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Abstract: We study the sequence of polynomials {Sn}n≥0 that are orthogonal with respect to the gen-

eral discrete Sobolev-type inner product 〈 f , g〉s =
∫

f (x)g(x)dµ(x) + ∑N
j=1 ∑

dj

k=0 λj,k f (k)(cj)g(k)(cj),
where µ is a finite Borel measure whose support supp(µ) is an infinite set of the real line, λj,k ≥ 0,
and the mass points ci, i = 1, . . . , N are real values outside the interior of the convex hull of supp(µ)
(ci ∈ R \ Ch(supp(µ))◦). Under some restriction of order in the discrete part of 〈·, ·〉s, we prove that
Sn has at least n− d∗ zeros on Ch(supp(µ))◦, being d∗ the number of terms in the discrete part of
〈·, ·〉s. Finally, we obtain the outer relative asymptotic for {Sn} in the case that the measure µ is the
classical Laguerre measure, and for each mass point, only one order derivative appears in the discrete
part of 〈·, ·〉s.

Keywords: orthogonal polynomials; Sobolev orthogonality; zeros location; asymptotic behavior

MSC: 41A60; 42C05; 33C45; 33C47

1. Introduction

Let µ be a positive finite Borel measure with finite moments, whose support ∆ ⊂ R
contains infinitely many points. We will denote by Ch(A) the convex hull of a set A and by
A◦ its interior.

Let {Pn}n≥0 be the monic orthogonal polynomial sequence with respect to the inner
product

〈 f , g〉µ =
∫

∆
f (x)g(x)dµ(x).

An inner product is called standard if the multiplication operator is symmetric with
respect to the inner product. Obviously, 〈x f , g〉µ = 〈 f , xg〉µ, i.e., 〈·, ·〉µ is standard. Signif-
icant parts of the applications of orthogonal polynomials in mathematics and particular
sciences are based on the following three consequences of this fact.

1. The polynomial Pn has exactly n real simple zeros in Ch(∆)
◦. Moreover, there is a zero

of Pn−1 between any two consecutive zeros of Pn.
2. The three-term recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γ2
nPn−1(x); P0(x) = 1, P−1(x) = 0,

where γn = ‖Pn‖µ/‖Pn−1‖µ for n ≥ 1, βn = 〈Pn, xPn〉µ/‖Pn‖2
µ and ‖ · ‖µ =

√
〈·, ·〉µ

denotes the norm induced by 〈·, ·〉µ.
3. For the kernel polynomials
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Kn(x, y) =
n

∑
k=0

Pk(x)Pk(y)

‖Pk‖2
µ

, (1)

we have the Christoffel–Darboux identities

Kn(x, y) =


Pn+1(x)Pn(y)−Pn+1(y)Pn(x)

‖Pn‖2
µ (x−y)

, if x 6= y,
P′n+1(x)Pn(x)−Pn+1(x)P′n(x)

‖Pn‖2
µ

, if x = y.
(2)

These identities play a fundamental role in the treatment of Fourier expansions with
respect to a system of orthogonal polynomials (see [1], Section 2.2). For a review of the
use of (1) and (2) in the spectral theory of orthogonal polynomials, we refer the reader
to [2]. In addition, see the usual references [3–5], for a basic background on these and other
properties of {Pn}n≥0.

Let (a, b) = Ch(supp(µ))◦, N, dj ∈ Z+, λj,k ≥ 0, for j = 1, . . . , N, k = 0, 1, . . . , dj,
{c1, c2, . . . , cN} ⊂ R\(a, b), where ci 6= cj if i 6= j and I+ = {(j, k) : λj,k > 0}. We consider
the following Sobolev-type (or discrete Sobolev) inner product

〈 f , g〉s =
∫

f (x)g(x)dµ(x) +
N

∑
j=1

dj

∑
k=0

λj,k f (k)(cj)g(k)(cj)

=
∫

f (x)g(x)dµ(x) + ∑
(j,k)∈I+

λj,k f (k)(cj)g(k)(cj), (3)

where f (k) denotes the k-th derivative of the function f . Without loss of generality, we also
assume {(j, dj)}N

j=1 ⊂ I+ and d1 ≤ d2 ≤ · · · ≤ dN . For n ∈ Z+, we shall denote by Sn the
monic polynomial of the lowest degree satisfying

〈xk, Sn〉s = 0, for k = 0, 1, . . . , n− 1. (4)

It is easy to see that for all n ≥ 0, there exists such a unique polynomial Sn of degree
n. This is deduced by solving a homogeneous linear system with n equations and n + 1
unknowns. Uniqueness follows from the minimality of the degree for the polynomial
solution. We refer the reader to [6,7] for a review of this type of non-standard orthogonality.

Clearly, (3) is not standard, i.e., 〈xp, q〉s 6= 〈p, xq〉s, for some p, q ∈ P. It is well known
that the properties of orthogonal polynomials with respect to standard inner products differ
from those of the Sobolev-type polynomials. In particular, the zeros of the Sobolev-type
polynomials can be complex, or if real, they can be located outside the convex hull of the
support of the measure µ, as can be seen in the following example.

Example 1 (Zeros outside the convex hull of the measures supports). Set

〈 f , g〉s =
∫ ∞

0
f (x)g(x)e−xdx + 2 f ′(−1)g′(−1),

then the corresponding second-degree monic Sobolev-type orthogonal polynomial is S2(z) = z2 − 2,
whose zeros are z1,2 = ±

√
2. Note that −

√
2 6∈ [−1, ∞).

Let {Qn}n≥0 be the sequence of monic orthogonal polynomials with respect to the
inner product

〈 f , g〉µρ =
∫

f (x) g(x) dµρ(x), where ρ(x) = ∏
cj≤a

(
x− cj

)dj+1∏
cj≥b

(
cj − x

)dj+1

and dµρ(x) = ρ(x)dµ(x).
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Note that ρ is a polynomial of degree d = ∑N
j=1(dj + 1), which is positive on (a, b).

If n > d, from (4), {Sn} satisfies the following quasi-orthogonality relations with respect
to µρ

〈Sn, f 〉µρ = 〈Sn, ρ f 〉µ =
∫

Sn(x) f (x)ρ(x)dµ(x) = 〈Sn, ρ f 〉s = 0,

for f ∈ Pn−d−1, where Pn is the linear space of polynomials with real coefficients and the
degree at most n ∈ Z+. Hence, the polynomial Sn is quasi-orthogonal of order d with respect to
µρ and by this argument, we obtain that Sn has at least (n− d) changes of sign in (a, b).

The results obtained for measures µ with bounded support (see [8], (1.10)) suggest
that the number of zeros located in the interior of the support of the measure is closely
related to d∗ = |I+|, the number of terms in the discrete part of 〈·, ·〉s (i.e., λj,k > 0), instead
of this greater quantity d.

Our first result, Theorem 1, goes in this direction for the case when the inner product is
sequentially ordered. This kind of inner product is introduced in Section 2 (see Definition 1).

Theorem 1. If the discrete Sobolev inner product (3) is sequentially ordered, then Sn has at least
n− d∗ changes of sign on (a, b), where d∗ is the number of positive coefficients λj,k in (3).

Previously, this result was obtained for more restricted cases in ([9], Th. 2.2) and ([10],
Th. 1). In ([9], Th. 2.2), the authors proved this result for the case N = 1. In ([10], Th. 1),
the notion of a sequentially ordered inner product is more restrictive than here, because it
did not include the case when the Sobolev inner product has more than one derivative
order at the same mass point.

In the second part of this paper, we focus our attention on the Laguerre–Sobolev-type
polynomials (i.e., dµ = xαe−xdx, with α > −1). In the case of the inner product, (3) takes
the form

〈 f , g〉s =
∫ ∞

0
f (x)g(x)xαe−xdx +

N

∑
j=1

λj f (dj)(cj)g(dj)(cj), (5)

where λj := λj,dj
> 0, cj < 0, for j = 1, 2, . . . , N, we obtain the outer relative asymptotic of

the Laguerre–Sobolev-type polynomials.

Theorem 2. Let {Lα
n}n≥0 be the sequence of monic Laguerre polynomials and let {Sn}n≥0 be the

monic orthogonal polynomials with respect to the inner product (5). Then,

Sn(x)
Lα

n (x)
⇒

N

∏
j=1

√−x−
√
|cj|

√
−x +

√
|cj|

, K ⊂ C \R+. (6)

Throughout this paper, we use the notation fn ⇒ f , K ⊂ U when the sequence of
functions fn converges to f uniformly on every compact subset K of the region U.

Combining this result with Theorem 1, we obtain that the Sobolev polynomials Sn,
orthogonal with respect to a sequentially ordered inner product in the form (5), have at
least n–N zeros in (0, ∞) and, for sufficiently large n, each one of the other N zeros are
contained in a neighborhood of each mass point cj (j = 1, . . . , N). Then, we have located all
zeros of Sn and we obtain that for a sufficiently large n, they are simple and real, as in the
Krall case (see [11]) or the Krall–Laguerre-type orthogonal polynomial (see [12]). This is
summarized in the following corollary.

Corollary 1. Let µ = µα be the classical Laguerre measure (dµα(x) = xαe−xdx) and (5) a
sequentially ordered discrete Sobolev inner product. Then, the following statements hold:

1. Every point cj attracts exactly one zero of Sn for sufficiently large n, while the remaining n–N
zeros are contained in (0, ∞). This means:
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For every r > 0, there exists a natural value N such that if n ≥ N , then the n zeros of Sn
{ξi}n

i=1 satisfy

ξ j ∈ B(cj, r) for j = 1, . . . , N and ξi ∈ (0, ∞) for i = N + 1, N + 2, . . . , n.

2. The zeros of Sn are real and simple for large-enough values of n.
3. The zeros of {Sn}∞

n=1 are at a finite distance from (0, ∞). This means that there exists a
positive constant M such that if ξ is a zero of Sn, then

d(ξ, (0, ∞)) := inf
x>0
{|x− ξ|} < M.

Section 2 is devoted to introducing the notion of a sequentially ordered Sobolev inner
product and to prove Theorem 1. In Section 3, we summarize some auxiliary properties
of Laguerre polynomials to be used in the proof of Theorem 2. Some results about the
asymptotic behavior of the reproducing kernels are given. The aim of the last section is to
prove Theorem 2 and some of its consequences stated in Corollary 2.

2. Sequentially Ordered Inner Product

Definition 1 (Sequentially ordered Sobolev inner product). Consider a discrete Sobolev inner
product in the general form (3) and assume d1 ≤ d2 ≤ · · · ≤ dN without loss of generality. We say
that a discrete Sobolev inner product is sequentially ordered if the conditions

∆k ∩ Ch

(
∪k−1

i=0 ∆i

)◦
= ∅, k = 1, 2, . . . , dN ,

hold, where

∆k =

{
Ch
(
supp(µ) ∪ {cj : λj,0 > 0}

)
, if k = 0,

Ch

(
{cj : λj,k > 0}

)
, if 1 ≤ k ≤ dN .

(7)

Note that ∆k is the convex hull of the support of the measure associated with the k-th
order derivative in the Sobolev inner product (3). Let us see two examples.

Example 2 (Sequentially ordered inner product).
Set

〈 f , g〉s =
∫ ∞

0
f (x)g(x)e−xdx + 10 f (−1)g(−1) + 5 f ′(−3)g′(−3)

+ 5 f ′(−9)g′(−9) + 20 f ′′′(−10)g′′′(−10),

then the corresponding fifth-degree Sobolev orthogonal polynomial has the following exact expression

S5(x) =x5 +
380961336355365
16894750106161

x4 +
1836311881214045
16894750106161

x3 − 7830454972601355
16894750106161

x2

− 36972053870326650
16894750106161

x− 22386262325875230
16894750106161

,

whose zeros are approximately ξ1 ≈ 4.46, ξ2 ≈ −0.74, ξ3 ≈ −2.8, ξ4 ≈ −11.74 + 2.51i and
ξ5 ≈ −11.74− 2.51i. Note that four of them are outside of (0, ∞) and two are even complex.

Example 3 (Non-sequentially ordered inner product).

Set 〈 f , g〉 =
∫ ∞

0
f (x)g(x) e−xdx + f ′(−15)g′(−15) + f ′′(−9)g′′(−9), then the corresponding

fifth-degree Sobolev orthogonal polynomial has the following exact expression
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S5(x) =x5 +
55079160
21682477

x4 − 5053767275
21682477

x3 +
40953207555

21682477
x2

− 98030649090
21682477

x +
42523040550

21682477
,

whose zeros are approximately ξ1 ≈ 0.55, ξ2 ≈ 3.36, ξ3 ≈ 6.66 + 3.02i, ξ4 ≈ 6.66− 3.02i and
ξ5 ≈ −19.77. Note that, in spite of Theorem 1, d∗ = 2 and three of the zeros of S5 are outside of
(0, ∞), with two of them as not even real.

In the sequentially ordered example (Example 2), S5 has exactly 1 = 5− 4 = n− d∗

simple zeros on the interior of the convex hull of the support of the Laguerre measure
(0, ∞), and thus, the bound of Theorem 1 is sharp. In addition, this example shows that the
remaining d∗ zeros might even be complex, although Corollary 1 shows that this does not
happen when n is sufficiently large.

On the other hand, in the non-sequentially ordered example (Example 3), this condition
is not satisfied, since S5 has only 2 < 3 = 5− 2 = n− d∗ zeros on (0, ∞), showing that the
sequential order plays a main role in the localization of the zeros of Sn, at least to obtain
this property for every value of n.

Throughout the remainder of this section, we will consider inner products of the
form (3) that are sequentially ordered. The next lemma is an extension of ([13], Lemma 2.1)
and ([10], Lemma 3.1).

Lemma 1. Let {Ii}m
i=0 be a set of m + 1 intervals on the real line and let P be a polynomial with

real coefficients of degree ≥ m. If

Ik ∩ Ch

(
∪k−1

i=0 Ii

)◦
= ∅, k = 1, 2, . . . , m, (8)

then

Nz(P; J) + N◦(P; I0 \ J) +
m

∑
i=1

N◦
(

P(i); Ii

)
≤ Nz

(
P(m); J

)
+ N◦

(
P(m); Ch(∪m

i=0 Ii) \ J
)
+ m, (9)

for every closed subinterval J of I0
◦ (both empty set and unitary sets are assumed to be intervals).

Here, given a real set A and a polynomial P, N◦(P; A) denotes the number of values where the
polynomial P vanishes on A (i.e., zeros of P on A without counting multiplicities), and Nz(P; A)
denotes the total number of zeros (counting multiplicities) of P on A.

Proof. First, we point out the following consequence of Rolle’s Theorem. If I is a real
interval and J is a closed subinterval of I◦, then

Nz(P; J) + N◦(P; I \ J) ≤ Nz
(

P′; J
)
+ N◦

(
P′; I◦ \ J

)
+ 1. (10)

It is easy to see that (9) holds for m = 0. We now proceed by induction on m. Suppose that
we have m + 1 intervals {Ii}m

i=0 satisfying (8); thus, the first m intervals {Ii}m−1
i=0 also satisfy

(8), and we obtain (9) by induction hypothesis (taking m− 1 instead of m). Then

Nz(P; J) + N◦(P; I0 \ J) +
m

∑
i=1

N◦
(

P(i); Ii

)
,

≤ Nz

(
P(m−1); J

)
+ N◦

(
P(m−1); Ch

(
∪m−1

i=0 Ii

)
\ J
)
+ m− 1 + N◦

(
P(m); Im

)
,

≤ Nz

(
P(m); J

)
+ N◦

(
P(m); Ch

(
∪m−1

i=0 Ii

)◦
\ J
)
+ m + N◦

(
P(m); Im

)
,

≤ Nz

(
P(m); J

)
+ N◦

(
P(m); Ch(∪m

i=0 Ii) \ J
)
+ m,
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where in the second inequality, we have used (10).

As an immediate consequence of Lemma 1, the following result is obtained.

Lemma 2. Under the assumptions of Lemma 1, we have

Nz(P; J) + N◦(P; I0 \ J) +
m

∑
i=1

N◦
(

P(i); Ii

)
≤ deg P (11)

for every J closed subinterval of I0
◦. In particular, for J = ∅, we obtain

m

∑
i=0

N◦
(

P(i); Ii

)
≤ deg P. (12)

Lemma 3. Let {(ri, νi)}M
i=1 ⊂ R×Z+ be a set of M ordered pairs. Then, there exists a unique

monic polynomial UM of minimal degree (with 0 ≤ deg UM ≤ M), such that

U(νi)
M (ri) = 0, i = 1, 2, . . . , M. (13)

Furthermore, if the intervals Ik = Ch({ri : νi = k}), k = 0, 1, 2, . . . , νM, satisfy (8), then UM
has degree uM = min IM − 1, where

IM = {i : 1 ≤ i ≤ M and νi ≥ i} ∪ {M + 1}.

Proof. The existence of a nonidentical zero polynomial with degree ≤ M satisfying (13)
reduces to solving a homogeneous linear system with M equations and M + 1 unknowns
(its coefficients). Thus, a non-trivial solution always exists. In addition, if we suppose that
there exist two different minimal monic polynomials UM and ŨM, then the polynomial
ÛM = UM − ŨM is not identically zero, it satisfies (13), and deg ÛM < deg UM. Thus,
if we divide ÛM by its leading coefficient, we reach a contradiction.

The rest of the proof runs by induction on the number of points M. For M = 1,
the result follows taking

U1(x) =

{
x− r1, if ν1 = 0,
1, if ν1 ≥ 1.

Suppose that, for each sequentially ordered sequence of M ordered pairs, the corre-
sponding minimal polynomial UM has degree uM.

Let {(ri, νi)}M
i=1 be a set of M ordered pairs satisfying (8). Obviously, {(ri, νi)}M−1

i=1 also
satisfies (8) and UM satisfies (13) for i = 1, 2, . . . , M− 1; thus, we obtain deg UM−1 = uM−1
and deg UM ≥ deg UM−1. Now, we divide the proof into two cases:

1. If uM = M, then for all 1 ≤ i ≤ M we have νi < i, which yields

deg UM ≥ deg UM−1 = uM−1 = M− 1 ≥ νM.

Since {(ri, νi)}M
i=1 satisfies (8), from (12) we obtain

M ≤
νM

∑
i=0

N◦
(

U(i)
M ; Ii

)
≤ deg UM,

which implies that deg UM = M = uM.
2. If uM ≤ M− 1, then there exists a minimal j (1 ≤ j ≤ M), such that νj ≥ j, and νi < i

for all 1 ≤ i ≤ j− 1. Therefore, uM = j− 1 = uM−1. From the induction hypothesis,
we obtain

deg UM−1 = uM−1 = j− 1 ≤ νj − 1 ≤ νM − 1,

which gives U(νM)
M−1 ≡ 0. Hence, UM ≡ UM−1 and, consequently, we obtain

deg UM = deg UM−1 = uM−1 = uM.
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Note that, in Lemma 3, condition (8) is necessary for asserting that the polynomial UM
has degree uM. If we consider {(−1, 0), (1, 0), (0, 1)}, whose corresponding convex hulls
I0 = [−1, 1] and I1 = {0} do not satisfy (8), we obtain U3(x) = x2− 1 and u3 = 3 6= deg U3.

Now we are able to prove the zero localization theorem for sequentially ordered
discrete Sobolev inner products.

Proof of Theorem 1. Let ξ1 < ξ2 < · · · < ξη be the points on (a, b) = Ch(supp(µ))◦ where
Sn changes sign and suppose that η < n− d∗. Consider the set of ordered pairs

{(ri, νi)}
d∗+η
i=1 = {(ξi, 0)}η

i=1 ∪ {(cj, k) : ηj,k > 0, j = 1, 2, . . . , N, k = 1, . . . , dj}.

Since 〈·, ·〉s is sequentially ordered, the intervals Ik = ∆k for k = 0, 1, . . . , νN
(see (7)) satisfy (8) (we can assume without loss of generality that ν1 ≤ ν2 ≤ · · · ≤ νd∗+η).
Consequently, from Lemma 3, there exists a unique monic polynomial Ud∗+η of minimal
degree, such that

Ud∗+η(ξi) = 0; for i = 1, . . . , η,

U(k)
d∗+η(cj) = 0; for each (j, k) : ηj,k > 0, (14)

and deg Ud∗+η = min Id∗+η − 1 ≤ d∗ + η, where

Id∗+η = {i : 1 ≤ i ≤ d∗ + η and νi ≥ i} ∪ {d∗ + η + 1}. (15)

Now, we need to consider the following two cases.

1. If deg Ud∗+η = d∗ + η, from (15), we obtain deg Ud∗+η ≥ νη+d∗ + 1. Thus, taking the
closed interval J = [ξ1, ξη ] ⊂ (a, b) in (11), we obtain

d∗ + η ≤
νd∗+η

∑
k=0

N◦
(

U(k)
d∗+η ; Ik

)
≤ Nz

(
Ud∗+η ; [ξ1, ξη ]

)
+ N◦

(
Ud∗+η ; I0 \ [ξ1, ξη ]

)
+

νd∗+η

∑
k=1

N◦
(

U(k)
d∗+η ; Ik

)
≤ deg Ud∗+η = d∗ + η.

2. If deg Ud∗+η < d∗ + η, from (15), there exists 1 ≤ j ≤ d∗ + η such that deg Ud∗+η =
j− 1, νj ≥ j and νi ≤ i− 1 for i = 1, 2, . . . , j− 1. Hence,

νj−1 + 1 ≤ j− 1 = deg Ud∗+η

and, again, from (11) we have

j− 1 ≤
νj−1

∑
k=0

N◦
(

U(k)
d∗+η ; Ik

)
≤ Nz

(
Ud∗+η ; [ξ1, ξη ]

)
+ N◦

(
Ud∗+η ; I0 \ [ξ1, ξη ]

)
+

νj−1

∑
k=1

N◦
(

U(k)
d∗+η ; Ik

)
≤ deg Ud∗+η = j− 1.

In both cases, we obtain that Ud∗+η has no other zeros in I0 than those given by

construction, and from N◦
(

Ud∗+η ; [ξ1, ξη ]
)
= Nz

(
Ud∗+η ; [ξ1, ξη ]

)
, all the zeros of Sn on I◦

are simple. Thus, in addition to (14), we obtain that SnUd∗+η does not change sign on I◦.
Now, since deg Ud∗+η ≤ d∗ + η < n, we arrive at the contradiction

0 = 〈Sn, Ud∗+η〉 =
∫

Sn(x)Ud∗+η(x)dµ(x) +
N

∑
j=1

dj

∑
k=0

λj,kS(k)
n (cj)U

(k)
d∗+η(cj)

=
∫ b

a
Sn(x)Ud∗+η(x)dµ(x) 6= 0.
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3. Auxiliary Results

The family of Laguerre polynomials is one of the three very well-known classical
orthogonal polynomials families (see [3–5]). It consists of the sequence of polynomials
{L(α)

n } that are orthogonal with respect to the measure dµ = xαe−xdx, x ∈ (0, ∞), for
α > −1, and that are normalized by taking (−1)n

n! as the leading coefficient of the n-th
degree polynomial of the sequence. Laguerre polynomials play a key role in applied
mathematics and physics, where they are involved in the solutions of the wave equation of
the hydrogen atom (c.f. [14]).

Some of the structural properties of this family are listed in the following proposition
in order to be used later.

Proposition 1. Let {L(α)
n }n≥0 (note the brackets in parameter α) be the sequence of Laguerre

polynomials and let {Lα
n}n≥0 be the monic sequence of Laguerre polynomials. Then, the following

statements hold.

1. For every n ∈ N,

L(α)
n (x) =

(−1)n

n!
Lα

n(x). (16)

2. Three-term recurrence relation. For every n ≥ 1,

xLα
n(x) = Lα

n+1(x) + (2n + α + 1)Lα
n(x) + n(n + α)Lα

n−1(x)

xL(α)
n (x) = −(n + 1)L(α)

n+1(x) + (2n + α + 1)L(α)
n (x)− (n + α)L(α)

n−1(x)

with L(α)
−1 ≡ Lα

−1 = 0, and L(α)
0 ≡ Lα

0 ≡ 1.
3. Structure relation. For every n ∈ N,

L(α)
n (x) = L(α+1)

n (x)− L(α+1)
n−1 (x).

4. For every n ∈ N,

||L(α)
n ||2µ = Γ(α + 1)

(
n + α

n

)
=

Γ(α + n + 1)
n!

. (17)

In addition, we have
||Lα

n||2µ = n!Γ(n + α + 1)

5. Hahn condition. For every n ∈ N,

[L(α)
n ]′(x) = −L(α+1)

n−1 (x). (18)

6. Outer strong asymptotics (Perron’s asymptotics formula on C \R+). Let α ∈ R. Then

L(α)
n (x) =

ex/2nα/2−1/4e2(−nx)1/2

2π1/2(−x)α/2+1/4

{
p−1

∑
k=0

Ck(x)n−k/2 +O(n−p/2)

}
. (19)

Here, {Ck(x)}p−1
k=0 are certain analytic functions of x independent of n, with C0 ≡ 1. This

relation holds for x in the complex plane with a cut along the positive part of the real axis.
The bound for the remainder holds uniformly in every closed domain with no points in common
with x ≥ 0 (see [5], Theorem 8.22.3).

Now, we summarize some auxiliary lemmas to be used in the proof of Theorem 2 (see
([15], Lem. 1) and ([16], Prop. 6)).
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Lemma 4. For z ∈ C \ [0, ∞), α, β ∈ R and j, k ≥ −n we have

L(α+β)
n+j (z)

L(α)
n+k(z)

=

1 + (j−k)
√
−z√

n +
(

α
2 −

1
4 − z (j−k)

2

)
(j−k)

n +Oz

(
n−

3
2

)
if β = 0( √

n√
−z

)β(
1 +Oz

(
n−1/2

))
if β 6= 0.

(20)

whereOz(n−j) denotes some analytic function sequence {gn(z)}∞
n=1 such that {njgn} is uniformly

bounded on every compact subset of C \ [0, ∞).

To study the outer relative asymptotic between the standard Laguerre polynomials
and the Laguerre–Sobolev orthogonal polynomials (see Formula (6)), we need to compute
the behavior of the Laguerre kernel polynomials and their derivatives when n approaches
infinity. To this end, we prove the following auxiliary result, which is an extension of ([17],
Ch. 5, Th. 16).

Lemma 5. Let G and G′ be two open subsets of the complex plane and fn : G × G′ −→ C be
a sequence of functions that are analytic with respect to each variable separately. If { fn}∞

n=1 is a
uniformly bounded sequence on each set in the form K×K′, where K ⊂ G and K′ ⊂ G′ are compact
sets, then any of its partial derivative sequences are also uniformly bounded on each set in the form
K× K′.

Proof. Note that it is sufficient to prove this for the first derivative order with respect
to any of the variables and then proceed by induction. Let K ⊂ G and K′ ⊂ G′ be two
compact sets. Denote Gc = C \ G, d(K, Gc) = inf

z∈K,w∈Gc
|z− w|, r = d(K, Gc)/2 > 0 and

B(z, r) = {ζ ∈ C : |z− ζ| < r}. Take K∗ as the closure of
⋃

z∈K B(z, r); thus, K∗ is a compact
subset of G. Thus, there exists a positive constant M > 0 such that | fn(z, w)| ≤ M for all
z ∈ K∗, w ∈ K′ and n ∈ N. Hence, for all z ∈ K, w ∈ K′ and n ∈ N, we obtain∣∣∣∣∂ fn

∂z
(z, w)

∣∣∣∣ = ∣∣∣∣ 1
2πi

∫
c(z,r)

fn(ξ, w)

(ξ − z)2 dξ

∣∣∣∣ ≤ V(c(z, r))
2π

max
ξ∈c(z,r)

{
| fn(ξ, w)|
|ξ − z|2

}
=

2πr
2πr2 max

ξ∈c(z,r)
{| fn(ξ, w)|} ≤ M

r
,

where c(z, r) denotes the circle with center at z, radius r and length V(c(z, r)).

From the Fourier expansion of Sn in terms of the basis {Lα
n}n>0 we obtain

Sn(x) =
n

∑
i=0
〈Sn, Lα

i 〉µ
Lα

i (x)∥∥Lα
i

∥∥2
µ

= Lα
n(x) +

n−1

∑
i=0
〈Sn, Lα

i 〉µ
Lα

i (x)∥∥Lα
i

∥∥2
µ

= Lα
n(x) +

n−1

∑
i=0

〈Sn, Lα
i 〉s − ∑

(j,k)∈I+

λj,kS(k)
n (cj)(Lα

i )
(k)(cj)

 Lα
i (x)∥∥Lα

i

∥∥2
µ

= Lα
n(x)− ∑

(j,k)∈I+

λj,kS(k)
n (cj)

n−1

∑
i=0

Lα
i (x)

(
Lα

i
)(k)

(cj)∥∥Lα
i

∥∥2
µ

= Lα
n(x)− ∑

(j,k)∈I+

λj,kS(k)
n (cj)K

(0,k)
n−1 (x, cj), (21)

where we use the notation K(j,k)
n (x, y) =

∂j+kKn(x, y)
∂jx∂ky

to denote the partial derivatives of

the kernel polynomials defined in (1). Differentiating Equation (21) `-times and evaluating
then at x = ci for each ordered pair (i, `) ∈ I+, we obtain the following system of d∗ linear
equations and d∗ unknowns S(k)

n (cj).
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(Lα
n)

(`)(ci) =
(

1 + λi,`K
(`,`)
n−1 (ci, ci)

)
S(`)

n (ci) +

dj

∑
(j,k)∈I+
(j,k) 6=(i,`)

λj,kK(`,k)
n−1 (ci, cj)S

(k)
n (cj). (22)

Lemma 6. The Laguerre kernel polynomials and their derivatives satisfy the following behavior
when n approaches infinity for x, y ∈ C \ [0, ∞)

K(i,j)
n−1(x, y) =

∂i+jKn−1

∂ix∂jy
(x, y) =

L(α+i)
n (x)L(α+j)

n (y)

nα− 1
2 (
√
−x +

√−y)

(
(−1)i+j +Ox,y(n−1/2)

)
, i, j ≥ 0,

where Ox,y(n−k) denotes some sequence of functions {gn(x, y)}∞
n=1 that are holomorphic with

respect to each variable and whose sequence {nkgn} is uniformly bounded on every set K× K′, such
that K and K′ are compact subsets of C \R+.

Proof. The proof is by induction on k = i + j. First, suppose k = 0 (i.e., i = j = 0) and split
the proof into two cases according to whether x = y or not. If x = y, from (2), (16), (18)
and (20), we obtain

‖L(α)
n−1‖2

µ

n
Kn−1(x, x) =L(α)

n (x)(L(α)
n−1)

′(x)− (L(α)
n )′(x)L(α)

n−1(x)

=L(α+1)
n−1 (x)L(α)

n−1(x)− L(α+1)
n−2 (x)L(α)

n (x)

=L(α+1)
n−2 (x)L(α)

n−1(x)

 L(α+1)
n−1 (x)

L(α+1)
n−2 (x)

− L(α)
n (x)

L(α)
n−1(x)


=L(α+1)

n−2 (x)L(α)
n−1(x)

[
1 +
√
−x√
n

+

[
α + 1

2
− 1

4
− x

2

]
1
n
+Ox(n−3/2)

−
(

1 +
√
−x√
n

+

[
α

2
− 1

4
− x

2

]
1
n
+Ox(n−3/2)

)]
=L(α+1)

n−2 (x)L(α)
n−1(x)

(
1

2n
+Ox(n−3/2)

)
=

L(α)
n (x)L(α)

n (x)
2n

( √
n√
−x

)(
1 +Ox(n−1/2)

)
=

L(α)
n (x)L(α)

n (x)
2
√

n
√
−x

(
1 +Ox(n−1/2)

)
.

On the other hand, if x 6= y, from (2) and (20) we obtain

‖L(α)
n−1‖2

µ

n
Kn−1(x, y) =

L(α)
n−1(x)L(α)

n (y)− L(α)
n (x)L(α)

n−1(y)
x− y

=
L(α)

n−1(x)L(α)
n−1(y)

x− y

 L(α)
n (y)

L(α)
n−1(y)

− L(α)
n (x)

L(α)
n−1(x)


=

L(α)
n−1(x)L(α)

n−1(y)
x− y

(√−y−
√
−x√

n
+Ox,y(n−1)

)

=
L(α)

n−1(x)L(α)
n−1(y)√

−x +
√−y

(
1√
n
+Ox,y(n−1)

)

=
L(α)

n (x)L(α)
n (y)√

n(
√
−x +

√−y)

(
1 +Ox,y(n−1/2)

)
.
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From (17) and ([18], Appendix, (1.14))

‖L(α)
n−1‖

2
µ =

Γ(n + α)

Γ(n)
= nα(1 +O(n−1)),

which proves the case k = 0. Now, we assume that the theorem is true for i + j = k and
we will prove it for i + j = k + 1. By the symmetry of the formula, the proof is analogous
when any of the variables increase its derivative order; thus, we only will prove it when
the variable y does.

∂k+1Kn−1

∂xi∂j+1y
(x, y) =

∂

∂y

(
L(α+i)

n (x)L(α+j)
n (y)

nα− 1
2 (
√
−x +

√−y)

(
(−1)k +Ox,y(n−1/2)

))

=
L(α+i)

n (x)

nα− 1
2

[
∂

∂y

(
L(α+j)

n (y)√
−x +

√−y

)(
(−1)k +Ox,y(n−1/2)

)
+

L(α+j)
n (y)√
−x +

√−y
∂

∂y

(
(−1)k +Ox,y(n−1/2)

)]

=
L(α+i)

n (x)

nα− 1
2

−(√−x +
√−y)L(α+j+1)

n−1 (y) + 1
2 L(α+j)

n (y)(−y)−1/2

(
√
−x +

√−y)2

·
(
(−1)k +Ox,y(n−1/2)

)
+

L(α+j)
n (y)√
−x +

√−y
Ox,y(n−1/2)

]

=
L(α+i)

n (x)L(α+j+1)
n−1 (y)

nα− 1
2 (
√
−x +

√−y)

−1 +

√−y√
n +Ox,y(n−1)

2
√−y(

√
−x +

√−y)


·
(
(−1)k +Ox,y(n−1/2)

)
+

(√−y√
n

+Ox,y(n−1)

)
Ox,y(n−1)

]

=
L(α+i)

n (x)L(α+j+1)
n−1 (y)

nα− 1
2 (
√
−x +

√−y)

[(
−1 +Ox,y(n−1/2)

)(
(−1)k +Ox,y(n−1/2)

)
+Ox,y(n−3/2)

]
=

L(α+i)
n (x)L(α+j+1)

n (y)

nα− 1
2 (
√
−x +

√−y)

[
(−1)k+1 +Ox,y(n−1/2)

]
,

where in the third equality we use Lemma 5 to guarantee that ∂
∂yOx,y(n−1) = Ox,y(n−1),

and in the fourth equality, we use (20).

4. Proof of Theorem 2 and Consequences

Proof of Theorem 2. Without loss of generality, we will consider the polynomials L(α)
n =

(−1)n/n! Lα
n and Ŝn = (−1)n/n! Sn, instead of the monic polynomials Lα

n and Sn.
Multiplying both sides of (21) by (−1)n/n!, we obtain

Ŝn(x) = L(α)
n (x)−

N

∑
j=1

λjŜ
(dj)
n (cj)K

(0,dj)

n−1 (x, cj), (23)

Dividing by L(α)
n (x) on both sides of (23), we obtain

Ŝn(x)

L(α)
n (x)

= 1−
N

∑
j=1

λjŜ
(dj)
n (cj)

K
(0,dj)

n−1 (x, cj)

L(α)
n (x)

. (24)

Recall that we are considering the Laguerre–Sobolev polynomials {Ŝn} that are or-
thogonal with respect to (5). In this case, the consistent linear system (22) becomes
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(
L(α)

n

)(dk)
(ck)=

(
1+λkK(dk ,dk)

n−1 (ck, ck)
)
Ŝ(dk)

n (ck) +
N

∑
j=1
j 6=k

λjK
(dk ,dj)

n−1 (ck, cj)Ŝ
(dj)
n (cj), (25)

for k = 1, 2, . . . , N. Let us define

Pα
n,j(x) := −λjŜ

(dj)
n (cj)

K
(0,dj)

n−1 (x, cj)

L(α)
n (x)

and Pα
j (x) := lim

n→∞
Pα

n,j(x).

From (24), in order to prove the existence of the limit (6), we need to figure out the
values of Pα

j (x). Note that

Ŝ
(dj)
n (cj) = −

L(α)
n (x)P(α)

n,j (x)

λjK
(0,dj)

n−1 (x, cj)
.

If we replace these expressions in (25), then we obtain the following linear system in
the unknowns Pn,j(x)

a1,1(n, x) a1,2(n, x) · · · a1,N(n, x)
a2,1(n, x) a2,2(n, x) · · · a1,N(n, x)

...
...

. . .
...

aN,1(n, x) aN,2(n, x) · · · aN,N(n, x)




Pα
n,1(x)

Pα
n,2(x)

...
Pα

n,N(x)

 =


−1
−1

...
−1

, (26)

where

ak,j(n, x) =


L(α)

n (x)K
(dk ,dj)
n−1 (ck ,cj)(

L(α)
n

)(dk)
(ck)K

(0,dj)
n−1 (x,cj)

, j 6= k,

L(α)
n (x)

(
1

λk
+K

(dk ,dk)
n−1 (ck ,ck)

)
(

L(α)
n

)(dk)
(ck)K

(0,dk)
n−1 (x,ck)

, j = k.

Now, we will find the behavior of the coefficients ak,j(n, x) when n approaches infinity.
If k = j, we have

ak,k(n, x) =
L(α)

n (x)
(

1
λk

+ K(dk ,dk)
n−1 (ck, ck)

)
(

L(α)
n

)(dk)
(ck)K

(0,dk)
n−1 (x, ck)

=

L(α)
n (x)

(
1

λk
+ L

(α+dk)
n (ck)L

(α+dk)
n (ck)

nα− 1
2
√−ck+

√−ck

(
(−1)dk+dk +O(n−1/2)

))
(−1)dk L(α+dk)

n−dk
(ck)

L
(α+dk)
n (ck)L(α)

n (x)

nα− 1
2 (
√
−x+

√−ck)

(
(−1)dk +Ox(n−1/2)

)

=

√
−x +

√
−ck

2
√
−ck

(
nα− 1

2

λk L
(α+dk)
n (ck)

+ L(α+dk)
n (ck)

(
1 +O(n−1/2)

))
L(α+dk)

n−dk
(ck)

(
1 +Ox(n−1/2)

)

=

√
−x +

√
−ck

2
√
−ck

 nα− 1
2

λk

(
L
(α+dk)
n (ck)

)2 + 1 +O(n−1/2)


1 +Ox(n−1/2)

=

√
−x +

√
−ck

2
√
−ck

1 +O(n−1/2)

1 +Ox(n−1/2)
,

where in the last equality we use Perron’s Asymptotic Formula (19) to obtain
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nα− 1
2

(L(α+dk)
n (ck))2

=
4πnα− 1

2

eck+4
√−ck

√
n

(−ck)
α+dk+

1
2

nα+dk− 1
2
O(1) = 1

ndk e4
√−ck

√
n
O(1),

which has exponential decay (ck < 0). On the other hand, if k 6= j, we obtain

ak,j(n, x) =
L(α)

n (x)K
(dk ,dj)

n−1 (ck, cj)(
L(α)

n

)(dk)
(ck)K

(0,dj)

n−1 (x, cj)

=

L
(α+dk)
n (ck)√−ck+
√
−cj

(
(−1)dk+dj +O(n−1/2)

)
(−1)dk

L
(α+dk)
n−dk

(ck)
√
−x+
√
−cj

(
(−1)dj +O(n−1/2)

)
=

√
−x +

√−cj√
−ck +

√−cj

(
1 +O(n−1/2)

)
(
1 +O(n−1/2)

) .

Hence,

lim
n→∞

ak,j(n, x) =


√
−x+
√
−cj√−ck+
√
−cj

, if j 6= k
√
−x+

√−ck
2
√−ck

, if j = k
=

√
−x +

√
|cj|√

|ck|+
√
|cj|

.

Next, taking limits on both sides of (26) when n approaches ∞, we obtain

√
−x+
√
|c1|√

|c1|+
√
|c1|

√
−x+
√
|c2|√

|c1|+
√
|c2|

· · ·
√
−x+
√
|cN |√

|c1|+
√
|cN |

√
−x+
√
|c1|√

|c2|+
√
|c1|

√
−x+
√
|c2|√

|c2|+
√
|c2|

· · ·
√
−x+
√
|cN |√

|c2|+
√
|cN |

...
...

. . .
...

√
−x+
√
|c1|√

|cN |+
√
|c1|

√
−x+
√
|c2|√

|cN |+
√
|c2|

· · ·
√
−x+
√
|cN |√

|cN |+
√
|cN |





Pα
1 (x)

Pα
2 (x)

...

Pα
N(x)


=



−1

−1

...

−1


.

Using Cauchy determinants, it is not difficult to prove that the N solutions of the
above linear system are

Pα
j (x) =

−2
√
|cj|

√
−x +

√
|cj|

N

∏
l=1
l 6=j


√
|cj|+

√
|cl |√

|cj| −
√
|cl |

.

Now, from (24), we obtain

lim
n→∞

Ŝn(x)

L(α)
n (x)

= 1 +
N

∑
j=1

2
√
|cj|

√
−x +

√
|cj|

N

∏
l=1
l 6=j


√
|cj|+

√
|cl |√

|cj| −
√
|cl |

.

If we consider the change of variable z =
√
−x and for simplicity we also consider the

notation tj =
√
|cj|, then we obtain the following partial fraction decomposition

1 +
N

∑
j=1

2tj

z + tj

N

∏
l=1
l 6=j

(
tj + tl

tj − tl

)
.

Thus, we only have to prove that this is the partial fraction decomposition of
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N

∏
j=1

(
z− tj

z + tj

)
.

Let PN(z) = ∏N
j=1(z− tj) and QN(z) = ∏N

j=1(z + tj), then

N

∏
j=1

(
z− tj

z + tj

)
=

PN(z)
QN(z)

= 1 +
PN(z)−QN(z)

QN(z)
= 1 +

N

∑
j=1

Aj

z + tj
,

where

Aj = lim
z→−tj

(z + tj)
PN(z)−QN(z)

QN(z)
=

PN(−tj)−QN(−tj)

Q′N(−tj)

=

N

∏
l=1

(−tj − tl)−
N

∏
l=1

(−tj + tl)

N

∏
l=1
l 6=j

(−tj + tl)

=
(−1)N2tj

(−1)N

N

∏
l=1
l 6=j

(
tj + tl

tj − tl

)
= 2tj

N

∏
l=1
l 6=j

(
tj + tl

tj − tl

)
,

which completes the proof.

Obviously, the inner product (5) and the monic polynomial Sn depend on the param-
eter α > −1, so that in what follows, we will denote Sα

n = Sn. Formula (6) allows us to
obtain other asymptotic formulas for the polynomials Sα

n. Three of them are included in the
following corollary.

Corollary 2. Let α, β > −1, n ∈ Z+ and k ≥ −n. Under the hypotheses of Theorem 2, we obtain

(1)
Sα+β

n+k (z)

nk+β/2 Lα
n(z)

⇒ (−1)k
(√
−z
)−β N

∏
j=1

√−x−
√
|cj|

√
−x +

√
|cj|

, K ⊂ C \R+. (27)

(2)
Sα+β

n+k (z)

nk+β/2 Sα
n(z)

⇒ (−1)k
(√
−z
)−β

, K ⊂ C \R+. (28)

(3)
(Sα

n(z))
(ν)

(Lα
n(z))

(ν)
⇒

N

∏
j=1

√−x−
√
|cj|

√
−x +

√
|cj|

, K ⊂ C \R+. (29)

Proof. Formulas (27) and (28) are direct consequences of Theorem 2 and Lemma 4.
The proof of (29) is by induction on ν. Of course, (6) is (29) for ν = 0. Assume that (29)

is true for ν = κ ≥ 0. Note that

(Sα
n(z))

(κ+1)

(Lα
n(z))

(κ+1)
=

(Lα
n(z))

(κ)

(Lα
n(z))

(κ+1)

(
(Sα

n(z))
(κ)

(Lα
n(z))

(κ)

)′
+

(Sα
n(z))

(κ)

(Lα
n(z))

(κ)

From (16), (18) and Lemma 4

(Lα
n(z))

(κ)

(Lα
n(z))

(κ+1)
=

L(α+κ)
n−κ

L(α+κ+1)
n−κ−1

⇒ 0, K ⊂ C \R+.

Hence, from Theorem 2, we obtain (29) for ν = κ + 1.
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