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Abstract: This paper introduces a novel method for online 3-D bin packing, which is a strongly
NP-hard problem, based on a space splitting and merging technique. In this scenario, the incoming
box is unknown and must be immediately packed. The problem has many applications in industries
that use manipulators to automate the packing process. The main idea of the approach is to divide
the bin into spaces. These spaces are then categorized into one of two types of data structures: main
and secondary data structures. Each node in the main data structure holds the information of a space
that can be used to fit a new box. Each node in the secondary data structure holds the information of
a space that cannot be used to place a box. The search algorithm based on these two data structures
reduces the required search effort and simplifies the organizing and editing of the data structure.
The experimental results demonstrate that the proposed method can achieve a packed volume ratio
of up to 83% in the case of multiple bins being used. The position of a placed box can be found

within milliseconds.
Keywords: 3-D bin packing; online bin packing; heuristic algorithm; space splitting and merging

MSC: 90-08

1. Introduction

In an automated warehouse system, one of the most critical tasks is to efficiently place
products into containers. The product placement must be optimal to reduce the number of
containers used. A bin packing algorithm is typically used to solve this task by arranging
items of different sizes into containers to achieve the minimum number of containers used.
This problem is known as strongly NP-hard [1], indicating it is a challenging problem
to solve.

The logistics and e-commerce industries are rapidly growing and require efficient
and reliable packing solutions. Although the possibility of fully autonomous packing
manipulators is on the horizon, robotic packing has not received the necessary attention.
Packing algorithms can assist robot packers in finding optimal methods to fill containers and
boxes, and it is essential to research this area to improve the efficiency of these industries.
This paper introduces an online 3-D bin packing algorithm that can enhance the accuracy
and speed of the packing process and address the rising demand for automated logistics
and e-commerce.

Bin packing can be classified as one-dimensional, two-dimensional, or three-dimensional.
One-dimensional bin packing [2—4] divides a set of values such as mass, length, etc.,
into subgroups such that the number of subgroups is minimal and the total value in a
subgroup does not exceed the predefined values. Two-dimensional bin packing [5-8]
arranges items on the two-dimensional regions so that the number of regions is minimal.
Three-dimensional bin packing packs all the boxes into the smallest number of bins.

Traditional three-dimensional bin packing assumes that the information of all items
is known in advance and the items can be placed into the bin in an arbitrary order. This
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bin packing problem is called offline bin packing. Three-dimensional offline bin packing
can be classified into two groups: heuristic- and learning-based methods. The heuristic-
based methods solve the 3-D bin packing problem by dividing the bin into layers or
slices [9-11], selecting the box with maximum bottom area [12], applying the hybrid genetic
algorithm [13-15] and search framework [16,17], or using a mathematical model [18]. These
methods are easy to implement and can be applied to many different types of boxes and
bins with very high efficiency. However, they have difficulty handling complex practical
constraints such as optimization of box-to-bin space or packing stability. In contrast,
the learning-based methods can better meet the various complicated constraints than
the heuristic-based methods [19]. These methods apply deep reinforcement learning to
optimize the sequence and orientations of items to be packed into the bin [20-23]. However,
the learning-based methods do not easily converge [24] and need to be retrained when
applied to new data.

In many real-world applications, the collection of items to be packed is unknown,
and the current item must be put into the bin immediately before the upcoming item
appears. These applications are referred to as 3-D online bin packing. Karabulut and
Inceoglu [25] proposed the deepest-bottom-left (DBL) with fill method for regular 3-D strip
packing. Ha et al. [26] employed the DBL order of empty spaces to place the incoming item.
Zhao et al. [24] proposed an effective constrained deep reinforcement learning strategy
to solve the 3-D online bin packing problems that are defined as a constrained Markov
decision process. Verma et al. [27] applied a search heuristic and deep reinforcement
learning to create PackMan, which is a two-step approach. Zhao et al. [19] developed
a packing configuration tree and employed a deep reinforcement learning approach to
enhance the practical applicability of online 3-D bin packing.

The objective of this study was to develop an innovative online 3-D bin packing
approach for robot packing applications, building upon our prior conference proceedings
paper [28]. The proposed approach involves dividing the bin into spaces, which are then
categorized as either main or secondary data structures. The main data structures are
composed of nodes that contain information about spaces suitable for accommodating new
boxes, while the secondary data structures hold information about spaces that cannot be
used for placing boxes. By leveraging a search algorithm based on these data structures,
the approach significantly reduces search effort and streamlines data structure organization
and editing.

In this paper, we provide further details on how to locate fitted spaces for incoming
boxes, achieve main and secondary spaces, and split and merge spaces for 3-D online
bin packing tasks. We also introduce two additional steps to optimize empty spaces and
minimize spatial fragmentation. Specifically, one step involves merging two consecutive
spaces if no space in the main data structure can accommodate the incoming box, while the
other step involves reorganizing the main data structure immediately after splitting the
fitted space.

The previous method was thoroughly evaluated and tested using small and large bins
with our own dataset. In this study, we evaluated and benchmarked the proposed method
using the existing dataset by Zhao et al. [24] to compare it with other methods and verify
its strengths and weaknesses. Our experiments demonstrated that our proposed method
delivers high utilization and low time consumption, making it a competitive option for
packing boxes.

The paper is organized as follows: Section 2 presents the proposed approach for online
3-D bin packing problem. Section 3 describes the experimental results and analysis. Finally,
the conclusions are summarized in Section 4.

2. Online 3-D Bin Packing Algorithm

In order to determine the position of a box in the bin, the Cartesian coordinate system
is attached to the bin at the bottom-left-front corner. The x, y, and z axes correspond to
the length L, width W, and height H of the bin, respectively. During the packing time, the
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container is divided into many spaces. The position of each space in the coordinate system
is Cx(xk, Yk, zx). The dimensions of the space in the x, y- and z directions are the length L,
width Wk, and height Hi of the space, respectively. Each space K is represented by a set of
7 parameters including xx, vk, zx, Lx, Wk, Hk, and Sk, where Sg = Ly x Wk, and Hx =H —
zk. Depending on the Lk, Wk, and S parameters, the space can be classified into main or
secondary data structures. Figure 1 represents the coordinate system attached to the bin
and position of a space K in it.

=v

Figure 1. The position of the space K in the bin.

2.1. Main Data Structure

A space K is defined as the main space if its dimensions satisfy all three following conditions:

Lx > Lyin, (1)
WK > Wminr (2)
SI( 2 Smin/ (3)

where L,;i,, Wyin, and S, are the smallest length, width, and bottom area of the incoming
box, respectively.

The main data structure is divided into layers. Each layer is a linked list of the main
spaces that have the same coordinates in the z direction (zk). The elements in this structure
are linked using pointers as shown in Figure 2. The first node in each layer has four
pointers that point to the previous, next, up, and down nodes. The other node in the layer
has two pointers that point to the previous and next nodes. The layers are arranged in
ascending order of parameter zx. The data in each layer are arranged in ascending order of
parameter Sk.

2.2. Secondary Data Structure

The space that fails to satisfy one of the Equations (1), (2) or (3) is classified as secondary
space. This space is then added into the secondary data structure. This data structure is a
linked list in which each node has two pointers that point to the previous and next nodes,
as shown in Figure 3. The elements in the structure are sorted in chronological order.
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Figure 2. Main data structure diagram.
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Figure 3. Secondary data structure diagram.

2.3. Algorithm

Whenever a box is coming, the algorithm finds a space K with the smallest zk in the
main data structure that fits the box. After that, this space is divided into 4 new subspaces.
Each subspace is classified into main or secondary spaces according to its dimensions. The
space K is removed from the main data structure. This structure is rearranged. The main
spaces that satisfy the merging conditions are united into a new main space. In order to
minimize the empty space in the bin, the secondary spaces are united with the main spaces.
The main data structure is rearranged again. The flowchart of the algorithm is shown in
Figure 4. The pseudo-code of the proposed method is described by Algorithm 1.

2.3.1. Finding a Fitted Space K

The space K can be used to place the incoming box if its dimensions satisfy
Equations (4) or (5):
Lx>1, Wx>w, Hx > h, 4)

Lx >w, Wx > 1, Hxk > h, @)

where [, w, and & are the length, width, and height of the incoming box, respectively.

These conditions allow the box to rotate 90° about the z axis when it is placed in
the bin. If these conditions are not satisfied, the algorithm merges the consecutive main
spaces to form a new main space that fits the incoming box. The conditions for merging are
presented in Table 1. It is noted that the conditions H; < H and H; < H are applied for all
these cases.
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Incoming box
I, w, h

Find a fitted

Move to the next bin
space K

Split space K

Re-arrange main data
structure

Unite the main
spaces

Merge sub-spaces
into main spaces

Re-arrange main data
structure

Figure 4. Flowchart of the developed online 3-D bin packing.

Algorithm 1: The 3-D online bin packing algorithm.

Input: incoming box I, w, h
Output: the position of the box in the bin
1: function PlaceBox(l, w, h)

2:

15:

sp = FindSpace(l, w, h) / /To find the fitted space in the main data structure
if sp == NULL then
sp = FindConsecutiveSpaces(); //To find the fitted space by merging the consecutive main spaces
if sp == NULL then
return false
end if
end if
obtain the position of the box in the bin x, y, z, [, w, h
SplitSpace(sp); / /To split the space sp
ArrangeSpaces(); / /To arrange main data structure
UniteSpaces(); / /To unite the main spaces
OptimizeSpaces(); / / To merge subspaces into main spaces
ArrangeSpaces(); / /To arrange main data structure
return true

16: end function
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Table 1. Merging the main spaces to find the fitted space.

Merging Results
Conditions
Main Spaces to Merge New Spaces
Lj >1, New subspaces
VV,' + Vv] 2 w. New subspaces
or by

Li>w,

L] Z w,

Wi+ W; > 1L

xj—i-L]-—xiZl,
Wi+ W; > w.
or
x,--l—L]-—xiZw,
Wi+ W; > 1

New su{bspaces

xl-—l—Li—szl,
Wi+ W, > w.
or
xi+Li—x>w,
Wi+ W; > 1L

~:§§
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Y

g

T=EE
J’_

L

A

yi+Wi—yi =1,
Li+Lij.

yi+Wi—yi 2w,

yitWi—y; >1,

yi+Wi—y;>w,
Li-l-LjZl.
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2.3.2. Splitting the Space K

Assuming that the incoming box is placed into the space K in the bin, the bottom-left-
front corner of the box is set to coincide with the bottom-left-front corner of that space, as
shown in Figure 5. After that, the space K can be divided into 4 new spaces: Kj, K, K3,
and K4. Depending on the dimensions of the incoming box and space K, the results of the
splitting process are as presented in Table 2.

K, K,
/ s
Wy
K, N | Ky
x
p Wy
h y w

Figure 5. Splitting the space K.
Table 2. The splitting results.

Conditions Splitting Results

Case l: Ly =lor Wg=w

Lg=1, K, 1 main space K

WK =w.

Wg = w, P e 1 main space K; and 1

Lx > L. i ’ main/subspace K4
K2

Lx =1, 1 main space K; and 1

Wx > w. K, main/subspace K;

Case 2: Ly — I < Ly, or Wg — w < Wiy

K,

Lx — 1 < Lyin, X, 1 main space Kj and 2
Wg —w < Wyin. K, subspaces K, and Ky
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Table 2. Cont.

Case 2: Ly — I < Ly, or Wy — w < Wiy

| 8
Lx —1 > Lyin, . X, 2 main spaces Kj and Ky
Wk —w < Wyip. i and 1 subspace K,
K,
Lx =1 < Ly, 2 main spaces K; and K3
Wg —w > Wy . . and 1 subspace Ky
! 4

Case 3: Lx — I > Ly, and Wy — w > Wi

K, K;
So > Spin, ' 3 main spaces K1, Ky, K4
Sy > Spin- 5, k. and 1 main/subspace K3

K,
Sy > Spin, K, 2 main spaces Ky, K; and 1
Sy < Spin- K, main/subspace K4
K,
Sy < Syuins 2 main spaces Ky, K4 and 1
S4 > Spin- K, K, main/subspace K;
K,

S2 < Swin, 2 main spaces Ky, K; and 1
54 < Smin, subspace K4
S2 > 8y, K, K,
Sy 4+ S3 > Spin-

KJ
S2 < Swin, K, 2 main spaces K1, K4 and 1
54 < Sminy K subspace K;
52 < S4/
S3+S4 > Spin-

K,
S2 < Spin, K, 1 main space K; and 2
54 < Smins K, subspaces Ky, K4

Sa+ S3 < Sminr
S3 4+ S4 < Spin-
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2.3.3. Rearranging the Main Data Structure

After adding data from the splitting process, the main data structure no longer retains
its original organization. Therefore, this structure needs to be reorganized in a predeter-
mined order. The sorting algorithm performs the task of traversing each layer of the main
data structure. In a layer, the elements are sorted in ascending order of their areas, as shown
in Figure 2.

2.3.4. Merging the Main Spaces

When the main spaces are added to the main data structure, they can be combined
with other existing spaces to form new, larger spaces. The merging of these spaces helps to
limit spatial fragmentation. The algorithm traverses each element in a layer until there are
no more elements in the same layer that can be merged. Elements that satisfy the merging
condition are united to form a new element. Elements used during the merging process
are removed from the main data structure. The algorithm prioritizes merging data in the x
direction, corresponding to the length of the bin first. After that, the data in the y direction
corresponding to the width of bin are merged. Table 3 shows two cases that can be used to
unite adjacent spaces.

Table 3. Merging the main spaces to limit spatial fragmentation.

Merging Results
Conditions
Spaces to Merge New Spaces
WA ’ LK = Li + L],
Wi = VV]‘, ' Ki VV] K; WK = Wi = W]‘,
Yi =Yjs Hx = H; = H;
’ . 4
Xj =X+ L;. L; Lj XK = X,
xci ij Yk = Yi,
ZK = Zj.
W i
Lg=L; =1L,
L; i L]" ve, Ly Wg =W, + W]',
Xi = Xjs Hg =H; =H;,
yi =yi+ Wi ” K XK = Xi,
Yk = VYi,
L ZK = Zi

2.3.5. Merging the Secondary Spaces into Main Spaces

The secondary data structure contains elements describing small spaces, which cannot
accommodate incoming boxes. These spaces cause the bin to fragment, reducing its capacity.
Therefore, an algorithm was built to merge the subspace into the main space. The conditions
for merging are presented in the Table 4.
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Table 4. Merging the secondary spaces into main spaces.

. Merging Results
Conditions
Spaces to Merge New Spaces
New subspaces
Subspace K; L J
L <Lj
xXp 2> Xj, , Main space
B W Main space K
yi=yi+ W
L < L]', DAk ka5, | Main space
X 2 Xj, W
i =yi+ W,
Yi=Yj / Subspace K;
New subspaces
. —
)
v %
W; < Wj/ Main space K; § Main space 5
Yi 2 Y, 3 z
X]' =Xx;+ Li- “ Z
& 8
(]
W; < ij, ’g" Main space K; § Main space
Yi 2 Y 2 z
X =xj+ L. “ 2

3. Experimental Results and Analysis

To test the performance of the developed algorithm, the dataset proposed by
Zhao et al. [24] was used without special declarations. There are 64 items in this dataset.
The dimensions of the items range from two to five on each side. The bin sizes were set to
10 x 10 x 10. The item sequences were created using random sampling (RS). Two thou-
sand independent datasets were generated for this test. All methods were implemented
in C++/Python and tested on a system with the following specifications: Intel® Core™
i7-7700HQ CPU @ 2.80 GHz (8 CPUs, ~2.8 GHz) with 8.00 GB RAM, NVIDIA GeForce GTX
1050, Windows 10 Pro 64-bit. The result of the proposed algorithm was compared with
those of different methods, as shown in Table 5.

Table 5. The packing results of different methods on the Zhao et al. [24] dataset.

Method Space Utilization (%) No. of Items
Proposed method 51.7 12.7
Zhao et al. (trained on RS) [24] 50.5 12.2
Zhao et al. (boundary rule) [24] 349 8.7
Karabulut and inceoglu [25] 43.1 10.6

Ha et al. [26] 37.1 9.1
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(@)

The performance of the developed algorithm was also verified with different bin
sizes. In this experiment, the dimensions of the bins were increased from 10 x 10 x 10 to
20 x 20 x 20 and 30 x 30 x 30. The packing results are presented in Figure 6 and Table 6.
As shown in Table 6, the performance slightly improved when the size of the bin was larger,
especially when the size of the bin was 30 x 30 x 30. In comparison with the method
proposed by Zhao et al. [24], the developed algorithm can achieve higher average space
utilization when the bin size is 30 x 30 x 30.

(b)

(©

Figure 6. The packing results with different bin sizes: (a) bin size of 10 x 10 x 10; (b) bin size of
20 x 20 x 20; (c) bin size of 30 x 30 x 30.

Table 6. The packing results with different bin sizes.

Bin Size Space Utilization (%) No. of Time per Item
(L xW x H) Proposed Method Zhao et al. [24] Items (ms)
10 x 10 x 10 51.7 50.5 12.7 0.04
20 x 20 x 20 51.9 58.1 98.1 0.23
30 x 30 x 30 60.5 49.0 382.5 1.40

The algorithm was also tested with multiple bins in order to optimize the average
space utilization of the bin. In this experiment, if an incoming item could not be placed
into the current bin, the fit in the next bin was checked. The process was finished if it could
not put the items into any of the existing bins. Tables 7 and 8 show the packing results for
different bins when a multibin packing algorithm was applied. It can be seen that the space
utilization of each bin greatly increased when the number of bins increased. However, the
average computation time for each item also increased. This means that it took more time
to place an item into the bin.

Table 7. The average percentage filled (%) of each bin in case of multibin packing.

No. of Bins 1st Bin 2nd Bin 3rd Bin 4th Bin 5th Bin Average
1 51.7 51.7
2 70.3 61.0 65.7
3 77.5 75.9 60.3 71.2
4 80.5 81.6 75.1 60.4 74.4
5 81.7 83.8 81.5 75.3 61.0 76.7
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Time per item (milliseconds)

02
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Table 8. The average number of items in each bin in case of multibin packing.

No. of Bins 1st Bin 2nd Bin 3rd Bin 4th Bin 5th Bin Average
1 12.7 12.7
2 20.5 10.8 15.7
3 24.2 15.9 10.4 16.8
4 26.1 18.4 15.3 10.3 17.5
5 27.2 19.4 18.0 15.1 10.3 18.0

The time performance of the developed algorithm is shown in Figure 7. It can be
seen that the average time required to determine the location of incoming items in the bin
linearly grows with the number of bins and size of the bin. In the case of a bin size of
10 x 10 x 10, the average time per item is less than 0.18 milliseconds when the number of
bins is 5, as shown in Figure 7a. If the bin can carry many items, it will take more time to
calculate the position of the incoming item. Figure 7b presents the relationship between
the number of items that can be put into a bin and the time to estimate the position of an
item. The average time is less than 1.4 milliseconds while the average number of items is
about 382.5. In comparison with the method proposed by Zhao et al. [24], where the time
required was about 100 milliseconds for a bin size of 10 x 10 x 10, the proposed method
is faster.

[

1.6
Z 14
£
s 12
g
= 1.0
E
= 0.8
&
=06
b
g 04
= 02
0.0
" 1
3 4 5 6 0 100 200 300 400
Number of bins Number of items in a bin

(a) (b)

Figure 7. The time performance of the proposed algorithm: (a) the average time vs. number of bins;
(b) the average time vs. the average number of items that can be put into a bin.

The feasibility of the proposed algorithm was also tested on real data. The dimensions
of the items and bins are presented in Table 9. The same items were packed into the bin.
The number of items ranged from 2 to 12. In these experiments, all the bins were filled with
the items, as expected.

Table 9. The packing results for different bin sizes.

Item Size Bin Size

Case Study ;" "y (L x W x H)

No. of Items Packing Results

1 95 x 75 x 20 225 x 95 x 80 12
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Table 9. Cont.

Case Study :Ite:u?i:eh) :3Lir:<SIiAz,e>< H No. of Items Packing Results
2 95 x 75 x 55 150 x 95 x 110 4 °
3 95 x 60 x 75 300 x 95 x 75 5
4 100 x 70 x 60 100 x 70 x 300 5 i
5 90 x 75 x 70 75 x 270 x 70 3
6 115 x 90 x 75 230 x 90 x 75 2
7 50 x 40 x 50 250 x 80 x 50 10
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Table 9. Cont.

Case Study :Ite?u?i:eh) :iitsli/\z,ex H No. of Items Packing Results
8 85 x 55 x 75 85 x 220 x 75 4
9 25 x 70 x 80 125 x 70 x 80 5
10 85 x 75 x 20 300 x 85 x 60 12
11 85 x 35 x 75 210 x 85 x 75 6

The above experimental results show that the developed method can pack boxes with
a high utilization rate and low time consumption. However, the proposed algorithm has
a limitation when the number of boxes is very large. The container is divided into too
many subspaces, which increases the memory consumption of the two data structures. This
affects the performance and memory requirements of the packing process.

4. Conclusions

This paper proposed an online 3-D bin packing algorithm employing a space splitting
and merging technique. This technique involves categorizing the split spaces into two
types of data structures. Furthermore, the merging of empty spaces helps to reduce spatial
fragmentation. The search algorithm only operates on the main data structures to save
computation time. The proposed method was evaluated and benchmarked with other
methods on the same dataset. The experimental results showed that the proposed method
could achieve better results. The developed technique was also applied to real data to
verify its feasibility. The algorithm is well suited for robot bin-packing applications. Future
work will focus on optimizing the empty space in each layer to increase the average
percentage filled.
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