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1. Introduction

There is no doubt that many real-life problems can be captured and modeled with
the help of functions, and due to this fact, functions are regarded as the most fundamental
and significant concepts in the fields of applied and pure mathematics as well as in other
areas of science and engineering [1–3]. Convex functions are regarded as an intriguing
class of functions [4–6]. Convex functions have many attractive and important properties,
and due to these properties and their characteristics, convex functions play a leading role
in the solutions to many complicated problems [7–9]. Moreover, convex functions are also
popular because they deal with problems very smoothly [10–12]. Due to this, convex
functions have attracted the attention of many researchers [13–15]. A convex function is
defined as follows [5]:

A function Φ : [σ1, σ2]→ is called convex, if the relation

Φ
(
δ$1 + (1− δ)$2

)
≤ δΦ($1) + (1− δ)Φ($2) (1)

is valid, for all $1, $2 ∈ [σ1, σ2] and δ ∈ [0, 1]. If (1) is accurate in the opposite sense, then Φ
is called concave over [σ1, σ2].

Due to the extensive applications and great importance of convex functions, this class has
been generalized in various ways with the help of its characteristics and properties [16–18].
Some of the generalizations of convex functions are P-convex [19], s-convex [20], coordi-
nates convex [21], h-convex [22], and 4-convex functions [23], etc. Among the above classes
of convex functions, one of the significant classes is 6-convex functions. To give the classical
definition of 6-convex, first, we explain the divided difference.

Recursively, one can define the divided difference [$1, $2, . . . , $n]Φ of Φ($) at the
distinct points $1, $2, . . . , $n as [5] (p. 24):

[$1]Φ = Φ($1),

Mathematics 2023, 11, 1957. https://doi.org/10.3390/math11081957 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11081957
https://doi.org/10.3390/math11081957
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5373-4663
https://orcid.org/0000-0001-9428-2624
https://orcid.org/0000-0002-0170-5286
https://doi.org/10.3390/math11081957
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11081957?type=check_update&version=3


Mathematics 2023, 11, 1957 2 of 25

[$1, $2, . . . , $n]Φ =
[$2, $2, . . . , $n]Φ− [$1, $2, . . . , $n−1]Φ

$n − $1
. (2)

The definition of an n-convex function is given as follows [5] (p. 23):
A function Φ : [σ1, σ2] → R is called n-convex, if for the distinct points $1, $2, . . . , $n+1 ∈
[σ1, σ2], we have

[$1, $2, . . . , $n+1]Φ ≥ 0. (3)

If (3) is true in the reverse sense, then Φ is called n-concave.
The next theorem presents a criteria for a function to be n-convex [5] (p. 16).

Theorem 1. Suppose that Φ : [σ1, σ2] → R is any function such that Φn (nth derivatives of the
function Φ) exists; then, Φ is n-convex, if and only if

Φn($) ≥ 0, $ ∈ [σ1, σ2]. (4)

If (4) reverses, then Φ is called n-concave.

Definition 1. A function Φ : [σ1, σ2]→ R is called 6-convex, if

[$1, $2, . . . , $7]Φ ≥ 0. (5)

If (5) is valid in the reverse sense, then Φ is called 6-concave.

Remark 1. Using Theorem 1, we can say that if Φ is a function such that Φ′′′′ exists, then Φ is
6-convex, if Φ′′′′ is convex.

In recent years, the extensive applications of convex functions and their generalizations
have been observed in the field of mathematical inequalities [24–27]. There are many
inequalities, which it would not be possible to establish without convex functions [28–30].
Some of the interesting inequalities that have been acquired by convex functions are the
majorization inequality [21], Slater’s inequality [31], Hermite–Hadamard’s inequality [7],
Jensen–Mercer’s [32] inequality, and many more [33–35]. It has been confirmed that convex
functions have played an important role in the development of the field of mathematical
inequalities [36–39]. Jensen’s inequality is the most dynamic and important inequality in
the current literature on mathematical inequalities for convex functions [40]. This inequality
provides a very interesting relation between finite sequences and convex functions [40].
Furthermore, Jensen’s inequality also provides criteria for a function to be convex in
the given domain [41]. This inequality states that if $ς ∈ [σ1, σ2] and δς ≥ 0, for all

ς ∈ {1, 2, . . . , m} with δ∗ =
n
∑

ς=1
δς > 0, then the inequality

Φ

(
1
δ∗

m

∑
ς=1

δς$ς

)
≤ 1

δ∗

m

∑
ς=1

δςΦ($ς) (6)

is valid for each convex function Φ : [σ1, σ2] → R. If Φ is concave, then (6) is true in the
opposite direction.

The continuous form of the Jensen inequality given in (6) can be stated as follows.
Assume that T1, T2 : [σ1, σ2] → [c, d] are any integrable functions, with T1(δ) ≥ 0 for all
δ ∈ [σ1, σ2], and T1 :=

∫ σ2
σ1

T1(δ)dδ > 0. If Φ ◦ T2 is an integrable function, then

Φ
(

1
T1

∫ σ2

σ1

T1(δ)T2(δ)dδ

)
≤ 1

T1

∫ σ2

σ1

T1(δ)Φ
(
T2(δ)

)
dδ, (7)

for each convex function Φ : [c, d]→ R. If Φ is concave, then (7) reverses.
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The most interesting feature that is hidden in the structure of Jensen’s inequality is that
it enhances the concept of convexity [42]. Another dominant feature of the Jensen inequality
is that there are many famous inequalities that are the direct outcomes of this inequal-
ity, namely Hölder’s inequality, the Hermite–Hadamard inequality, Ky Fan’s inequality,
Young’s inequality, and several others [40,41]. In the last three decades, the Jensen inequal-
ity and its applications have recorded significant growth with important consequences
in several areas of science including engineering [43], optimization [44], statistics [45],
finance [46], epidemiology [47], information theory [48], etc. Moreover, due to its good
behavior and essential properties, Jensen’s inequality has been expanded, polished, and
enhanced in diverse directions [49–51]. Furthermore, many interesting concepts have also
been developed with the help of Jensen’s inequality related to ordinary convexity and its
generalizations [52–54]. Moreover, many significant inequalities for convex functions have
been generalized and improved with the support of Jensen’s inequality [55,56]. Bakula and
Nikodem [52] utilized the concepts of strong convexity and mild convexity and established
counterparts to Jensen’s inequality. Kian [57] provided an operator form of the Jensen
inequality for the super quadratic functions and also discussed the applications of the
acquired results. Matković et al. [58] demonstrated a variant of Jensen’s inequality for
operators by utilizing convexity, which is the generalization of Mercer’s result. In 2021,
Deng et al. [59] presented refinements of the discrete Jensen inequality by utilizing some
results of majorization. Moreover, they discussed the applications of their refined Jensen’s
inequality for the quasi-arithmetic means, power means, and information theory. In 2022,
Ullah et al. [40] provided Jensen inequality improvements in both continuous and discrete
forms via 4-convexity. They acquired some bounds for the Csiszár divergence and its
related forms. Additionally, they provided improvements of the Hölder and Hermite–
Hadamard inequalities as the direct consequences of the main results. Moreover, they
compared their main results with some other earlier established improvements of Jensen’s
inequality and showed that the obtained improvements provided better estimations for
the Jensen difference. Saeed et al. [60] provided refinements of the celebrated integral
Jensen inequality via the theory of majorization. With the help of these, refinements of the
Hölder and Hermite–Hadamard inequalities were provided. Moreover, they discussed
some consequences of the refined Jensen inequality for means. Furthermore, they also
presented applications for information theory. Adil Khan et al. [61] presented an estimation
for the Jensen gap through the notion of convexity and also discussed its applications for
some classical inequalities as well as in information theory. Furthermore, they compared
their results with some earlier proven results of similar type and concluded that the ob-
tained estimations provided better estimates as compared to other results. Costarelli and
Spigler [62] developed several estimations pertaining to the Jensen inequality with the
support of convex functions. The usefulness of the acquired estimates were discussed in
modular estimates in Orlicz spaces or Lp–estimates for linear and nonlinear integral opera-
tors. In 2008, Zhu and Yang [63] applied Jensen’s inequality and discussed the stability of
discrete-time delay systems.

Providing new estimates for the Jensen gap is the main focus of this research. The
article is structured as follows:

• Section 2 provide estimates for the Jensen gap.
• Section 3 gives numerical estimations for the Jensen gap and their comparisons with

other results.
• Section 4 provides applications for the Hölder inequality.
• Section 5 presents applications for the power and quasi-arithmetic means.
• Section 6 provides applications for information theory.
• Section 7 gives applications for the Zipf–Mandelbrot entropy.

2. Main Results

This section concerns the estimations of the Jensen gap. The proposed estimations are
based on 6-convexity. For the achievement of the intended estimations, we utilize Jensen’s
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inequality and 6-convexity. We begin with the following theorem, in which we apply the
definition of a 6-convex function to derive an upper bound for the Jensen gap.

Theorem 2. Let Φ : [σ1, σ2] → R be a fourth time differentiable function, $ς ∈ [σ1, σ2], δς ≥ 0,

for all ς ∈ {1, 2, . . . , m} with δ∗ :=
m
∑

ς=1
δς > 0 and σ∗ := 1

δ∗
m
∑

ς=1
δς$ς. If Φ is 6-convex, then

1
δ∗

m

∑
ς=1

δςΦ($ς)−Φ(σ∗) ≤ 1
120δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4

×
(

4Φ
′′′′
(σ∗) + Φ

′′′′
($ς)

)
− 1

6δ∗
Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3

+
1

2δ∗
Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2. (8)

The inequality (8) reverses for the concave function Φ.

Proof. Without loss of generality, assume that σ∗ 6= $ς, for every ς ∈ {1, 2, . . . , m}. Apply-
ing integration by parts, we obtain

1
6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
∫ 1

0
t3Φ

′′′′
(tσ∗ + (1− t)$ς)dt

=
1

6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
(

t3
Φ
′′′
(tσ∗ + (1− t)$ς)

∣∣∣1
0

σ∗ − $ς
−
∫ 1

0 3t2Φ
′′′
(tσ∗ + (1− t)$ς)dt
σ∗ − $ς

)

=
1

6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
(

Φ
′′′
(σ∗)

σ∗ − $ς
− 3

σ∗ − $ς

(
t2

Φ
′′
(tσ∗ + (1− t)$ς)

∣∣∣1
0

σ∗ − $ς

− 2
σ∗ − $ς

∫ 1

0
tΦ
′′
(tσ∗ + (1− t)$ς)dt

))
=

1
6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
(

Φ
′′′
(σ∗)

σ∗ − $ς
− 3

Φ
′′
(σ∗)

(σ∗ − $ς)2 +
6

(σ∗ − $ς)2

∫ 1

0
tΦ
′′
(tσ∗ + (1− t)$ς)dt

)

=
1

6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4

(
Φ
′′′
(σ∗)

σ∗ − $ς
− 3

Φ
′′
(σ∗)

(σ∗ − $ς)2

+
6

(σ∗ − $ς)2

(
t
Φ
′
(tσ∗ + (1− t)$ς)

∣∣∣1
0

σ∗ − $ς
−
∫ 1

0 Φ
′
(tσ∗ + (1− t)$ς)dt

σ∗ − $ς

))

=
1

6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
(

Φ
′′′
(σ∗)

σ∗ − $ς
− 3

Φ
′′
(σ∗)

(σ∗ − $ς)2
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+6
Φ
′
(σ∗)

(σ∗ − $ς)3 −
6

(σ∗ − $ς)3

∫ 1

0
Φ
′
(tσ∗ + (1− t)$ς)dt

=
1

6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
(

Φ
′′′
(σ∗)

σ∗ − $ς
− 3

Φ
′′
(σ∗)

(σ∗ − $ς)2

+6
Φ
′
(σ∗)

(σ∗ − $ς)3 −
6

(σ∗ − $ς)4 Φ(tσ∗ + (1− t)$ς)
∣∣∣1
0

)
=

1
6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
(

Φ
′′′
(σ∗)

σ∗ − $ς
− 3

Φ
′′
(σ∗)

(σ∗ − $ς)2 + 6
Φ
′
(σ∗)

(σ∗ − $ς)3

− 6
(σ∗ − $ς)4 (Φ(σ∗)−Φ($ς))

)
=

1
6δ∗

Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3 − 1
2δ∗

Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2

+
1
δ∗

m

∑
ς=1

δςΦ($ς)−Φ(σ∗).

This implies that

1
δ∗

m

∑
ς=1

δςΦ($ς)−Φ(σ∗) =
1

6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
∫ 1

0
t3Φ

′′′′
(tσ∗ + (1− t)$ς)dt

− 1
6δ∗

Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3 +
1

2δ∗
Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2. (9)

Now, utilizing the 6-convexity of Φ on the right side of (9), we gain

1
δ∗

m

∑
ς=1

δςΦ($ς)−Φ(σ∗) ≤ 1
6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
1∫

0

t3(tΦ
′′′′
(σ∗) + (1− t)Φ

′′′′
($ς))dt

− 1
6δ∗

Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3 +
1

2δ∗
Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2

=
1

6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
(

Φ
′′′′
(σ∗)

1∫
0

t4dt + Φ
′′′′
($ς)

1∫
0

(t3 − t4)dt
)

− 1
6δ∗

Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3 +
1

2δ∗
Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2

=
1

6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
(

Φ
′′′′
(σ∗)

1
5
+ Φ

′′′′
($ς)

1
20

)

− 1
6δ∗

Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3 +
1

2δ∗
Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2. (10)

Instantly, by evaluating integrals in inequality (10), we arrive at inequality (8).

The following theorem affords a lower bound for the Jensen gap, which can be acquired
with the help of the integral version of Jensen’s inequality.
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Theorem 3. Let the conditions of Theorem 2 be valid. Then,

1
δ∗

m

∑
ς=1

δςΦ($ς)−Φ(σ∗) ≥ 1
24δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4Φ
′′′′(4σ∗ + $ς

5

)
−Φ

′′′
(σ∗)

6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

3 +
Φ
′′
(σ∗)

2δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

2. (11)

For the 6-concave function Φ, the inequality (11) changes its direction.

Proof. By utilizing the Jensen inequality for (9), we obtain

1
δ∗

m

∑
ς=1

δςΦ($ς)−Φ(σ∗) =
1

6δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
∫ 1

0
t3Φ

′′′′
(tσ∗ + (1− t)$ς)dt

− 1
6δ∗

Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3 +
1

2δ∗
Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2

=
1

24δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4
(∫ 1

0 t3Φ
′′′′
(tσ∗ + (1− t)$ς)dt∫ 1

0 t3dt

)

− 1
6δ∗

Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3 +
1

2δ∗
Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2

≥ 1
24δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4Φ
′′′′
(∫ 1

0 t3(tσ∗ + (1− t)$ς)dt∫ 1
0 t3dt

)

− 1
6δ∗

Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3 +
1

2δ∗
Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2

=
1

24δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4Φ
′′′′
(

σ∗
∫ 1

0 t4dt + $ς

∫ 1
0 (t

3 − t4)dt∫ 1
0 t3dt

)

− 1
6δ∗

Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3 +
1

2δ∗
Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2

=
1

24δ∗

m

∑
ς=1

δς(σ
∗ − $ς)

4Φ
′′′′
(

4σ∗ + $ς

5

)

− 1
6δ∗

Φ
′′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

3 +
1

2δ∗
Φ
′′
(σ∗)

m

∑
ς=1

δς(σ
∗ − $ς)

2. (12)

Clearly, (12) is equivalent to (11).

Remark 2. There are many functions in the literature of convex analysis, which are not 2-convex, 3-
convex, 4-convex, and 5-convex; however, they are 6-convex. Moreover, there exist many interesting
results, which have been proved for the classes of 2-convex, 3-convex, 4-convex, and 5-convex
functions. The existing results for the classes of 2-convex, 3-convex, 4-convex, and 5-convex
functions are not applicable for the 6-convex functions. Therefore, our results are important due
to the fact that they make the class of 6-convex functions dynamic and applicable. Following are
examples of 6-convex functions, which are not 2-convex, 3-convex, 4-convex, or 5-convex:

• Φ(δ) = −10$5 + exp $, $ ∈ [0, 10].
• Ψ(δ) = −$5 − log $, $ ∈ (0, 1].
• f (δ) = −$5 −√$, $ ∈ [0, 21].
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3. Numerical Estimations for the Jensen Gap

This section presents the numerical values of the obtained estimations for the Jensen
gap. We apply the main result for a particular 6-convex function while replacing the arbi-
trary tuples with particular tuples and obtain specific estimations to show the importance
of our results, as compared to some other earlier established results. We commence this
part with the following example, which provides a numerical estimation of the Jensen gap
and its comparison with other results.

Example 1. Let p = (1, 1, 1, 1) and x = (−2,−1, 0, 1) be two tuples, and Φ(δ) = exp δ, δ ∈
(−∞, ∞). Then, Φ

′′
(δ) = exp δ, Φ

′′′′
(δ) = exp δ, and Φ

′′′′′′
(δ) = exp δ. Clearly, Φ

′′
, Φ

′′′′
, and

Φ
′′′′′′

all are positive on (−∞, ∞), which admit the convexity, 4-convexity, and 6-convexity of
Φ(δ) = exp δ on (−∞, ∞). Therefore, we apply inequality (8) for the above tuples, and for the
given 6-convex function, we acquire

0.4489 < 0.4612. (13)

Now, using the above values and the specific function in inequality (2) given in the article [40],
we deduce

0.4489 < 0.5345. (14)

From inequalities (13) and (14), it is obvious that inequality (8) gives better estimates than
inequality (2) in [40].

Example 2. Consider the tuples p = (1, 1, 1, 1, 1) and δ = (−0.25,−0.5, 0, 0.25, 0.5) and Φ(δ) =

δ6 defined on (−∞, ∞). Then, Φ
′′
(δ) = 30δ4, Φ

′′′′
(δ) = 360δ2, and Φ

′′′′′′
(δ) = 720; clearly,

Φ
′′
(δ) = 30δ4, Φ

′′′′
(δ) = 360δ2, and Φ

′′′′′′
(δ) = 720 are nonnegative on (−∞, ∞). Thus, this

confirms the convexity, 4-convexity, and 6-convexity of the given function. Therefore, using this
information in inequality (8), we obtain

0.0063 < 0.0190. (15)

Now, utilizing inequality (2) in [40] for the above information, we obtain

0.0063 < 0.0317. (16)

From inequalities (15) and (16), we conclude that the estimates for the Jensen gap given in (11)
provide better estimates than the estimates mentioned in inequality (2) in [40].

Remark 3. The authors compared the estimates for the Jensen gap given in inequality (2) in [40]
to the estimates specified in inequalities (5) and (8) in article [62] and the estimates given in
inequality (4) of article [64] and declare that the estimates in (2) of [40] are superior to the
estimates (5) and (8) given in [62] and the estimate (4) in [64]. Hence, from this discussion, we
can say that our estimates for the Jensen gap may provide better estimates than the estimates (5)
and (8) described in [62] and the estimate (4) in [64].

4. Applications for the Hölder Inequality

The Hölder inequality is thought to be the most advantageous inequality due to its
significance and wide range of uses. By using our main results, we give some relations of
the Hölder inequality. The next proposition presents a relation for the Hölder inequality as
a consequence of Theorem 2.

Proposition 1. We assume that aς,bς> 0, for ς = 1, 2, . . . , m and q,p > 1, such that 1
p + 1

q = 1.

(i) If p ∈ (1, 2] ∪ [3, 4] ∪ [5, ∞), then
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( m

∑
ς=1

aq
ς

) 1
q
( m

∑
ς=1

bp
ς

) 1
p −

m

∑
ς=1

aςbς ≤
(

p(p− 1)
2

) 1
p
[
(p− 2)(p− 3)

60

×
m

∑
ς=1

aq
ς

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

− bςa
− q

p
ς

)4

×
(

4

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

)p−4

+

(
bςa
− q

p
ς

)p−4
)

− (p− 2)
3

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

)p−3 m

∑
ς=1

aq
ς

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

− bςa
− q

p
ς

)3

+

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

)p−2 m

∑
ς=1

aq
ς

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

− bςa
− q

p
ς

)2] 1
p
(

m

∑
ς=1

aq
ς

) 1
q

. (17)

(ii) If p ∈ (2, 3) ∪ (4, 5), then (17) reverses.

Proof. (i) We consider the function Φ(δ) = δp x > 0; then, by successive differentiation
of the given function Φ, we obtain Φ

′′
(δ) = p(p − 1)δp−2, and Φ

′′′′′′
(δ) = p(p −

1)(p− 2)(p− 3)(p− 4)(p− 5)δp−6. Clearly, both Φ
′′

and Φ
′′′′′′

are positive on (0, ∞)
for p ∈ (1, 2] ∪ [3, 4] ∪ [5, ∞), which substantiates the convexity as well as the 6-

convexity of Φ(δ) = δp. Therefore, utilizing (8) for Φ(δ) = δp, δς = aq
ς, $ς = bςa

− q
p

ς ,
and then taking the power 1

p , we obtain

( m

∑
ς=1

aq
ς

)(p−1)( m

∑
ς=1

bp
ς

)
−
(

m

∑
ς=1

aςbς

)p
 1

p

≤
[

p(p− 1)(p− 2)(p− 3)
120

×
m

∑
ς=1

aq
ς

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

− bςa
− q

p
ς

)4(
4

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

)p−4

+

(
bςa
− q

p
ς

)p−4
)

− p(p− 1)(p− 2)
6

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

)p−3

×
m

∑
ς=1

aq
ς

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

− bςa
− q

p
ς

)3

+
p(p− 1)

2

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

)p−2 m

∑
ς=1

aq
ς

( m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

− bςa
− q

p
ς

)2] 1
p

×
(

m

∑
ς=1

aq
ς

) 1
q

. (18)

Since the inequality
δr − $r ≤ (δ− $)r (19)

holds for all $, δ ≥ 0 and r ∈ [0, 1], we take δ =
( m

∑
ς=1

aq
ς

)(p−1)( m
∑

ς=1
bp

ς

)
, $ =

( m
∑

ς=1
aςbς

)p
, and

r = 1
p in (19), and we receive
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( m

∑
ς=1

aq
ς

) 1
q
( m

∑
ς=1

bp
ς

) 1
p −

m

∑
ς=1

aςbς

≤
(( m

∑
ς=1

aq
ς

)(p−1)( m

∑
ς=1

bp
ς

)
−
( m

∑
ς=1

aςbς

)p) 1
p

. (20)

By comparing inequalities (18) and (20), we arrive at inequality (17).
(ii) Obviously, the function Φ(δ) = δp is 6-concave on (0, ∞) for p ∈ (2, 3) ∪ (4, 5). Therefore, the

reverse of (18) follows the technique utilized in (i).

The next corollary, which follows from Theorem 2, gives the relations for the Hölder
inequality.

Corollary 1. We presume that aς, bς > 0 for ς = 1, 2, . . . , m and 0 < p < 1 with q = p
p−1 .

(i) If 1
p ∈ (1, 2] ∪ [3, 4] ∪ [5, ∞), then

m

∑
ς=1

aςbς −
( m

∑
ς=1

aq
ς

) 1
q
( m

∑
ς=1

bp
ς

) 1
p

≤ (1− p)(1− 2p)(1− 3p)
120p4

m

∑
ς=1

aq
ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

− a−q
ς bp

ς

)4(
4

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

) 1
p−4

+

(
bςa
− q

p
ς

) 1
p−4
)

− (1− p)(1− 2p)
6p3

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

) 1
p−3 m

∑
ς=1

aq
ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

− a−q
ς bp

ς

)3

+
(1− p)

2p2

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

) 1
p−2 m

∑
ς=1

aq
ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

− a−q
ς bp

ς

)2

. (21)

(ii) If 1
p ∈ (2, 3) ∪ (4, 5), then (21) is positive in the opposite sense.

Proof. (i) Let us take the function Φ(δ) = δ
1
p defined on (0, ∞). Then, Φ

′′
(δ) = 1

p
( 1

p −

1
)
δ

1
p−2, Φ

′′′′′′
(δ) = 1

p
( 1

p − 1
)( 1

p − 2
)( 1

p − 3
)( 1

p − 4
)( 1

p − 5
)
δ

1
p−6, and obviously, Φ

′′
>

0 and Φ
′′′′′′

> 0. This confirms that the function Φ(δ) = δ
1
p is both convex and 6-

convex on (0, ∞) for p ∈ (0, 1), with 1
p ∈ (1, 2] ∪ [3, 4] ∪ [5, ∞). Therefore, applying

inequality (8) for Φ(δ) = δ
1
p , δς = aq

ς and $ς = a−q
ς bp

ς , we obtain
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m
∑

ς=1
aςbς

m
∑

ς=1
aq

ς

−

( m
∑

ς=1
bp

ς

) 1
p

( m
∑

ς=1
aq

ς

) 1
p
≤ (1− p)(1− 2p)(1− 3p)

120p4
m
∑

ς=1
aq

ς

m

∑
ς=1

aq
ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

− a−q
ς bp

ς

)4

×
(

4

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

) 1
p−4

+ (bςa
− q

p
ς )

1
p−4

)

− (1− p)(1− 2p)

6p3
m
∑

ς=1
aq

ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

) 1
p−3 m

∑
ς=1

aq
ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

− a−q
ς bp

ς

)3

+
(1− p)

2p2
m
∑

ς=1
aq

ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

) 1
p−2 m

∑
ς=1

aq
ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

− a−q
ς bp

ς

)2

. (22)

To acquire (21), we multiply (22) by
m
∑

ς=1
aq

ς.

(ii) Clearly, Φ(δ) = δ
1
p is a 6-concave function with the given conditions. Therefore, to

deduce the reverse inequality in (21), we follow the procedure of (i).

The next corollary provides an application of Theorem 3 for the Hölder inequality.

Corollary 2. We presume that the tuples aς, bς > 0 for ς = 1, 2, . . . , m and p ∈ (0, 1) with
q = p

p−1 .

(i) If 1
p ∈ (1, 2] ∪ [3, 4] ∪ [5, ∞), then

m

∑
ς=1

aςbς −
( m

∑
ς=1

aq
ς

) 1
q
( m

∑
ς=1

bp
ς

) 1
p

≥ (1− p)(1− 2p)(1− 3p)
120p4

m

∑
ς=1

aq
ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

− a−q
ς bp

ς

)4

×
(

4

m
∑

ς=1
bp

ς + a−q
ς bp

ς

m
∑

ς=1
aq

ς

5
m
∑

ς=1
aq

ς

) 1−4p
p

− (1− p)(1− 2p)
6p3

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

) 1−3p
p m

∑
ς=1

aq
ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

− a−q
ς bp

ς

)3

+
(1− p)

2p2

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

) 1−2p
p m

∑
ς=1

aq
ς

( m
∑

ς=1
bp

ς

m
∑

ς=1
aq

ς

− a−q
ς bp

ς

)2

. (23)
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(ii) If 1
p ∈ (2, 3) ∪ (4, 5), then (23) is is valid in the reverse path.

Proof. Since the function Φ(δ) = δ
1
p is convex as well as 6-convex on (0, ∞) for p ∈ (0, 1)

such that 1
p ∈ (1, 2] ∪ [3, 4] ∪ [5, ∞), utilizing inequality (11) by setting Φ(δ) = δ

1
p and

$ς = a−q
ς bp

ς , we obtain (23).

(ii) For the aforementioned setting, Φ(δ) = δ
1
p is 6-concave. Consequently, if we

pursue the mode (i), we acquire the converse of (23).

5. Application for the Power and Quasi-Arithmetic Means

The concept of means is very important in the fields of pure and applied mathematics,
statistics, economics, information theory, and many others, because they are general and
unavoidable in their applications. Among the means, the power and quasi-arithmetic
means are influential in the sense that they generalize the other classical means. This
section of the paper provides some relations for the aforementioned means as consequences
of the main results. First, we recall the definition of the power mean.

Definition 2. Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two positive n-tuples with

a =
m
∑

ς=1
aς. Then, the power mean of order $ ∈ R is defined by:

P$(a, b) =


(

1
a

m
∑

ς=1
aςb$

ς

) 1
$
, $ 6= 0( m

∏
ς=1

baς
ς

) 1
a
, $ = 0.

An application of Theorem 2 for the power mean is given in the following corollary.

Corollary 3. Assume that a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) are n-tuples such that

aς, bς > 0, for all ς ∈ {1, 2, . . . , m} with a =
m
∑

ς=1
aς. Moreover, let κ, τ ∈ R \ {0}.

(i) If τ > 0 with τ ≤ κ ≤ 2τ or 3τ ≤ κ ≤ 4τ or κ ≥ 5τ or κ<0, then

Pκ
κ (a, b)−Pκ

τ (a, b) ≤ κ(κ − τ)(κ − 2τ)(κ − 3τ)

120τ4a

×
m

∑
ς=1

aς

(
Pτ

τ (a, b)− bτ
ς

)4(Pκ−4τ
τ (a, b)− bκ−4τ

ς

)
−κ(κ − τ)(κ − 2τ)Pκ−3τ

τ (a, b)
6τ3a

m

∑
ς=1

aς

(
Pτ

τ (a, b)− bτ
ς

)3

+
κ(κ − τ)Pκ−2τ

τ (a, b)
2τ2a

m

∑
ς=1

aς

(
Pτ

τ (a, b)− bτ
ς

)2. (24)

(ii) If τ < 0 with 2τ ≤ κ ≤ τ or 4τ ≤ κ ≤ 3τ or κ ≤ 5τ or κ>0, then (24) holds.
(iii) If τ > 0 with 0 < κ < τ, 2τ < κ < 3τ or 4τ < κ < 5τ, then (24) is true in the reverse

direction.
(iv) If τ < 0 with τ < κ < 0, 3τ < κ < 2τ or 5τ < κ < 4τ, then the inequality in (24) is valid

in the opposite sense.

Proof. (i) We consider the function Φ(δ) = δ
κ
τ , δ > 0; then, by differentiating the

given function with respect to δ, we acquire Φ
′′
(δ) = κ

τ

(
κ
τ − 1

)
δ

κ
τ−2 and Φ

′′′′′′
(δ) =

κ
τ

(
κ
τ − 1

)(
κ
τ − 2

)(
κ
τ − 3

)(
κ
τ − 4

)(
κ
τ − 5

)
δ

κ
τ−6. Clearly, both Φ

′′′′′′
and Φ

′′
are positive

with the given conditions, and consequently, this confirms the convexity and 6-
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convexity of the function Φ(δ) = δ
κ
τ on (0, ∞). Therefore, taking Φ(δ) = δ

κ
τ , δς = aς,

and $ς = bτ
ς in (8), we obtain (24).

(ii) For the aforementioned conditions on κ and τ, the function Φ(δ) = δ
κ
τ is 6-convex on

(0, ∞). Therefore, by following the procedure (i), we receive (24).
(iii) For the said values of κ and τ, the function Φ(δ) = δ

κ
τ is 6-concave on (0, ∞). Therefore,

the inequality (24) can easily be deduced by adopting the procedure of proof of (i).
(iv) Surely, the function Φ(δ) = δ

κ
τ is 6-concave on (0, ∞) for the given values of κ and

τ. Therefore, to acquire inequality (24), we proceed in the same way as in the proof
of (i).

In the next corollary, we present a relation for the power means as an application of
Theorem 3.

Corollary 4. Suppose that a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) are positive n-tuples

with a =
m
∑

ς=1
aς and κ, τ ∈ R \ {0}.

(i) If τ > 0 with τ ≤ κ ≤ 2τ or 3τ ≤ κ ≤ 4τ or κ ≥ 5τ or κ<0, then

Pκ
κ (a, b)−Pκ

τ (a, b) ≥ κ(κ − τ)(κ − 2τ)(κ − 3τ)

24τ4a

×
m

∑
ς=1

aς

(
Pτ

τ (a, b)− bτ
ς

)4 ×
(

4Pτ
τ (a, b) + bτ

ς

5

) κ
τ−4

−κ(κ − τ)(κ − 2τ)Pκ−3τ
τ (a, b)

6τ3a

m

∑
ς=1

aς

(
Pτ

τ (a, b)− bτ
ς

)3

+
κ(κ − τ)Pκ−2τ

τ (a, b)
2τ2a

m

∑
ς=1

aς

(
Pτ

τ (a, b)− bτ
ς

)2. (25)

(ii) If τ < 0 with 2τ ≤ κ ≤ τ or 4τ ≤ κ ≤ 3τ or κ ≤ 5τ or κ>0, then (25) holds.
(iii) If τ > 0 with 0 < κ < τ, 2τ < κ < 3τ or 4τ < κ < 5τ, then (25) is true in the reverse

direction.
(iv) If τ < 0 with τ < κ < 0, 3τ < κ < 2τ or 5τ < κ < 4τ, then the inequality in (25) is valid

in the opposite sense.

Proof. (i)–(ii) Since, the function Φ(δ) = δ
κ
τ is 6-convex on(0, ∞) for the mentioned values

of τ and κ, we assume Φ(δ) = δ
κ
τ , δς = aς, and $ς = bτ

ς in (11), and we obtain (25).
(iii)–(iv) By utilizing (11) for δς = aς, $ς = bτ

ς , and Φ(δ) = δ
κ
τ , we deduce the converse

of (25).

Theorem 2 leads to the following corollary, which gives an interesting relationship for
the power means.
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Corollary 5. We assume that a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) are positive tuples

with a =
m
∑

ς=1
aς; then,

P1(a, b)
P0(a, b)

≤ exp

[
1

120a

m

∑
ς=1

aς

(
P1(a, b)− bς

)4(24P−4
1 (a, b) + 6b−4

ς

)
+
P−3

1 (a, b)
3a

m

∑
ς=1

aς

(
P1(a, b)− bς

)3

+
P−2

1 (a, b)
2a

m

∑
ς=1

aς

(
P1(a, b)− bς

)2
]

. (26)

Proof. We consider the function Φ(δ) = − ln x defined on the interval (0, ∞); then,
Φ
′′
(δ) = δ−2 and Φ

′′′′′′
(δ) = 12δ−6. From the above expressions, it is clear that Φ

′′
> 0

and Φ
′′′′′′

> 0, which substantiates the convexity as well as 6-convexity of the function
Φ(δ) = − ln δ. Therefore, using inequality (8) by substituting Φ(δ) = − ln δ, δς = aς, and
$ς = bς, we obtain (26).

In the following corollary, we provide an application of Theorem 3 for the power means.

Corollary 6. We suppose that all the hypotheses of Corollary 5 are valid; then,

P1(a, b)
P0(a, b)

≥ exp

[
625
4a

m

∑
ς=1

aς

(
P1(a, b)− bς

)4(4P1(a, b) + bς

)−4

+
P−3

1 (a, b)
3a

m

∑
ς=1

aς

(
P1(a, b)− bς

)3

+
P−2

1 (a, b)
2a

m

∑
ς=1

aς

(
P1(a, b)− bς

)2
]

. (27)

Proof. Utilizing inequality (11) for Φ(δ) = − ln δ, δς = aς, and $ς = bς, we obtain (27).

The following corollary provides another relation for the power means as a conse-
quence of Theorem 2.

Corollary 7. We assume that the conditions of Corollary 5 are satisfied; then,

P1(a, b)−P0(a, b) ≤ 1
120a

m

∑
ς=1

aς

(
lnP0(a, b)− ln bς

)4(4P0(a, b) + bς

)
−P0(a, b)

6a

m

∑
ς=1

aς

(
lnP1(a, b)− ln bς

)3

+
P0(a, b)

2a

m

∑
ς=1

aς

(
lnP1(a, b)− ln bς

)2. (28)

Proof. Let us take the function Φ(δ) = exp(δ), δ ∈ R; then, Φ′′(δ) = exp(δ), and the
function Φ

′′′′′′
(δ) = exp(δ). Obviously, the function Φ(δ) = exp(δ) is convex and 6-convex

because both Φ′′(δ) = exp(δ) and the function Φ
′′′′′′

(δ) = exp(δ) are positive. Therefore,
by applying (8) for $ς = ln bς, δς = aς, and Φ(δ) = exp (δ), we deduce (28) .

Theorem 3 leads to the establishment of the following relation for the means.
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Corollary 8. We assume that the conditions of Corollary 5 are satisfied. Then,

P1(a, b)−P0(a, b) ≥ 1
24a

m

∑
ς=1

aς

(
lnP0(a, b)− ln bς

)4P
4
5

0 (a, b)

−P0(a, b)
6a

m

∑
ς=1

aς

(
lnP1(a, b)− ln bς

)3

+
P0(a, b)

2a

m

∑
ς=1

aς

(
lnP1(a, b)− ln bς

)2. (29)

Proof. Applying inequality (11) for Φ(δ) = exp(δ), δς = aς, and $ς = ln bς, we ac-
quire (29).

The quasi-arithmetic means is defined as follows:

Definition 3. Let g be a continuous and strictly monotonic function and a = (a1, a2, · · · , an)

and b = (b1, b2, · · · , bn) be positive tuples with a =
m
∑

ς=1
aς. Then, the quasi-arithmetic mean is

given by:

Qg(a, b) = g−1

(
1
a

m

∑
ς=1

aςg(bς)

)
.

The following corollary presents a relation for the quasi-arithmetic means.

Corollary 9. Assuming that g is a continuous and strictly monotonic function such that Φ ◦ g−1

is 6-convex, and the tuples a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) are positive with

a =
m
∑

ς=1
aς, then

1
a

m

∑
ς=1

aςΦ(bς)−Φ
(

Qg(a, b)
)
≤ 1

120a

m

∑
ς=1

aς

(1
a

m

∑
ς=1

aςg(bς)− g(bς)
)4

×
(

4(Φ ◦ g−1)
′′′′

Qg(a, b)− (Φ ◦ g−1)
′′′′

g(bς)
)

−
(Φ ◦ g−1)

′′′
(

g
(
Qg(a, b))

)
6a

m

∑
ς=1

aς

(
g(Qg(a, b))− g(bς))

)3

+
(Φ ◦ g−1)

′′
(

g
(
Qg(a, b))

)
2a

m

∑
ς=1

aς

(
g
(
Qg(a, b)

)
− g
(
bς

))2
. (30)

Proof. To deduce inequality (30), we assume Φ = Φ ◦ g−1, δς = aς, and $ς = g(bς)
in (8).

An application of Theorem 3 for the quasi-arithmetic means is presented in the follow-
ing corollary.
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Corollary 10. Let the Corollary 9 hypotheses be valid. Then,

1
a

m

∑
ς=1

aςΦ(bς)−Φ
(
Qg(a, b)

)
≥ 1

24a

m

∑
ς=1

aς

(
g(Qg(a, b))

)
− g(bς)

)4

×
(
(Φ ◦ g−1)

′′′′
(

4g(Qg(a, b)) + g(bς)

5

)

−
(Φ ◦ g−1)

′′′(
g
(
Qg(a, b))

)
6a

m

∑
ς=1

aς

(
g(Qg(a, b))− g(bς))

)3

+
(Φ ◦ g−1)

′′(
g
(
Qg(a, b))

)
2a

m

∑
ς=1

aς

(
g(Qg(a, b))− g(bς))

)2. (31)

Proof. We apply inequality (11) for Φ = Φ ◦ g−1, δς = aς, and $ς = g(bς), and we
receive (31).

6. Applications in Information Theory

This section of the paper is devoted to the applications of the main results in infor-
mation theory. The proposed applications provide estimates for the Csiszár divergence
and for its related concepts, such as the Rényi divergence, Kullback–Leibler divergence,
Bhattacharyya coefficient, and the Shannon entropy. To present the applications of the main
results, first, we give the definitions of some notions in information theory. The following
is the formal definition of the Csiszár divergence:

Definition 4. Let the tuples a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be positive with
bς

aς
∈ [σ1, σ2] and aς > 0 ∀ ς ∈ {1, 2, . . . , m}, and the function g : [σ1, σ2]→ R be convex. Then,

the Csiszár divergence is given by:

Cd(a, b) =
m

∑
ς=1

aςg
( bς

aς

)
.

Following are the definitions of some notions, which can be deduced from the Csiszár
divergence.

Definition 5. Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be positive probability distribu-
tions. Then,

• The Rényi divergence is defined by:

Rd(a, b) =
1

c− 1
log
( m

∑
ς=1

ac
ςb1−c

ς

)
.

• The Shannon Entropy is defined as follows:

Se(a) = −
m

∑
ς=1

aς log aς.

• The Kullback –Leibler Divergence is given by:

Kbl(a, b) =
m

∑
ς=1

bς log
( bς

aς

)
.
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• The Bhattacharyya Coefficient is defined as:

Bc(a, b) =
m

∑
ς=1

√
aςbς.

An estimate for the Csiszár divergence as an application of Theorem 3 is presented in
the preceding corollary.

Theorem 4. We presume that the tuples a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) are

positive, with

m
∑

ς=1
bς

m
∑

ς=1
aς

, bς

aς
∈ [σ1, σ2] and aς > 0 for all ς ∈ {1, 2, . . . , m}. If the function g :

[σ1, σ2]→ R is 6-convex, then

Cd(a, b)− g

( m
∑

ς=1
bς

m
∑

ς=1
aς

)
m

∑
ς=1

aς ≤
1

120

m

∑
ς=1

aς

( m
∑

ς=1
bς

m
∑

ς=1
aς

−
bς

aς

)4

×
(

4g
′′′′
( m

∑
ς=1

bς

m
∑

ς=1
aς

)
+ g

′′′′
(

bς

aς

))
− 1

6
g
′′′
( m

∑
ς=1

bς

m
∑

ς=1
aς

)
m

∑
ς=1

aς

( m
∑

ς=1
bς

m
∑

ς=1
aς

−
bς

aς

)3

+
1
2

g
′′
( m

∑
ς=1

bς

m
∑

ς=1
aς

)
m

∑
ς=1

aς

( m
∑

ς=1
bς

m
∑

ς=1
aς

−
bς

aς

)2

. (32)

Proof. By applying (8) for Φ = g, δς = aς, and $ς =
bς

aς
, we acquire (32).

The following corollary presents an estimate for the Csiszár divergence as an applica-
tion of Theorem 3.

Theorem 5. We presume that the Theorem 4 conditions are authentic; then,

Cd(a, b)− g

( m
∑

ς=1
bς

m
∑

ς=1
aς

)
m

∑
ς=1

aς ≥
1

24

m

∑
ς=1

aς

( m
∑

ς=1
bς

m
∑

ς=1
aς

−
bς

aς

)4

g
′′′′
(4

m
∑

ς=1
bς

5
m
∑

ς=1
aς

+
bς

aς

)

−1
6

g
′′′
( m

∑
ς=1

bς

m
∑

ς=1
aς

)
m

∑
ς=1

aς

( m
∑

ς=1
bς

m
∑

ς=1
aς

−
bς

aς

)3

+
1
2

g
′′
( m

∑
ς=1

bς

m
∑

ς=1
aς

)
m

∑
ς=1

aς

( m
∑

ς=1
bς

m
∑

ς=1
aς

−
bς

aς

)2

. (33)

Proof. By applying inequality (11), while taking Φ = g, δς = aς, and $ς =
bς

aς
, we

obtain (33).
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A bound for the Rényi divergence is derived using Theorem 2 and is presented in the
following corollary.

Corollary 11. If a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) are two positive probability
distributions, and c ∈ [0, ∞), such that c 6= 1, then

Rd(a, b)−
m

∑
ς=1

aς log
( aς

bς

)
≤ 1

20

m

∑
ς=1

aς

( m

∑
ς=1

ac
ςb1−c

ς −
( aς

bς

)c−1
)4

×
(

4
c− 1

( m

∑
ς=1

ac
ςb1−c

ς

)−4
+

1
c− 1

( aς

bς

)4(1−c)
)

+
1

3(c− 1)

( m

∑
ς=1

ac
ςb1−c

ς

)−3 m

∑
ς=1

aς

( m

∑
ς=1

ac
ςb1−c

ς −
( aς

bς

)c−1
)3

+
1

2(c− 1)

( m

∑
ς=1

ac
ςb1−c

ς

)−2 m

∑
ς=1

aς

( m

∑
ς=1

ac
ςb1−c

ς −
( aς

bς

)c−1
)2

. (34)

Proof. We consider Φ(δ) = − 1
c−1 ln δ, δ > 0; then, Φ

′′
(δ) = 1

(c−1)δ2 and Φ
′′′′′′

(δ) = 120
(c−1)δ6 .

It is clear from the above expressions that both Φ
′′

and Φ
′′′′′′

are positive for all δ ∈ (0, ∞).
This confirms that the function Φ(δ) = − 1

c−1 ln δ is both convex and 6-convex. Therefore,

by substituting Φ(δ) = − 1
c−1 ln δ, δς = aς, and $ς =

(
aς

bς

)c−1
in (8), we obtain (34).

The accompanying corollary examines how Theorem 3 is connected to the Rényi
divergence.

Corollary 12. We suppose that the Corollary 11 assumptions are valid; then,

Rd(a, b)−
m

∑
ς=1

aς log
( aς

bς

)
≥ 1

4(c− 1)

m

∑
ς=1

aς

( m

∑
ς=1

ac
ςb1−c

ς −
( aς

bς

)c−1
)4

×
(4

m
∑

ς=1
ac

ςb1−c
ς +

(
aς

bς

)(c−1)

5

)−4

+
1

3(c− 1)

( m

∑
ς=1

ac
ςb1−c

ς

)−3 m

∑
ς=1

aς

( m

∑
ς=1

ac
ςb1−c

ς −
( aς

bς

)c−1
)3

+
1

2(c− 1)

( m

∑
ς=1

ac
ςb1−c

ς

)−2 m

∑
ς=1

aς

( m

∑
ς=1

ac
ςb1−c

ς −
( aς

bς

)c−1
)2

. (35)

Proof. Utilizing inequality (11) for Φ(δ) = − 1
c−1 ln δ, δς = aς, and $ς =

(
aς

bς

)c−1
, we

deduce (35).

The ensuing corollary offers an estimate for the Shannon entropy as an application of
Theorem 2.
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Corollary 13. Let the tuple a = (a1, a2, · · · , an) be positive, with
m
∑

ς=1
aς = 1. Then,

log n− Se(a) ≤
1

20

m

∑
ς=1

aς

(
n− 1

aς

)4(
4(n)−4 + a4

ς

)
+

n−3

3

m

∑
ς=1

aς

(
n− 1

aς

)3

+
n−2

2

m

∑
ς=1

aς

(
n− 1

aς

)2

. (36)

Proof. Since, the function g(δ) = − ln δ is convex as well as 6-convex on (0, ∞). Therefore,
to deduce inequality (36), we apply inequality (32) for g(δ) = − ln δ, δ > 0, and bς = 1 for
all ς ∈ {1, 2, . . . , n}.

The next corollary presents an estimate for the Shannon entropy.

Corollary 14. Assuming that the conditions of Corollary 13 are valid, then

log n− Se(a) ≥
1
4

m

∑
ς=1

aς

(
n− 1

aς

)4(4n
5

+
1

5aς

)−4

+
n−3

3

m

∑
ς=1

aς

(
n− 1

aς

)3

+
n−2

2

m

∑
ς=1

aς

(
n− 1

aς

)2

. (37)

Proof. Taking g(δ) = − ln δ, δ > 0, and bς = 1 for all ς ∈ {1, 2, . . . , n} in (33), we
obtain (37).

The application of Theorem 2 for the Kullback–Leibler divergence is discussed in the
following corollary.

Corollary 15. Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be any positive probability
distributions. Then,

Dkl(a, b) ≤ 1
60

m

∑
ς=1

aς

(
1−

bς

aς

)4(
4 +

(
aς

bς

)3)
+

1
6

m

∑
ς=1

aς

(
1−

bς

aς

)3
+

1
2

m

∑
ς=1

aς

(
1−

bς

aς

)2
. (38)

Proof. We consider the function g(δ) = δ ln δ, δ > 0; then, by differentiating the given
with respect to δ, we acquire g

′′
(δ) = 1

δ and g
′′′′′′

(δ) = 24δ−5. Clearly, both g
′′

and g
′′′′′′

are
positive with the given conditions, which admits that the function g(δ) = δ ln δ is convex
as well as 6-convex. Therefore, putting g(δ) = δ ln δ in (32), we deduce (38).

The consequence of Theorem 3 for the Kullback–Leibler divergence is given in the
following corollary.

Corollary 16. We assume that the postulates of Corollary 15 are valid; then,

Dkl(a, b) ≥ 1
60

m

∑
ς=1

aς

(
1−

bς

aς

)4(
4 +

bς

aς

)−3

+
1
6

m

∑
ς=1

aς

(
1−

bς

aς

)3
+

1
2

m

∑
ς=1

aς

(
1−

bς

aς

)2
. (39)

Proof. By applying inequality (33) for the function g(δ) = δ ln δ, δ > 0, we obtain (39).
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The next corollary provides an estimate for the Bhattacharyya coefficient as an appli-
cation of Theorem 2.

Corollary 17. We assume that a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) are arbitrary
probability distributions, such that aς, bς > 0 for all ς ∈ {1, 2, . . . , m}. Then,

1− Bc(a, b) ≤ 15
480

m

∑
ς=1

aς

(
1−

bς

aς

)4(
1 +

1
4

(
aς

bς

) 7
2
)

+
1

16

m

∑
ς=1

aς

(
1−

bς

aς

)3

+
1
8

m

∑
ς=1

aς

(
1−

bς

aς

)2

. (40)

Proof. Let us choose the function g(δ) = −
√

δ defined on (0, ∞). Then, g
′′
(δ) = 1

4 δ
−1
2 , and

g
′′′′′′

(δ) = 945
64 δ

−11
2 . From these expressions, we conclude that the function g(δ) = −

√
δ

is convex as well as 6-convex because both g
′′

and g
′′′′′′

are positive on (0, ∞). Therefore,
utilizing (32) for g(δ) = −

√
δ, we obtain (40).

Another estimate for the Bhattacharyya coefficient is presented in the following corollary.

Corollary 18. We suppose that the postulates of Corollary 17 are valid; then,

1− Bc(a, b) ≥ 15
384

m

∑
ς=1

aς

(
1−

bς

aς

)4(
4
5
+

bς

5aς

)− 7
2

+
1
16

m

∑
ς=1

aς

(
1−

bς

aς

)3

+
1
8

m

∑
ς=1

aς

(
1−

bς

aς

)2

. (41)

Proof. Choosing the function g(δ) =
√

δ, δ > 0 in (33), we receive (41).

7. Applications for the Zipf–Mandelbrot Entropy

The Zipf–Mandelbrot law is a discrete probability distribution that depends on three
different factors, n ∈ N, θ ≥ 0, and s > 0, which is defined as:

Φ(ς, m, θ, s) =
1

(ς + θ)sNm,θ,s
, ς ∈ {1, 2, . . . , m},

where Φ represents the probability mass function, and Nm,θ,s =
m
∑

ς=1

1
(ς+θ)s is the generalized

harmonic number. The famed Zipf–Mandelbrot entropy can be used to calculate the
quantity of information in a given text in relation to the perspective of information theory.
The traditional form of the Zipf–Mandelbrot entropy is given by:

Z(m, θ, s) =
s

Nm,θ,s

m

∑
ς=1

log(ς + θ)

(ς + θ)s + log Nm,θ,s.

The following corollary presents an estimate for the Zipf–Mandelbrot entropy as a direct
consequence of Theorem 2.
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Corollary 19. Let a = (a1, a2, · · · , an) be any probability distribution with positive entries, such

that
m
∑

ς=1
aς = 1 and θ ≥ 0, s > 0. Then,

−Z(m, θ, s)− 1
Nm,θ,s

m

∑
ς=1

log aς

(ς + θ)s

≤ 1
60

m

∑
ς=1

aς

(
1− 1

aς(ς + θ)s)Nm,θ,s

)4(
4 +

(
aς(ς + θ)sNm,θ,s

)3
)

+
1
6

m

∑
ς=1

aς

(
1− 1

aς(ς + θ)s)Nm,θ,s

)3
+

1
2

m

∑
ς=1

aς

(
1− 1

aς(ς + θ)sNm,θ,s

)2
. (42)

Proof. We consider bς = 1
(ς+θ)s Nm,θ,s

, ς ∈ {1, 2, . . . , m}; then,

m

∑
ς=1

bς log
bς

aς
=

m

∑
ς=1

1
(ς + θ)sNm,θ,s

log
1

aς(ς + θ)sNm,θ,s

=
n

∑
i=1

1
(ς + θ)sNm,θ,s

(−s log(ς + θ)− log Nm,θ,s − log ai)

= −Z(m, θ, s)− 1
Nm,θ,s

m

∑
ς=1

log aς

(ς + θ)s , (43)

and

1
60

m

∑
ς=1

aς

(
1−

bς

aς

)4(
4 +

(
aς

bς

)3)
+

1
6

m

∑
ς=1

aς

(
1−

bς

aς

)3
+

1
2

m

∑
ς=1

aς

(
1−

bς

aς

)2

=
1

60

m

∑
ς=1

aς

(
1− 1

aς(ς + θ)sNm,θ,s

)4(
4 +

(
aς(ς + θ)sNm,θ,s

)3
)

+
1
6

m

∑
ς=1

aς

(
1− 1

aς(ς + θ)sNm,θ,s

)3
+

1
2

m

∑
ς=1

aς

(
1− 1

aς(ς + θ)sNm,θ,s

)2
. (44)

Now, utilizing (43) and (44) in (38), we acquire (42).

An application of Theorem 3 for the Zipf–Mandelbrot entropy is provided in the
following corollary.

Corollary 20. Let a = (a1, a2, · · · , an) be any positive probability distribution, such that aς > 0
and θ ≥ 0, s > 0. Then,

−Z(m, θ, s)− 1
Nm,θ,s

m

∑
ς=1

log aς

(ς + θ)s

≥ 1
60

m

∑
ς=1

aς

(
1− 1

aς(ς + θ)sNm,θ,s

)4(
4 +

1
aς(ς + θ)sNm,θ,s

)−3

+
1
6

m

∑
ς=1

aς

(
1− 1

aς(ς + θ)sNm,θ,s

)3
+

1
2

m

∑
ς=1

aς

(
1− 1

aς(ς + θ)sNm,θ,s

)2
. (45)

Proof. By utilizing inequality (39) for bς = 1
(ς+θ)s Nm,θ,s

while adopting the proof of method

of Corollary 19, we deduce (45).

An estimate for the Zipf–Mandelbrot entropy is given in the following corollary as an
application of Theorem 2.
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Corollary 21. Let us assume that a = (a1, a2, · · · , an) is any probability distribution with positive

entries, such that
m
∑

ς=1
aς = 1 and θ1, θ2 ≥ 0, s1, s2 > 0. Then,

−Z(m, θ1, s1)−
1

Nm,θ1,s1

m

∑
ς=1

log(ς + θ2)
s2 Nm,θ2,s2

(ς + θ1)s1

≤ 1
60

m

∑
ς=1

1
(ς + θ2)s2 Nm,θ2,s2

(
1−

(ς + θ2)
s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

)4

×
(

4 +
(
(ς + θ1)

s1 Nm,θ1,s1

(ς + θ2)s2 Nm,θ2,s2

)3
)
+

1
6

m

∑
ς=1

1
(ς + θ2)s2 Nm,θ2,s2

×
(

1−
(ς + θ2)

s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

)3

+
1
2

m

∑
ς=1

1
(ς + θ2)s2 Nm,θ2,s2

×
(

1−
(ς + θ2)

s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

)2

. (46)

Proof. We consider bς = 1
(ς+θ1)

s1 Nm,θ1,s1
, and aς = 1

(ς+θ2)
s2 Nm,θ2,s2

; then, we have

m

∑
ς=1

bς log
bς

aς
= −Z(m, θ1, s1)−

m

∑
ς=1

log(ς + θ2)
s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

, (47)

and

1
60

m

∑
ς=1

aς

(
1−

bς

aς

)4(
4 +

(
aς

bς

)3)
+

1
6

m

∑
ς=1

aς

(
1−

bς

aς

)3
+

1
2

m

∑
ς=1

aς

(
1−

bς

aς

)2

=
1
60

m

∑
ς=1

1
(ς + θ2)s2 Nm,θ2,s2

(
1−

(ς + θ2)
s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

)4

×
(

4 +
(
(ς + θ1)

s1 Nm,θ1,s1

(ς + θ2)s2 Nm,θ2,s2

)3
)
+

1
6

m

∑
ς=1

1
(ς + θ2)s2 Nm,θ2,s2

×
(

1−
(ς + θ2)

s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

)3

+
1
2

m

∑
ς=1

1
(ς + θ2)s2 Nm,θ2,s2

×
(

1−
(ς + θ2)

s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

)2

. (48)

Now, utilizing (47) and (48) in (38), we obtain (46).

The subsequent corollary employs Theorem 3 to offer a further estimate for the Zipf–
Mandelbrot entropy.
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Corollary 22. We assume that θ1, θ2 ≥ 0, and s1, s2 > 0; then,

−Z(m, θ1, s1)−
1

Nm,θ1,s1

m

∑
ς=1

log(ς + θ2)
s2 Nm,θ2,s2

(ς + θ1)s1

≥ 1
60

m

∑
ς=1

1
(ς + θ2)s2 Nm,θ2,s2

(
1−

(ς + θ2)
s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

)4

×
(

4 +
(ς + θ2)

s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

)−3

+
1
6

m

∑
ς=1

1
(ς + θ2)s2 Nm,θ2,s2

×
(

1−
(ς + θ2)

s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

)3

+
1
2

m

∑
ς=1

1
(ς + θ2)s2 Nm,θ2,s2

×
(

1−
(ς + θ2)

s2 Nm,θ2,s2

(ς + θ1)s1 Nm,θ1,s1

)2

. (49)

Proof. To obtain (49), we use (39) for bς = 1
(ς+θ1)

s1 Nm,θ1,s1
and aς =

m
∑

ς=1

1
(ς+θ2)

s2 Nm,θ2,s2
while

following the proof of the procedure of Corollary 21.

8. Conclusions

Mathematical inequalities have received a very strong response from researchers
working in different areas because of their attractive features and characteristics. In this
regard, the Jensen inequality is a popular inequality among mathematical inequalities. This
inequality has some important properties and also has a deep relation with the notion of
convexity; due to these facts, it has an important position in areas of pure and applied
mathematics. In this paper, we developed some interesting relations that provide new
estimates for the Jensen gap. The proposed estimations were made possible with the help
of the generalized convexity known as 6-convex functions. Some examples were provided
to show the accuracy and ameliorations of the acquired estimates. In these examples, we
confirmed that our results provided better estimations for the Jensen gap as compared
to other recent results of a similar type. We also discussed some consequences of the
main results for the Hölder inequality. We also provided some applications of the main
outcomes for the well-known power means and quasi-arithmetic means. Moreover, we
presented some more applications of the main results in information theory that offer
bounds for the Csiszár and Kullback–Leibler divergences, Bhattacharyya coefficient, and
Shannon entropy. Some estimates for the Zipf–Mandelbrot entropy were also granted as
additional applications of the obtained results. The techniques, which were applied for the
derivations of the main results, are the definition of the convex function and prominent
Jensen’s inequality in the integral version. The importance of our work is also highlighted
in Remark 2. The idea and techniques utilized in this manuscript may also be applied
for the integral Jensen’s inequality and some other inequalities such as Slater’s and the
majorization inequalities. Furthermore, this idea may also be applied for convexity of
higher order than 6-convexity.
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18. Adeel, M.; Khan, K.A.; Pečarić, Ð.; Pečarić, J. Estimation of f–divergence and Shannon entropy by Levinson type inequalities for

higher–order convex functions via Taylor polynomial. J. Math. Comput. Sci. 2020, 21, 322–334. [CrossRef]
19. Sezer, S.; Eken, Z.; Tinaztepe, G.; Adilov, G. p-convex functions and some of their properties. Numer. Funct. Anal. Optim. 2021, 42,

443–459. [CrossRef]
20. Hudzik, H.; Maligranda, L. Some remarks on s–convex functions. Aequationes Math. 1994, 48, 100–111. [CrossRef]
21. Adil Khan, M.; Wu, S.-H.; Ullah, H.; Chu, Y.-M. Discrete majorization type inequalities for convex functions on rectangles. J.

Inequal. Appl. 2019, 16, 1–18. [CrossRef]
22. Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [CrossRef]
23. You, X.; Khan, M.A.; Ullah, H.; Saeed, T. Improvements of Slater’s inequality by means of 4-convexity and its applications.

Matheatics 2022, 10, 1274.
24. Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [CrossRef]
25. Ullah, H.; Adil Khan, M.; Saeed, T.; Sayed, Z.M.M.M. Some improvements of Jensen’s inequality via 4–convexity and applications.

J. Funct. Space 2022, 2022, 2157375. [CrossRef]
26. Youness, E.A. E–convex sets, E–convex functions, and E-convex programming. J. Optim. Theory Appl. 1999, 102, 439–450.

[CrossRef]
27. Zhao, C.-J.; Cheung, W.-S. On improvements of the Rozanova’s inequality. J. Inequal. Appl. 2011, 33, 1–7. [CrossRef]

http://doi.org/10.1134/S0965542517080048
http://dx.doi.org/10.1007/s10915-019-00915-4
http://dx.doi.org/10.12785/amis/090129
http://dx.doi.org/10.7153/mia-19-43
http://dx.doi.org/10.1007/s40840-017-0526-4
http://dx.doi.org/10.3390/sym14071430
http://dx.doi.org/10.1155/2022/7269033
http://dx.doi.org/10.7153/jmi-2021-15-50
http://dx.doi.org/10.1155/2022/4842344
http://dx.doi.org/10.1186/s13660-015-0926-7
http://dx.doi.org/10.1007/s13398-020-00992-3
http://dx.doi.org/10.1155/2012/168405
http://dx.doi.org/10.1186/s13662-019-2360-5
http://dx.doi.org/10.22436/jmcs.021.04.05
http://dx.doi.org/10.1080/01630563.2021.1884876
http://dx.doi.org/10.1007/BF01837981
http://dx.doi.org/10.1186/s13660-019-1964-3
http://dx.doi.org/10.1016/j.jmaa.2006.02.086
http://dx.doi.org/10.1155/S102558340000031X
http://dx.doi.org/10.1155/2022/2157375
http://dx.doi.org/10.1023/A:1021792726715
http://dx.doi.org/10.1186/1029-242X-2011-33


Mathematics 2023, 11, 1957 24 of 25

28. Furuichi, S.; Moradi, H.R.; Zardadi, A. Some new Karamata type inequalities and their applications to some entropies. Rep. Math.
Phys. 2019, 84, 201–214. [CrossRef]

29. Zhao, T.-H.; Yang, Z.-H.; Chu, Y.-M. Monotonicity properties of a function involving the psi function with applications. J. Inequal.
Appl. 2015, 193, 1–10. [CrossRef]

30. Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder
means. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2020, 114, 96. [CrossRef]

31. Adil Khan, M.; Ullah, H.; Saeed, T.; Alsulami, H.H.; Sayed, Z.M.M.M.; Alshehri, A.M. Estimations of the Slater gap via convexity
and its applications in information theory. Math. Probl. Eng. 2022, 2022, 1750331. [CrossRef]

32. Mercer, A.M. A variant of Jensen’s inequality. J. Inequal. Pure Appl. Math. 2003, 4, 73.
33. Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some Fejer type integral inequalities for geometrically–arithmetically–convex functions

with applications. Filomat 2018, 32, 2193–2206. [CrossRef]
34. Mihai, M.V.; Noor, M.A.; Noor, K.I.; Awan, M.U. Some integral inequalities for harmonic h–convex functions involving hypergeo-

metric functions. Appl. Math. Comput. 2015, 252, 257–262. [CrossRef]
35. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some renfements for inequalities involving zero–balanced hypergeometric function. AIMS

Math. 2020, 5, 6479–6495. [CrossRef]
36. Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions

with one parameter. J. Math. Inequal. 2020, 14, 1–21. [CrossRef]
37. Liu, W.; Shi, F.; Ye, G.; Zhao, D. The properties of harmonically cr-h-convex function and its applications. Mathematics 2022, 10, 2089.

[CrossRef]
38. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind.

AIMS Math. 2020, 5, 4512–4528. [CrossRef]
39. Davis, C. A Schwarz inequality for convex operator functions. Proc. Am. Math. Soc. 1957, 8, 42–44. [CrossRef]
40. Shor, N. Minimization Methods for Non-Differentiable Functions; Springer: Berlin/Heidelberg, Germany, 1985.
41. Ullah, H.; Adil Khan, M.; Saeed, T.; Determination of bounds for the Jensen gap and its applications. Mathematics 2021, 9, 3132.

[CrossRef]
42. Dragomir, S.S. A converse result for Jensen’s discrete inequality via Gruss inequality and applications in Information Theory. An.

Univ. Oradea Fasc. Mat 1999, 7, 178–189.
43. Cloud, M.J.; Drachman, B.C.; Lebedev, L.P. Inequalities with Applications to Engineering; Springer: Cham, Switzerland; Heidelberg,

Germany, 2014. [CrossRef]
44. White, C.C.; Harrington, D.P. Application of Jensen’s inequality to adaptive suboptimal design. J. Optim. Theory Appl. 1980, 32,

89–99. [CrossRef]
45. Mukhopadhyay, N. On sharp Jensen’s inequality and some unusual applications, communications in statistics. Theor. Methods

2011, 40, 1283–1297. [CrossRef]
46. Azar, S.A. Jensen’s inequality in finance. Int. Adv. Econ. Res. 2008, 14, 433–440. [CrossRef]
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