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Abstract: As an image-segmentation method based on graph theory, GrabCut has attracted more and
more researchers to pay attention to this new method because of its advantages of simple operation
and excellent segmentation. In order to clarify the research status of GrabCut, we begin with the
original GrabCut model, review the improved algorithms that are new or important based on GrabCut
in recent years, and classify them in terms of pre-processing based on superpixel, saliency map,
energy function modification, non-interactive improvement and some other improved algorithms.
The application status of GrabCut in various fields is also reviewed. We also experiment with some
classical improved algorithms, including GrabCut, LazySnapping, OneCut, Saliency Cuts, DenseCut
and Deep GrabCut, and objectively analyze the experimental results using five evaluation indicators
to verify the performance of GrabCut. Finally, some existing problems are pointed out and we also
propose some future work.
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1. Introduction

Image segmentation is the basic technology of image processing. In most applications,
there will be no correct image analysis results without correct image segmentation; that is,
the accuracy and efficiency of segmentation directly affect the subsequent processing results.
Therefore, it is one of the hot research directions in image processing and computer vision.

Although a variety of segmentation algorithms have been proposed, there is no general
method that works well for any type or any target image. There are six commonly used
image-segmentation techniques [1]: level set, threshold-based segmentation, edge-based
segmentation, region-based segmentation, energy functional-based segmentation and
graph-based segmentation. GrabCut is a segmentation method based on graph theory.

In 2004, GrabCut was proposed by Rother et al. based on Graph Cuts [2]. GrabCut can
perform image segmentation with little and simple user interaction. The user only selects
the foreground and background with a rectangular region. After obtaining the color space
of the foreground and background through this incomplete labeling method, the Gaussian
mixture model (GMM) [3] is established to obtain the regional terms. The boundary term is
obtained using the Euclidean distance between neighborhood pixels. The energy function
is constructed using the regional term and the boundary term. Finally, the GMM parameter
replaces the minimum estimate in Graph Cuts to achieve energy minimization.

With the development of GrabCut in the past ten years, researchers have proposed
many improved GrabCut algorithms such as GrabCut based on superpixels, GrabCut based
on saliency detection, constrained Markov random field (MRF) models based on modified
energy functions, etc. Various improved algorithms have achieved remarkable results in
different aspects. Meanwhile, because of its superiority, graph theory has been widely
applied in many fields (e.g., medical image analysis, agriculture and animal husbandry, etc.)
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with good performance. We searched on the Web of Science with the keyword “GrabCut”.
Figure 1 shows a significant growing trend for GrabCut from 2004 to 2022. Therefore, it is
necessary to review the research progress and status of GrabCut.

The main contributions of this paper are as follows. First of all, the relevant important
references published in the past few years are sorted out carefully. For improved GrabCut
models, we mainly focus on GrabCut based on superpixel, GrabCut based on salient object
segmentation, GrabCut based on modified energy function and non-interactive GrabCut.
For its applications, we focus on its application in medical imaging and also summarize
its application in other fields, e.g., object detection and recognition, video processing,
agriculture and animal husbandry, etc. To illustrate the performance of GrabCut, we also
conduct comparative experiments with existing typical methods.

The rest of the paper is organized as follows. Section 2 reviews the models of Graph
Cuts and GrabCut. Section 3 reviews and summarizes the improved GrabCut algorithms
that have been relatively novel or important in recent years. Section 4 classifies and
summarizes the application of GrabCut. In Section 5, some typical algorithms are employed
to compare their performance, some of the problems are pointed out and future work on
GrabCut in discussed. In Section 6, we summarize this paper. In Section 7, we propose the
future work and challenges.
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Figure 1. Number of relevant papers published from 2004 to 2022.

2. GrabCut Model

The GrabCut model is an algorithm based on graph theory. After the weighted undi-
rected graph is obtained, the GMM is used to obtain the regional term through the points
and edges of the graph, and the Euclidean distance between the pixel pairs is calculated
to obtain the boundary term. The sum of the regional term and the boundary term is the
energy function, which is a form of Markov random field (MRF) [4]. The optimization
of the energy function is actually the optimization of Gibbs energy [5]. GrabCut is an
improvement of Graph Cuts based on MRF theory and the maximum flow minimum cut
algorithm. The following section introduces the GrabCut model in detail.

GrabCut is an improved algorithm for Graph Cuts through iterative methods, mainly
for color images [2]. Figure 2 shows two examples of GrabCut segmentation. Input an
image with n pixels, and let the set of all pixels on the image be P. A set of all unordered
pairs {p, q}(p ∈ P, q ∈ P) of neighboring elements in P in the neighborhood system
is denoted as N. For example, N may contain the neighboring pixels of all unordered
pairs under a standard 8- (or 26-) neighborhood system. Let the binary vector A =
{A1, A2, A3, · · · , Ap, · · · , An}, where Ap is the assignment of pixel p in set P, with 0 for the
background and 1 for the foreground. As shown in Figure 3, an undirected graph ς = 〈υ, ε〉
is created from the input image. The node υ of the graph corresponds to the pixel p ∈ P of
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the image, and there are two additional nodes: the foreground terminal (a source S) and
the background terminal (a sink T). Their relationship is as follows.

υ = P
⋃
{S, T}. (1)

Then, the soft constraints on the boundary and regional properties of the graph are
described by the energy function E(A, k, θ, P),

E(A, k, θ, P) = U(A, k, θ, P) + V(A, P), (2)

where U is a regional term, indicating a penalty that a pixel belongs to the foreground or
the background (the negative logarithm of the probability that the pixel belongs to the
foreground or the background). V is a boundary term indicating a penalty term between
two neighboring pixels p and q. As shown in Figure 3, for the cutting process of GrabCut,
the actual meaning of the energy function can be visually seen. The red edge and the blue
edge represent the regional term U, and the thickness of the edge represents the weight of
the edge, that is, the value of U. The yellow edge represents the boundary term V. Similarly,
the thickness of the edge represents the weight of the edge, that is, the value of V. The red,
yellow and blue edges are cut using energy minimization (the green dotted line is cut).

(a) (b) (c) (d)

Figure 2. Two examples of GrabCut. (a) Original image, (b) Segmentation result, (c) Original image,
(d) Segmentation result.
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Figure 3. S-T diagram of the GrabCut segmentation process.

Among them, the energy expression of the regional term U is as shown in Equations (3)–(5),
where π represents the weight of each Gaussian component, µ represents the mean vector of
each Gaussian component, ∑ represents the covariance matrix of each Gaussian component
and Ip represents the pixel of point p.

U(A, k, θ, P) = ∑
p∈P

D(Ap, kp, θ, p), (3)
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D(Ap, kp, θ, P) =− log π(Ap, kp) +
1
2

log det ∑(Ap, kp)

+
1
2
(

Ip − µ(Ap, kp)
)T ∑(Ap, kp)

−1(Ip − µ(Ap, kp)
)
,

(4)

θ = {π(A, k), µ(A, k), σ(A, k)}, A = 0, 1; k = 1, · · · , K. (5)

GrabCut models the foreground and the background in the RGB space with a full
covariance GMM of K Gaussian components (typically K = 5) [3]. This gives an extra
vector k = {k1, · · · , kp, · · · , kn}, in which kp(kp ∈ {1, · · · , K}) is the Gaussian component
corresponding to the pixel p. All pixels belong to either the foreground or the background.

The Gaussian mixture density model is as shown in Equations (6) and (7):

D(x) =
K

∑
i=1

πigi(x, µi, σi), where
K

∑
i=1

πi = 1, 0 ≤ πi ≤ 1, (6)

g(x, µ, σ) =
1√

(2π)d|σ|
exp

(
−1

2
(x− µ)Tσ−1(x− µ)

)
. (7)

Therefore, taking the negative logarithm is the form shown in Equation (4). Each
Gaussian component in the GMM has three parameters, namely the weight π, the mean
vector µ and the covariance matrix σ in Equation (5) (because there are three channels
of RGB, µ is a three-element vector, σ is 3 × 3 matrix). Regardless of the foreground or
the background θ, the first determination of these three parameters is achieved using the
K-means algorithm [6]. The K-means algorithm clusters the foreground or the background
into K kinds of pixels and finds the weighted, averaged and covariance matrix for each
pixel. When these three parameters of each pixel are obtained, each Gaussian component
θ is obtained. When these three parameters are determined, the RGB color values of the
pixels in the image can be substituted into the foreground or the background GMM. It can
find the probability that each pixel belongs to the foreground and the background and find
the regional term of the energy, that is, the weight of S and T to the edge of pixel p in
the image.

The weight of the edge between pixels p and q, that is, the boundary term V, is
shown in Equation (8).

V(A, P) = γ ∑
{p,q}∈N

[Ap 6= Aq] exp
(
−β‖Ip − Iq‖2

)
. (8)

The boundary term V is a penalty for continuity between each two neighborhood
pixels p and q. In the case where the two pixels in the neighborhood have a small difference,
they are likely to belong to the same foreground or the same background, so the energy is
large. On the other hand, in the case where the two pixels in the neighborhood differ greatly,
they are likely to belong to different categories; that is, in the edge portion, the energy
is small, and it is easy to be segmented. In RGB space, the Euclidean distance between
two pixels is usually calculated to objectively measure the similarity. The image contrast
determines the parameter β. If the image contrast is low, the difference between the two
pixels is small and the result of calculating ‖Ip − Iq‖ is small, so the larger value of β can be
used to enlarge the result. Contrarily, if the contrast of the image is relatively high, then the
difference between the two pixels is very large, and the result of calculating ‖Ip − Iq‖ is
very large. It is also possible to use the method of changing the β value, using a smaller
value of β to narrow the result so that the boundary term V works in any situation. Here,
after many experiments, the constant γ = 50 is ideal. The weight of the yellow edge in
this figure can be determined using Equation (8), the object image can be obtained, and the
energy can be minimized. In order to obtain the minimum value of the energy function,
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the iterative process is used to optimize the GMM parameters of the foreground and the
background to obtain better segmentation results.

The procedures of GrabCut are given as follows.
Step 1: Input the image. The user selects the label region U′ with a rectangular region

to initialize the foreground. The region inside U′ is all the foreground objects F′, and the
region outside U′ is all the background region B′.

Step 2: For each pixel p, p ∈ F′ assign a label Ap = 1 to the pixel p. p ∈ B′; assign a
label Ap = 0 to pixel p.

Step 3: Using the K-means clustering algorithm, the foreground object region F′ and
the background region B′ are respectively clustered into K kinds of pixel.

Step 4: The GMMs of the foreground and the background are initialized with the
two sets of labels Ap = 0 and Ap = 1, respectively (the GMM of the foreground and the
background, respectively, have K Gaussian components), and the parameters (π, µ, σ) of
the two GMMs are obtained.

Step 5: Substituting each pixel p in the foreground object region F′ into the two
obtained GMMs, the probability that the pixel belongs to the foreground object region
and belongs to the background region, respectively, are obtained (the one with the highest
probability is most likely to generate the pixel p, that is, the Gaussian component kp of
the pixel p). The probability takes the form of a negative logarithm to obtain the regional
term F.

Step 6: The Euclidean distance (i.e., the two norms) between every two neighboring
pixels in the foreground region F′ is calculated and the boundary term V is obtained.

Step 7: the minimum value of energy min E(A, k, θ, P) is obtained using the maximum
flow minimum cut algorithm. The calculated result is again assigned to the set of pixels
Ap = 0 and Ap = 1 in the foreground object region F′.

Step 8: Repeat steps 4 through 7 until the convergence and output image.
It is worth noting that one important aspect of the GrabCut algorithm is the use of

GMMs to model the foreground and background regions. The GMMs provide a proba-
bilistic model that allows the algorithm to estimate the likelihood of a pixel belonging to
the foreground or background based on its color and texture features. This probabilistic
approach improves the accuracy of the segmentation compared to traditional threshold-
based approaches.

Additionally, the iterative nature of the algorithm allows it to refine the segmentation
mask over multiple iterations, resulting in a more accurate segmentation of the object
of interest.

3. Improved GrabCut

GrabCut may suffer from a greedy problem when optimizing, which leads to falling
into a local optimum instead of the global optimum. At the same time, there are some other
problems, such as the time-consuming operation of the algorithm, the need to improve
the accuracy of complex image segmentation, and the limitation of the applicability of
interactive segmentation. Researchers have proposed different improved algorithms for
different problems of GrabCut. The main improvement based on superpixel is to improve
the speed of GrabCut. The improvements based on saliency are mostly aimed at reducing
errors of segmentation or achieving automatic segmentation. In order to solve the problem
of interactive segmentation and improve the practicability, many non-interactive GrabCut
variations are proposed. The improvement of modifying the energy function is to reduce
the complexity of solving the energy function or improve the segmentation accuracy.
In addition to these, there are other improvements. The following will be described
in detail.

3.1. GrabCut Based on Superpixel

Superpixels divide a pixel-level map into district-level maps and extract valid infor-
mation from each region, such as color histograms and texture information. The method of
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obtaining superpixel segmentation belongs to over-segmentation in image segmentation.
Pre-segmentation using superpixel segmentation and GrabCut processing will greatly
improve the efficiency of GrabCut. For example, a 400 × 300 image is divided into 400 su-
perpixels. If we use the 400 superpixels to build the nodes of the graph, and then use
GrabCut, the calculation speed will be greatly improved. So far, in the field of image
processing, a variety of superpixel segmentation methods have been proposed and used
for GrabCut pre-segmentation that have improved the efficiency of the algorithm, such as
watershed, MeanShift, simple linear iterative clustering (SLIC), etc. [7–9].

Li et al. first proposed LazySnapping, which uses superpixels instead of pixels as
GrabCut nodes [10]. The algorithm pre-segments the image with a watershed to obtain a
superpixel map. The color mean of each superpixel region is then found, which will repre-
sent each superpixel. GrabCut is then used to cut the image, but only use matting (finding
the foreground and background colors and the degree of fusion between them to facilitate
merging the foreground onto a new background), without using the input bounding box.
Because the nodes are greatly reduced, the efficiency is significantly improved and the time
complexity is greatly reduced. Watershed is a mathematical morphology segmentation
method based on topological theory. The gradient of the image is used as the input of the
watershed segmentation, as in Equation (9), where f (·) is the image information and grad(·)
is the gradient operation.

G(x, y) = grad( f (x, y)) =
√
( f (x, y)− f (x− 1, y))2 + ( f (x, y)− f (x, y− 1))2. (9)

Figure 4 shows two examples of the LazySnapping method. Figure 4a shows two
input images. Figure 4b is the over-segmented result of watershed. Figure 4c shows the
result of artificial labelling. Figure 4d shows two mask images of the segmentation results.

(a) (b) (c) (d)

Figure 4. Results of LazySnapping. (a) Original images, (b) Watershed images, (c) Labelled images,
(d) Segmentation mask.

Because the watershed can effectively improve GrabCut, many scholars have used
different superpixel segmentation algorithms to emulate it, and various algorithms superior
to watershed improvement have been obtained. An et al. proposed an improved method
for pre-segmentation using simple linear iterative clustering (SLIC) [11]. Because SLIC
has a fast processing speed, the number of superpixels can be adjusted, and the size of
the formed superpixels is substantially uniform, a compact superpixel map can be quickly
obtained and the edge segmentation of the target is more detailed than the watershed.
Because it solves the problem that the watershed segmentation region is not strong enough
and the block boundary does not fit the original boundary of the object well, it becomes the
main method of GrabCut pre-segmentation.

The core of the SLIC algorithm is Equations (10)–(12). The image is converted to
CIELAB space to obtain the ith pixel ci = [li, ai, bi, xi, yi]

T , where li, ai and bi are metrics on
color and xi, yi are spatial metrics. The color distance from the point to the jth superpixel
center cj = [li, ai, bi, xi, yi]

T is given by Equation (10). Then, the distance of the pixel space
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is obtained with Equation (11), and finally the distance measurement ds with the center of
the superpixel is obtained with Equation (12).

dlab =
√
(lj − li)2 + (aj − ai)2 + (bj − bi)2, (10)

dxy =
√
(xj − xi)2 + (yj − yi)2, (11)

ds = dlab +
m
S

dxy. (12)

Similarly, SLIC is also used for pre-processing. Ren et al. improved GrabCut by
using the SLIC algorithm twice and Bayesian classifications [12]. First, this method uses
SLIC to obtain the superpixel map, then performs a Bayesian classification and assigns
the same pixel value to the same type of superpixel block. SLIC is performed on the
classified image, then GrabCut is used and finally the boundary is optimized. The algorithm
effectively integrates Bayesian classification and SLIC features, solves the segmentation
degradation phenomenon when the number of superpixels is small and obtains a more
robust segmentation performance.

Li et al. improved GrabCut by creating fast adaptive trimaps (FATs) after using SLIC
to extract superpixels for GrabCut [13]. First, GrabCut is used on the basis of the superpixel
level, and the obtained results are used to create FATs; that is, the GrabCut operation is
performed again using the corrosion and expansion to obtain the unknown region. Finally,
if the result does not converge, a matting processing is performed to segment more accurate
results for complex images.

At present, manual monitoring of the healing process of trauma regions is very inac-
curate and subjective. Silva et al. proposed a method to automatically segment ulcers in
digital images [14]. Three methods of region segmentation using the superpixel strategy
were evaluated from which color and texture descriptors were extracted. After the super-
pixel classification, the GrabCut segmentation method was applied in order to delineate
the region affected by the ulcer from the rest of the image.

In order to obtain a robust segmentation under a loose bounding box, Wu et al. pro-
posed SuperCut [15]. Instead of pre-processing with mainstream SLIC, the algorithm uses
SEEDS [16] to calculate superpixels. For superpixels that pass through the bounding box,
the outer pixels are treated as absolute backgrounds, and the pixels inside are considered
the most likely background. The Haar-wavelet feature and pixel intensity are used to com-
pare each pixel in the bounding box with each pixel outside the bounding box, calculate
the similarity mapping factor, and design a filter. Finally, the GrabCut segmentation is
performed by training the GMM model. The similarity factor is given by Equation (13).
χ

j
F is the feature index of the jth foreground superpixel, χ

j
B is the feature index of the jth

background superpixel and Θ is the difference of the two superpixels on the feature index
χ. Even if the ratio of the foreground to the bounding box is low, which means that the
bounding box contains a large background area, the method still achieves a good overlap
and becomes more flexible.

Sχ(F, B) =
j=d

∑
j=1

Θ
(

χ
j
F, χ

j
B

)
. (13)

MeanShift is also used for pre-processing. Long et al. proposed a method for pre-
segmenting images using MeanShift to obtain a superpixel map and then performing
subsequent processing [17]. Each of the resulting superpixel regions is represented by a
color histogram, replacing the previous method using only the color mean. The improved
algorithm replaces the mean value of the superpixel by using the color histogram of the
superpixel, and more effectively utilizes the color information of the superpixel, thereby
obtaining a more accurate segmentation result.
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Combining the saliency, region growth and multi-dimensional feature based on su-
perpixels, Zhou et al. proposed the superpixel segmentation and GrabCut-based salient
object segmentation algorithm [18]. The saliency map is obtained using the minimum
barrier distance transform saliency map, and the superpixel map is obtained with SLIC.
Seven-dimensional features (three-channel RGB, saliency map, local binary pattern (LBP),
x, y) are extracted at the superpixel level.

Fj
x =

1

Ic|Rj
S|

∑
i∈Rj

S

xi, (14)

Fj
y =

1

Ir|Rj
S|

∑
i∈Rj

S

yi, (15)

Fj
sm =

1

255|Rj
S|

∑
i∈Rj

S

Si, (16)

Fj
L =

1

255|Rj
S|

∑
i∈Rj

S

Li, (17)

Fj
I =

1

255|Rj
S|

∑
i∈Rj

S

Ii. (18)

In Equations (14)–(18), |Rj
S| represents the number of pixels in the jth superpixel, Ic

and Ir represent the height and width of the input image, respectively, and x, y, S, L and I
represent the corresponding x and y coordinates, saliency map, LBP and average of each
color space channel, respectively. Therefore, the obtained Fj

x, Fj
y, Fj

sm, Fj
L and Fj

I are the
central coordinates of x and y, the average value of the saliency map, the average value
of the LBP and the average value of each color space, respectively. The purpose of this
method is to maintain a high level of precision in the segmentation.

The above work enables researchers to have a clear understanding of the influence
of superpixel algorithms on GrabCut. In summary, SLIC will perform better than other
superpixel algorithms in general, and at the same time, the process of image segmentation
is transformed from the pixel level to the superpixel level, which reduces the computational
complexity, but the segmentation quality is not outstanding.

3.2. GrabCut Based on Salient Object Segmentation

Salient object segmentation refers to simulating a person’s visual characteristics
through an intelligent saliency-detection algorithm, detecting a salient region in the image
(a region of human interest) and separating the salient regions from the background in the
image. Classical saliency-detection algorithms [19] play an important role in the field of
computer vision, so they have become a hot spot for many scholars.So far, a number of new
and efficient saliency-detection algorithms have been proposed. It is an important direction
of improving GrabCut to effectively segment the object through saliency detection and
then apply it to GrabCut.

Fu et al. first proposed applying saliency detection to GrabCut, calling their method
Saliency Cuts [20]. The algorithm first reduces the resolution of the input image, uses
saliency detection to obtain a saliency image and binarizes the saliency image. The region
where the binary image is 1 is scaled down and labeled as a foreground seed, and then ex-
panded to form a ring area labeled as a background seed. The leftmost and rightmost pixels
of the image are labelled as background seeds. After obtaining the seed, GrabCut is used
to segment the object. The innovation of this algorithm is mainly to realize the automatic
segmentation of GrabCut, which does not require artificially incompletely labeled seeds.
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Figure 5 shows two examples of segmentation using Saliency Cuts. Figure 5a,c shows
two input images. Figure 5b,d shows two mask images of the segmentation result.

(a) (b) (c) (d)

Figure 5. Results of Saliency Cuts. (a) Original image, (b) Segmentation mask, (c) Original image,
(d) Segmentation mask.

Although Saliency Cuts implements automatic segmentation, which avoids the mis-
handling of newcomers when using GrabCut, the limitations and instability of automated
segmentation remain unresolved. Kim et al. proposed an improved algorithm that also
solved human errors in operation [21]. They first use saliency detection based on the
superpixel level to obtain a saliency map robustly and quickly. Then, the Otsu threshold
segmentation algorithm is used to merge the saliency regions outside the ROI (region of
interest) selected by the user into the ROI, thereby obtaining the modified ROI. The algo-
rithm refines the initialization information provided by the user and improves the accuracy
of GrabCut.

Li et al. used an adaptive three-threshold algorithm to mark saliency images to improve
Saliency Cuts [22]. Here, the salient map is divided into four kinds of seeds with three
thresholds, namely, determining a foreground, determining a background, a possible
foreground, and a possible background. The selection of the threshold is mainly obtained
with Equations (19)–(21), where tm is the threshold, nt and nb are the number of foreground
and background pixels, n is the number of pixels in the entire image, i is a saliency value, ni
is the number of pixels with a saliency value of i and µt and µb are the mean saliency values
of Tb and Tt, respectively, which are defined by Equation (20). Four kinds of seeds are
obtained and fed to GrabCut for high-quality Saliency Cuts.

tm = arg max ∑ ωtωb(µt − µb)
2, (19)

µk = ∑
i∈Tk

ini
nk

, k ∈ {b, t}, (20)

{
ωt =

nt
n , nt ∈ n

ωb = nb
n , nb ∈ n.

(21)

For the first time, Cheng et al. proposed a saliency model based on global region
contrast (RC) and combined it with GrabCut to form a new segmentation method called
SaliencyCut [23]. SaliencyCut first uses the region-based contrast (RC) algorithm to obtains
a salient map, then use threshold processing to mark the seeds of the foreground, back-
ground and unknown regions and feeds it to GrabCut. Each iteration of the segmentation
updates the labels using erosion and dilation. The area outside the expanded area is labeled
as the background seed, the area within the corroded area is labeled as the foreground
seed and the remaining areas are labeled as unknown areas. Compared with the typical
saliency-detection algorithm, the saliency model proposed in this algorithm introduces
spatial information and obtains a better saliency map. It is one of the better ones among
the current saliency-detection algorithms. Since then, many scholars have also improved
GrabCut by using RC for saliency detection.
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Similarly, Gupta et al. obtained the saliency map from the saliency detection with
simple priors algorithm through low-level prior information [24]. After GrabCut and edge
detection, the salient text information on the natural image is extracted. For remote sensing
images, Peng et al. chose the ITTI visual attention model to generate saliency maps as the
initialization of GrabCut [25].

Combining superpixel, saliency and background connectivity, Niu et al. proposed
a new algorithm for two-GrabCut segmentation [26]. It is different from the previous
algorithm, which uses only the saliency detection as the initial marker seed. They obtained
a saliency map and a background connectivity graph on a superpixel basis, and based on
the results of these two graphs, the seeds were labeled using the adaptive three-threshold
algorithm in ref. [22]. The seed is fed to the GrabCut at the superpixel level. The segmen-
tation result retains the seed of the initial tag. To improve the computational efficiency, a
rectangular area that contains only the foreground of the segmentation is manually cropped.
New marking results are then obtained using erosion and dilation. Finally, pixel-level
GrabCut is applied to refine the segmentation results.

Among them, the background connectivity uses the saliency optimization algorithm,
and the main equations are Equations (22) and (23). Ns represents the number of superpixels
and δ(·) = 1 represents the superpixel on the image boundary; otherwise, it is 0. σclr is the
parameter of the Gaussian distribution, and dgeo(p, q) is the geodesic distance of any two
superpixels (p, q).

BndCon(p) =

Ns
∑

i=1
S(p, q)δ(q ∈ Bnd)√

Ns
∑

i=1
S(p, q)

, (22)

S(p, q) = exp

(
−

d2
geo(p, q)

σ2
clr

)
. (23)

In order to solve the problem that prompts are fixed in Saliency Cuts, Wang et al.
proposed an adaptive Saliency Cuts [27]. This study mainly proposes a Saliency Cuts
framework that can adapt to different input information, and the energy function of the
framework is modified. There is no difference to Saliency Cuts when only the salient
information is used as input information. For the saliency information and color as input
information, the new energy function is Equation (24). For saliency information, color
and depth information as input information, the new energy function is Equation (25).
Among them, E(L, Ks, θs, Zs) is the energy function obtained by the saliency map in Grab-
Cut, and the boundary term is obtained using the Euclidean distance. E(L, Kc, θc, Zc) is
the energy function obtained by the color in GrabCut and the boundary term is obtained
using the Euclidean distance. E(L, Kd, θd, Zd) is the energy function obtained by the depth
information in GrabCut, and the boundary term is obtained using the geodesic distance. α
and β are parameters for combination.

E′ = αE(L, Ks, θs, Zs) + (1− α)E(L, Kc, θc, Zc), (24)

E′′ = αE(L, Ks, θs, Zs) + βE(L, Kc, θc, Zc) + (1− α− β)E(L, Kd, θd, Zd). (25)

In GrabCut based on salient object segmentation, the algorithm is enhanced by incor-
porating a saliency map that highlights the most visually distinctive parts of the image.
The above algorithms can effectively solve the problem of GrabCut’s interactive operation
by saliency detection. The GrabCut algorithm based on salient object segmentation can
produce more accurate and visually pleasing segmentations compared to the standard
GrabCut algorithm, especially in images with complex backgrounds or multiple objects.
However, the conversion process from the saliency map to the foreground and background
seeds still requires manual intervention and is not fully automated.
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3.3. GrabCut Based on Modified Energy Function

GrabCut shows excellent segmentation because it establishes GMM model for the
regional term of the energy function and solves the optimization with parameter learning
through iteration. However, because the energy function optimization of GrabCut is NP-
hard, the disadvantages of GrabCut also appear as the complexity of the image to be
processed increases. In the case where a high-resolution image needs a long time to iterate,
the segmentation performance may not be ideal. Therefore, many scholars have proposed
an optimized scheme for the energy function of GrabCut.

Vicente et al. proposed using a higher-order MRF to obtain a new energy function [28].
The algorithm first uses the color histogram instead of the GMM to avoid the ill-posed
problem of the GMM. The energy function is reconstructed using a higher-order MRF,
and the new energy function is optimized using the dual-decomposition [29] technique to
achieve global optimization. Among them, the energy function formed by the higher-order
MRF is given by Equations (26)–(30), where ns

k represents the number of pixels falling into
bin k and belonging to the label s.

E(x) = ∑
k

hk(n1
k) + ∑

{p,q}∈N
wpq|Ap − Aq|+ h(n1), (26)

wpq =
λ1 + λ2exp− β||zp − zq||2

dist(p, q)
, (27)

hk(n1
k) = −n1

k log

(
nk − n1

k
n1

k

)
− (nk − n1

k) log

(
n1

k
nk − n1

k

)
, (28)

h(n1) = n1 log
(

n− n1

n1

)
− (n− n1) log

(
n1

n− n1

)
, (29)

ns
k = ∑

p∈P
δ(Ap − s). (30)

In order to improve the optimization speed of GrabCut, Tang et al. proposed a fast
global optimal binary segmentation technique, OneCut, by modifying the energy function
of GrabCut [30]. OneCut uses L1-norm to measure the appearance overlap penalty, which
replaces the original region of the GrabCut algorithm with L1-norm and solves the NP-hard
problem. The calculation of L1-norm is given by Equation (31), where θS is the appearance
model with label s. EL1(θ

s, θs) is incorporated and optimized using one graph cut with
Equation (32), ns

k is the number of pixels falling into bin k and having label s, and Ω is a
collection of all pixels. OneCut can completely separate the foreground and background
for simple images. For an image with a complex background, although the outline of the
image can be drawn more accurately locally, it is difficult for a complete image outline.
Often, where the color changes suddenly, the OneCut algorithm works generally.

EL1(θ
s, θ s̄) = −‖θs − θ s̄‖L1 , (31)

EL1(θ
s, θ s̄) =

K

∑
k=1

min(ns
k, ns̄

k)−
1
2
|Ω|. (32)

Figure 6 shows two examples of segmentation using OneCut. Figure 6a shows two
input images. Figure 6b shows the result of artificial labelling. Figure 6c shows two mask
images of the segmentation result.
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(a) (b) (c)

Figure 6. Results of OneCut. (a) Original images, (b) Labelled images, (c) Segmentation mask.

Inspired by co-segmentation, Gao et al. proposed mutual GrabCut [31]. Co-segmentation
refers to the segmentation of a common foreground from a similar set of images. In this
model, a rectangular box with a fixed distance from the edge of the image is automatically
set for the similar image. Because the foreground model with similar images is used as a
constraint, the selection of the foreground does not need to be too compact. The foreground
similarity constraint for similar images is added to the regional term of the energy function.
A new energy function is designed by considering the similarities of the foreground and
background of this group of co-segmentation images, respectively. The new regional term
is given by Equation (33), where D1 evaluates the fit of the label Al

p to pl and D2 evaluates
the similarity of the foreground.

U(Al , kl , θ1−l , Pl) =

 ∑
p∈P

(
λD1(Al

p, kl
p, θl , pl) + (1− λ)D2(Al

p, k1−l
p , θ1−l , pl)

)
, Al

p = 1

D1(Al
p, kl

p, θl , pl), otherwise.
(33)

At the same time, Zhou et al. proposed four technical components to improve the
algorithm [32]. First, the algorithm combines the texture information of the input image
and uses the result of the texture detection to enhance the original image with Equation (34).
Iij is the original image and tij is the texture image, which are added by the coefficient
α. Second, the boundary term of the energy function is modified in combination with
the structural tensor, where the structural tensor is given by Equation (35) and Q(x, y)
is defined as a 3× 3 window from V in the paper. The new boundary term is given by
Equation (38), where λ+ and λ− represent the maximum and minimum characteristics of S,
respectively, and κ is a global parameter. Third, the foreground and background input from
the user and the segmentation results are delivered to the adapted active contour to refine
the initial segmentation. Fourth, it can refine the segmentation results again using local
boundary editing. The algorithm can precisely segment various images containing textures
through multiple components and produce smooth contours aligned with real boundaries.

vij = (αIij, (1− α)tij), (34)

S(x, y) =

 ( ∂Q(x,y)
∂x )2 ∂Q(x,y)

∂x
∂Q(x,y)

∂y
∂Q(x,y)

∂x
∂Q(x,y)

∂y ( ∂Q(x,y)
∂y )2

, (35)

ws(vij, vkl) = λ+(i, j)
λ+(i, j)

λ−(i, j) + ε(λ+(i, j)− λ−(i, j))
(k− i, l − j)S(i, j)

(
k− i
l − j

)
, (36)

st(vij, vkl) =
κ

2
(ws(vij, vkl) + ws(vkl , vij)), (37)
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Eb(A) = ∑
(ij,kl)∈N

(1− δ(Aij, Akl))
1

dist(vij, vkl)
exp(−st(vij, vkl)). (38)

In 2015, Cheng et al. proposed DenseCut [33], which uses a densely connected
conditional random field (CRF) to replace the time-consuming iterative refinement of
the global color model in traditional GrabCut. First, in order to achieve efficient GMM
estimation, color histograms are employed to select the most frequent color portions for
GMM training data samples. Then the efficient CRF inference is used to perform effective
label consistency modeling and the energy function is modified with Equation (39) so
that the boundary complexity of the new energy function is linear with the number of
pixels. 1/Zp is a normalization factor that constrains Q(Ap), and l is a binary label with
l, l′ ∈ {0, 1}. w is the weighting factor and θα, θβ, θγ and θµ control the degree of nearness,
similarity and smoothness, respectively. In the paper, the value of w1 = 6, w2 = 10, w3 = 2,
θα = 20, θβ = 33, θγ = 3 and θµ = 43 according to the experience. The last term of
Equation (39) is rewritten by adding and then subtracting Qp(l′) to obtain Equation (45),
where ∑

q∈P
g(p, q)Qq(l′) is essentially a Gaussian filter. The algorithm achieves a large

increase in speed in the case of obtaining a more accurate segmentation result.

Qp(Ap = l) =
1

Zp
exp

(
∑
p 6=q

g(p, q)Qq(l′)− ψp(Ap)

)
, (39)

ψp(Ap) = − log PAp , (40)

g(p, q) = w1g1(p, q) + w2g2(p, q) + w3g3(p, q), (41)

g1(p, q) = exp

(
−|p− q|2

θ2
α
−
|Ip − Iq|2

θ2
β

)
, (42)

g2(p, q) = exp

(
−|p− q|2

θ2
γ

)
, (43)

g3(p, q) = exp

(
−
|Ip − Iq|2

θ2
µ

)
, (44)

∑
p 6=q

g(p, q)Qq(l′) = ∑
q∈P

g(p, q)Qq(l′)−Qp(l′). (45)

Figure 7 shows two examples of segmentation with DenseCut. Figure 7a,c are input
images. Figure 7b,d are two mask images of the segmentation result.

(a) (b) (c) (d)

Figure 7. Results of DenseCut. (a) Original image, (b) Segmentation mask, (c) Original image,
(d) Segmentation mask.

Similarly, Guan et al. proposed an improved GrabCut algorithm by changing the input
cues and modifying the energy functions [34]. First, a rectangular bounding box is drawn,
as in ref. [35]. Inside the bounding box is the content that needs to be processed, and the
outside of the bounding box is the content that does not need to be processed. This is to
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reduce the image and speed up the calculation. Then the rectangle is used to select a part of
the object while trying to include all the colors of the object. Then, by modifying the energy
function, the regional term is modified to Equation (46), where Φ refers to the probability
distribution, and the paper takes the normal distribution for calculation. The calculations of
the mean µ and variance σ of the normal distribution are given by Equations (47) and (48),
respectively. NF is the number of foreground pixels and NPF is the number of background
pixels. Finally, the boundary of the segmentation result is drawn using edge detection and
the excess boundary is deleted to obtain the final segmentation result.

Rp(Ap) = − ln
(
‖Ap − µ‖Φ

)
, (46)

µ =
1

NF + NPF

(
∑

p∈F
⋃

PF
Ap

)
, (47)

σ =
1

NF + NPF

(
∑

p∈F
⋃

PF
(Ap − µ)(Ap − µ)T

)
. (48)

Yong et al. used pixel values to construct a compact structure tensor that improved
GrabCut [36]. The algorithm extracts texture information using nonlinear compacted
structural tensor (NCST) and extracts color information using pixel values. In order
to improve the simplicity and efficiency of the calculation, the mixed Gaussian model
constructed using GrabCut is extended to the tensor space, and the common Riemann
metric is replaced by the Kullback–Leible (KL) divergence (that is, the measurement method
of GMM has changed, a new energy function is obtained, and the convergence criteria
have also changed). The NCST is given by Equation (49), and the KL distance between
point m and point n in the NCST is given by Equation (50). In the NCST space, the original
GrabCut energy construction is updated to Equation (54) with KT GMM components, each
component having a mean MT , a variance σ2

T and a weight ςT . (A, j) represents the jth
GMM component of label A, τ is a constant, βT is an adaptive value and |O| is the number
of pairs of pixels. The energy function iteratively segments to satisfy the convergence
of Equation (56), stopping the iteration. LΛ represents the tensor obtained at the Λth
iteration, and N f g,κ and Nbg,φ represent the κth component of the foreground GMM and
the φth component of the background GMM, respectively. The algorithm realizes the
non-parametric fusion of texture information and color information.

TC =

[
D̂xx D̂xy
D̂xy D̂yy

]
, (49)

Z(TC, TM) =

√
1
4
(tr(T−1

P TM + T−1
M TP)− 4), (50)

σ2
T =

1
|ΩT |

|ΩT |

∑
i=1

Z2(Ti, M̄T), (51)

ϕ =

{
1, αm 6= αn

0, αm = αn
, (52)

βT =

(
2
|O| ∑

1≤m,n≤N
Z2(Tm, Tn)

)−1

, (53)



Mathematics 2023, 11, 1965 15 of 41

E(A) = ∑
u∈U

(
−lb

KT

∑
j=1

(
ςT(A, j)

2πσ2
T(A, j)

exp

(
−Z2(Tu, MT(A, j))

2σ2
T(A, j)

)))
+ ∑

1≤(m,n)≤N
ϕ
(

ςTZ−1(Tm, Tn) exp
(
−βTZ2(Tm, Tn) + τ

)), (54)

LT(N f g,κ‖Nbg,φ) =
1
2

(
lb
(σbg,φ)

2

(σf g,κ)2 + lb
(σf g,κ)

2

(σbg,φ)2 − 1

)
, (55)

‖LΛ − LΛ−1‖2 ≤ σ‖L1 − L0‖2. (56)

In general, GrabCut interactions cannot select objects tightly. Yu et al. proposed an
algorithm for dealing with bounding boxes loosely covering objects called LooseCut [37].
The algorithm allows the energy function to include an additional energy term to en-
courage consistent labelling of similar pixels with Equations (57) and (58). Among them,
EGC is the original energy function, and ELC is the new label consistency term. For the
iterative optimization of the GMM, the global similarity constraint is added with the
Equations (59) and (60). Among them, µi

f is the mean of the ith Gaussian component of

the foreground GMM, µ
j(i)
b is the mean of the jth Gaussian component of the background

GMM and Sim(M f , Mb) is the global similarity constraint. The Sim(M f , Mb) must satisfy
the constraints of Sim(M f , Mb) ≤ δ during the iteration.

E(A, θ) = EGC(A, θ) + βELC(X), (57)

ELC(A) = ∑
k

∑
p∈Ck

φ(Ap 6= ACk ), (58)

S(Mi
f , Mb) =

1

|µi
f − µ

j(i)
b |

, (59)

Sim(M f , Mb) =

K f

∑
i=1

S(Mi
f , Mb). (60)

In order not to rely on more prior information, Long et al. proposed a method of
pre-segmenting image with MeanShift and modifying the energy function [17]. Each of the
resulting superpixel regions is represented by a color histogram, replacing the previous
method using only the color mean. The boundary term in GrabCut replaces the Euclidean
distance by using the Bhattacharyya coefficient. Finally, the results obtained are edge
optimized. Among them, Equation (61) is a new energy function and Equation (63) is a
boundary term. The Bhattacharyya coefficient is obtained using the color histogram of
every two superpixels. H represents the color histogram and Z represents the size of the
color histogram.

E(A) = ∑
p∈P

R(Ap) + ∑
(p,q)∈N

|Ap − Aq|B(Ap, Aq), (61)


R(Ap = 1) = Υ, R(Ap = 0) = 0, ∀p ∈ F
R(Ap = 1) = 0, R(Ap = 0) = Υ, ∀p ∈ B
R(Ap = 1) = ρ(p, O), R(Ap = 0) = ρ(p, B), ∀p ∈ U,

(62)

B(Ap, Aq) = λρ(p, q), (63)
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Υ = 1 + max
p∈P

∑
j:{p,q}∈N

ρ(p, q), (64)



ρ(p, F) =
Z
∑

k=1

√
Hp(k)HF(k)

ρ(p, B) =
Z
∑

k=1

√
Hp(k)HB(k)

ρ(p, q) =
N
∑

k=1

√
Hp(k)Hq(k),

(65)

In addition, He et al. proposed a unified GrabCut model that combines feature ex-
traction with optimized segmentation and multi-scale decomposition [38,39]. The model
consists of two parts, smoothing and segmentation, which complement each other. Seg-
mentation relies on a smooth multi-scale appearance. It uses the total variation (the image
is iteratively smoothed, but the edge information remains) to maintain the geometry of
the foreground and achieves a smooth effect for segmentation. Combining multi-scale
edges and appearance, a new Gibbs energy function (seen Equation (66)) is proposed for
segmentation, where p′ is the pixel of the smoothed image.

E(u) =
λ

2

∫
P
(Ip′ − Ip)

2dP +
∫

P
|∇Ip′ |dP. (66)

Most improved GrabCut algorithms improve its performance using optimizing func-
tions. To some extent, the accuracy is improved, but it makes improved GrabCut more
complex and requires more computation. Some other algorithms do not effectively change
the Gibbs energy function. In addition, some algorithms easily fall into a local optimum.

3.4. Non-Interactive GrabCut

Although GrabCut has excellent segmentation ability, the application of this algorithm
is narrowed because of the requirement of artificial interaction. Therefore, there is no way
to meet the requirements of some fully automatic applications. Therefore, the improvement
of GrabCut and the introduction of high-quality non-interactive GrabCut have become a
key issue in the research on this algorithm.

Among them, Fu et al. first proposed the application of saliency detection to GrabCut,
which realized the automatic segmentation of non-manually assigned tags [20]. Similarly,
studies [22,23] also achieved the automatic segmentation effect of GrabCut through the
saliency-detection algorithm.

Fu et al. implemented an improved algorithm using a pre-trained Deep Convolutional
Neural Network (DCNN) combined with GrabCut [40]. Through a lot of training, the object
type on the image is automatically recognized, and the recognition result of DCNN is used
as the object of GrabCut. The trimap is initialized using the selective search method and
the DCNN, and finally, GrabCut segmentation is performed. The algorithm has difficulty
achieving ideal segmentation for images of multiple objects, but deep learning may solve
this problem. Halil et al. used the advanced Yolov3 model [41] instead of DCNN [42].
The advantage is that the deep model has a strong learning ability and can recognize
multiple objects on the image. The author applies this method to dermoscopic images.

In addition, Zhang et al. proposed an improved GrabCut algorithm based on a proba-
bilistic neural network (PNN) [43]. The algorithm replaces the Gaussian mixture model
in the GrabCut algorithm with a PNN model to calculate the weight of t-links to improve
the calculation efficiency of the algorithm. The results show that the segmentation accu-
racy of the PNN GrabCut algorithm can improve the problems of under-segmentation
and over-segmentation.

Kim et al. implemented an adaptive region of interest selection algorithm using the
depth image extraction GrabCut mask [44]. The algorithm uses GrabCut to segment the
depth image to obtain the depth segmentation mask. It then performs morphological
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operations on the depth segmentation mask to zoom in and out. The area outside the zoom
in is used as the background, and the area inside the zoom out is used as the foreground.
Finally, the three-channel GMM is converted to a four-channel GMM, that is, the conversion
from RGB channels to RGB-D channels with depth information. The algorithm adaptively
selects the region of interest, effectively suppressing the error detection of the foreground.
However, to process the depth image, manual interaction process is actually needed,
and real non-interaction is not realized.

Sanguesa et al. implemented an improved algorithm for the initial segmentation of
the foreground using four different colorimetric methods [45]. In the literature, four types
of color differences are used for segmentation. These color differences are the intensity
difference, Euclidean difference, color distortion and CIEDE2000 (a uniform measure of
color difference). The foreground is then initially extracted using threshold segmenta-
tion, and finally GrabCut segmentation is performed based on the initial extraction. All
four methods have obtained a good automatic segmentation effect, but have not been
experimentally analyzed on images affected by natural light.

The calculation of the intensity difference is given by Equation (67), the images are
converted into grayscale, and then, one image is subtracted from the other using an absolute
value. The calculation of the Euclidean difference is given by Equation (68), which is
computed in the RGB colorspace like a normal difference between vectors. The calculation
of the color distortion is given by Equations (69)–(73). The calculation of CIEDE2000 is
given by Equations (74)–(76), where ∆L′, ∆C′ and ∆H′ are the differences between pixels in
their corresponding channels; SL, SC and SH are compensation terms; kL, kC and kH are
weighting factors that depend on the application; and RT is the hue-rotation term.

Idi f = |I
gray
f g − Igray

bg |, (67)

Ieuclidian =
√
(IbgR − I f gR)2 + (IbgG − I f gG)2 + (IbgB − I f gB)2, (68)

‖Ixt‖2 = I2
f gR + I2

f gG + I2
f gB, (69)

‖Ivt‖2 = I2
bgR + I2

bgG + I2
bgB, (70)

〈Ixt , Ivt〉2 = (IbgR I f gR + IbgG I f gG + IbgB I f gB)
2, (71)

I2
p2

=
〈Ixt , Ivt〉
‖Ivt‖

, (72)

IcolorDist =
√
‖Ixt‖2 − I2

p2
, (73)

C∗ab =
√

a∗2 + b∗2, (74)

h∗ab = arctan
b∗

a∗
, (75)

I∆E∗00
=

√(
∆L′

kLSL

)2
+

(
∆C′

kCSC

)2
+

(
∆H′

kHSH

)2
+ RT

∆C′

kCSC

∆H′

kHSH
. (76)

In order to segment clothing images, Deng et al. used a combination of face detection
and edge detection to realize an automatic segmentation algorithm for clothing [46]. First,
the position of the face is obtained using face detection, and then the position of the clothing
is roughly positioned and a rectangular frame of the clothing area is roughly obtained.
Then the edge-detected canny operator further refines the position of the image foreground



Mathematics 2023, 11, 1965 18 of 41

area to make the four sides closer to the edge of the garment. After finalizing the exact
boundaries, GrabCut is used to segment the garment.

Khattab et al. use Orchard–Bouman [47] clustering technology to initialize Grab-
Cut [48]. Orchard–Bouman is a clustering technique using color quantization that uses the
eigenvectors of the color covariance matrix to determine good clustering. The algorithm
uses the unsupervised Orchard–Bouman clustering technique to initialize the cluster fore-
ground and background, generate the GMM with the clustered foreground and background
pixels and finally execute non-interactive GrabCut. Robust and accurate segmentation is
provided by Orchard–Bouman clustering, so the effect of initial clustering on segmentation
is very important.

Similarly, they also use SOFM [49] clustering technology to initialize and improve
GrabCut [50]. First, the foreground and background pixels are clustered using the SOFM
clustering technique, the GMM is generated using the foreground and background pixels
obtained by clustering and finally GrabCut segmentation is performed.

They also improved GrabCut using K-means and Fuzzy C-means (FCM) [51] as new
clustering techniques [52]. Similarly, the clustered foreground and background pixels are
generated into a GMM, and finally the GrabCut segmentation is performed. They compared
these different clustering techniques and found that using K-means for clustering and then
performing GrabCut has the best accuracy.

Ye et al. replaced the interaction of GrabCut by combining saliency detection and
preset meshing [53]. The algorithm first reduces the input image to increase the speed
of the operation. The input image is then divided into 14× 14 grids, it is determined
by saliency detection whether each grid contains the foreground area, and the grid is
pre-labeled as foreground and background. Then the image resolution is adjusted to
reduce the amount of data and GrabCut segmentation is performed. Finally, the result is
converted into a binary image, and the mathematical morphology method is used instead
of matting to further smooth the boundary, reduce noise and solve the problem of the target
boundary roughness.

Sun et al. designed a GrabCut model of the visual attention mechanism for apple
images [54]. The model uses the graphic-based visual saliency GBVS algorithm to obtain
the automatic input of the adaptive rectangle. The author also uses Ncut segmentation
to solve the problem of identifying overlapping fruits and realizes instance segmentation.
However, it is particularly important for the algorithm to design an appropriate initial
recognition model, and it is impossible to avoid manually adjusting some parameters.

Non-interactive GrabCut is an image-segmentation algorithm that automatically sepa-
rates foreground objects from the background in an image without requiring any user input.
It is an extension of the original GrabCut algorithm that relies on user-defined scribbles to
initialize the segmentation process. The non-interactive version of the algorithm works by
first generating an initial segmentation based on color and texture cues, which are com-
puted using a Gaussian mixture model. The initial segmentation is then refined iteratively
using Graph Cuts to minimize an energy function that considers both appearance and
spatial information. The energy function is based on a Markov random field model that
captures the spatial relationships between pixels in the image. It considers the likelihood of
each pixel belonging to the foreground or background, as well as the smoothness of the
boundary between the two regions. The non-interactive GrabCut algorithm is particularly
useful for segmenting large datasets where manual annotation would be impractical. It
has been successfully applied to a wide range of applications, including medical imaging,
video surveillance and image editing.

However, the accuracy of the segmentation results can be limited by the quality of
the initial segmentation, which is based on color and texture cues. The algorithm may
not perform well on images with ambiguous object boundaries or poor contrast between
the object and background. The segmentation results may be sensitive to the choice of
parameters, which can require some tuning for optimal performance.
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3.5. Others

In addition to the above classifications, there are many researchers who have improved
GrabCut from different perspectives. Deshpande et al. proposed an image-segmentation
technique using MRI images [55]. This technique use two algorithms, including random
walks and GrabCut in One Cut to deal with complexity in texture, indistinct and/or noisy
object boundaries, lower contrast, etc. Jiang et al. proposed a fully automatic segmentation
method [56] accomplished using an objective object-weight detection and modified GrabCut
segmentation. This method is developed only based on the inherent image features and can
be applied to different scenarios. Hua et al. proposed a GrabCut color-image-segmentation
algorithm based on ROI [35]. The user selects the ROI by dragging the rectangle, and the
GrabCut algorithm is only used for the ROI. That is, the ROI area is initially selected
with a rectangular input box, the pixels outside the ROI area are discarded pixels, and the
pixels within the ROI continue to select the object through a rectangular input box for
GrabCut segmentation. This algorithm reduces the complexity of the image because it
greatly reduces the pixels in the image. For complex background images, the new algorithm
is less expensive and more accurate than GrabCut. However, for the case where the object
accounts for a large proportion of the image, the segmentation effect is not satisfactory.

Sallem et al. improved GrabCut with RGB-D images based on appearance and geo-
metric criteria [57]. For the depth information of the RGB-D image, the normal is changed
where the plane changes. The parallelism of the normal direction is a good regional manda-
tory criterion, and the strong change of the edge is a clear indication of the boundary. Then,
by modifying the Orchard–Bouman clustering technique, it is used to account for changes
in color and normal.

Wu et al. expressed the interactive segmentation problem as a Multiple Instance
Learning (MIL) [58] task and proposed MILCut [59]. The algorithm uses SLIC to obtain a
superpixel map of the input image, using MIL on a superpixel basis. The bounding box of
the user input is reduced to a certain range to make the bounding box and the foreground
more compact, and the slices in the bounding box are taken as the positive bags. The
bounding box is extended to a certain range so that it does not contain the foreground at all,
and the slices outside the bounding box are taken as the negative bags. After obtaining the
positive and negative bags, the regional term of the energy function is obtained according
to the probability map of MIL.

Lee et al. proposed an improved GrabCut algorithm that uses clustering techniques
to reduce the image noise [60]. The algorithm uses a median filter to filter the original
image to reduce the noise, then uses the K-means algorithm to cluster the quantized image,
and the quantized image is used for the conventional GrabCut of foreground segmentation.

In order to solve the redundancy problem of n-links construction, Niu et al. proposed
an improved algorithm for dynamically constructing n-links [61]. When the image is ini-
tialized, the algorithm only constructs the t-links of the regional term without constructing
n-links of any adjacent pixels. The traditional algorithm searches for the pixels belonging
to the source node and calculates all the paths of the maximum flow as the starting node
when the maximum flow is calculated. The algorithm first searches for all pixel nodes
located at the foreground and background boundaries as the search start node. Once there
is a start node to search, n-links are built between the explored and undetected pixel nodes.
Each n-link is constructed only once, and the algorithm will determine if n-links have been
constructed before constructing new n-links between two pixel nodes.

Lu et al. proposed an improved algorithm based on GrabCut and GMM for medical
images to obtain simplified interaction and a better segmentation accuracy [62]. The algo-
rithm obtains the parameters of the foreground and background GMM in advance through
the collated training set (the image size, window width, window level and biopsy position
are adjusted to be consistent on the same type of medical image). A mask of the same
size as the image is then created where each point α on the mask corresponds to each
pixel. α = (01)2 represents the foreground, α = (11)2 represents the possible foreground,
α = (00)2 represents the background and α = (10)2 represents the possible background.
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When testing, the mask is used, the parameters of the GMM are obtained using the training
set and the user’s brush interaction (without the rectangular input box), the GMM is up-
dated and finally the segmentation result is obtained. The improved algorithm simplifies
the interactive operation of GrabCut and is suitable for medical images.

Rajchl et al. proposed training a neural network classifier to improve GrabCut given
an image dataset labelled with weak annotations, named DeepCut [63]. The labelled weak
annotation of DeepCut is a bounding box, replacing the GMM with a convolutional neural
network (CNN) model and solving it on a densely connected CRF. Compared to GrabCut,
the algorithm uses the transfer learning and reinitializes the CNN using the parameters
of the last iteration, rather than recalculating the model. The algorithm is easy to apply to
medical images.

Lee et al. used depth sensors to improve GrabCut for human segmentation [64]. First,
a depth sensor is used to obtain depth image and skeleton information is obtained from the
depth image. The resulting skeleton is then projected onto the color image as a shape prior.
The skeleton information is used to obtain the prior probability that the pixels around the
skeleton belong to the background or belong to the foreground (pixels close to the skeleton
belong to the foreground with a large probability, and pixels far from the skeleton belong
to the background with a large probability).

Xu et al. considered the inconsistency of the bounding box, combined GrabCut’s
interactive mode with deep learning and proposed a new segmentation method [65]. This
method uses a rectangle as a soft constraint and transforms it into a Euclidean distance map.
By concatenating the image and the distance map as the input and predicting the mask
as the output, the convolutional codec network is trained end-to-end. This method can
have a correct output even when the rectangle is not accurate. At the same time, the author
develops the network to a curve-based input and applies the network to instance-level
semantic segmentation.

Figure 8 shows two examples of segmentation using Deep GrabCut. Figure 8a shows
two input images. Figure 8b shows the result of artificial labelling. Figure 8c shows two
mask images of the segmentation result.

(a) (b) (c)

Figure 8. Results of Deep GrabCut. (a) Original images, (b) Labelled images, (c) Segmentation mask.

4. GrabCut Applications

With the development of computer technology and the widespread application of
computer vision principles, computer image-processing technology has occupied an in-
dispensable position in many fields. Image-segmentation technology is the basis of many
image-processing technologies, so it is very important to choose image-segmentation
technology that meets the needs and has a superior performance.

Interactive GrabCut can effectively extract objects from complex background images.
The algorithm has a high segmentation precision and high execution efficiency, and the
amount of interaction is very small. The operation is simple and can be applied to images
in various fields.
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4.1. Medical Images

In medical images, information extraction is a key step, and it is a research hotspot
in disease diagnosis, surgical planning and the evaluation of treatment effects. The foun-
dation and basic task of information extraction on medical images is image segmentation.
However, due to various noise interferences and artifacts in medical imaging processing,
as well as the diversity of pathologies, there are many difficulties in many aspects.

The formation of medical images is greatly affected by medical imaging devices and
external environmental noise, resulting in blurred boundaries of medical images, making it
difficult to identify subtle structures and achieve a medical diagnosis. In addition, small
changes in the same target at different modalities and imaging angles can vary greatly in
the imaging results. Moreover, some organs or cells in medical images may overlap with
each other. The spatial complexity is higher than that of ordinary natural images. Objects
also have small changes in different individuals. For the above problems, the analysis
framework of medical images needs to be established for different image content and
analysis tasks, so as to achieve the role of assisting doctors in observation.

Segmentation is the primary task of analyzing medical images, but, as already men-
tioned, there are many interfering factors in medical images. It is difficult to obtain perfect
results using the existing image-segmentation methods. However, the advantages of Grab-
Cut combined with various image-processing methods are applied to medical images,
which can obtain ideal effects and solve the problems of cumbersome manual operation
and low efficiency. It is one of the most popular applications of GrabCut.

It is difficult to segment the regions of interest from magnetic resonance imaging (MRI)
and X-ray computed tomography (X-ray CT) images because of their high complexity,
blurred boundaries and rich noise. At the same time, manual segmentation is not feasible
in terms of time and cost. Ref. [66] proposes an interactive segmentation framework called
MIST (Medical Image Segmentation Tool) and develops software for experimentation
with the existing segmentation method. The framework automatically generates a binary
mark image of the region of interest using mathematical morphology and then inputs the
generated mark image as a mask into GrabCut to generate an output image. At the same
time, users can use matting to further refine the region of interest, which provides accurate
results for most medical images. This method is suitable for medical image segmentation
with low real-time performance, and there is still room for improvement in efficiency.

Similarly, for the segmentation puzzle of medical images, ref. [62] pre-obtains the
parameters of the foreground and background GMM through the collated training set.
Subsequently, GrabCut is initialized using the GMM and the segmentation result is obtained
through the user’s brush interaction. The proposed algorithm simplifies the interaction and
accelerates the convergence speed of the model. However, this requires a medical image
dataset for training as a premise. As we all know, the acquisition of medical image data is
not easy and may be expensive.

Cardiovascular disease is one of the prime causes of death worldwide, and cardiac
fibrosis is key in the development of heart disease. The degree of white fibrosis in the ap-
pearance of the heart plays an important role in the diagnosis of and research on myocardial
infarction. There are many existing segmentation technologies to segment heart images and
extract relevant information, but each has its own advantages or disadvantages. In ref. [67],
GrabCut is used to segment heart images, then the segmentation result is combined with
the equalization of the heart map using the fuzzy clustering algorithm FCM, and finally, the
threshold processing and the morphological operation are used. A segmentation map with
clear myocardial ischemia is obtained. The algorithm demonstrates a good segmentation
ability in the area of myocardial ischemia/myocardial infarction, which is easy to identify
by visually inspection but is difficult to recognize, while being robust to low-quality pho-
tographs produced by cardiac motion. This is important for helping future clinical research
or assessing the risk of heart attack.

The automation of white blood cell (WBC) detection and counting brings convenience
to doctors. However, due to the different shapes and sizes of WBCs, which are prone to
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deformation, and some external factors, the segmentation of WBC images has a certain
challenge. In ref. [68], an algorithm for automatically selecting white blood cell regions
and using GrabCut segmentation is proposed. In the selection of the white blood cell area,
the Canny operator is used for edge detection, and the edge density of the rectangular
regions in different size ranges is scored. Similarly, the scores are based on color differences,
and the combination of the two is more likely to be white blood cells. In the segmentation of
white blood cells, the selected region is iteratively segmented as a mask of GrabCut, and the
selected small region (nuclear region) is replaced with cytoplasmic pixels. The result of
each iteration of the segmentation is expanded to iteratively split again. Compared to
segmentation based directly on the original input image, the proposed framework can
effectively avoid adverse effects from background factors such as red blood cells (RBC)
and platelets. However, some parameters of the method proposed in the literature are set
experimentally, without considering the existence of the optimal value of the parameter
and the adaptability to different datasets. In addition, the experiment did not consider the
overlapping of WBC.

Figure 9 shows two examples of WBC segmentation using GrabCut. Figure 9a,c are
two input WBC images. Figure 9b,d are images segmented using GrabCut (images from
CellaVision dataset).

(a) (b) (c) (d)

Figure 9. Results of WBC segmentation. (a) Original image, (b) Result of GrabCut, (c) Original image,
(d) Result of GrabCut.

Ultrasound tomography (UST) images for risk assessment after breast segmentation
are one of the primary means of breast cancer screening and also play a key role in cancer
treatment. Several segmentation algorithms for UST images have been developed today,
but usually require a lot of time and excessive manual interaction and are not suitable
for large-scale research. To overcome these problems, ref. [69] proposes a method called
AUGC for automatically segmenting UST images. First, the input UST image is enhanced
in contrast, edge detection is used to obtain the edge of the breast and then the convex hull
searching algorithm is used to obtain the point where the polygon protrudes. A closed
breast edge is obtained using curve fitting, and finally the closed edge is segmented as a
mask of GrabCut. The algorithm shows a good performance in UST image segmentation,
which greatly reduces the segmentation time.

Similarly, for the effective segmentation of breasts in UST images, ref. [70] proposes
a three-dimensional GrabCut (GC3D) algorithm for breast segmentation. The algorithm
needs to artificially place several points between the circular transducer and the breast
boundary, then uniformly generate nine points between adjacent pairs of points using the
Hermite cubic curve interpolation and finally connect all the points in order and generate a
mask. The mask is supplied to GrabCut. At the same time, the mask is also provided to
other slices of the UST image to save time and energy. GC3D achieves a good performance
in an acceptable amount of time, saving the time for doctors to perform manual breast
segmentation. This method has the potential to be fully automated when the position of
the circular transducer is fixed.

For dermoscopic images, it is difficult to detect and classify skin lesions because of
the variety of morphological features and the complexity of histopathological changes.
In addition, skin lesion images have various colors with abrupt boundaries and pseudo-
features, which make image segmentation more difficult. In ref. [71], filtering techniques
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are used to remove noise from this type of image, and then skin lesions are segmented
using GrabCut. Finally, the skin lesion area is obtained using K-means clustering and
post-processing. The difference between this algorithm and most segmentation algorithms
is the use of GrabCut, which uses edge and region information to locate global lesions.
Then K-means fine-tunes the localized area to the segment lesion area, effectively extracting
the skin-lesion area. At the same time, there is a certain problem that when the lesion
exceeds the boundary, the detection result sometimes misses part of the lesion area.

In processing dermoscopic images, Halil et al. also proposed a new method [42].
They first used the DullRazor algorithm to remove the hair’s effect on the lesion, then
detected the lesion area through the Yolov3 depth model and segmented it using GrabCut,
and finally used morphological operators for post-processing to obtain the skin-lesion area.
This method cannot detect lesions when they are low-contrast or the lesion area occupies
the entire image surface, because the Yolov3 model does not learn these types of data.
Therefore, a large and diverse dataset is the key to the success of the algorithm.

Due to the corrosion resistance, high melting point and high hardness of teeth, den-
tal biometric technology plays an important role in modern forensic science. One of the
main steps in personal tooth identification is the complete segmentation of dental images.
Ref. [72] uses a morphological opening operation on dental X-ray images and GrabCut
to obtain contour images and crown images of the teeth, respectively. The contour image
of the teeth and the crown image are combined to obtain a complete image of the tooth
segmentation. The algorithm can segment the complete teeth image in the case of uneven
gray-scale distribution and teeth connected with other parts. The limitation is also ob-
vious. When the gray value of the image does not change much, the final result easily
appears incomplete.

The synapse is the structural basis of the functional activities of the nervous system.
The information transmission between functional neurons must have a mature synaptic
structure. Therefore, it is of great significance to learn about the relevant factors of synapse
formation and its mechanism of action. The verification of synapses in electron microscopy
(EM) requires much heavy and repeated manual work, so automatic synaptic reconstruction
pipelines are essential for analyzing large amounts of brain tissue. In ref. [73], in order to
avoid an incorrect distinction between the synaptic gap and membrane, the presynaptic
membrane is considered as background information, while the postsynaptic membrane and
synaptic gap are considered as a whole, and then the famous deep network Faster R-CNN
is used to locate the synapse. A z-continuity screening method is used for the output of the
deep network in order to improve the detection accuracy. In fine segmentation, the Dijkstra
algorithm is used to obtain the optimal path of the synaptic gap, and then fed to GrabCut
for fine segmentation. Finally, ImageJ is used to display the three-dimensional structure of
the synaptic crack. The algorithm improves the detection accuracy, ensures the accuracy of
segmentation, improves the efficiency of synaptic verification and facilitates the analysis of
connectomics and synaptic plasticity.

Frants and Agaian proposed an extended GrabCut image-segmentation algorithm
for foreground/background dermoscopic image-segmentation applications [74]. The al-
gorithm integrates octree color quantization and a modified GrabCut method with a new
energy function. This method effectively solves the automatic skin-lesion segmentation
problem and has great significance for the precise diagnosis of skin cancer. To address the
problems associated with detecting low-grade tumors and CSF fluid leaks in the initial
phase of brain cancer, Saeed et al. proposed a new framework of the hybrid k-nearest
neighbors model that is a combination of the hybridization of Graph Cut and support
vector machines and a hidden Markov model of the K-means clustering algorithm [75].
They used a GrabCut segmentation method, which is the application of the Graph Cut
algorithm, and extracted the data with a scale-invariant features transform. In conclusion,
this model gives better results than existing models.

MRI images play an important role in the diagnosis of childhood chronic kidney
disease (CKD), providing a more comprehensive kidney anatomy and function assessment,
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which is usually necessary for the diagnosis of CKD. Ref. [76] proposes a fully automated
kidney segmentation technique for the assessment of glomerular filtration rate (GFR)
in children. This method uses GrabCut for time-resolved 3D DCE-MRI data sets. A
random forest classifier further divides the kidney tissue into the cortex, medulla and
collection systems. The automatic segmentation method has a similar effect to the manual
segmentation on the GFR estimation. However, when the medulla clusters are more
than one cortical thickness apart, the algorithm may fail to automatically segment due to
labelling the kidneys incorrectly.

4.2. Non-Medical Images

In addition to its wide application in medical images, GrabCut has become an applica-
tion hotspot in many other fields because of its excellent graphics-segmentation capabilities.

4.2.1. Applications in Object Detection and Recognition

It is an important task for the intelligent monitoring system to detect abandoned
objects in public. In the field of target detection, Liang et al. proposed a simple and
effective calibration guidance scheme to solve the problem of target detection in the aviation
field [77]. To detect camouflaged objects, Hongwei Zhu et al. present a novel boundary-
guided separated attention network (call BSA-Net) [78]. BSA-Net utilizes two-stream
separated attention modules to highlight the separator between an image’s background and
foreground. The results show that BSA-Net has an obvious detection effect on camouflaged
objects. To solve the problem of complex background and poor imaging quality in target
detection, Bin Kang et al. proposed a simple yet effective calibrated-guidance scheme
to enhance channel communications in a feature-transformer fashion that can adaptively
determine the calibration weights for each channel based on the global feature-affinity
correlations [79]. The results show that this method has a strong performance trend
in directional target detection and horizontal target detection. There are huge hidden
dangers in abandoned objects, such as luggage and backpacks, which may be dangerous
objects placed by terrorist attackers deliberately. In ref. [80], a new framework for the
automatic detection of abandoned objects is proposed. In order to obtain an accurate
target in the frame, the author uses GrabCut to obtain the precise detection result after
obtaining the boundary box of the abandoned object. The detection system does not need
to add a tracking mechanism and can obtain robust and accurate results in a complex and
real environment.

Vision-guided remote robots are typically used to perform tasks such as crawling
and categorization in various environments that contain unfamiliar objects in addition
to matching libraries. Therefore, breaking the traditional algorithm to create templates
for unfamiliar objects is an important research direction. Ref. [81] proposes the use of
a superpixel algorithm to obtain the superpixel map of an image captured by a robot
and then remotely artificially divide the target with GrabCut to create the target and a
template for later matching. This method can replace a large number of tasks, such as
grabbing and sorting, and release the operator’s workload. At the same time, GrabCut at
the superpixel level separates objects from texture-rich backgrounds, reducing iterations
and time consumption.

The automatic identification of seabirds using machines is helpful to monitor the
activity areas and rules of seabirds in the wild. However, automatic recognition is difficult
because of different lighting, complex backgrounds or different directions and postures of
birds. For the automatic identification method of seabirds, ref. [82] introduces GrabCut to
segment seabird units from complex backgrounds. Then, by combining the global features,
such as the shape, texture and color, and local features such as SIFT, it overcomes the
difficulty of identification caused by various postures and directions. Finally, based on their
integrated features, the seabirds are identified using a combined classifier. This method
does not require annotations of bird body and attribute vocabulary and also achieves a
better performance.



Mathematics 2023, 11, 1965 25 of 41

Figure 10 shows three examples of seabird segmentation using GrabCut. Figure 10a–c
are seabird images in flight, standing and swimming positions, respectively and the
corresponding GrabCut segmented images (images from MSRA10K dataset [23]).

(a) (b) (c)
Figure 10. Results of seabirds segmentation. (a–c) Original images and results of GrabCut.

Icing on the transmission line may cause ice flashing of the insulator, collapse of the
tower, tripping of the transmission line, and other accidents. Therefore, serious ice forma-
tion on transmission lines will have serious consequences. However, there is no suitable
way to represent and evaluate the icing conditions between insulator sheds. Ref. [83]
studied image-processing method to detect natural icing on glass insulators. By identifying
the convex defects of the contour of the icing insulator string based on GrabCut, the calcu-
lation method of the pattern spacing and the pattern cantilever is proposed to estimate the
icing degree of the entire insulator string. This method, due to the superior segmentation
performance of GrabCut, easily identifies icing conditions from significant changes in the
pattern spacing and pattern overhang.

In a natural scene, the text or character area is the area with the most significant
semantics, which conveys important information about the image. However, text or
character detection is still a challenging research problem. Ref. [24] uses GrabCut based
on salient regions to segment regions containing text content, then uses the maximally
stable extremal region (MSER) feature detector for text detection and finally the Canny
edge detector generates salient text. This method using GrabCut can only segment a large
fuzzy area containing text and cannot obtain a pure text result. However, after introducing
the MSER feature detector, it can separate the text area and the non-text area well and
obtain accurate results.

With the rapid development of UAV tracking technology in agriculture, aviation,
navigation, transportation and public security, Li et al. proposed and evaluated the residue-
aware correlation filters and the method of refining scale estimates with GrabCut [84].
The accuracy and precision of a UAV tracker can be greatly improved using Grabcut
technology. Salau et al. proposed a modified GrabCut algorithm for localizing vehicle plate
numbers [85]. It extends the use of the traditional GrabCut algorithm with the addition of
a feature-extraction method that uses geometric information to give accurate foreground
extraction. The experimental result shows that this algorithm has high accuracy and plays
an important role in traffic control and surveillance systems. In order to solve the problem
of difficult and inefficient license-plate localization in complex environments, Shi et al.
proposed an improved GrabCut Chinese license plate location-detection algorithm [86].
They replace the candidate frame by introducing the aspect ratio of the license plate as
the foreground-extraction feature to automate the detection of the license plate using the
GrabCut algorithm. The results show that the improved GrabCut algorithm has a better
accuracy and real-time performance.
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4.2.2. Applications in Video Processing

In video processing, since video surveillance is ubiquitous and indispensable to im-
prove personal safety, it is very important to solve the privacy problem in video surveillance.
Ref. [87] proposes an automatic de-identification technique in surveillance videos based
on computer vision. This method uses background subtraction to detect pedestrians and
background areas. It then reduces the contrast of the background area while preserving
the contrast of the pedestrian area and uses the pedestrian area as a mask for GrabCut
segmentation. The segmented pedestrians use a neural art algorithm, that is, the deep
features of an image are replaced with other features. After such processing, automatic
de-identification of video surveillance is realized. The resulting de-identified image has
many appearance features that are different from the original image (e.g., hair and clothing
colors). At the same time, it keeps the naturalness of the contours of the de-identified
humans and scenes. This method takes the shape of a person as an important feature in a
small dataset, which makes it easy to distinguish pedestrians by mistake. In large datasets,
because many people are similar in shape, this problem is alleviated to some extent.

Video object segmentation is based on automatically segmenting unmarked objects in
the video. The application of this technology often requires a good segmentation quality
and time efficiency. Ref. [88] uses a non-iterative version of GrabCut to develop a new
video-object-segmentation framework. The framework only needs to perform interactive
processing on the first frame of the video, and the subsequent frame segmentation can
achieve efficient non-interactive and non-iterative processing using the previous GMM.
However, the limitation is also obvious. It can be applied to videos with simple back-
grounds, but it inevitably produces deviations in complex backgrounds and cannot provide
accurate outlines.

4.2.3. Applications in Agriculture and Animal Husbandry

With the application of intelligent and refined technologies in agriculture, the require-
ments for the quality inspection of crops are becoming higher and higher. Taking cucumber
as a representative, its growth status and appearance quality directly affect the yield and
farmers’ income. Therefore, it is important to evaluate the appearance, quality and growth
of cucumber. In order to improve the quality-detection accuracy and processing efficiency
of cucumber images, ref. [53] used pre-processed cucumber images to extract cucumbers
with GrabCut. Pre-processing reduces the number of iterations and operation time of
GrabCut. Finally, the image noise and jagged borders are removed using morphological
operations and the complete contour of the cucumber is segmented. This method shortens
the average running time; the effect is better than SLIC and traditional GrabCut. It realizes
the non-destructive extraction of a cucumber on a complex background, which can meet
the evaluation of basic growth conditions.

In order to improve the fruit quality and optimize orchard management, Sun et al.
used the GrabCut and Ncut algorithms to identify apples in orchard images [54]. They
designed a GrabCut model based on the visual attention mechanism, used Ncut to segment
and identify overlapping fruits and finally used the three-point circle-fitting method to
reconstruct the apple. The apple-identification method has the potential to realize early
growth monitoring and yield estimation, but it is difficult for non-professionals to improve
the identification accuracy because it requires manual parameter adjustment.

In the digital and intelligent pig industry, reducing the cost and labor intensity of
enterprises and increasing production and income are the fundamental goals. The precise
segmentation of pigs is the basic work of artificial intelligence object tracking and behavior
recognition. It is one of the important techniques for identifying piglet movement or
rest and judging whether the piglet has been squeezed for a long time. Ref. [89] first
performed a series of pre-processing operations on piglet images to reduce the influence
of the lighting and surrounding environment on object segmentation. Then they obtained
the input of GrabCut through a morphological operation, achieved fine segmentation
and finally performed feature recognition to judge the status of the piglet. This method
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has high accuracy, and the average processing time meets the real-time requirements of the
agricultural video-surveillance system.

In order to prevent a decrease in plant yield caused by diseases and pests, Qi et al. pro-
posed a lightweight convolutional neural network [90]. First, they use the GrabCut algo-
rithm to unify the background of the experimental data and the real data to black. Second,
they propose a new coordinate attention block to improve the classification accuracy of
convolutional neural networks. Finally, to make the trained network more available for
agricultural platforms with limited resources, model compression is applied to the trained
network. As shown in the study, this model can be well applied in agriculture to identify
plant disease categories and improve the yield and quality of crops.

At present, weeding in China mainly relies on chemical herbicide spraying on a large
area. To improve the efficiency and reduce environmental pollution, Zhang et al. proposed
a modified Grabcut algorithm [91]. They first used filtering technology to enhance and
suppress the noise in the original weed image. In the segmentation stage, they used an im-
proved GrabCut algorithm to roughly segment each weed image and used adaptive fuzzy
dynamic K-means to segment the original weed image. Finally, the weed species is recog-
nized using SRC. The results validate that the proposed method is effective for weed-species
recognition, which can be used as a preliminary step for precision-applying pesticide.

4.2.4. Applications in Human Body Images

The segmentation of the human body area is essential in many applications, such
as human activity recognition, virtual reality games and video surveillance. Due to the
complex shape and structure of the human body and irregular movements, human body
segmentation is still a challenging problem. At present, human body segmentation with a
single background is widely used, but it is still a research hotspot in complex backgrounds.
Ref. [64] uses depth sensors to obtain depth images and human skeletons and project
human skeleton information onto color images. The energy function is established based
on the ideas of Graph Cuts and GrabCut, the prior probability provided by the human
skeleton is increased and finally the energy function is optimized to obtain the segmented
human body region. Compared with traditional human segmentation, this method still
provides high-quality segmentation results in a complex background and is universal.

When taking passport images, a high-precision automatic human-body-extraction
algorithm is very important, because passport images must meet high-demand ICAO
standards. Therefore, designing a high-precision algorithm is helpful to the machine that
automatically takes passport images. Ref. [45] used four different methods to automatically
extract the human body region from passport images. The extraction results are segmented
using GrabCut to realize non-interactive human body extraction of the passport images.
The method in the paper obtains high-quality results in simple scenes, but it will be affected
by the background and lighting in more challenging scenes, which will greatly affect the
segmentation accuracy.

4.2.5. Other Applications

In remote-sensing images, clouds that appear above a ground object due to weather
factors have become a research hotspot for better interpretation of image information,
and cloud extraction is an important process. Ref. [92] first splits satellite images into
superpixels through SLIC and extracts the unique features from remote sensing images.
The probabilistic latent semantic analysis (PLSA) model is used to extract the deep infor-
mation in the superpixels, and the descriptor of each superpixel is calculated to obtain the
feature vector. Finally, the feature vector is output using the support vector machine (SVM)
and the cloud mask is fed to GrabCut with threshold processing to achieve accurate cloud
segmentation. This method uses GrabCut to further refine the cloud-detection results at the
pixel level, effectively improving the cloud-detection accuracy and achieving robust results.

Peng et al. used an improved GrabCut based on the visual attention model to identify
rare-earth ore-mining areas in remote-sensing images [25]. They used the ITTI visual
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attention model to generate a saliency map to initialize GrabCut and added a normalized
difference vegetation index (NDVI) term to the energy function of GrabCut to constrain the
segmentation results. This identification method will cause errors in part of the impervious
surface and part of the reclaimed areas in the abandoned rare-earth ore-mining region.

With the continuous innovation of existing technology, a large number of existing
clothing images are the main research objects in clothing sales systems. In the face of
clothing image segmentation, ref. [46] uses GrabCut to propose a fully automatic clothing-
image-segmentation framework. The framework can be divided into two situations: with
or without models. It uses face-detection and edge-detection algorithms to provide a basis
for clothing positioning. Finally, according to the positioning results, automatic GrabCut
is used to obtain the clothing segmentation results. The accuracy of the framework lags
behind the classic algorithm, which improves the efficiency. In the case of low-accuracy
requirements, it can be applied to the retrieval system of massive images during online
clothing shopping.

Yamasaki et al. proposed a support system that uses ICT and also investigated a
method of extracting stone-contour information [93]. They set restricted regions for
background-likely characteristics using a convex hull of a pre-extraction result using
GrabCut close to the original iteratively. The results show that the method improves the
problem of over-segmentation or insufficient segmentation. Zhang et al. proposed a new
building-extraction method from high-resolution remote-sensing images based on GrabCut
that can automatically select foreground and background samples under the constraints of
building elevation contour lines [94]. GrabCut and geometric features are used to carry out
image segmentation and extract buildings. The results show that image segmentation with
GrabCut can better preserve the entire building boundary.

5. Discussion

After the previous description, we know that GrabCut is a powerful image-processing
tool with superior performance. In this section, we will employ the typical GrabCut
methods to verify their performance and also compare the specific performance of different
improved GrabCut models.

5.1. Experimental Results

For the improved GrabCut algorithm reviewed above, we have selected some classic
and high-frequency algorithms (GrabCut, LazySnapping, OneCut, Saliency Cuts, method
of [11], DenseCut and Deep GrabCut) in the experiments in this section. The results are
shown in Figure 11. The segmented image was randomly selected from the GrabCut
dataset [2] containing 50 images and the corresponding binary segmentation masks and the
MSRA-B dataset [95] containing 5000 images and the corresponding binary segmentation
masks. Moreover, in order to compare the experimental results objectively, we used
five evaluation indicators to evaluate the segmentation results [96], which are the recall,
precision, F-measure (FMSη), Jaccard index (JAC) and time [97]. The results are shown
in Table 1 and Figures 12–14. The recall, precision, FMSη and JAC are all widely used
metrics in image-segmentation evaluation. The recall is a measure of coverage, measuring
how many actual positive cases are divided into positive, and the precision is a measure of
how much is divided into positive cases that are actually positive. FMSη is the weighted
harmonic average of the recall and precision, combining the results of recall and precision.
JAC is used to compare similarities and differences between the classifications and actual
categories. Their formulas are Equations (77)–(80).

Recall = TPR =
TP

TP + FN
, (77)

Precision = PPV =
TP

TP + FP
, (78)
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FMSβ =
(β2 + 1) · PPV · TPR

β2 · PPV + TPR
, (79)

JAC =
TP

TP + FP + FN
, (80)

where TP is the true positives, FP is the false positives, TN is the true negatives and FN
is the false negatives. η = 1 in FMSη is the most common (evaluation index η = 1 in
this paper).

From the results of the segmentation, it is easy to segment errors because some of
the pixels in the foreground of IMG1 are similar to the background, and these pixels are
located in the center of the object. The six traditional algorithms have obvious under-
segmentation phenomena in this region, but a good segmentation can be achieved for the
overall segmentation of the object. Although Deep GrabCut has no under-segmentation of
the object center, it has the problem of fuzzy edge segmentation inherent in deep learning
methods. The most ideal is GrabCut, which has the best performance value on recall, FMS1
and JAC.

Compared with IMG1, the segmentation of IMG2–IMG6 is more difficult. Among them,
IMG2 is likely to cause segmentation errors because the color of kangaroo fur is similar
to the color of an area in the grass. The kangaroo in the picture occupies most of the area,
and the color distribution range of the image is small. This is unfavorable for partial seg-
mentation algorithms to establish foreground and background color models. For example,
the bounding box required by GrabCut occupies almost the entire image. This makes the
background GMM unable to obtain most of the background color range initially and fi-
nally leads to over-segmentation. The edges of LazySnapping and the method of [11] are
very rough, and the segmentation effect can be improved only by investing more human
interaction to paint the boundaries. The OneCut effect is the worst, and each item in the
evaluation index of segmentation quality is the lowest because the segmentation failed (this
kind of failure case will be explained below). The most ideal segmentation is Saliency Cuts,
which has the highest scores for FMS1 and JAC, but the kangaroo’s hand is considered as
the background because it is similar to part of the ground area. DenseCut is the opposite of
Saliency Cuts, which treats similar areas on the ground as the foreground. The approximate
area of Deep GrabCut can be segmented, but the boundary segmentation is not ideal.

The object of IMG3 is significant, but the complex background brings difficulties
to segmentation. LazySnapping and OneCut divide the background person into the
foreground. The method of [11] has rough edges. The Deep GrabCut segmentation is
incomplete and the under-segmentation area is large. GrabCut scored the highest in recall,
FMS1 and JAC.

IMG4 has a high background complexity, the foreground boundary is complex,
and some foreground areas are very similar to the background area pixels, so the division is
difficult. The segmentation result of GrabCut has a large area of over-segmentation, and the
precision, FMS1 and JAC are relatively low in the evaluation of indicators. The result of
Deep GrabCut is not ideal, but its robustness is strong. Despite the high complexity of
the image, the approximate object area can be segmented. The other algorithms have a
small area of error segmentation basically, but the overall effect is ideal. In terms of index
evaluation, LazySnapping has the best performance value in precision, FMS1 and JAC.
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have a small area of error segmentation basically, but the overall effect is ideal. In terms of index evaluation, LazySnapping has 

the best performance value on precision, 1FMS and JAC. 

For IMG5, it is an image with a high background complexity, and a large area on the wheel is similar to the background 

pixel. A large area of under-segmentation occurred in the segmentation result of OneCut, and both the recall and JAC were lower 

on the evaluation index. A large area of over-segmentation occurred in the segmentation result of Saliency Cuts, and both the 

precision and 1FMS were low on the evaluation index. The ideal algorithms for segmentation are LazySnapping, DenseCut and 

method of {An, 2013 #596}. Especially LazySnapping, the evaluation index is the most ideal. 

For IMG6, not only the color range of the image is concentrated, but the contrast between the object and the background is 

low, which makes segmentation difficult. The segmentation problem of each algorithm is obvious. GrabCut scored the highest 

in the evaluation index, but segmentation errors appeared in details such as tails. Saliency Cuts and Deep GrabCut also have this 

problem. LazySnapping and method of {An, 2013 #596} are very rough. OneCut and DenseCut have a large area of under-

segmentation. 
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Figure 11. Comparison of experimental results. (a) Original images, (b) GrabCut, (c) LazySnapping,
(d) OneCut, (e) Saliency Cuts, (f) Method of [11], (g) DenseCut, (h) Deep GrabCut, (i) Ground truth.

Method of [18] 0.9077 0.9723 0.9389 0.8848 2.9830 
DenseCut 0.7989 0.9937 0.8857 0.7949 2.6913 

Deep GrabCut 0.7058 0.8824 0.7843 0.6451 6.8088 

IMG6 

GrabCut 0.8858 0.9068 0.8962 0.8119 4.1540 
LazySnapping 0.9332 0.8383 0.8832 0.7908 1.0684 

OneCut 0.6809 0.2262 0.3397 0.2046 2.6872 
Saliency Cuts 0.7904 0.9497 0.8628 0.7587 4.0841 

Method of [18] 0.9406 0.8240 0.8785 0.7833 2.8732 
DenseCut 0.3270 1.0000 0.4929 0.3270 1.2402 

Deep GrabCut 0.7619 0.9445 0.8434 0.7292 3.4945 

Fig. 13 GrabCut, LazySnapping, OneCut, Saliency Cuts, Method of [18], DenseCut, 
Deep GrabCut 1FMS on 6 images.

Fig. 14 GrabCut, LazySnapping, OneCut, Saliency Cuts, Method of [18], DenseCut, 
Deep GrabCut JAC on 6 images. 
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Figure 12. GrabCut, LazySnapping, OneCut, Saliency Cuts, method of [11], DenseCut, Deep GrabCut
FMS1 on 6 images.
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Table 1. Performance comparison of 6 images. The best and worst performance values are shown in
red and blue, respectively.

Image Method Recall Precision FMS1 JAC Time (secs)

GrabCut 0.9752 0.9889 0.9820 0.9647 8.8695
LazySnapping 0.9494 0.9597 0.9545 0.9130 0.2570

OneCut 0.9201 0.9969 0.9569 0.9175 0.5093
IMG1 Saliency Cuts 0.9641 0.9892 0.9765 0.9541 1.7063

Method of [11] 0.9244 0.9876 0.9550 0.9139 3.8284
DenseCut 0.9445 0.9342 0.9393 0.8856 3.7621

Deep GrabCut 0.8752 0.9447 0.9085 0.8324 5.8396

GrabCut 0.9911 0.7739 0.8691 0.7685 10.9130
LazySnapping 0.8737 0.8481 0.8607 0.7554 0.9667

OneCut 0.7026 0.3530 0.4700 0.3072 7.5650
IMG2 Saliency Cuts 0.9075 0.8901 0.8987 0.8160 0.9005

Method of [11] 0.9749 0.8177 0.8894 0.8008 2.9662
DenseCut 0.9806 0.6820 0.8045 0.6729 1.3253

Deep GrabCut 0.8018 0.9713 0.8785 0.7833 7.4800

GrabCut 0.9748 0.8983 0.9350 0.8779 7.7970
LazySnapping 0.8763 0.9186 0.8969 0.8131 1.0038

OneCut 0.8213 0.8624 0.8413 0.7261 2.5656
IMG3 Saliency Cuts 0.7304 0.9561 0.8281 0.7067 0.9423

Method of [11] 0.9422 0.8743 0.9070 0.8298 2.8496
DenseCut 0.9373 0.9006 0.9186 0.8495 1.2150

Deep GrabCut 0.5559 0.9507 0.7016 0.5403 7.5170

GrabCut 0.9355 0.6369 0.7577 0.6099 8.1819
LazySnapping 0.9439 0.8941 0.9183 0.8490 0.2536

OneCut 0.9379 0.8617 0.8982 0.8152 0.6877
IMG4 Saliency Cuts 0.9904 0.8529 0.9166 0.8460 1.7416

Method of [11] 0.9802 0.8487 0.9098 0.8345 5.4663
DenseCut 0.9980 0.6455 0.7839 0.6447 3.0919

Deep GrabCut 0.9147 0.8915 0.9029 0.8231 6.3885

GrabCut 0.6700 0.9425 0.7833 0.6437 20.2160
LazySnapping 0.9183 0.9740 0.9453 0.8964 0.2394

OneCut 0.5358 0.9824 0.6934 0.5307 1.6940
IMG5 Saliency Cuts 0.8033 0.6021 0.6883 0.5247 3.7740

Method of [11] 0.9077 0.9723 0.9389 0.8848 2.9830
DenseCut 0.7989 0.9937 0.8857 0.7949 2.6913

Deep GrabCut 0.7058 0.8824 0.7843 0.6451 6.8088

GrabCut 0.8858 0.9068 0.8962 0.8119 4.1540
LazySnapping 0.9332 0.8383 0.8832 0.7908 1.0684

OneCut 0.6809 0.2262 0.3397 0.2046 2.6872
IMG6 Saliency Cuts 0.7904 0.9497 0.8628 0.7587 4.0841

Method of [11] 0.9406 0.8240 0.8785 0.7833 2.8732
DenseCut 0.3270 1.0000 0.4929 0.3270 1.2402

Deep GrabCut 0.7619 0.9445 0.8434 0.7292 3.4945

Method of [18] 0.9077 0.9723 0.9389 0.8848 2.9830 

DenseCut 0.7989 0.9937 0.8857 0.7949 2.6913 
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IMG6 
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Method of [18] 0.9406 0.8240 0.8785 0.7833 2.8732 

DenseCut 0.3270 1.0000 0.4929 0.3270 1.2402 
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Fig. 13 GrabCut, LazySnapping, OneCut, Saliency Cuts, Method of [18], DenseCut, 

Deep GrabCut 1FMS on 6 images.

Fig. 14 GrabCut, LazySnapping, OneCut, Saliency Cuts, Method of [18], DenseCut, 

Deep GrabCut JAC on 6 images. 
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Figure 13. GrabCut, LazySnapping, OneCut, Saliency Cuts, method of [11], DenseCut, Deep GrabCut
JAC on 6 images.
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Fig. 15 GrabCut, LazySnapping, OneCut, Saliency Cuts, Method of [18], DenseCut, 

Deep GrabCut Time(secs) on 6 images.

In addition to a detailed analysis of this section, we have done more experiments. 

We evaluated extensively on the GrabCut dataset and MSRA-B dataset respectively, 

and the statistical results are shown in Table 2 and Table 3. Part of the segmentation 

results are shown in Figure 16 and Figure 17. 

Fig. 16 Results of different methods in the GrabCut dataset. For each image block, the

original images are shown in the first column. The results by GrabCut, LazySnapping,

OneCut, Saliency Cut, method of [18], DenseCut and Deep GrabCut are shown in the 

second-to-the-last column, respectively. 

TABLE 2. GrabCut, LazySnapping, OneCut, Saliency Cut, method of [18], DenseCut, 

Deep GrabCut performance values on the GrabCut dataset. The best and worst 
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Figure 14. GrabCut, LazySnapping, OneCut, Saliency Cuts, method of [11], DenseCut, Deep GrabCut
Time (secs) on 6 images.

For IMG5, it is an image with a high background complexity, and a large area on the
wheel is similar to the background pixel. A large area of under-segmentation occurred
in the segmentation result of OneCut, and both the recall and JAC were lower in the
evaluation index. A large area of over-segmentation occurred in the segmentation result
of Saliency Cuts, and both the precision and FMS1 were low in the evaluation index.
The ideal algorithms for segmentation are LazySnapping, DenseCut and the method of [11],
especially LazySnapping, for which the evaluation index is the most ideal.

For IMG6, not only is the color range of the image concentrated, but the contrast
between the object and the background is low, which makes segmentation difficult. The seg-
mentation problem of each algorithm is obvious. GrabCut scored the highest in the
evaluation index, but segmentation errors appeared in details such as tails. Saliency Cuts
and Deep GrabCut also have this problem. LazySnapping and the method of [11] are very
rough. OneCut and DenseCut have a large area of under-segmentation.

For the above experiment, comparing the running time, GrabCut has the longest
segmentation time. Because the optimization of the energy function is NP-hard, the amount
of calculation is large and there is no improvement. The second is Deep GrabCut. The al-
gorithm runs slowly and the edge segmentation accuracy is low. However, because of
the introduction of an interactive mode, the classification of the dataset is weakened and
the generalization is improved. LazySnapping shows the fastest segmentation speed in
most images. It has the highest efficiency and the best real-time performance, and the
segmentation of LazySnapping is stable.

In addition to a detailed analysis of this section, we have conducted more experiments.
We evaluated extensively on the GrabCut dataset and MSRA-B dataset, and the statistical
results are shown in Tables 2 and 3, respectively. Part of the segmentation results are shown
in Figures 15 and 16.

Table 2. Performance comparison on the GrabCut dataset. The best and worst performance values
are shown in red and blue, respectively.

Method Recall Precision FMS1 JAC Time (secs)

GrabCut 0.9668 0.9213 0.9407 0.8927 11.0076
LazySnapping 0.9681 0.9104 0.9357 0.8842 1.3669

OneCut 0.8585 0.7926 0.7899 0.6974 6.1393
Saliency Cuts 0.8371 0.8892 0.8255 0.7458 0.6803

Method of [11] 0.9614 0.8878 0.9212 0.8597 3.5718
DenseCut 0.8427 0.9418 0.8561 0.7927 1.3851

Deep GrabCut 0.8854 0.8774 0.8701 0.7849 10.3698
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Figure 15. Results of different methods on the GrabCut dataset. For each image block, the original
images are shown in the first column. The results of GrabCut, LazySnapping, OneCut, Saliency Cut,
the method of [11], DenseCut and Deep GrabCut are shown in the second-to-last column, respectively.

Figure 16. Results of different methods on the MSRA-B dataset. For each image block, the original
images are shown in the first column. The results of GrabCut, LazySnapping, OneCut, Saliency
Cuts, the method of [11], DenseCut and Deep GrabCut are shown in the second-to-last column,
respectively.
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Table 3. Performance comparison on the MSRA-B dataset. The best and worst performance values
are shown in red and blue, respectively.

Method Recall Precision FMS1 JAC Time (secs)

GrabCut 0.9429 0.9251 0.9301 0.8772 7.2807
LazySnapping 0.9548 0.8680 0.9008 0.8348 0.6805

OneCut 0.8609 0.8531 0.8363 0.7539 1.6462
Saliency Cuts 0.8704 0.8764 0.8614 0.7933 0.7436

Method of [11] 0.9463 0.8905 0.9141 0.8507 2.5903
DenseCut 0.8323 0.9419 0.8676 0.7951 0.9125

Deep GrabCut 0.8702 0.8765 0.8641 0.7833 5.9086

From the evaluation of the two datasets, it can be seen that GrabCut has the best effect
and the highest stability, but the disadvantage is that it takes a long time. Because LazyS-
napping uses the watershed algorithm and replaces the complex GMM coefficient iteration
with simple statistical methods, the speed is significantly faster and can meet most real-
time requirements. However, it is known from the experimental process and results that
LazySnapping easily classifies the background as the foreground, regardless of whether it is
connected to the foreground area. This situation occurs if the pixels in part of the color range
in the background are not marked by the background brush. Similarly, the foreground area
has this problem.

OneCut has failed completely during the experiment. When a large area of the
foreground is similar to the background, the segmentation result is only the pixels marked
by the foreground brush. Because OneCut is constrained by unary potentials, it will roughly
classify pixels similar to the foreground brush as the foreground, and the background is
the same. If the foreground and background brush input are concentrated in part of the
color range, the more pixels the brush inputs, the greater the binding force. At this time,
the algorithm is easy to trap in a local optimum. Here are two failure cases, one is a
complete failure and the other is a local failure, as shown in Figure 17. OneCut is suitable
for situations where the background is complex but the foreground and background areas
are similar with few pixels.
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Saliency Cut is an automatic segmentation algorithm that is fast and can achieve
real-time performance. However, the mask image of part of the data in the GrabCut dataset
is not made entirely dependent on saliency. It is subjective and is suitable for measuring
the performance of interactive segmentation algorithms. Therefore, Saliency Cut is more
difficult to segment on the GrabCut dataset. During the experiment, Saliency Cut needed
to adjust the saliency threshold. The best threshold for each image was not consistent.
In order to conduct batch experiments, we use a fixed threshold (the threshold is 70).

The method of [11] can efficiently segment the approximate foreground area. How-
ever, it has a weak segmentation performance for small foreground areas and poor edge
segmentation. It needs to be further segmented and optimized at the pixel level. DenseCut,
which is also based on the bounding box, can segment most images with good results,
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and the speed also has advantages. Because DenseCut uses edge detection and connected
domain filling, it is sensitive to the background connected domain in the bounding box.
If the contrast between the background and the foreground is low, segmentation errors
easily occur.

The Deep GrabCut algorithm enhances the fault tolerance of user interaction. It allows
interactive brushes to be drawn inside the foreground area and outside. However, it was
observed during experiments that the effect is more stable when the area drawn by the
interactive brush only contains the foreground area. If the interactive brush draws outside
the foreground area, it is easy to segment the background area contained in the brush as
the object. At this time, the segmentation effect of the foreground and background in the
interactive boundary is unstable.

From the review of the improved algorithms of GrabCut and their application in
various fields, it can be seen that GrabCut is still a research hotspot in the field of image seg-
mentation. Although there are many improved GrabCut algorithms, some disadvantages
of GrabCut have not been overcome at the same time.

Since the result is an iterative solution to the energy function to obtain the optimal
solution, and the form of the energy function is NP-hard, the solution of the algorithm
is time-consuming. Therefore, how to reduce the amount of computation and find opti-
mization methods is an important task for GrabCut. One possible solution is to modify
the segmentation model or energy function, for example, modifying the GMM with large
computational complexity or using a simpler model to replace a complex function. Pre-
processing can also be added to reduce the amount of calculation. For example, the image
is transferred from the segmentation at the pixel level to the segmentation at the super-
pixel level.

In achieving high-quality segmentation, it should use fewer complex formulations,
which often lead to slow techniques, to avoid obstructing the actual use. For example,
morphological operations can be introduced to optimize the segmentation edges. It is
a good method to obtain better segmentation results by modifying the energy function.
In addition, the main focus of the GrabCut model is on color features, so it is possible
to explore the introduction of geometric features, texture features or some local features
for segmentation.

More efficient automatic segmentation methods should be explored because manual
operations have a greater impact on segmentation results. Incorrect foreground and back-
ground area selection can lead to unsatisfactory segmentation. Therefore, how to avoid
the influence of human factors will receive more attention in the future. This aspect of
exploration will make the algorithm more practical and more applicable. For example,
with the development of deep learning, the introduction of depth models has greater
possibilities for improvement.

5.2. Influence of Deep Learning

Image segmentation is a very difficult process in the field of image processing. Dense
semantic segmentation has been rapidly developed and applied with the development and
popularization of deep learning [98–101]. At present, there are many semantic segmentation
methods based on deep learning that can successfully achieve fully automatic segmentation
and have good segmentation results in a short time, for example, a series of excellent
models, from Fully Convolutional Neural Network (FCN) [98] to DeepLabV3+ [101]. Not
only can they realize automatic segmentation, but the segmentation effect becomes more
and more significant with the development. This undoubtedly has a huge impact on
traditional image-segmentation algorithms. However, deep learning algorithms require
a large amount of high-quality pixel-level label information for semantic segmentation,
such as the famous PASCAL VOC dataset [102] and the Cityscapes dataset [103] for urban
driving scenes. They are applied to the training of deep models and can only achieve
good segmentation effects for the classifications that exist in the dataset. The classification
outside the dataset will be regarded as the background, which limits the applicability of the
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segmentation model to different scenarios. Models such as Deep GrabCut use interactive
mode to improve generalization, but the segmentation accuracy is not as good as traditional
segmentation methods.

Therefore, if the deep learning model wants to have an ideal segmentation effect
for various salient objects, the dataset needs rich classification and a large number of
images. However, labeling image data is a time-consuming and laborious process. Taggers
need to spend a lot of time viewing each image, then manually adding labels or drawing
annotation information such as bounding boxes. This manual marking process often takes
hours or weeks to complete. In addition, for some complex tasks, such as target detection
and image segmentation, the labeling process requires more time and effort, which is
undoubtedly difficult. For GrabCut, it is an interactive segmentation algorithm. No matter
what kind of salient objects need to be segmented, as long as the user continues to perform
the correct manual interaction, it can always achieve good results. This is the advantage
of GrabCut. In the improved GrabCut algorithms mentioned above, some algorithms
simplify the user interaction or improve fault tolerance, and even achieve non-interactive
effects in some applications. This is why GrabCut can continue to be used in the field of
image segmentation. However, it is undeniable that deep learning is gradually replacing
traditional image-segmentation algorithms because of the emergence and rapid expansion
of a large number of datasets. It is difficult for GrabCut to be completely replaced by deep
learning, and it has its own applicability in some aspects. At the same time, GrabCut can
closely combine the spatial relationship of pixels and spread the interaction between pixels,
so that the relationship between pixels can be well-described in image segmentation. This
is generally lacking in semantic segmentation based on deep learning. Therefore, GrabCut
is likely to continue to develop, and the concept of the GrabCut model can also provide
fine segmentation ideas for deep learning models. In Table 4, we provide a comparison of
the current characteristics between deep learning and GrabCut.

Table 4. Comparision between deep learning and GrabCut.

Characteristic Deep Learning GrabCut

accuracy Higher Secondary
problems during learning It may require a lot of tag data and a lot of

computing resources to train the model
For complex images, we need to
manually specify the foreground
and background

training effort Relatively time-consuming, requiring a lot of
tag data

Need to label foreground and
background, but not too much
tag data

applicable scenario Process complex image tasks Process foreground extraction in
still images or videos

6. Future Work and Challenges

The GrabCut algorithm is a commonly used semi-automatic algorithm for image
segmentation that combines image segmentation and interactive editing to quickly and
accurately segment images. However, the GrabCut algorithm still faces challenges and
issues that need to be addressed in practical applications. The future work and challenges
mainly include the following aspects:

Improving the robustness and generalization ability of the algorithm: The GrabCut
algorithm is sensitive to factors such as image quality, background noise, and lighting
changes, and it is necessary to improve the robustness and generalization ability of the
algorithm to increase the reliability and stability of the algorithm in practical applications.

Enhancing the segmentation accuracy and efficiency of the algorithm: The current
GrabCut algorithm requires users to manually label the foreground and background,
which consumes a lot of time and effort. Future work should focus on improving the
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segmentation accuracy and efficiency of the algorithm, reducing user interaction costs
and further increasing the practicality of the algorithm.

Improving the application scenarios and adaptability of the algorithm: The current
GrabCut algorithm is mainly used in the field of image segmentation. Future work should
explore more application scenarios and fields, such as video segmentation, 3D image
segmentation, medical image segmentation, etc., to increase the adaptability and practical
value of the algorithm.

Developing more flexible and scalable algorithms: The success of the GrabCut algo-
rithm is inseparable from its optimization model based on Graph Cuts. Future work should
explore more flexible and scalable optimization models to meet different requirements in
different scenarios. At the same time, more universal algorithm frameworks should be
developed to make the algorithm more easily applied to different fields and scenarios.

In conclusion, future work should focus on improving the robustness and generaliza-
tion ability of the algorithm, enhancing the segmentation accuracy and efficiency of the
algorithm, improving the application scenarios and adaptability of the algorithm and de-
veloping more flexible and scalable algorithms to further improve the performance and
practicality of the GrabCut algorithm in practical applications.

7. Conclusions

We provide a comprehensive review of GrabCut, an important image-segmentation
method. It was first proposed by Carsten Rother, Vladimir Kolmogorov and Andrew
Blake in 2004. The algorithm uses an iterative process to refine an initial foreground and
background labelling of pixels based on a combination of color and texture features. In this
paper, GrabCut and its improved models are explained in detail, e.g., the energy function
of the weighted undirected graph is introduced and then its regional and boundary terms
are analyzed. The GMM is also analyzed in detail and then the working process of GrabCut
is given.

The main advantage of the GrabCut algorithm is its ability to accurately segment an
object in an image with minimal user input. Unlike other segmentation methods that rely
on hand-drawn masks, the GrabCut algorithm requires only a rough initial estimate of
the object’s location in the image. Additionally, the algorithm can handle complex object
boundaries and occlusions.Therefore, GrabCut has a good segmentation performance
with less resource consumption and high segmentation accuracy. However, there are
also some limitations to the GrabCut algorithm. The algorithm’s performance is highly
dependent on the quality of the initial estimate and may require multiple iterations to
achieve accurate segmentation. Additionally, the algorithm is sensitive to changes in
lighting and color, which can affect the accuracy of the segmentation. Finally, the algorithm
may be computationally intensive and may require significant processing power to run in
real time on large images.
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