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Abstract: This article deals with the study of disturbance that travels through the transversely
isotropic medium in the form of waves. The particles of the considered medium have an additional
property of small-scale internal rotation along with macroscopic translational deformation. This extra
translational freedom causes the medium to be micropolar in nature. Along with this, the medium is
incompressible, and the dispersion relation of waves propagating through the medium is obtained
under specific plan-strain conditions. From the dispersion relation, we can conclude that because
of incompressibility, three transverse waves propagate through the medium. The velocity profile,
attenuation coefficient, and specific heat loss for these waves are discussed for a particular medium.
Later, the special normalized local sensitivity analysis (NLSA) technique is used to depict the effects
of parameters on the outcomes of the mathematical model. The obtained results are represented
graphically for a particular medium. The proposed model is used to model the mechanical behavior
of complex materials with microstructural heterogeneity, such as composites and biological tissues.

Keywords: micropolar; incompressible; normalized local sensitivity analysis; secular equation

MSC: 74J05; 74F05

1. Introduction

The theory of elasticity is a branch of solid mechanics that deals with the deformation
and stress of solid materials under applied loads. It provides mathematical equations
to describe the behavior of materials under different types of loading, such as tension,
compression, bending, and torsion. It also provides solutions for the calculation of stresses,
strains, and displacements in solid structures. The applications of the theory of elasticity
are numerous and include the design and analysis of structures such as bridges, buildings,
and aircraft, as well as the study of the mechanical behavior of materials such as metals,
polymers, and composites. It is also used in fields such as geomechanics, biomechanics,
and acoustics.

The theory of elasticity also deals with the propagation of waves through an elastic
media under certain conditions. In general, in an isotropic medium, only two waves propa-
gate; longitudinal and transverse. In a transversely isotropic medium with three waves, one
wave is quasi-longitudinal, and two quasi-transverse waves propagate [1]. The condition of
incompressibility restricts the existence of longitudinal waves, resulting in the generation of
only two transverse waves [2]. Because of the micropolar theory of elasticity, the symmetry
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of stress and a strain tensor does not exist, which allows another wave to propagate in the
medium. Singh [3] discussed the problem of wave propagation in an incompressible trans-
versely isotropic fiber-reinforced elastic medium and obtained the reflection coefficients
for the case of the outer slowness section. The work was extended by many authors and
introduced the concept of initial stresses along with incompressibility [4–6].

The linear theory of micropolar thermoelasticity was introduced by Eringen [7], and
the waves through such types of materials are done by Smith [8]. The reflection phenomena
of waves through a flat boundary of a micropolar elastic half-space medium were studied
by Parfitt and Eringen [9]. The concept of a fiber-reinforced micropolar medium was
studied for surface waves by Sengupta and Nath [10]. Elastic waves in a fiber-reinforced
medium were also studied by Bose and Mal [11]. Recently, several researchers used the
literature study of a fiber-reinforced medium and analyzed the different types of surface
waves propagating through the medium [12–18].

In this article, we have studied the propagation of waves with constant amplitude
propagating through a thermoelastic medium. The medium considered is transversely
isotropic, with the additional properties of micro-rotational deformation and incompress-
ibility. The mathematical model for the said medium is formulated to obtain the dispersion
relation of the harmonic waves propagating through the medium. It is found that because of
incompressibility, three transverse waves propagate through a micropolar fiber-reinforced
transversely isotropic medium. A technique of normalized local sensitivity analysis is
used to depict the effects of the parameters on the outcomes of the mathematical model.
The study is useful in different branches of engineering, such as Bioinformatics, Seismic
retrofitting, and specifically civil engineering, where there is a need for high-strength
materials that also maintain a low weight.

2. Basic Constitutive Relations

It is also important to mention that any second-rank tensor can be expressed as the
sum of symmetric and anti-symmetric tensors as

θij =
1
2
(
θij + θji

)
+

1
2
(
θij − θji

)
,

θij = θs
ij + θa

ij.

On applying the same condition, the strain tensor can be rephrased as

Ξ = Ξs + Ξa,

where Ξ =
[
eij, σij, mij

]
presents the strain, stress, and coupled stress for the micropolar

thermoelastic medium. The total strain tensor for the micropolar theory of linear thermoe-
lasticity is given by the following relations [2,3]:

eij = uj,i − εijkφk,

where u is the displacement field vector, φ is the microrotational vector field for the
micropolar medium.

The classical constitutive relation for an incompressible transversely isotropic fiber-
reinforced medium, considered by Rogerson [2] and Singh [3], can be written as follows:

σij = −Pδij + 2µeij + 2(µL − µT)
(
δi1ej1 − δj1ej1

)
+ 4(µE − µL)e11δi1δj1,

where µ′s are material constants and eij =
ui,j+uj,i

2 . An incompressible transversely isotropic
medium has three degrees of freedom, whereas a micropolar medium has 6 degrees of
freedom. The stress tensor and coupled stress tensor are not symmetric in a micropolar
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medium. The relation for stresses for a micropolar medium with a fiber-reinforced structure
can be represented as

σij = −Pδij + 2(µL1 − µT1)
{

δj1(ei1 − e1i) + δi1
(
ej1 + e1j

)}
(µL1 + µT2)

+(µT1 + µT2)eij + (µT1 − µT2)eji
+(µL2 − µT2)eij

{
δi1
(
ej1 − e1j

)
+ δj1(ei1 − e1i)

}
+4(µE1 − µL1)e11δi1δj1,

mij = −Pδij + (λL1 − λT1)
{

δj1(χi1 − χ1i) + δi1

(
χj1 + χ1j

)}
+ (λT1 + λT2)χij

+(λT1 − µT2)χji
+(µL2 − µT2)χji

{
δi1
(
ej1 − e1j

)
+ δj1(ei1 − e1i)

}
+4(µE1 − µL1)e11δi1δj1,

where σa
ij, σs

ij, ma
ij and ms

ij are represented in Appendix A. By using the above-derived rela-
tion, the balance laws for the selected medium are represented by the following relations:

σji,j = ρ
..
ui, (1)

mji,j + εimnσmn = ρJ
..
φi, (2)

where J is micro-inertia, and mij, σij, ui, ρ and φi are the couple stress tensor, stress tensor,
displacement vector, mass density, and micro-rotation vector, respectively.

3. Formulation of the Problem

We considered an incompressible micropolar transversely isotropic fiber-reinforced
medium. The complexity of the problem can be reduced by considering the following plain
strain problem:

ui(x, y, z) = (u1, u2, 0), φi(x, y, z) = (0, 0, φ3).

The state is initially considered to be undisturbed at a reference temperature. Then,
the initial and regular conditions are as follows:{

ui(x, y, 0) = 0 =
.

ui(x, y, 0)
φ(x, y, 0) = 0 =

.
φ(x, y, 0)

}
; z ≥ 0.

From the essential criteria for the linearized incompressibility condition, we have

u1,1 + u2,2 + u3,3 = 0 or ui,i = 0.

The last equation shows that the polarization vector and propagation vector are
mutually perpendicular, which is true for transverse waves. Hence, only transverse waves
propagate in an incompressible medium.

Using the above-mentioned supposition along with the incompressibility condition,
the wave equation of motion (1) can be represented as

−Pi + (µT1 + µT2)eji,j + (µT1 − µT2)eij,j
+(µL1 + µT2)

{
δj1
(
ei1,j + e1i,j

)
+ δi1

(
ej1,j + e1j,j

)}
+(µL2 − µT2)

{
δj1
(
ei1,j − e1i,j

)
+ δi1

(
ej1,j − e1j,j

)}
+4(µE1 − µL1)e11,jδi1δj1 = ρ

..
ui

(3)

Here, P is the pressure to maintain the incompressible condition, and µT1, µT2, µL1, µL2,
λT1, λT2, λL1 and λL2 are the elastic constants of the material.

µE =
EL1

ET1
µT1, λE =

EL2

ET2
λT1,
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In above relation, EL1, EL2 and ET1, ET2 are longitudinal transverse Young’s moduli,
respectively.

4. Propagation of Wave in the Medium

We take the two-dimensional motion of the wave in a micropolar incompressible
transversely isotropic fiber-reinforced half space {x, y ≥ 0}. There is a plane shear wave
with constant amplitude moving along the surface, with a polarization vector ni, with
some angle of incidence. The proposed solution can be taken as

(ui, φ3, P) = (Api, kφ0, kP∗)ei(kxjnj−ω t), (4)

where ω = ε + iυ represents the complex angular frequency, the real part is associated
with an oscillation frequency of the wave, while the imaginary part represents the phase
information along with the attenuation factor. The complex angular frequency is used
in the study of quantum mechanics, where it describes the behavior of the particle. The
polarization vector is ni = (n1, n2, 0) = (sinθ, cosθ, 0), where θ is the angle of the incident
wave to the surface. By using the relation (4) system of governing, equations can be
represented as

−inik2P∗ +
[
ρω2 − (µL1 − µL2 + 2µT2)k2n2

1 − (µT1 + µT2)k2n2
2
]
Api

−[(µL1 + µL2 − µT1 − µT2)n1 p1]k2 Ani
+iφ0[4µT2 − µL2]n1k2ε1i3 + iφ0(2µT2)n2k2ε2i3
−
[{

(4µE − 2µL1 − 2µT1)n2
1 + (µL1 + µL2 − µT1 − µT2)n2

2
}

Ap1
+{(µL1 − µL2 + µT2 − µT1)n1n2}Ap2
+2i(µL2 − µT2)φ0n2]k2δi1 = 0,

(5)

(−2ikµT2n2)Ap1 + (2ikµT2n1)Ap2
+
[
k2{ρJw2 − (λL1 − λL2 + 2λT2)n2

1 − (λT1 + λT2)n2
2
}

+4µT2]φ0 = 0.
(6)

Now, multiplying the Equation (5) with ni and employing the incompressibility
condition ni pi = 0 gives the following equation:

P∗ = i
[
(4µE − 2µL1 − µT1)k2n2

1 + (µL1 + µL2 − µT1 − µT2)
(
1 + n2

2
)]

k2 An1 p1
+i
[
(µL1 − µL2 + µT2)n2

1
]
k2 An2 p2 +

[
4(µT2 − µL2)n1n2k2]φ0

(7)

The equation of motion in component form after eliminating P∗ can be written as(
ρω2 − D1k2

)
Ap1 +

{
(µT2 − β1)k2n1n2

3

}
Ap2 − ikD3φ0 = 0 (8)(

β5n3
1n2 + β3n3

2n1

)
k2 Ap1 +

(
ρω2 − D2k2

)
Ap2 + ikD4φ0 = 0 (9)

(2ikβ7n2)Ap1 − (2ikβ7n1)Ap2 +
(

k2β6 − 4β7 − Jρω2
)

φ0 = 0 (10)

where the constants used in the coefficients are

β1 = (µL1 − µL2 + 2µT2), β2 = (µT1 + µT2), β3 = (µL1 + µL2 − µT1 − µT2),

β4 = (4µT2 − 2µL2), β5 = (4µE1 − 2µL1 − µT1),

β6 = (λL1 − λL2 + 2λT2)n2
1 + (λT1 + λT2)n2

2,

β7 = µT2, D1 = β5n2
1n2

2 + (β1 − µT1)n2
1 + β3n4

2 − β2n2
2,

D2 = β1n4
1 + µT1n2

2, D3 =
(

β4n4
1n2 + µL2n2

)
,

D4 = (4β7 − β4)
(

2n2
2 − 1

)
n1 − 2β7n3

1.
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For non-trivial solutions, the determinant of coefficients of the system of Equations (8)–(10)
must vanish, which implies the following third-order secular equation:

L1

(
k2
)3

+ L2

(
k2
)2

+ L3

(
k2
)
+ L4 = 0 (11)

where the secular Equation (11) is cubic in k2; hence, it will yield three roots of k2. If k2
1,

k2
2 and k2

3 are the solutions of the Equation (11), then all of the six values of k are of the
form k = ±k, i = 1, 2, 3. Therefore, two sets of waves, containing three transverse waves
each, may propagate in the medium. We are interested only in the roots with positive real
parts; ki, i = 1, 2, 3. The expressions for speed are expressed as follows. The velocities of
these waves depend on the propagation vector ni. The real part of the roots is producing
propagation speed, while the imaginary part is causing the attenuation of the waves. We
are interested in the special properties of the waves propagating through the medium.
These are calculated by using the following relation:

• Velocity

The velocities of the waves can be computed as

Vi =
ω

Real(ki)

• Attenuation coefficient

The attenuation coefficients are given by

Qi = Img(ki)

• Specific heat loss

The specific heat loss is denoted and defined as

Si = 4π

∣∣∣∣ Img(ki)

Real(ki)

∣∣∣∣
where Vi, Qi and Wi are the properties of each wave reflected into the medium as shown in
Figure 1.
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5. Normalized Sensitivity Analysis

This section deals with the special Normalized sensitivity analysis technique to study
the effects of complex angular frequency ω = ε + iυ on the properties of waves propa-
gating through the medium. This allows a fair comparison of the relative importance of
different values of real and imaginary parts of angular frequency parameters, even if they
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are measured in different units or have different ranges. The mathematical form of the
normalized sensitivity analysis is expressed as

S =
∂yi
∂xj

.
xj

yi
(12)

where yi is the ith output variable and xj is the jth input parameter. The Equation (12) can
be solved numerically using the forward difference formula as

S ∼=
y
(
xj +∇xj

)
− y(x)

∇xj
.
xj

yi
(13)

where ∇x = 0.1× x. Local sensitivity helps to identify the critical input parameter by
calculating the sensitivity of the model output to each input parameter. The local sensitivity
method can help identify which input parameters have the greatest impact on the model
output. This information can be used to factor further analysis and to prioritize the model.
This identification of input response on output variables helps to optimize the performance
of the model. It may also help with improving the accuracy of the model. Overall, the local
sensitivity method is a powerful tool for analyzing the behavior of models and identifying
key input parameters.

5.1. Simulation Setup

Before applying the sensitivity analysis, the most important step is to identify the input
and output quantities of interest. In this paper, the input quantities of interest (QoI) are
the involved parameters (ε, ν), and the output QoI are (c1, c2, c3, Q1, Q2, Q3, S1, S2, S3).
Further, a 10% variation is studied for all input QoI and their effects are quantified on the
output QoI using NLSA.

5.2. Algorithm to Compute NLSA

The following algorithm is used to compute sensitivity indices, S:

1. Define the model inputs and outputs (QoI):

Input QoI: =
ε, ν

Output QoI: =
c1, c2, c3, Q1, Q2, Q3, S1, S2, S3.

2. Evaluate the model:

Different relations for the properties of the disturbance are evaluated by increasing
the parameters with nominal values. Given the nominal variation to the inputs, the model
is evaluated to compute the respective outputs.

3. Calculation of mean absolute sensitivity:

The sensitivities are normalized by dividing them by the nominal values of the inputs.
This step provides a relative measure of the sensitivity that is independent of the magnitude
of the inputs. To write the sensitivity indices given in (13) in a compact way, the mean of
absolute values of S is calculated as

MA(S) = mean(abs(S))

6. Results of NLSA

In this section, we will represent the findings of the NLSA method. The results will
be represented for a particular medium; a carbon fiber-epoxy resin composite. It can be
concluded from the graphs that different properties of the waves are more affected by the
change in the parameter ε.
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Figure 2 gives the three-dimensional bar view of the results obtained by using the
method. It represented the response of output variables by a variating 10% increase in the
input variable. From the graphical structure, we can conclude that the output parameters
are highly influenced by the oscillational frequency of the wave incident in the medium.
The phase information represents the position of the particle, while the wave is represented
by the imaginary part of the angular frequency, and it has a comparatively small effect on
the selected output variables.
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7. Ranking of Important Parameters

Figure 3 gives a tabular representation of the parameters affecting the values of angular
frequency. It clearly indicates that the real part of angular frequency has more effect on the
properties of waves compared with the imaginary part of angular frequency. Each column
in Figure 3 shows the ranking of important parameters for output. In factor fixing, we
cannot fix any parameters because each parameter is sensitive to the output variables.
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8. Numerical Results and Discussion

This section deals with the different properties of waves propagating through the
medium, which were obtained from the Equation (11). The theoretical results obtained in
the above sections are studied numerically for a particular medium, using selected elastic
parameters and constants that correspond to a carbon fiber-epoxy resin composite [2].

ρ = 7800 Kgm−3, µT1 = 2.46× 109 Nm−2, µT1 = 2.57× 109 Nm−2,

µL1 = 2.66× 109 Nm−2, µL2 = 5.23× 109 Nm−2, λT1 = 2.66× 109 Nm−2,

λT2 = 2.32× 109 Nm−2, λL1 = 5.72× 109 Nm−2, λT2 = 5.89× 109 Nm−2,

λE = 59.63× 109 Nm−2, µE = 59.72× 109 Nm−2.

In this section, we will represent a two-dimensional graphical structure for the different
properties of the waves propagating through an incompressible half-space medium. The
focus of the work is to study the response of the waves on the phasor frequency that is
associated with the complex angular frequency ω = ε + iυ of the wave. These types of
concepts are very useful for analyzing the time-varying system, specifically used in the
studies associated with electrical engineering. In the proposed solution, the real part of
complex angular frequency is associated with phase velocity while the imaginary part is
related to the damping factor.

Figure 4 describes the variations of the phase velocity of the three waves concerning
the phasor frequency. From the graphical structure, it is found that the velocity profile of
each wave propagating through the medium is directly proportional to the real part of
ν. However, the value of the amplitude decreases by increasing the imaginary factor of
the angular frequency. For the small values of the angle of incidence, the response of the
imaginary factor is the opposite. The response of phase velocity is more sensitive to the
real part of the angular frequency of the incident wave.
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Figure 4. (a) Velocity1 of wave for different angle of incidence; (b) Velocity2 of wave for different
angle of incidence; (c), Velocity3 of wave for different angular frequency.

Figure 5a–c represents the response of the attenuation factor against the angle of
incidence for different values of parameters of angular frequency. The attenuation factor is
responsible for the decrease in amplitude of the wave propagating through the medium. It
is normally associated with the imaginary part of angular frequency. It is a very important
factor of the medium, and it measures the rate at which the energy of the wave is dissipated.
The first wave is directly related to the values of angular frequency, but for the second and
third waves, the results are different. It can be seen from the graphical structure that the
relation of the absolute value of the attenuation coefficient of the second and third waves
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on real and imaginary parts of angular frequency depends on the angle of incidence. For
the initial values of θ < 15◦, it decreases by increasing both values of angular frequency,
but for the values greater than this response, it is the same as that of the first wave. Further,
it is noticed that the imaginary part of the angular frequency has a very small influence on
the intensity of the attenuation factors. This small relation of the attenuation factor is due
to complex values in the exponents and the incompressibility of the medium.
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Figure 6 gives the quantitative study on the specific heat loss of waves propagating
through the medium. Its intensity is directly proportional to the angle of incidence from
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normal to the surface. In this set of figures, we have also tried to conclude the response
of specific heat loss against different values of different intensities of complex angular
frequency. The real part of angular frequency has a greater impact on the specific heat loss,
while the imaginary part has a small effect, comparatively.
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angle of incidence; (c) Specific Heat Loss3 for different angle of incidence.

9. Conclusions

The basic goal of this work was to study the response of different properties of
generated waves to the angular frequency of the incident wave. From the secular equation,
we concluded that three waves propagate through a transversely isotropic medium with
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fiber-reinforced properties. To study the time-varying problems in detail, we considered the
angular frequency of the incident wave to be complex. The influence of both components
of angular frequency is analyzed for different properties of waves. The influence of these
parameters is also analyzed by the special technique of Normalized Local Sensitivity
Analysis, and its effects are represented in the form of a 3D bar graph. This method also
gives details about the fixing of parameters; from this analysis, we conclude that the real
part of angular frequency is more influential than the imaginary part of angular frequency.
We can also conclude that, in factor fixing, we cannot fix any parameter because each
parameter is sensitive. This study is useful in different fields of engineering, specifically in
the field of civil engineering for seismic retrofitting of structures. Using this study, we can
strengthen a structure so that it becomes more resistant to earthquakes and seismic events.
As a result, the study is useful for reducing the destruction caused by waves propagating
through the Earth.
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Appendix A

Symmetric and asymmetric relations for stresses are represented as

σs
ij = −pδij + 2(µL1 − µT1)

{
δj1(ei1 − e1i) + δi1

(
ej1 + e1j

)}
+4(µE1 − µL1)e11δi1δj1,

σa
ij = (µL1 + µT2) + (µT1 − µT2)eji

+(µL2 − µT2)eij
{

δi1
(
ej1 − e1j

)
+ δj1(ei1 − e1i)

}
,

ms
ij = −pδij + (λL1 − λT1)

{
δj1(χi1 − χ1i) + δi1

(
χj1 + χ1j

)}
+4(λE1 − λL1)χ11δi1δj1,

ma
ij = (λT1 + λT2)χij + (λT1 − λT2)χji

+(λL2 − λT2)χij

{
δi1

(
χj1 − χ1j

)
+ δj1(χi1 − χ1i)

}
,

Appendix B

The coefficients of the cubic polynomial (12) are expressed as follows

constant = −Jρ3ω6 − 4ρ2ω4β7

L1 =
(

D1D2β6 − n1n3
2

(
n1n3

2β3 + n3
1n2β5

)
β6(−β + µT2)

)
L2 = (−Jρω2D1D2 − ρω2D1β6 − ρω2D2β6 − 4D1D2β7 + 2D1D4n1β7

+2D2D3n2β7 + 2βD4n1n4
2β7 − 2D3n2

1n3
2β3β7 − 2D3n4

1n2β5β7
−2D4n1n4

2β7µT2 + Jρω2n1n3
2
(
n1n3

2β3 + n3
1n2β5

)
(−β + µT2)

+4n1n3
2
(
n1n3

2β3 + n3
1n2β5

)
β7(−β + µT2))
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L3 = (Jρ2ω4D1 + Jρ2ω4D2 + ρ2ω4β6 + 4ρω2D1β7 + 4ρω2D2β7 − 2ρω2D4n1β7
−2ρω2D3n2β7)
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