumor cell pairs with all cell centers situated on a single line enables
the deduction that in the case of closed bonds with two hidden parts (which connect the
cells that are farthest from each other), the coefficient of the bond strength should represent
a product of an analogical fraction. In a general case of random cell alignment, in order
to ensure smooth dynamics, it is clear that kl should tend to zero when the lengths of the
hidden bond parts are close to zero and the bond is going to become open. These features
lead to the following general formula for the coefficients of the bond strengths:

kX,Y
l = [1−

2 f X
S − 1
f X
S

·
LX,Y

Hx
DX,Y ] · [1−

2 f Y
S − 1
f Y
S

·
LX,Y

Hy

DX,Y ], (7)
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which is equal to 1, particularly for open bonds, as noted above. Note that in Figure 2, the
bond between cells 3 and 4 is actually closed, because its hidden part, which goes through
cell 2, is too small to be discernible. Therefore, its coefficient of strength kl is close to unity.
Conversely, bonds with two hidden parts (such as between cells 4 and 7 and between cells 2
and 7) have the smallest values of kl . Note that when defining the speed of cell divergence
(see Equation (2)), closed bonds are assumed to affect the cells whose circumference the
ends of their open parts are located on, e.g., the compressed closed bond between cells 2
and 7 slows down the divergence of their pairs, cells 3 and 6.

It is assumed that the bonds break when their length l > lmax. Thus, before breaking,
the force generated by a bond vanishes, which contributes to smooth model dynamics. A
broken bond is not considered during the next stage of bond redefinition.

Division of cells. If paired cells X and x have moved sufficiently far apart so that
D ≥ 2rX = 2rx and f X

S = f x
S = 1, they are no longer considered a pair. They immediately

become connected with each other through a new bond and a new cell pair emerges for each
of them. The cells in each of the newly formed pairs are displaced in the opposite direction
by a small distance ∆R from the position of the original cell. The direction of displacement
is defined as perpendicular to the direction of the strongest force acting on the original
cell. Thus, the cell pairs aim to avoid elongating in the direction of maximum pressure.
This feature is maintained due to the ability of cells to rotate in response to external forces
and the fact that the forces acting perpendicular to the direction of cell divergence do not
hinder it. For each of the new cells, new bonds are assigned with all the cells that were
connected to its actual pair, as well as with the cells of the other pair generated as a result
of this division. The features of the new bonds are defined as described above.

New bond formation. Along with the formation of new bonds during cell division, new
bonds should form when two unpaired cells become sufficiently close to each other, which
is checked in the last stage. Since the direct checking of each cell couple during each cycle
is a quite cumbersome task, this process is organized in the program as follows.

At first, the notion of the “potential bond” is introduced. Two cells are assumed to be
potentially connected if the length of a bond that would connect them (which is defined
according to the rules for closed bonds described above) is less than a predefined technical
parameter, l < lpot. The existence of potential bonds is checked for each couple of cells that
are not paired, not connected, and do not already have a common potential bond. This
action is rarely performed, certainly not during each time step, with a period of Tpot > τ.
More often, with a period of Tbond & τ, these potential bonds are inspected and each of
them ceases to exist if its length is greater than another parameter l > lbr

pot > lpot and it turns
into a (real) bond if l < lmax. Note that some other value smaller than lmax could be used as
a threshold for new bond formation but this value was chosen to provide smooth dynamics
by avoiding the leaps in the force between two cells from zero to a notable finite value
upon their connection and to keep the stress function σ(l) simple (in particular, avoiding
hysteresis effects).

If this stage takes place during the cycle, it is completed and after the increment in the
time counter t = t + τ, the program proceeds to the next iteration of the cycle.

2.1.3. Parameters

The set of parameter values used during the simulations of the free tumor growth is
listed in Table 1. Their dimensionless values were obtained using the following normaliza-
tion values: 1 h for time, 1 µm for length, and 1 kPa for stress. Note that for convenience,
the values of the forces are not converted to some of their standard units in this work (as
well as the values of masses, which have been discussed above). Direct estimations using
the standard parameter values, however, suggest that in the three-dimensional case, the
adhesion forces between two cells could realistically reach values of up to 0.5 µN (see,
e.g., [41]).
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Table 1. Model parameters used during the simulations of free tumor growth.

Parameter Description Model Value(s)

Main:

r0 cell radius (yet unchangeable) 5
kT coefficient of stress function for tumor cells 80/200/600
l0 normal bond length (yielding zero stress) 0.75

lmax maximum bond length 5
σcr critical stress at which cell divergence stops 15
v maximum speed of divergence of a paired tumor cell ≈0.22
K tissue conductivity 10/0.32/0.01

Technical:

τ time step (0.0004− 0.004)/K
∆R initial displacement of paired tumor cells 5 × 10−3

Tpot period of checking for potential bond formation 0.28/K
Tbond period of checking for bond formation 0.004/K
lpot length at which potential bond is formed 25
lbr
pot length at which potential bond is discarded 35

The value for the tumor cell radius was chosen to provide a typical tumor cell size [42].
As stated in Section 2.1, the parameters of the stress function were based on the works
in [21,22] that deal with continuous models. In accordance with the reasoning provided
in our previous work [43], which also considered a continuous model, the value of the
critical stress for cell proliferation was roughly assessed by the extrapolation of the data
in [22]. The stress function coefficient kT varied depending on the functions, as depicted in
Figure 1. Its greatest value led to the maximum absolute value of adhesion stress close to
σcr, whereas at its minimum value, direct cell contact produced repulsion stress less than
σcr, which stimulated cell overlapping during active proliferation. The value for the tumor
cell pair divergence speed v was obtained as r0/[ln 2/B], where B = 0.03 was a reasonable
value for the tumor cell proliferation rate, which was also used in our previous works
(see [43,44]). A single tumor cell division unconstrained by external forces happened in
about 23 h. The values of tissue conductivity also varied during the simulations, based on
the assumption that since σcr was the critical pressure that stopped tumor cell divergence,
the following inequality must hold: Kσcr/[πr2

0] & v. Tissue conductivity is known to vary
significantly among tumors of various cell lines (see, e.g., [45]) and in this study, it varied
across quite a broad range.

The initial displacement of paired tumor cells was chosen to be small compared to
the cell radius—in the absence of external forces, tumor cells would pass such a distance
in about 80 s. The time step was adjusted dynamically within the range depending on
the value of K, avoiding significant alterations of the bond lengths, which could lead to
numerical errors. The time step and values of the other technical parameters were adjusted
empirically so as not to distort the solution or minimize the computational time spent on it.

2.2. Results

In this section, the results of the simulations of tumor growth in the absence of normal
tissue are demonstrated. Tumor growth was restricted only by the residual stress that
accumulated, as tumor cell numbers increased, along with the number of intercellular
bonds. The external forces applied to the tumor were absent and no nutrients that would
influence the behavior of the tumor cell were considered.

The initial conditions were a single pair of tumor cells, which were separated by a
small distance of 2∆R. Figure 3 shows five snapshots of the typical beginning of tumor
growth, with this simulation performed under kT = 200 and K = 0.32. At first, a single pair
of tumor cells did not experience external pressure and divided in the minimum possible
time, ≈23 h. After the division, two new tumor cell pairs formed immediately, oriented
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perpendicularly to its direction. Four intercellular bonds emerged. The crossed bonds were
stretched and had a non-zero projection in the new direction of division but affected it only
slightly. Compared to the first unconstrained division, it took ≈5% more time for each
of the new cell pairs to divide. The two other bonds were compressed and compensated
for the forces that tend to bring cells closer together but have no influence on the cell
division rate.

Figure 3. Snapshots of free tumor growth at the designated times under kT = 200, K = 0.32, and other
parameter values from the basic set (see Table 1). Green lines correspond to adhesive interactions,
with the lengths of the bonds l > l0, and these lines become transparent as l → lmax. Orange and
red lines denote repulsive interactions, with the lengths of the bonds l < l0, and these lines become
darker with decreasing l.

During several first divisions, cells diverge in the direction perpendicular to the
previous direction of their divergence, which should lead to a square arrangement of tumor
cells. However, after several divisions, this type of arrangement breaks due to minor
instabilities, and a more stable hexagonal (“honeycomb”) arrangement of cells manifests
itself. At 97 h of tumor growth, this arrangement is rather accurate, with the lengths of
the bonds differing from their normal stress-free length l0 by no more than 17%. However,
as proliferation continues, the cells located in the interior regions start to experience
significant pressure, which slows down their division. As cells are interconnected and
adhere to each other, such pressure cannot be readily alleviated by cell displacement. In
the sixth generation of tumor cells, the process of division takes up to 34 h. Upon further
proliferation, the division rate of cells located in the center of the tumor further slows down,
whereas cells at its periphery divide at a rate close to maximum.

Figure 4 shows the dynamics of the number of cell pairs under free tumor growth
with the variation of two parameters. The first parameter is the coefficient of the stress
function for tumor cells kT . Under an increase in its value, a couple of connected cells
tend to both repel and attract each other with greater force when the length of their bond l
deviates from its normal value l0 (see Figure 1). The absolute values of maximum adhesive
stress that a bond can generate under the three used values of kT constitute ≈13%, 33%,
and 99% of the stress value, which stops tumor cell divergence when applied against its
direction, σcr. Under the lowest value of kT , the two cells that touch each other generate
stress approximately equal to σcr, which stimulates a slight overlapping of non-paired
cells during simulations. Under the highest value of kT , the value of σcr is reached under
contraction of the bond down to ≈71% of its length. The second parameter is the tissue
conductivity K, which correlates with the speed of cell displacement in response to the
applied forces. Thus, a higher value of this parameter corresponds to a greater pressure
alleviation within the tissue.
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Figure 4. Dynamics of the number of tumor cell pairs under free tumor growth, with variations in
the stress function coefficient kT and tissue conductivity K.

The highest rate of tumor growth was manifested under the highest of the used values
of K = 10 and the lowest value of kT = 80, when tumor cells were most readily displaced
and could adhere only slightly to each other, yielding quite low resistance to displacement.
As the corresponding graph shows, the number of tumor cells changed rather abruptly
in similar periods, indicating that cells were sufficiently synchronized during the whole
simulation. The best fit by an exponential curve suggests that in this case, the average
cell proliferation rate fell by only about 8% compared to the unrestricted case, whereas by
increasing kT to 200 and 600, it fell by≈11% and≈17% and cell synchronization was wiped
out. At K = 0.32, the growth curves became notably sub-exponential as the proliferation of
interior cells was halted almost completely after a couple of weeks of tumor growth. The
reduction in the overall tumor proliferation rate was more significant at K = 0.01. In this
case, after the initial 12 days, the best fit exponential curve for any kT corresponded to only
about half the maximum tumor cell proliferation rate and quite a large number of cells
effectively stopped proliferating.

Figure 5 shows the arrangements of tumor cells for the discussed simulations when
the number of tumor cell pairs had just reached 3500. The colors of cells correspond to their
speed of divergence vdiv, with light gray cells dividing slower and black cells dividing at
a speed close to maximum. This figure confirms that the overall tumor proliferation rate
largely depended on tissue conductivity. Independent of the value of kT , at K = 10, actively
dividing tumor cells were met throughout the tumor volume. At K = 0.32, only the tumor
rim actively proliferated and tumor cells dividing at close to the maximum speed were
rarely met. At K = 0.01, cell proliferation was significantly inhibited, even at the tumor rim
since even the cells aligned along the tumor surface can experience significant stress in the
direction of their divergence. Some of them escape it by passively turning in response to
external forces and changing the direction of division but this process is rather slow due
to the low conductivity. Strong cell–cell interactions that occurred at kT = 600 favor the
clustering of cells yielding notable outgrowths whose widths decreased with the decrease
in the tissue conductivity that suppressed cell proliferation within them. Lower values of
the stress function coefficient, along with the moderate sizes of proliferating tumor rims,
achieved at K = 0.32 conversely led to more circular tumor shapes.

For each tumor, a graph is attached, which provides the distributions of the bond
lengths for inner, middle, and outer cells, their positions defined with respect to the initial
position of the center of the first cell pair. All these distributions are unimodal, with the
peak values achieved at lengths smaller than l0. Confirming the discussion in Section 2.1.3,
the lowest value of kT = 80 stimulated cell overlapping under a significantly low tissue
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conductivity, even for the cells at the tumor rim. The increase in the value of kT and,
therefore, stronger cell–cell interaction and a decrease in the value of K both led to the
smoothing of differences between the distributions of bond lengths in different layers. With
an increase in kT , the main modes shifted close to l0, as the cell–cell interactions became
stiffer. With a decrease in K, more and more outer-located cells became arranged more
compactly, leading to a fraction of the dividing cells eventually decreasing, even at the
tumor border.

Figure 5. Tumors growing freely at the designated times when the number of cell pairs had just
reached 3500, with the variation in the stress function coefficient kT and tissue conductivity K, along
with the distributions of the bond lengths for inner (red lines), middle (green lines), and outer
(blue lines) cells. The colors of the cells correspond to their speed of divergence vdiv, with lighter cells
dividing more slowly.

3. Encapsulated Tumor Growth in Normal Tissue

In this section, the model is augmented with normal tissue, the main element of
which is a network of interconnected normal cells. In order to roughly simulate the elastic
response of normal tissue to tumor growth, it is situated within the round area whose
boundary is referred to here as a capsule. The capsule can be enlarged when sufficient
pressure is applied to it from within, whereas by itself, it tends to shrink. This method also
prevents excessive disruption of the network of interconnected normal cells in response
to tumor growth. In the simulations in this section, the tumor is situated within its own
round capsule, which separates it from normal cells. This capsule corresponds to real
capsules made from extracellular matrix elements that can surround tumors, inhibiting
tumor cell invasion in normal tissue and slowing down the tumor proliferation rate [46].
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The newly introduced elements—capsules and normal cells—exert external stress on the
growing tumor in addition to the residual stress discussed above. Furthermore, nutrients
are introduced into the model, with the behavior of tumor cells dependent on their local
level. For simplicity, it is assumed that the positions of capillaries should correlate with the
positions of normal cells, and, therefore, the latter formally act as the sources of nutrients in
the model.

3.1. Model Extension
3.1.1. Normal Cells and Capsules

The description of normal cells and their dynamics is analogical to that of tumor cells,
which was described in Section 2.1.2, with the significant simplification that normal cells
do not divide and each of them exists alone. The radius of each normal cell is always
equal to r0. As normal cells are considered round, their rotation is neglected and the
only component of their motion is the parallel transfer governed by the law analogical to
Equation (4) but with πr2

0 in the denominator. They adhere to and repel each other by the
law analogical to Equation (1), with, in a general case, a different stress function coefficient
kN . All the above-described logic related to the intercellular bonds and forces also applies
to the normal cells, with their effective fractional area fS always equal to one.

The initial conditions in the following simulations always include a population of
normal cells arranged in a hexagonal arrangement with equal stress-free bond lengths l0
(as Figure 3 shows, tumor cells also tend to such an arrangement naturally). Normal tissue
is encircled by a normal capsule with an initial radius rN = r0

N and zero thickness, whose
center should coincide with that of one of the normal cells and is considered the framework
origin. Only the cells that fit in a normal capsule area are considered from the beginning of
the simulation. The central cell is, however, replaced with a pair of tumor cells, displaced
by a small distance of 2∆R, and encircled by a tumor capsule, concentric with the normal
one and with an initial radius of rT = r0 + l0/2 and a zero thickness. The first tumor
cell division takes place immediately from the beginning of the simulation, yielding four
overlapping tumor cells. This was performed in order to overcome the artificially caused
inability of tumor cells to undergo the first division; otherwise, in the beginning, two
dividing tumor cells have to counteract the pressure applied on the external surface of the
tumor capsule via its bonds with six normal cells. In order to avoid the associated numerical
difficulties, the solid stress function σ(l) is modified here using the above restriction with a
value of 10 · σcr, and is equal to it when l ≤ −l0.

In the simulations, the main cycle, as described in Section 2.1.2, was preceded in each
time step by two new stages that defined the dynamics of tumors and normal capsules.
The centers of the capsules were held at the framework origin and the capsules maintained
a circular shape. Therefore, only their radii rN and rT changed in response to the pressure
exerted by cells. The bonds between cells and capsules were defined analogically to the
intercellular bonds with the difference that cells can connect to capsules from within. In
this case, a bond is well aligned along the line connecting the centers of a cell and a
capsule. The length of the open bond, i.e., the one that does not go through the pair of a
considered cell, is l = rC − r− R, where rC is the radius of the corresponding capsule, rN
or rT , r is the cell radius and R is the position of its center. Here, closed bonds are defined
analogically to the intercellular closed bonds and the forces between cells and capsules
are calculated according to Equations (1) and (6), with, in a general case, a different stress
function coefficient kC. The parameter of the effective fractional area related to the capsules
is always equal to 1. Under such conditions, tumor cells do not leave the region enclosed
by the tumor capsule, therefore, compact tumor growth is simulated. Normal and tumor
cells cannot connect through the tumor capsule.

During each cycle, the radii of the capsules rT and rN change according to the following
values:

∆rT = KT
C

FT
2πrT

τ, ∆rN = KN
C [

FN
2πrN

− sN
0 ]τ, (8)
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where FT and FN are the sums of the forces acting on the corresponding capsules.

3.1.2. Nutrients and Modes of Cell Behavior

When nutrients are considered, they are represented by one generic nutrient for sim-
plicity. It is supplied from the normal tissue (as stated above, normal cells effectively play
the role of its sources), it diffuses within the tissue, and it is consumed by tumor and
normal cells. Its local level influences the behavior of tumor cells. Calculations of the actual
distribution of nutrient n(x, y, t) represent an additional stage of the numerical algorithm
performed at the beginning of every time step. Rather than using direct but numerically
expensive finite-element methods that would be typically used in this situation, the follow-
ing simple approach was used. Its use was justified by the fact that possible quantitative
differences between methods are acceptable here as only the qualitative behavior of the
tumor and normal tissue are of interest in this study.

The nutrient profile was calculated as if distributed on a network of interconnected
nodes, each of which was situated at a normal cell center or a tumor cell pair center of mass.
During each cycle, the following increments were added consecutively for nutrient levels
at each of the nodes at the normal cell centers:

∆nN = {P[1− n]−QN
n

n + n∗
} · τn (9)

and at the tumor cell pair centers of mass:

∆nT = −{[γprQT + QN ]
n

n + n∗
} · 2 fSr2

r2
0
· τn, (10)

These terms represent the diffusive inflow from blood with coefficient P, with the
nutrient level in blood normalized to unity, and consumption by tumor and normal cells,
the latter obeying classical Michaelis–Menten kinetics. The nutrient consumption rate by
a normal cell QN was constant and tumor cells additionally needed a significant amount
of nutrients for their proliferation; therefore, their nutrient consumption rate can increase
up to QT + QN . The nature of coefficient γpr ∈ [0, 1] is explained below. Furthermore, the
diffusion of nutrients was approximated at each node A by the addition of the following
increments to the nutrient levels, where A corresponds to the index of a normal cell or one
of the indices (the smaller one) of a tumor cell in each of the tumor cell pairs:

∆nA
di f = ∑

bonds+p.b.
∆nAB

di f , ∆nAB
di f = Dn · [nB − nA] · τn

[dAB]2
, (11)

where the sum is taken across all nodes that correspond to cells that have bonds or potential
bonds with cell A, Dn is the nutrient diffusion coefficient, and dAB is the distance between
nodes. The time step τn used in all three equations was adjusted automatically and this step
was repeated N times, where τn = τ/N, in order to exclude numerical errors by keeping
nutrient levels within the range [0, 1].

Under the consideration of tumor growth in tissue, the local nutrient level affected the
behavior of tumor cells in a threshold manner so that cells could not only diverge but also
shrink, die, and grow. Parallel transfer and rotation, governed by Equations (4) and (5),
happened under all circumstances, but paired cells diverged only if the local nutrient level
was higher than nq and cell radii were equal to r0. It is assumed that for divergence, they
need to consume nutrients at a rate proportional to their speed, therefore, for diverging
cells X and x:

γpr = γdiv
pr =

vX
div + vx

div
2v

. (12)
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If n > nq but r < r0, cells do not diverge but grow, i.e., their radii increase, with the
center of mass position remaining fixed, by the following amount:

∆rgr = [
√

1 + γ
gr
prBτ − 1]r,

γ
gr
pr = min(1, max(0, 1− FC/Fgr

cr )), Fgr
cr = 2 fS[r/r0]σcr,

(13)

where FC is the sum of the projections of all forces affecting paired cells on the vectors,
starting at the points of application of these forces and ending at the center of mass of the
cell pair. Therefore, external pressure slows down tumor cell growth and a sufficiently
large pressure can stop it. Growing cells need to consume nutrients at a rate proportional
to their growth rate; therefore, for growing cells γpr = γ

gr
pr.

If n ≤ nd, cells die, which is described by the simple option, previously implemented
in agent-based models (e.g., [32]), i.e., cells shrink, with the center of mass position re-
maining fixed until they disappear. If a cell radius r > rmin, it changes by the following
negative amount:

∆rsh = [
√

1−Mτ − 1]r, (14)

and when its radius reaches rmin, it disappears, meaning that it and its bonds and potential
bonds are not accounted for from this moment on.

If the local nutrient level lies within the range (nd, nq], tumor cells are considered to
be quiescent and they do not shrink, grow, diverge, or die.

3.1.3. New Parameters

The additional parameters used in the simulations of encapsulated tumor growth are
listed in Table 2. Note that the value of the tumor cells’ maximum rate of growth B was
mentioned above when defining the tumor cell maximum divergence speed v.

Table 2. Additional model parameters that were used in the simulations of tumor growth in tissue.

Parameter Description Model Value(s)

kN coefficient of stress function for normal cells 80/200/600
kC coefficient of stress function for bonds between cells and capsules 80
KT

C coefficient of tumor capsule speed of growth 5
KN

C coefficient of normal capsule speed of growth 0.5
r0

N initial radius of normal capsule 55/104/158/205
sN

0 normalized stress needed to stop normal capsule shrinkage 0.1
B tumor cells’ maximum rate of growth 0.03
M tumor cells’ rate of shrinkage 0.01

rmin radius of a tumor cell at which it dies 2.5
P coefficient of nutrient inflow 1/4/16

Dn nutrient diffusion coefficient 3000
QN rate of nutrient consumption by a normal cell and a quiescent tumor cell 0.5
QT maximum rate of nutrient consumption by a tumor cell due to proliferation 25
n∗ Michaelis–Menten parameter for nutrient consumption 0.005
nq nutrient level below which tumor cells become quiescent 0.1
nd nutrient level below which tumor cells shrink and die 0.01

The coefficient of stress function for the bonds between normal cells kN varied ana-
logically to that for tumor cells. The corresponding value for the bonds between cells
and capsules kC was chosen to be low in order to increase the free space for tumor cell
proliferation. The parameters related to capsules were adjusted empirically in order to
suppress excessive tumor outgrowth and tissue rupture but to inhibit tumor growth only
rather slightly under a low number of normal cells. The tumor capsule is considered to
be more compliant, as in reality, the growth of a tumor is associated with the remodeling
of connective tissue due to the secretion of specific enzymes, which should make it more
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susceptible to deformation (see [47]). Experiments show that tumor growth can be signifi-
cantly inhibited by the neutralization of these enzymes’ secretions [48]. The initial size of
normal tissue was varied to study its effect on tumor growth. Under designated values
of r0

N , it contained 90, 329, 812, and 1380 normal cells. Tumor cells’ rate of shrinkage in
relation to their death rate was roughly assessed based on the fact that for a lot of tumor
cell lines, more than half of tumor cells can survive after two days of starvation [49].

The coefficients related to the nutrient were estimated based on the experimental
data on glucose, which plays a crucial energetic role in tumor cell metabolism and is
indispensable for cell biosynthesis [50]. These estimations were described in our previous
works (see, e.g., [51,52]). The nutrient diffusion coefficient was, however, reduced by
about 2.5 orders of magnitude compared to that of glucose to generate sufficient nutrient
gradients within regions containing only hundreds and thousands of cells. The coefficient
of nutrient inflow P has the physical meaning of microvasculature permeability surface
area product. Both the permeability and surface area of microvasculature increase during
tumor angiogenesis [53]; hence, the effects of angiogenesis and antiangiogenic therapy on
tumor growth can be evaluated by varying this parameter.

3.2. Results
3.2.1. No Accounting for Nutrients

In this section, the simulations of tumor growth in normal tissue are discussed, without
nutrient deficiency as an inhibitory factor. Tumor growth is affected by two types of
stress—residual stress exerted by tumor cells on each other and external stress due to the
displacement of normal cells, mediated by the tumor capsule.

Figure 6 shows the initial stages of encapsulated tumor growth within a small region of
normal tissue, the initial radius of which is r0

N = 55 µm, for two values of tissue conductivity
K. The upper row corresponds to a small K, resulting in a slow cell displacement in response
to the applied forces. As a result, the approximate sixfold rotational symmetry of the normal
tissue is maintained for a relatively long time during tumor growth. The reorganization of
normal tissue begins with the displacement of six lines of normal cells, which are aligned
perpendicular to the tumor capsule and originate from the six cells initially linked to it.
These six cells, which form the first layer of normal cells around the tumor, diverge from
each other in response to tumor growth and gradually integrate within the next layer
of normal cells. All other cells within the six designated lines behave similarly. Their
displacement is at first counteracted by the stretched bonds of the layers to which they
initially belong, as the leftmost figure shows. Furthermore, their displacement is conversely
facilitated by the newly formed stretched bonds with the cells of the next layers. This
remodeling of a normal cell network results in a six-pointed structure, which begins to
notably lose its symmetry only in the third week of tumor growth.

The lower row in Figure 6 corresponds to a high value of K = 10, resulting in the
cells displacing notably faster and local disturbances in the normal cell network being
quickly redirected to remote areas. This results in much faster symmetry breaking due
to unavoidable instabilities and leads to the formation of a more chaotic normal cell
network, which transiently contains a notable number of void areas, as shown in the
figure corresponding to 100 h of tumor growth. As shown in the figure on the right,
during encapsulated tumor growth at K = 10, a sufficient amount of cells in the outer
layers divided at notably less than the maximum rate, contrary to the case of free tumor
growth (see Figure 5), which suggests the slowing down of tumor growth by external stress.

Figure 7 illustrates the effect of the external stress on tumor growth by highlighting
the times when the number of tumor cell pairs reached 3500 depending on the initial radius
of the normal capsule r0

N for different values of the tissue conductivity K and the coefficient
of stress function for normal cells kN . The coefficient of stress function for normal cells
kT is equal to 80 in the corresponding simulations so the interactions among tumor cells
remained weak. The value of r0

N = 0 corresponds to the case of tumor growth in the
presence of a tumor capsule but without normal cells so these points coincide for different
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values of kN . Gray crosses on the ordinate axes denote the analogous moments for free
tumor growth (corresponding to the results discussed in Section 2.2 minus ≈ 23 h due to
the alteration of the initial conditions).

Figure 6. Snapshots of encapsulated tumor growth in tissue without accounting for nutrients at the
designated times at kN = 200, kT = 80, and designated values of K, with other parameters values
from the basic set (see Tables 1 and 2). The colors of the tumor cells correspond to their speed of
divergence vdiv, with lighter cells dividing more slowly.

Figure 7. The times when the number of tumor cell pairs reached 3500 for encapsulated tumor
growth in normal tissue without accounting for nutrients depending on the initial radius of the
normal capsule r0

N for variations in the coefficient of stress function for normal cells kN and tissue
conductivity K. The coefficient of stress function for tumor cells kT = 80 and the values of the other
parameters are indicated in Tables 1 and 2. The absence of points for certain values of r0

N means
that the tumor did not grow under certain parameter values. Crosses on ordinate axes denote the
analogous moments for free tumor growth.

At the highest value of K, which corresponds to the graph on the left, the presence
of a tumor capsule in the absence of normal cells increased the time to reach 3500 tumor
cell pairs by about 20%. At kN = 80 and 200, the presence of normal cells increased this
parameter almost 2.5 times, and notably, the number of normal cells barely affected it within
the considered range of r0

N . This may seem counterintuitive at first since larger normal
tissue should be more difficult to displace by a growing tumor. However, an increase in the
number of cells also led to a more active formation of intercellular bonds, which emerged
in the stretched state and tended to pull the normal cells into the less deep cell layers, as
discussed above. This process conversely stimulated tumor growth. At the highest value
of kN = 600, tumor growth was, however, halted at the very beginning under r0

N ≥ 104
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since the stretched normal tissue exhibited a high enough pressure to stop tumor growth
before tissue remodeling outbreaks.

At K = 0.32, a more intuitive pattern of the decrease in the tumor growth rate with
the increase in the normal tissue size manifested itself and became even more pronounced
at K = 0.01. This was due to the fact that the formation of new bonds between normal
cells, which eventually stimulated normal tissue remodeling tumor growth according to
the above-described mechanism, played a smaller role in the decrease in K (e.g., during the
simulations depicted in Figure 6, ≈209 thousand different intercellular bonds were counted
until there were 3500 tumor cell pairs at K = 10 and only ≈ 92 thousand at K = 0.01).
However, at K = 0.32, tumor growth was halted from the very beginning with a significant
size of normal tissue. This occurred as the cells and capsules became stuck in a stable
position after the first several divisions of tumor cells. This effect can be attributed to
the peculiarity of the model, which could be overcome by further alterations of the initial
conditions; however, the corresponding modifications are not considered here since the
results for extreme values of K are sufficient for obtaining the desired qualitative insights.

At K = 0.01, the tumor grew up to 3500 cell pairs under all the considered values of
kN and r0

N . Higher values of kN resulted in faster tumor growth due to more active normal
tissue remodeling. Contrary to the case of K = 10, tumor growth did not stop at K = 0.01
when normal cell interaction was the strongest, even under the greatest considered size of
normal tissue. This was due to the much slower propagation of normal cell displacement
along the tissue in this case, which allowed the tumor to grow, whereas the distribution of
stress within the normal tissue had not yet stabilized. Conversely, at K = 10, it stabilized
very fast and deformations of remote stretched areas of normal tissue notably influenced
the pressure exerted on the tumor capsule by the closest normal cells.

The results for higher values of kT are not shown, however, suffice it to say that the
increase in this parameter significantly inhibited tumor growth and at kT = 200, tumor
growth was halted at r0

N = 104 under any values of the other varied parameters. This was
mainly due to the fact that under higher kT , tumor cells have less available free space for
division since the critical pressure is achieved at smaller distances between tumor cells.
Therefore, overall, the model simulations suggest that the weakening of the interactions
between tumor cells is a significant condition for tumor growth.

3.2.2. Accounting for Nutrients

In this section, nutrients are accounted for and nutrient deficiency influences tumor
growth, along with solid stress. Figure 8 shows the dynamics of the normal capsule
radius rN for the corresponding type of growth, with its initial value being r0

N = 158,
for variations in the normal cell stress function coefficient kN , tissue conductivity K, and
coefficient of nutrient inflow P. The tumor cell stress function coefficient was kT = 80, as in
the simulations described above.

At high tissue conductivity, K = 10, tumor growth practically stopped during the
first half a year under a moderate and a low nutrient inflow, P = 1 and 4, and notably
decelerated under P = 16, whereas the variation in the normal cell stress function coefficient
kN played only a small role in the outcome. The tumor, which was stable in size, is shown
in the bottom-left picture, along with the normal tissue that was torn in two from the
pressure exerted by the growing tumor. As nutrients are supplied from normal tissue, the
configuration of the normal tissue also affects the tumor. Therefore, the necrotic tumor core,
devoid of cells, has an elongated shape and is outlined by dying cells, which are depicted in
lighter shades. As these cells shrink and are eliminated, they pull other tumor cells into the
tumor core. The ongoing proliferation of tumor cells in the outer layers, where the nutrient
concentration is sufficient, compensates for the death of those cells. Within such a dynamic
balance, the number of tumor cell pairs fluctuates at around 800 under the corresponding
values of the model parameters.
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Figure 8. Top row: Dynamics of the radius of normal capsule rN during encapsulated tumor growth
in the tissue under variation of normal cell stress function coefficient kN , tissue conductivity K, and
coefficient of nutrient inflow P. Tumor cell stress function coefficient kT = 80, and other parameter
values are from the basic set (see Tables 1 and 2). Bottom row: Snapshots of the simulations at the
parameter values and times marked by crosses in the top row. The color of each cell corresponds to
its radius, with lighter dying cells being smaller and thus closer to elimination.

At a low tissue conductivity K = 0.01, tumor growth was rapidly halted at P = 1.
However, it continued for a long time, at least 5 years, under sufficiently high nutrient
inflow and high kN . The latter, as discussed above, yielded rapid remodeling of normal
tissue in response to its perturbations. An example of the corresponding tumor is shown in
the bottom-right picture. At the depicted moment, the normal tissue had already stretched
enough to be only one cell in width, and the tumor core already occupied the bigger part
of the tumor volume. However, the nutrient inflow was sufficient to keep ≈8000 tumor
cell pairs alive, their number slowly growing as the tumor radius increased. With that,
the stress generated by dying tumor cells was insufficient to notably slow down the tumor
growth at such a low tissue conductivity.

4. Conclusions

This work introduced an off-lattice agent-based model of tumor growth, where the
tumor is represented by an interconnected network of proliferating cells. The rate of
proliferation of each cell depends on the solid stress generated due to its interaction with
other cells. Sufficiently closely located cells tend to repel from each other, whereas with
the increase in the intercellular distance, this interaction at first weakens and then turns to
adhesion, which strengthens up to a certain intercellular distance and then also weakens.
An original feature of the model is the consideration of tumor cells as pairs of overlapped
diverging circles, with a specific method used to account for intercellular bonds, which
ensures smooth dynamics of the cell network and maintains relative numerical efficiency.

Two different types of tumor growths were considered during the simulations. The
first was free tumor growth, restricted only by residual stress generated within the tumor.
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The second was tumor growth within a round capsule surrounded by normal tissue,
represented by interconnected non-proliferating normal cells, surrounded by another
capsule. The capsules were introduced to simulate the elastic response of a tissue, which,
in reality, is provided by extracellular matrix elements. The tumor growth in tissue was
simulated both with and without accounting for nutrients supplied from the normal tissue
that influence the behavior of tumor cells.

The simulations of these growth regimes led to the following conclusions:

• For free tumor growth, it was demonstrated that tissue hydraulic conductivity, which
determines the speed of cell displacement in response to stress, is the major factor
that defines the rate of tumor growth. Tumor growth can be close to exponential
only at sufficiently large values, whereas under low values, the cells within the tumor
volume experience significant stress that stops their proliferation. The form of the
freely growing tumor crucially depends on the strength of cell–cell interaction, as
strongly interacting cells tend to cluster, yielding an infiltrative tumor shape.

• When encapsulated tumor growth in normal tissue was considered, the strong in-
teraction of tumor cells turned out to be a major factor that significantly limited
tumor growth even within a thin normal tissue. This is in agreement with the experi-
mental data that showed that the process of carcinogenesis leads to the weakening
of the strength of intercellular contacts [54]. The future development of the model
will include the consideration of heterogeneous tumor cell adhesive properties and
their evolution due to the random alterations upon cell division, which can be quite
naturally reproduced through an agent-based approach.

• At high tissue conductivity, another major factor that led to the rapid halting of the
growth of an encapsulated tumor in normal tissue was the strength of the interaction
between normal cells. High values led to the inability of the growing tumor to initiate
normal tissue remodeling, which is necessary to provide the space for tumor growth.
However, the simulations at low tissue conductivity showed that once remodeling of
normal tissue was initiated, the strong interaction between normal cells nevertheless
resulted in the acceleration of this process, stimulating fast tumor growth.

• An increase in the initial size of normal tissue at low tissue conductivity led to a
decrease in the tumor growth rate as expected. However, at high tissue conductivity,
the increase in the number of normal cells barely influenced the tumor growth rate
due to more active remodeling of remote areas of normal tissue. This observation was
made for small sizes of normal tissue of no more than 0.4 mm in radius, whereas the
verification of this phenomenon for larger tissue sizes requires significant computing
power. To avoid high computational costs, a continuous model could be created whose
dynamics correspond to those of the presented agent-based model and could be used
to qualitatively reproduce its results. This lies within the scope of future work.

• It is worth noting that the results obtained when considering tumor growth in normal
tissue when accounting for nutrients are in good qualitative agreement with the
previous results obtained using a simple continuous model in which tumor and normal
tissue behaved as an elastic fluid-like substance [52], where sufficiently low tissue
conductivity and sufficiently high nutrient supply in both models led to continuous
tumor growth for at least several years, with the formation of large necrotic cores.
Notably, the formation of giant long-growing benign tumors is indeed a clinically
observed phenomenon in cases of tumors arising from connective tissue with inherent
low tissue conductivity [55,56].

Supplementary Materials: The C++ computational code can be downloaded at: https://www.mdpi.
com/article/10.3390/math11081900/s1.
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