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Abstract: In this paper, we study the D- and A-optimal assignment problems for regression models
with experimental cost constraints. To solve these two problems, we propose two multiplicative
algorithms for obtaining optimal designs and establishing extended D-optimal (ED-optimal) and
A-optimal (EA-optimal) criteria. In addition, we give proof of the convergence of the ED-optimal
algorithm and draw conjectures about some properties of the EA-optimal algorithm. Compared with
the classical D- and A-optimal algorithms, the ED- and EA-optimal algorithms consider not only the
accuracy of parameter estimation, but also the experimental cost constraint. The proposed methods
work well in the digital example.
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1. Introduction

For a given regression model, one can develop different experimental protocols with
various regression design methods. In order to compare the merits of various programs,
many criteria have been developed. Due to their good statistical properties, the D- and
A-optimal criteria (Kiefer [1]) are widely used in experimental design in various fields, such
as in clinical investigations, biological experiments, agricultural experiments, automatic
control, mechanical engineering, etc. Kiefer and Wolfowitz [2] made seminal contributions
to the field, as they were the first to extend the concept of the discrete design of experiments
to the measurement space of continuous design, thus facilitating mathematical research
and the application of optimization theory. Elfving [3] and Dette [4] also gave the basic
knowledge and details of optimal design theory, based on which Silvey et al. [5–7] further
developed the related theory of optimal design. In general, optimal design is also known
as optimal allocation in the literature [8]. With the extensive and in-depth development of
optimal design, multiplication algorithms for optimal design under different optimization
criteria were proposed. For instance, Wynn [9] first proposed an algorithm for D-optimal
design, which is now known as the W-algorithm. Fedorov [10] proposed the V-algorithm
and proved its convergence. However, the above algorithms suffered from slow conver-
gence and overly cumbersome computations. Atwood [11] proposed three modifications to
the V-algorithm, which improved its convergence speed and accuracy. John and Draper [12]
further improved Atwood’s first suggestion and increased the efficiency of the algorithm.
Silvey et al. [13] presented a multiplicative algorithm for computing D-optimal designs on
a finite design, and this was a straightforward iterative algorithm with monotonic conver-
gence. Kiefer and Wolfowitz [2] introduced the general equivalence theorem and proposed
an algorithm for solving optimization problems. Yu [14] suggested the cocktail method,
which combined the well-known vertex direction method (VDM) with a multiplicative
algorithm to compute D-optimal approximation designs. Martin-Martin et al. [15] applied
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a multiplicative algorithm to construct marginal and conditional restricted designs when
certain factors were known in advance, i.e., they were given and not controlled. Harman
and Pronzato [16] proposed a class of multiplicative algorithms for computing D-optimal
designs with non-optimal support points removed. Gao et al. [8] constructed a series of
multiplicative algorithms for finding the D- and A-optimal designs of regression models.
Castro et al. [17] introduced a new method aimed at computing approximate D- and A-
optimal designs for multivariate polynomial regression on compact (semi-algebraic) design
spaces. Harman et al. [18] constructed a series of randomized exchange algorithms (REX) to
obtain the D- and A-optimal approximation designs for regression models. Duan et al. [19]
proposed a simple multiplicative approach to generating sequential experimental designs
while focusing on D- and A-optimal criteria. Duan et al. [20] described two multiplicative
algorithms for obtaining approximate D- and A-optimal designs for multi-dimensional
linear regression on a large variety of design spaces.

Although a great deal of research has been conducted on optimal design and the
algorithms for achieving it, little consideration has been given to the cost of experimen-
tation [21–25]. The experimental cost refers to the various raw materials consumed in
an experiment [26–28], and it is an essential factor that is not negligible in experiments.
First, to take this factor into account, we construct two weighted objective functions and
establish extended D-optimal (ED-optimal) and A-optimal (EA-optimal) criteria to make
the objective function optimal. For the ED-optimal algorithm, the objective function is
the difference between the logarithm of the determinant of the information matrix in the
classical D-optimal criterion and the weighted average experimental cost. A design ŵ
is referred to as an ED-optimal design if it maximizes the objection function in the class
w ∈ {wi ≥ 0, and ∑k

i=1 wi = 1} of all designs. For the EA-optimal algorithm, the objective
function is the sum between the logarithm of the trace of the inverse matrix of the informa-
tion matrix in the classical A-optimal criterion and the weighted average experimental cost.
A design ŵ is referred to as an EA-optimal design if it minimizes the objection function
in the class w ∈ {wi ≥ 0, and ∑k

i=1 wi = 1} of all designs. Compared with the classical D-
and A-optimal designs, the extended D- and A-optimal designs strike a balance between
maximizing the determinant of the information matrix and minimizing the experimental
cost. Second, to solve the two optimization problems, we obtain the general equivalence
conditions for ED- and EA-optimality with the Kuhn–Duck method. On this basis, we
propose multiplicative algorithms for computing D- and A-optimal designs with cost
constraints in the regression model and provide proof of the monotonic convergence of
the ED-optimal algorithm. Although we do not give proof of the properties associated
with the EA-optimal algorithm, the simulation results strongly support the validity and
reliability of the algorithm. Finally, we give conclusions and further indicate possible
research directions.

In this study, we extend the classical D- and A-optimal algorithms to D- and A-optimal
algorithms with cost constraints. Compared with the classical D- and A-optimal algorithms,
the ED- and EA-optimal algorithms consider not only the accuracy of parameter estimation,
but also the experimental cost constraint. The organization of this article is as follows.
Section 2 presents the model and the extended optimality criteria. Section 3 shows the
multiplication algorithms for determining the EA- and ED-optimal assignments and de-
scribes the algorithm-related properties. Section 4 presents simulations that show the good
performance of the proposed algorithms. Section 5 presents the conclusions. Appendix A
contains proof of the main results.

2. Model and Optimal Criteria
2.1. Model and Symbols

Consider the generalized regression model

Y(x) = β
′
f (x) + ε, x ∈ X , (1)
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where f (x) is a known regressor associated with x, β is a vector of parameters, X is the
design space, and ε is an error term with a mean of 0 and variance of σ2. For different
independent trials, the errors are independent. The p-dimensional vector x is taken from the
design spaceX . The experiment aims to obtain the regression model by selecting k mutually
independent design points x1, x2, · · · , xk and estimating the unknown parameters β.

Suppose that the total number of trials is N, the numbers of trial points repeated at
various levels are n1, n2, · · · , nk, and n1 + · · ·+ nk = N. Further, we have w1, w2, · · · , wk as
the probability of occurrence of the design points x1, x2, · · · , xk with wi =

ni
N (i = 1, 2, · · · , k)

and ∑k
i=1 wi = 1. Therefore, the information array is denoted as H(w) =

k
∑

i=1
wixix

′
i.

2.2. Optimal Criteria

In the context of generalized regression models, the attainment of reduced variance in
parameter estimates and a concomitant decrease in the cost of the experimental procedure
typically results in enhanced regression model accuracy and increased economic efficiency
of the experiment.

2.2.1. ED-Optimal Criterion

In the classical D-optimal design, a design ŵ is referred to as optimal if it maximizes
log |H(w)| (| · | is the determinant of the matrix) while satisfying the constraints {wi ≥
0, and ∑k

i=1 wi = 1}. However, in the classical D-optimal design, people only consider the
accuracy of parameter estimation and do not take into account the cost of the experiment.
Therefore, we propose an objective function in the form of the difference between the
logarithm of the determinant of the information matrix in the classical D-optimal criterion
and the weighted average experimental cost, i.e.,

T(w) = log |H(w)| −
k

∑
i=1

wici, (2)

where H(w) is the information matrix [8], and
k
∑

i=1
wici denotes the cost of the experi-

ment [27]. An increase in the determinant of the information matrix is positively associated
with a reduction in the volume of the Wald-type joint confidence region of the model
parameters, thereby contributing to higher estimation accuracy. Furthermore, a decrease
in trial cost is observed, leading to more efficient utilization of various raw materials,
thereby enhancing the economic efficacy of the experiment. Formally, a design ŵ is re-
ferred to as an ED-optimal design if it maximizes the objection function (2) in the class
w ∈ {wi ≥ 0, and ∑k

i=1 wi = 1} of all designs. That is,

ŵ = arg max{T(w) : subject to wi ≥ 0, and
k

∑
i=1

wi = 1}. (3)

Compared with the classical D-optimal design, the extended D-optimal design strikes
a balance between maximizing the determinant of the information matrix and minimizing
the experimental cost.

2.2.2. EA-Optimal Criterion

In the classical A-optimal design, a design ŵ is referred to as optimal if it minimizes
log(trace(H−1(w))) while satisfying the constraints {wi ≥ 0, and ∑k

i=1 wi = 1}. Similarly,
to take the experimental cost into account, we give a new objective function whose form is
the sum between the logarithm of the trace of the inverse matrix of the information matrix
in the classical A-optimal criterion and the weighted average experimental cost, i.e.,

G(w) = log(trace(H−1(w))) +
k

∑
i=1

wici. (4)
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where log(trace(H−1(w))) is the criterion function of the classical A-optimal criterion [8]

and
k
∑

i=1
wici is the experimental cost [27]. If the information matrix is non-degenerate,

then the trace of the inverse matrix of the information matrix reflects the magnitude
of the sum of the variances of the components of the maximum likelihood estimate of
the parameter β. A smaller trace of the inverse matrix of the information matrix and
experimental cost implies that the sum of the variance of the estimated components is also
smaller and that the experiment is more economically efficient. Formally, a design ŵ is
referred to as an EA-optimal design if it minimizes the objection function (4) in the class
w ∈ {wi ≥ 0, and ∑k

i=1 wi = 1} of all designs. That is,

ŵ = arg min{G(w) : subject to wi ≥ 0, and
k

∑
i=1

wi = 1}. (5)

Compared with the classical A-optimal design, the extended A-optimal design strikes
a balance between minimizing the trace of the inverse matrix of the information matrix and
minimizing the experimental cost.

3. Algorithms for Optimal Distributions

In this section, we present the iterative algorithm in the ED-optimal criterion and give
proof of the monotonic convergence of the algorithm. Meanwhile, we propose an iterative
algorithm under the EA-optimal criterion and draw conjectures about the monotonic
convergence of the algorithm. The corresponding proofs of these theorems and lemmas are
in Appendix A.

3.1. Algorithm for ED-Optimal Distribution

To find the ED-optimal design, we obtain the general equivalence condition with the
Kuhn–Duck method, and the result is shown in Theorem 1.

Theorem 1. ŵ is an ED-optimal assignment if and only if it satisfies the following conditions:

xi
′
H−1(ŵ)xi +

k

∑
i=1

ŵici = p + ci f or ŵi 6= 0, (6)

xi
′
H−1(ŵ)xi +

k

∑
i=1

ŵici ≤ p + ci f or ŵi = 0. (7)

Note that Equation (6) in Theorem 1 is a special case of the classical approximate
D-optimal equivalence theorem (Kiefer and Wolfowitz [29]). Based on this, we propose a
multiplicative algorithm for calculating the ED-optimal allocation, as shown below.

In Algorithm 1, m is the number of iterations, k is the number of design points, and p
is the number of experimental variables. In general, we set k ≥ p, and the parameter ζ is
usually set to a very small value, which determines the criteria for stopping the algorithm. In
part 4,we set ζ = 0.0001. Compared to the W- and V-algorithms, our proposed algorithm
has the advantage of running quickly and simplifying the computational process because it
involves only simple matrix operations. Furthermore, Algorithm 1 maintains its validity
in instances where the sample size N is exceedingly large, as it solely relies on the weight
w and design point x. Contrastingly, the VDM algorithm’s computational process is
reliant not only on the sample size N, but also on the presence of interactions between
design points, resulting in a decline in its efficacy. Our proposed algorithm is also a
multiplicative algorithm, so it also has excellent properties, such as simplicity, efficiency,
and monotonic convergence.
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Algorithm 1 Algorithm for ED-optimal assignment

Input: Design space X and stopping parameter ζ.
Output: ED-optimal assignment ŵ.
1: Set the initial value of w to w(0) = ( 1

k , · · · , 1
k ).

2: For m ≥ 1 and i = 1, · · · , k,

wi(m) = wi(m− 1)
xi
′
H−1(w(m− 1))xi +

k
∑

i=1
wi(m− 1)ci

p + ci
,

H(w(m− 1)) = w1(m− 1)x1x
′
1 + w2(m− 1)x2x

′
2 + · · ·+ wk(m− 1)xkx

′
k.

3: Repeat step 2 until max{|wi(m)− wi(m− 1)|} < ζ.
4: Output ED-optimal assignment ŵ.

Later in this section, we prove that the proposed algorithm converges to ED-optimality.
To obtain the convergence of the proposed algorithm, we first demonstrate that the se-
quence {T(w(m))} is monotonically convergent, and the result is given in Theorem 2.
Second, based on the theoretical results for the sequence {T(w(m))}, we further certify
that sequence {w(m)} converges to the ED-optimal allocation, and the conclusion is given
in Theorem 3.

Theorem 2. T(w(m)) − T(w(m − 1)) = log |H(w(m))| − log |H(w(m− 1))| ≥ 0 and
w(m)−w(m− 1)→ 0.

Theorem 2 shows that as the number of iterations increases, the sequence {T(w(m))}
monotonically increases and the distance between sequences {w(m)} tends to zero. Note
that Appendix A presents proof that the sequence {T(w(m))} converges. Based on the
content of Theorem 2, we can also obtain Theorem 3.

Theorem 3. The sequence {w(m)} obtained with the proposed algorithm converges to ED-
optimality.

In Theorem 3, we will first show that the sequence {w(m)} converges and subse-
quently prove its convergence to ED-optimality.

3.2. Algorithm for EA-Optimal Distribution

Similarly, according to the Kuhn–Duck method, we can obtain the general equivalence
condition for EA-optimality, as shown in Theorem 4.

Theorem 4. ŵ is an EA-optimal assignment if and only if it satisfies the following conditions:

trace(H−1(ŵ)xix
′
i H−1(ŵ))

trace(H−1(ŵ))
+

k

∑
i=1

ŵici = 1 + ci f or ŵi 6= 0, (8)

trace(H−1(ŵ)xix
′
i H−1(ŵ))

trace(H−1(ŵ))
+

k

∑
i=1

ŵici ≤ 1 + ci f or ŵi = 0. (9)

Based on Equation (8), we propose a multiplicative algorithm to calculate the EA-
optimal design, and Algorithm 2 is shown below.
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Algorithm 2 Algorithm for EA-optimal distribution

Input: Design space X and stopping parameter ζ.
Output: ED-optimal assignment ŵ.
1: Set the initial value of w to w(0) = ( 1

k , · · · , 1
k ).

2: For m ≥ 1 and i = 1, · · · , k,

wi(m) = wi(m− 1)

trace(H−1(w(m−1))xix
′
i H−1(w(m−1))

trace(H−1(w(m−1)))
+

k
∑

i=1
wi(m− 1)ci

1 + ci
,

H(w(m− 1)) = w1(m− 1)x1x
′
1 + w2(m− 1)x2x

′
2 + · · ·+ wk(m− 1)xkx

′
k.

3: Repeat step 2 until max{|wi(m)− wi(m− 1)|} < ζ.
4: Output EA-optimal assignment ŵ.

Although the theoretical basis of the EA-optimal algorithm is similar to that of the
ED-optimal algorithm, we do not obtain relevant conclusions similar to those of Theorem 2
under the EA-optimal criterion. In Section 3, we describe extensive simulation studies
that were performed to illustrate the EA-optimal algorithm’s properties. In all cases, the
algorithm was convergent and successfully found the optimal allocation, so the algorithm
is feasible.

4. Numerical Illustrations

In this section, we describe some simulations that were performed to illustrate some
of the excellent properties of the recommended algorithms. We calculated the ED- and
EA-optimal allocations, as well as the values of the corresponding objective functions. In
addition, we provide the convergence rates and the numbers of iterations of the algorithms.
The simulation results showed that the proposed algorithms ran quickly and were estimated
accurately. The algorithms are easy to program and are suitable for a variety of situations.

Initially, we generated a set of design points, denoted by x1, x2, · · · , xk, which were
mutually independent and followed a uniform distribution over the interval [−1, 1], i.e.,
U(−1, 1). Furthermore, we specified the initial values of weights, w1, w2, · · · , wk, and the
corresponding experimental costs c1, c2, · · · , ck, which were also independently drawn
from a uniform distribution over the range [0, 1], i.e., U (0, 1). By taking Table A1 as an
illustrative example, subject to the constraints p = 5, k = 8, and p < k, we obtained the values
of x1, x2, · · · , x8 and the associated trial costs c1, c2, · · · , c8. Without loss of generality, we
set the initial weights w1 = 0.125, w2 = 0.125, . . . , w8 = 0.125.

Second, in accordance with the proposed Algorithm 1, the stopping criterion was
set to max{|wi(n) − wi(n − 1)|} < 0.0001 for i = 1, · · · , k, and we obtained the ED-
optimal allocations and the values of the objective function. Table A1 shows the results
of the simulation. In Table A2, keeping the value of k constant, by adjusting the number of
experimental variables p, we obtained the corresponding computational results. As seen in
Tables A1 and A2, the ED-optimal algorithm converged, and the sum of weights was 1 in
each case, which meant that the algorithm could accurately estimate the optimal weights.
Table A5 shows the average number of runs and the average time (in seconds) for 50
simulation cycles, with standard deviations in parentheses, indicating that the proposed
ED-optimal algorithm converged quickly. When the value of k was fixed, the number of
iterations and time decreased as p increased.

Finally, similarly to the above computational procedure, we found the EA-optimal
assignments, the corresponding objective function values, and the average number of opera-
tions and time for 50 simulations. Taking Table A3 as an example, when p = 5 and k = 8, we
first generated the corresponding design points, costs, and initial weights. According to
Algorithm 2, we could obtain the EA-optimal weights and the objective function values.
It can be seen from Table A3 that the proposed Algorithm 2 converged and the sum of
the weights was 1 in each case, indicating the superiority of the EA-optimal algorithm
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for parameter estimation. Moreover, when p was kept constant, the value of the objective
function (4) became smaller as k increased. According to the EA-optimal criterion, the
estimation of the parameters was more accurate. Thus, this also verified the conjecture
that we mentioned above. As shown in Table A4, when k remained constant, the value of
the objective function (4) became larger as p increased. The results in Table A6 show the
average number of iterations and the average elapsed time (standard deviation in parentheses)
for 50 simulations of the proposed Algorithm 2, indicating that the algorithm ran rapidly.
In addition, when the value of p was kept constant, the number of iterations and time
increased with k.

5. Conclusions

In this article, we studied the extended D- and A-optimal assignment problems in
a regression model, i.e., the D- and A-optimal allocation issues with cost constraints. To
obtain optimal designs, we extended the classical D- and A-optimal algorithms to D- and
A-optimal algorithms with cost constraints. Compared with the classical D- and A-optimal
designs, the extended D- and A-optimal designs strike a balance between maximizing
the precision of parameter estimation and minimizing the experimental cost. For the ED-
optimal algorithm, the objective function is the difference between the logarithm of the
determinant of the information matrix in the classical D-optimal criterion and the weighted
average experimental cost. We provided proof of the monotonicity and convergence of
the algorithm. For the EA-optimal algorithm, the objective function is the sum between
the logarithm of the trace of the inverse matrix of the information matrix in the classical
A-optimal criterion and the weighted average experimental cost. Although there is no
relevant proof in the literature concerning the nature of the algorithm, the simulation results
show that the algorithm performs well. It is worth noting that while this study focuses on
D- and A-optimal designs for linear models, the ideas of the proposed algorithms can be
generalized to other standards and nonlinear models.
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Appendix A

Proof Theorem 1. According to the Kuhn–Tucker condition (Kuhn and Tucker [30]), ŵ is
the optimal solution of (2) if and only if

0 ≥
k

∑
i=1

∂T
∂wi

(wi − ŵi)

=
k

∑
i=1

[∂ log |H(w)|
∂wi

− ci

]
(wi − ŵi)

=
k

∑
i=1

[
trace(xix

′
i H−1(ŵ))− ci

]
(wi − ŵi)

=
k

∑
i=1

[
x
′
i H−1(ŵ)xi − ci

]
(wi − ŵi)

=
k

∑
i=1

[
x
′
i H−1(ŵ)xi − ci

]
wi −

k

∑
i=1

ŵi

[
x
′
i H−1(ŵ)xi − ci

]
=

k

∑
i=1

[
x
′
i H−1(ŵ)xi − ci

]
wi −

k

∑
i=1

trace
(

ŵixix
′
i H−1(ŵ)

)
+

k

∑
i=1

ŵici

=
k

∑
i=1

[
x
′
i H−1(ŵ)xi − ci

]
wi − trace

( k

∑
i=1

ŵixix
′
i H−1(ŵ)

)
+

k

∑
i=1

ŵici

=
k

∑
i=1

[
x
′
i H−1(ŵ)xi − ci

]
wi − p +

k

∑
i=1

ŵici,

for all w(wi ≥ 0, and ∑k
i=1 wi = 1), which implies (6) and (7).

To prove the monotonicity of the sequence {T(w(m))}, we give Lemmas A1–A3.

Lemma A1. For m ≥ 1, w1(m)c1 + w2(m)c2 + · · · + wk(m)ck = w1(m − 1)c1 + w2(m −
1)c2 + · · ·+ wk(m− 1)ck.

Proof. For m ≥ 1, w1(m)c1 + w2(m)c2 + · · ·+ wk(m)ck,

=
k

∑
i=1

wi(m− 1)x
′
i H−1(w(m− 1))xi +

k

∑
i=1

wi(m− 1)ci − p

= trace
(

H(w(m− 1))H−1(w(m− 1))
)
+

k

∑
i=1

wi(m− 1)ci − p

= w1(m− 1)c1 + w2(m− 1)c2 + · · ·+ wk(m− 1)ck.

According to step 3 in Algorithm 1, we can get

w1(m)c1 + w2(m)c2 + · · ·+ wk(m)ck =
k

∑
i=1

wi(m− 1)x
′
i H−1(w(m− 1))xi

+
k

∑
i=1

wi(m− 1)ci − p.
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Further, we have

k

∑
i=1

wi(m− 1)x
′
i H−1(w(m− 1))xi =

k

∑
i=1

wi(m− 1)trace
(

xix
′
i H−1(w(m− 1))

)
= trace

( k

∑
i=1

wi(m− 1)xix
′
i H−1(w(m− 1))

)
= trace

(
H(w(m− 1))H−1(w(m− 1))

)
.

Lemma A2. Let H(w1, ·, wk) =
k
∑

i=1
wixix

′
i, with wi ≥ 0, xix

′
i being a nonnegative definite

matrix on X and |H(w1, ·, wk)| 6= 0; thenm

log |H(w∗1 , ·, w∗k )| − log |H(w1, ·, wk)| ≥
k

∑
i=1

witrace
(

H−1(w1, · · · , wk)xix
′
i

)
log

w∗i
wi

for w∗1 ≥ 0, · · · , w∗k ≥ 0.

Proof. See Gao et al. [8].

Lemma A3. Suppose that w∗ = (w∗1 , ·, w∗k ) and w = (w1, ·, wk), which satisfy
k
∑

i=1
w∗i =

k
∑

i=1
wi,

are two probability vectors in Rk; then,

k

∑
i=1
|w∗i − wi| ≤

[
2

k

∑
i=1

w∗i log
w∗i
wi

] 1
2
.

Proof. See Kullback [31].

Proof Theorem 2.

T(w(m))− T(w(m− 1))

=
[

log |H(w(m))| −
k

∑
i=1

wi(m)ci

]
−
[

log |H(w(m− 1))| −
k

∑
i=1

wi(m− 1)ci

]
= log |H(w(m))| − log |H(w(m− 1))| (by Lemma 1)

≥
k

∑
i=1

wi(m− 1)x
′
i H−1(w(m− 1))xi log

wi(m)

wi(m− 1)
(by Lemma 2)

=
k

∑
i=1

[
wi(m)(p + ci)− wi(m− 1)

k

∑
i=1

wi(m− 1)ci

]
log

wi(m)

wi(m− 1)

=
k

∑
i=1

wi(m)(p + ci) log
wi(m)

wi(m− 1)
− s

k

∑
i=1

wi(m− 1) log
wi(m)

wi(m− 1)

=
k

∑
i=1

tiwi(m) log
tiwi(m)

tiwi(m− 1)
+ s

k

∑
i=1

wi(m− 1) log
wi(m− 1)

wi(m)

≥ 1
2

[ k

∑
i=1

ti|wi(m)− wi(m− 1)|
]2

+
s
2

[ k

∑
i=1
|wi(m)− wi(m− 1)|

]2
(by Lemma 3)

≥ 1
2
(η2 + s)

[ k

∑
i=1
|wi(m)− wi(m− 1)|

]2
≥ 0,

where ti = p + ci, s=
k
∑

i=1
wi(m− 1)ci and η=min{ti} for i = 1, · · · , k.
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To obtain the convergence of the sequence {T(w(m))}, we give Lemma A4.

Lemma A4. H ∈ Rp×p is a nonnegative matrix; then,

|H| ≤
p

∏
i=1

hii,

where hij is the (i,j)-th element in H.

Proof. See Anderson [32].

T(w) = log |H(w)| −
k

∑
i=1

wici ≤ log |H(w)| ≤
p

∑
i=1

log |hii|,

that is, the sequence {T(w(m))} is uniformly bounded and monotonically increasing, so it
is convergent. We have

0 = lim
m→∞

T(w(m))− T(w(m− 1)) = lim
m→∞

log |H(w(m))| − log |H(w(m− 1))|

≥ lim
m→∞

1
2
(η2 + s)

[ k

∑
i=1
|wi(m)− wi(m− 1)|

]2
≥ 0,

which implies w(m)−w(m− 1)→ 0.

Proof Theorem 3. The sequence {w(m)} is convergent, and Gao et al. [8] gave the proof.
Let ŵ = limm→∞ w(m); then,

ŵi = lim
m→∞

wi(m) = lim
m→∞

wi(m− 1)
x
′
i H−1(w(m− 1))xi +

k
∑

i=1
wi(m− 1)ci

p + ci

= ŵi

x
′
i H−1(ŵ)xi +

k
∑

i=1
ŵici

p + ck
,

which implies

x
′
i H−1(ŵ)xi +

k

∑
i=1

ŵici = p + ci f or ŵi 6= 0

and

x
′
i H−1(ŵ)xi +

k

∑
i=1

ŵici ≤ p + ci f or ŵi = 0.

So, the sequence {w(m)} converges to ED-optimality.

Proof Theorem 4. According to the Kuhn–Tucker condition (Kuhn and Tucker [30]), ŵ is
the optimal solution of (4) if and only if

0 ≤
k

∑
i=1

∂G
∂wi

(wi − ŵi)

=
k

∑
i=1

[∂ log(trace(H−1(w)))

∂wi
+ ci

]
(wi − ŵi)
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= −
k

∑
i=1

[ trace(H−1(ŵ)xix
′
i H−1(ŵ))

trace(H−1(ŵ))
− ci

]
wi

+
1

trace(H−1(ŵ))

k

∑
i=1

trace(H−1(ŵ)ŵixix
′
i H−1(ŵ))−

k

∑
i=1

ŵici

= −
k

∑
i=1

[ trace(H−1(ŵ)xix
′
i H−1(ŵ))

trace(H−1(ŵ))
− ci

]
wi

+
1

trace(H−1(ŵ))
trace

(
H−1(ŵ)

( k

∑
i=1

ŵixix
′
i

)
H−1(ŵ)

)
−

k

∑
i=1

ŵici

= −
k

∑
i=1

[ trace(H−1(ŵ)xix
′
i H−1(ŵ))

trace(H−1(ŵ))
− ci

]
wi + 1−

k

∑
i=1

ŵici

for all w(wi ≥ 0, and ∑k
i=1 wi = 1), which implies (8) and (9).

Table A1. Design points, costs, ED-optimal weights, and values of objective function (2) when p = 5.

Design Points Costs Weights Design Points Costs Weights
(k = 8) (k = 8) (k = 8) (k = 12) (k = 12) (k = 12)

(0.92,0.99,−0.77,−0.20,−0.03) 0.97 0.0831 (0.60,0.46,0.98,−0.07,0.48) 0.32 0.0039
(−0.56,0.58,0.58,0.05,−0.07) 0.30 0.1428 (−0.86,0.04,−0.34,0.89,0.44) 0.61 0.1021

(0.45,−0.64,−0.46,0.34,−0.95) 0.43 0.1486 (−0.42,−0.76,0.99,−0.57,0.80) 0.84 0.1537
(−0.75,−0.96,−0.52,0.29,−0.25) 0.40 0.1300 (0.76,0.56,0.86,−0.57,0.75) 0.66 0.1753

(0.75,0.28,0.99,−0.29,0.78) 0.38 0.0929 (0.26,0.32,−0.79,0.78,0.17) 0.18 0.0052
(0.87,0.32,−0.32,0.99,−0.89) 0.43 0.1814 (0.39,−0.48,0.55,−0.24,0.29) 0.76 0.0000

(−0.54,−0.68,−0.05,0.38,−0.98) 0.86 0.0813 (0.95,−0.99,−0.45,0.11,−0.73) 0.45 0.1670
(−0.64,0.88,−0.69,−0.69,0.11) 0.65 0.1399 (−0.55,−0.26,−0.19,−0.95,0.89) 0.21 0.2027

(−0.35,−0.36,−0.28,0.33,0.85) 0.47 0.0714
(−0.19,−0.48,0.64,−0.90,0.09) 0.59 0.0000
(0.77,0.04,−0.92,0.95,−0.31) 0.32 0.1186

(−0.75,−0.06,0.05,−0.82,0.03) 0.84 0.0000

T(w) −7.2778 −5.8847
When p = 5, k = 8, or k = 12, we first generated the design points, costs, and initial weights. According to
Algorithm 1, we could obtain the ED-optimal weights and the corresponding objective function values.

Table A2. Design points, costs, ED-optimal weights, and values of objective function (2) when k = 10.

Design Points Costs Weights Design Points Costs Weights
(p = 3) (p = 3) (p = 3) (p = 6) (p = 6) (p = 6)

(−0.86,0.31,0.75) 0.16 0.0002 (0.23,−0.30,−0.35,−0.98,−0.59,−0.16) 0.47 0.1556
(−0.44,−0.44,−0.65) 0.04 0.0000 (−0.54,−0.22,−0.45,0.15,0.30,0.35) 0.97 0.1362

(0.17,−0.94,0.80) 0.04 0.0927 (0.60,−0.49,−0.94,0.21,−0.35,−0.31) 0.76 0.0851
(−0.43,−0.87,0.70) 0.55 0.1759 (−0.82,1.00,0.04,0.67,−0.66,0.91) 0.83 0.1298
(−0.80,0.96,−0.68) 0.86 0.1610 (−0.71,0.61,−0.67,0.65,0.14,0.85) 0.74 0.0815
(−0.69,0.30,−0.73) 0.27 0.0000 (0.45,−0.70,−0.70,0.69,−0.59,−0.54) 0.36 0.1175
(0.26,0.24,−0.29) 0.28 0.0000 (−0.22,−0.67,0.88,0.50,−0.39,0.60) 0.52 0.1643

(0.21,−0.15,−0.80) 0.36 0.0000 (−0.33,0.25,−0.17,0.49,0.48,−0.04) 0.44 0.0001
(0.36,0.62,0.81) 0.10 0.3208 (0.29,−0.41,−0.21,−0.92,0.30,0.23) 0.41 0.1296

(−0.93,0.63,0.82) 0.61 0.2494 (0.41,−0.93,0.01,−0.36,−0.39,−0.16) 0.69 0.0001

T(w) −2.508 −10.2531
When k = 5, p = 3, or p = 6, we first generated the design points, costs, and initial weights. According to
Algorithm 1, we could obtain the ED-optimal weights and the corresponding objective function values.
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Table A3. Design points, costs, EA-optimal weights, and values of objective function (4) when p = 5.

Design Points Costs Weights Design Points Costs Weights
(k = 8) (k = 8) (k = 8) (k = 12) (k = 12) (k = 12)

(−0.99,−0.95,0.64,−0.47,0.56) 0.40 0.0020 (0.14,0.45,0.11,0.63,0.00) 0.02 0.0000
(−0.42,−0.54,0.19,0.47,−0.05) 0.92 0.0000 (−0.12,−1.00,0.24,0.31,0.75) 0.27 0.0000

(0.01,−0.13,0.39,0.00,0.60) 0.05 0.3003 (−0.03,0.85,−0.56,−0.84,−0.63) 0.96 0.0046
(−0.88,−0.25,−0.77,0.48,0.94) 0.05 0.1719 (0.07,−0.75,0.52,−0.26,0.55) 0.44 0.0000

(0.51,0.46,−0.85,0.98,0.20) 0.49 0.1488 (0.45,−0.17,0.59,−0.90,0.07) 0.24 0.0017
(−0.68,−0.19,0.47,0.10,−0.65) 0.83 0.1320 (−0.83,0.80,0.17,0.27,0.21) 0.61 0.0496
(0.81,0.97,0.01,−0.77,−0.81) 0.23 0.0909 (−0.88,−0.30,0.94,−0.15,0.33) 0.73 0.1503
(0.67,−0.78,0.10,0.04,−0.20) 0.42 0.1540 (−0.53,−0.91,−0.20,−0.69,−0.20) 0.01 0.2335

(0.96,0.66,0.87,−0.72,−0.27) 0.63 0.0338
(0.85,0.38,0.62,0.56,−0.90) 0.40 0.1730

(−0.51,0.41,−0.60,0.51,−0.80) 0.07 0.1868
(−0.40,0.94,0.25,−0.91,−0.73) 0.03 0.1665

G(ŵ) 3.7949 3.0554
When p = 5, k = 8, or k = 12, we first generated the design points, costs, and initial weights. According to
Algorithm 2, we could obtain the EA-optimal weights and the corresponding objective function values.

Table A4. Design points, costs, EA-optimal weights, and values of objective function (4) when k = 10.

Design Points Costs Weights Design Points Costs Weights
(p = 3) (p = 3) (p = 3) (p = 6) (p = 6) (p = 6)

(−0.80,−0.97,−0.26) 0.22 0.2756 (−0.86,−0.88,−0.47,0.76,−0.99,0.90) 0.30 0.1015
(0.14,−0.67,−0.50) 0.86 0.0000 (0.00,0.47,−0.65,0.47,0.95,0.99) 0.02 0.1511
(0.19,0.66,−0.21) 0.81 0.0000 (0.72,0.33,0.91,−0.35,0.44,0.59) 0.34 0.0932
(0.46,−0.30,0.28) 0.98 0.0000 (0.77,0.99,−0.14,0.10,−0.87,0.46) 0.29 0.1367

(0.32,−0.28,−0.02) 0.58 0.0000 (0.29,−0.70,−0.31,−0.45,−0.18,0.35) 0.24 0.2404
(1.00,−0.54,−0.74) 0.20 0.3158 (−0.33,0.78,−0.39,−0.25,0.26,−0.24) 0.75 0.0468

(0.59,0.83,0.57) 0.15 0.0676 (−0.29,−0.01,−0.64,−0.04,−0.77,0.71) 0.58 0.0000
(0.32,−0.08,0.77) 0.33 0.0007 (−0.32,0.80,−0.51,−0.17,−0.47,−0.63) 0.55 0.0756

(0.77,−0.05,−0.17) 0.00 0.0000 (0.75,0.83,−0.32,0.59,−0.22,0.97) 0.70 0.0015
(0.17,−0.51,0.83) 0.70 0.3403 (−0.34,0.28,0.34,−0.54,−0.47,0.41) 0.96 0.1533

G(ŵ) 2.2659 3.6571
When k = 10, p = 3, or p = 6, we first generated the design points, costs, and initial weights. According to
Algorithm 2, we could obtain the EA-optimal weights and the corresponding objective function values.

Table A5. The average number of iterations and average elapsed time of the ED-optimal algorithm.

k p Average No. of Iterations (s.d.) Average Elapsed Time in Sec. (s.d.)

10 4 76.6(46.0) 0.024(0.015)
5 52.7(27.8) 0.019(0.011)
8 21.6(11.1) 0.008(0.009)

20 4 93.8(55.5) 0.079(0.054)
5 71.0(28.6) 0.062(0.033)
8 43.4(9.0) 0.038(0.011)

10 35.1(7.2) 0.031(0.011)
15 18.3(6.8) 0.017(0.010)

30 4 99.8(58.5) 0.127(0.079)
5 70.5(23.0) 0.096(0.037)
8 53.7(13.6) 0.065(0.015)

10 39.1(6.5) 0.050(0.011)
15 27.4(3.0) 0.040(0.011)
20 18.6(3.4) 0.033(0.010)
25 9.0(4.1) 0.022(0.013)
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Table A5. Cont.

k p Average No. of Iterations (s.d.) Average Elapsed Time in Sec. (s.d.)

40 4 104.7(53.2) 0.179(0.092)
5 84.5(34.7) 0.137(0.060)
8 60.5(16.4) 0.107(0.028)

10 45.3(7.3) 0.078(0.014)
15 31.0(2.7) 0.062(0.010)
20 23.2(1.5) 0.056(0.009)
25 18.3(2.8) 0.050(0.010)
30 10.7(3.6) 0.038(0.013)

The table gives the average number of iterations and the average running time in seconds for 50 simulations of
the proposed Algorithm 1, with the standard deviation in parentheses.

Table A6. The average number of iterations and average elapsed time of the EA-optimal algorithm.

k p Average No. of Iterations (s.d.) Average Elapsed Time in Sec. (s.d.)

10 4 52.4(24.2) 0.052(0.031)
5 47.0(22.2) 0.044(0.022)
8 17.7(7.5) 0.019(0.012)

20 4 91.2(52.6) 0.144(0.079)
5 81.3(41.3) 0.154(0.065)
8 42.2(10.5) 0.088(0.026)

10 30.5(7.5) 0.062(0.017)
15 15.2(6.3) 0.030(0.014)

30 4 94.6(48.6) 0.270(0.145)
5 86.8(30.8) 0.252(0.102)
8 55.4(15.0) 0.164(0.041)

10 40.8(7.5) 0.124(0.029)
15 24.6(4.2) 0.084(0.018)
20 14.3(3.8) 0.064(0.019)
25 9.0(1.9) 0.046(0.014)

40 4 112.7(52.4) 0.425(0.186)
5 89.8(38.2) 0.379(0.143)
8 56.5(12.1) 0.231(0.061)

10 46.1(8.7) 0.19(0.04)
15 27.8(4.0) 0.135(0.021)
20 19.3(2.6) 0.112(0.018)
25 12.6(3.1) 0.093(0.023)
30 8.7(2.1) 0.082(0.021)

The table gives the average number of iterations and the average running time in seconds for 50 simulations of
the proposed Algorithm 2, with the standard deviation in parentheses.
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