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Abstract: Accurate large-scale regional wave height prediction is important for the safety of ocean
sailing. A regional multi-step wave height prediction model (ConvGRU-RMWP) based on ConvGRU
is designed for the two problems of difficult spatial feature resolution and low accuracy of multi-step
prediction in ocean navigation wave height prediction. For multi-step prediction, a multi-input
multi-output prediction strategy is used, and wave direction and wave period are used as exogenous
variables, which are combined with historical wave height data to expand the sample space. For
spatial features, a convolutional gated recurrent neural network with an Encoder-Forecaster structure
is used to extract and resolve multi-level spatial information. In contrast to time series forecasting
methods that consider only backward and forward dependencies in the time dimension and a single
assessment of the properties of the predictor variables themselves, this paper additionally considers
spatial correlations and implied correlations among the meteorological variables. This model uses
the wave height information of the past 24 h to predict the wave height information for the next
12 h. The prediction results in both space and time show that the model can effectively extract
spatial and temporal correlations and obtain good multi-step wave height prediction results. The
proposed method has a lower prediction error than the other five prediction methods and verifies the
applicability of this model for three selected sea areas along the global crude oil transportation route,
all of which have a lower prediction error.

Keywords: wave height prediction; regional multi-step prediction; ConvGRU; exogenous variables
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1. Introduction

The influence of the external environment on the ship in the sea voyage comes from
two aspects, which are the hydrological environment of the ocean and the meteorological
environment of the atmosphere. The elements that have a direct influence on the ship
include wind, waves, current, fog, ice, and tide [1]. The wind mainly affects the drift
and deflection of the ship, and the waves formed by wind drive will affect the safety and
navigation efficiency of the ship [2]. Along with the progress of science and technology,
communication between countries is more and more frequent. Shipping is an important
means of communication and trade in the world, and sea navigation is tested by waves all
the time [3]. The irregularity of sea waves poses a great challenge to maritime navigation
safety, maritime scientific research, maritime operations, and the exploitation of ocean
energy [4,5]. Therefore, high-precision wave height prediction is helpful in understand-
ing the wave conditions in advance, helping offshore workers plan ahead, maintain the
safety of marine navigation, and guarantee smooth and safe marine transportation and
offshore operations.

Wave height prediction provides services for ship meteorological and hydrological
protection. It takes time for a ship to reach the target area, and multi-step wave height
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prediction data within a few hours are needed, which are short-term predictions [6]. The
wave height prediction data are a time series data of the whole sea area rather than a
time series data of a single location. Therefore, the wave height prediction problem is a
multi-step spatio-temporal prediction problem.

Numerical wave forecasting methods aim to derive wave characteristics, such as
height and period, by solving the wave spectral equations that describe physical processes
occurring in the ocean [7]. The mainstream approach for regional wave height prediction
is based on numerical models that simulate the physical processes of wave generation
and dissipation. The third-generation wave model SWAN [8–10] have been developed to
accurately simulate wave generation, propagation, and dissipation at various scales, from
shallow water to deep water, and has been widely applied in wave simulation [11] and
wave energy prediction [12,13]. However, these models require significant computational
resources and time to solve the equilibrium equations of wave action, which limits their
efficiency and accuracy in long-term simulations of large-scale seas. Therefore, there is a
need to balance computational efficiency and simulation accuracy in the development of
these models.

Statistical forecasting methods are based on mathematical and statistical approaches
that build models to find the relationship between input and output variables based on
a large amount of data. Statistical forecasting methods include time series forecasting
methods based on traditional parametric models [14,15], time series forecasting methods
based on traditional machine learning [16–18], and time series forecasting methods based
on deep learning [19–21]. Among them, the traditional parametric model-based prediction
methods are difficult to capture the nonlinear features in the data, and the traditional
machine learning-based spatio-temporal sequence prediction methods can automatically
capture the nonlinear features in the data and have good generalization ability on small
samples. The deep learning-based spatio-temporal sequence prediction methods not only
can effectively mine the effective information in the data and automatically capture the
hidden linear and nonlinear features but also can efficiently handle large-scale spatio-
temporal sequence data [22].

Deep learning algorithms achieve high prediction accuracy by using simple neurons
to create nonlinear mapping relations. These models provide explicit solutions and can
balance computational efficiency with prediction accuracy, making them suitable for the
fast and accurate prediction of large-scale waves [23]. In related work, James et al. [24]
proposed a multilayer perceptron (MLP) model for predicting regionally significant wave
heights and a support vector machine (SVM) model for identifying regional feature cy-
cles. Machine learning models were developed as accurate and computationally efficient
alternatives to the SWAN model, and the alternative models showed strong accuracy in
predicting regionally significant wave heights and identifying feature periods in the com-
putational domain. However, wave prediction depends not only on the input at the current
point in time but also on the output at previous points in time. This requires machine
learning methods that can recognize patterns in time-series data, such as recurrent neural
networks or long and short-term memory. Feng et al. [25] developed an MLP model to
predict significant wave heights and crystal periods in Lake Michigan. The model considers
topographic factors, such as winter icing, and achieves high prediction accuracy with much
less computational time than the SWAN model. However, many existing regional wave pre-
diction models rely on MLP models to convert regional wave information into vectors for
prediction, which can result in a loss of spatial information and reduced prediction accuracy.
Gao et al. [18] developed an LSTM-based model for predicting wave heights at the Bohai
Sea hydrographic station. Their results showed that the LSTM model outperformed other
models, such as feedforward neural network (FNN) and support vector regression (SVR).
Pirhooshyaran and Snyder [26] combined LSTM networks with Bayesian hyperparametric
optimization and elastic network methods to develop a sequence-to-sequence neural net-
work for wave height prediction. This novel approach achieved superior results compared
to other neural network models in validation. Jing et al. [27] proposed a convolutional
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neural network(CNN)-based regional wave prediction (CNN-RWP) model using a CNN
to construct a mapping relationship between wind data and wave data. The CNN-RWP
model and SWAN were compared using a dataset from the Gulf of Mexico. The CNN-RWP
model was compared with the SWAN model using a dataset from the Gulf of Mexico, and
the average absolute error of both the CNN-RWP model and the SWAN output was less
than 10%, but the computational efficiency was improved by a factor of about 1000.

Considering the needs of oceanic navigation, regional wave height prediction for the
ocean is of equal importance as wave height prediction for a single significant location.
It is important to note that regional wave height prediction does not refer only to multi-
location wave height input but rather uses both multiple neighboring location inputs and
achieves simultaneous prediction of multiple locations. Regional wave height prediction
presupposes that multiple locations with predictions are spatially correlated and, at the
same time, temporally correlated between multiple consecutive moments, so this multi-step
prediction of regional wave heights is a spatio-temporal prediction problem.

The core of regional wave height prediction is to learn spatial correlation and tempo-
ral correlation from a large amount of data, so current spatio-temporal prediction mod-
els are mainly based on CNN and RNN. Regional wave height prediction still has the
following difficulties.

(1) The model needs to output the predicted values of multiple locations simultaneously,
which is a pixel-level prediction. Achieving accurate pixel-level spatial output not
only requires the model to have strong spatio-temporal feature extraction capabilities
but also needs to be able to correctly resolve the extracted deep spatial features
to the output map of the same size. For the regional wave height prediction task,
direct prediction from the image representation is not suitable, but the deep features
should be decoded using the same network layers with gradually increasing output
resolution [28]. Thus, regional wave height prediction places high demands on the
model structure.

(2) Performing multi-step prediction while guaranteeing pixel-level regional wave height
output is a challenging task. Current regional wave height prediction models, espe-
cially CNN-like models, generally perform single-step prediction. Some studies also
exist that use independent modeling of individual moments to achieve multi-step
prediction, and this approach has difficulty in maintaining high-accuracy prediction
at the more backward moments [29].

In recent years, spatio-temporal sequence learning has received more attention than
time-series learning because spatio-temporal learning can effectively represent complex
spatio-temporal phenomena. Shi et al. [30] proposed a convolutional LSTM (ConvLSTM)
network, which combined a convolutional neural network with a recurrent neural network
and proved to be able to predict rainfall well from radar images. One advantage of
ConvLSTM over CNN is that the former can capture the correlation between time and
space. However, ConvLSTM has too many parameters and can easily overwhelm the
data [19,20].

In order to address the above problems, this paper combines convolutional neural
networks and recurrent neural networks to propose a multi-step spatio-temporal prediction
model for wave height based on ConvGRU and using a multi-input multi-output multi-
step prediction strategy [31]. The model relies on the encoder-predictor architecture of
ConvGRU to construct a mapping of the high-resolution input matrix to the same-resolution
output matrix to obtain accurate multi-location prediction results.

The rest of the paper is organized as follows; in Section 2, we present the data and the
multi-step spatio-temporal prediction method used in this study. In Section 3, we describe
in detail the proposed ConvGRU-based multi-step wave height prediction model for the
encoder-predictor region. Section 4 evaluates and discusses the model through experiments.
In Section 5, we summarize the conclusions.
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2. Data and Methods
2.1. Experimental Data Sources

The data used in this experiment are from the European Reanalysis Dataset Version 5
(ERA5) published by the European Centre for Medium-Range Weather Forecasts (ECMWF),
which is freely available on the ECMWF website (https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form (accessed on 10 August 2022)).
ERA5 has provided hourly global atmospheric reanalysis data since 1950, and the exper-
iment selects wave height data “Significant height of combined wind waves and swell
(swh),” wave direction data “Mean wave direction (mwd),” and wave period data “Mean
wave period (mwp).” swh represents the average height of the highest third of surface
ocean/sea waves generated by wind and swell, and it is expressed in meters (m). mwd
is the mean direction of waves in the first swell partition, and it is expressed in degrees
(◦). Mwp is the average time it takes for two consecutive wave crests on the surface of
the ocean/sea to pass through a fixed point, and it is measured in seconds (s). In order to
confirm the effect of the protection of ocean shipping, a rectangular sea area is selected on
the main transportation route of the world crude oil trade, as shown in Figure 1, which is
located in the Arabian Sea, the Arabian Sea is located between the Horn of Africa and the
south of Asia, part of the Indian Ocean, and is a major transportation route worldwide [32].
Tropical cyclones often occur in summer and autumn, accompanied by strong winds and
heavy rainfall [33,34]. The grid size of the selected area is 8 × 8, and the coordinates of the
upper left corner are (15 N, 60 E). The spatial and temporal series of the sea area during
2020–2021 is extracted from ERA5, which contains 17,544 h of data. The maximum value
of wave height in this area is 5.9778 m, the minimum value is 0.9877 m, the mean value is
2.2551 m, the variance is 0.4121 m2, and the standard deviation is 0.6420 m.
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2.2. Multi-Input Multi-Output Strategy (MIMO)

The prediction problem of regional wave height is treated as a spatio-temporal
sequence-to-temporal sequence regression problem. Spatiotemporal sequences can be
considered as single-channel pictures at each moment, so the deep CNN-based model is
well suited to handle such problems. By using the input time step as the input channel,
the convolutional layer can extract features from the spatio-temporal data. In order to
achieve multi-step prediction, spatio-temporal sequence prediction can be made using

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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the Direct Multi-step strategy (DMS). DMS models the data separately for each moment
to be predicted, and H-step prediction requires building H-independent models. These
models use the same input data to predict variables at different moments and determine
the parameters of each model by minimizing the prediction error at the corresponding mo-
ment. Currently, most CNN-based wave height prediction models use DMS, a strategy that
requires the CNN model to output a single channel image as a single-step prediction and
to build independent prediction models with the same structure for each output moment,
with the results of all independent prediction models collectively serving as multi-step
prediction values. This strategy requires very large computational resources and is not
suitable for tasks with higher prediction time resolution and longer prediction time steps.
At the same time, because each prediction moment is independent of the other and the
historical moment only has a high correlation with the wave height at the approaching
moment, this strategy can obtain better prediction results at the approaching moment, but
the prediction results will deteriorate at the backward moment [30]. Since it takes some
time to reach the edge of the region during the ship navigation, the regional wave height
prediction requires higher prediction accuracy at the leeward moment, and DMS cannot
meet the requirements well. MIMO uses a single model to obtain multiple prediction
values by a single calculation, and its prediction formula is shown in Equation (1). MIMO
is suitable for models that support multivariate inputs and multivariate outputs, such as
vector autoregression and various types of neural networks. MIMO has the advantages of
relatively small computational resources and no cumulative error and is the most suitable
multi-step prediction strategy for neural networks.

x̂(t+1): (t+H) = f (x(t−L+1): t; θ) (1)

where x(t−L+1): t = {xt−L+1, xt−L+2, . . . , xt} ∈ RL is the true value of the variable at the
previous L moments and x̂(t+1): (t+H) = {x̂t+1, x̂t+2, . . . , x̂t+H} ∈ RH is the predicted value
of the variable at the subsequent H moments. The variable f represents the mathematical
model based on the true values of the historical variables and the variable to be predicted
and θ represents the model parameters. In this paper, the multi-step prediction of the wave
height region uses the MIMO strategy, under which the model uses H output channels to
perform H-step prediction, and the total prediction result is a three-dimensional matrix of
dimension A.

2.3. Multi-Step Spatio-Temporal Prediction Method

Wave height information for multiple locations over a long period of time is required
for ocean-going vessels. The traditional single-location wave height prediction can hardly
meet the information demand on a large scale. Therefore, the multi-location wave height
multi-step prediction problem is defined as a spatio-temporal multi-step prediction problem.
The wave height data of a sea area are suitable to be represented by a matrix, which belongs
to a regular grid form. The prediction of regional wave heights requires simultaneous input
and prediction of wave height values at multiple locations and is, therefore, a multi-step
spatio-temporal prediction problem on a regular grid. An origin point with coordinates
(0, 0) is specified on the map, and for M×N locations with this point as the upper left
corner, a regular grid region is formed. The wave height prediction problem in this grid
region can be expressed in the following form.

The M×N rectangular grid represents the prediction area, where the coordinates of
each sea location are (i, j). At the time t, xt(i, j) represents the observed value of the variable
at the location (i, j).

xt =

 xt(1, 1) · · · xt(1, N)
...

. . .
...

xt(M, 1) · · · xt(M, N)

 ∈ RM×N (2)
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X1 : k = {x1, x2, . . . , xk} ∈ RM×N×k denotes a temporal sequence of variable matrices
at k moments in time order. In the univariate multi-step momentary prediction problem,
the variable matrix at τ future moments is predicted using the known variable matrix at k
past moments.

X̂(t+1) : (t+τ) = f (X(t−k+1) : t; θ) (3)

where f is a function of the prediction model and θ is a matrix composed of the
model parameters.

In a practical forecasting task, to improve the accuracy of time series forecasting, it
is not usual to model only the variable to be predicted with its historical data. In some
cases, the error of the model can be further reduced by adding exogenous variables to the
input data that are highly correlated with the variable to be predicted. The introduction of
exogenous variables provides effective information for the prediction of the target variable.
Letting the target variable be o, and the single exogenous variable be e, the multi-step
time-series prediction can be represented by Equation (4). In this paper, the target variable
is wave height, and the exogenous variables are wave direction and wave period. The
schematic diagram of multi-step time series prediction based on ConvGRU-RMWP is
shown in Figure 2.

X̂(o)
(t+1) : (t+τ) = f (X(o)

(t−k+1) : t, X(e)
(t−k+1) : t; θ) (4)
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Figure 2. Schematic diagram of multi-step spatio-temporal prediction with the addition of
exogenous variables.

3. Model Building and Experimental Setup
3.1. ConvGRU Network

Because the traditional recurrent neural network (RNN) cannot handle long-term
dependence well due to the exploding gradient or vanishing gradient generated during
training, the Gated Recurrent unit (GRU) is an improvement on the traditional recurrent
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neural network RNN, which is a variant of the Long Short-Term Memory Neural Network
LSTM, simplifying the structure of the LSTM with only an update gate and a reset gate [35].
The GRU model has fewer parameters and is a simpler model but maintains the same
performance as the LSTM with faster training convergence time. It inherits the ability of
RNN to explore the intrinsic dependencies of sequence data but also solves the problems
of vanishing gradient, long training time, and overfitting caused by the long sequences of
traditional RNN and improves the local optimization ability and network generalization
ability [36,37]. Compared with GRU networks, convolution-based gated recurrent unit
(ConvGRU) neural networks have stronger learning ability, so this paper uses convolution-
based GRU (ConvGRU) for modeling, and the ConvGRU structure cannot only establish
temporal relationships, such as GRU, but also carve out local spatial features, such as
CNN. The internal structure of ordinary LSTM and GRU adopts a nearly fully connected
approach, which brings serious information redundancy problems, and this connection
ignores the spatial correlation between local pixels in the data. ConvGRU extends the idea
of being fully connected in GRU to the convolutional structure and replaces the dot product
operation in GRU with the convolution operation, and the internal structure of ConvGRU
is shown in Figure 3. A feature and advantage of this design is that all the input and output
elements are three-dimensional tensors, which preserve spatial information.
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With the memory feature in GRU, ConvGRU can preserve the features of historical
input image sequences during training, which can also ensure the effective transfer of
feature information over a longer period and improve the accuracy of prediction results,
calculated as follows.

zt = σ(Wxz ∗ xt + Whz ∗ ht−1 + bz) (5)

rt = σ(Wxr ∗ xt + Whr ∗ ht−1 + br) (6)

h̃t = tanh(Wxh ∗ xt + Whh ∗ (rt � ht−1) + bh) (7)

ht = zt � h̃t + (1− Zt)� ht−1 (8)

rt is the reset gate, zt is the update gate, h̃t is the current memory information, and
ht is the final memory information. xt is the information input at the current moment,
ht−1 is the hidden layer output at the previous moment, and bi and Wij are the respective
bias and weight matrices. The symbol “∗” denotes the convolution operator, “�” denotes
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the Hadamard product, and “σ” denotes the Sigmoid function. The structure selects
the information through a gate structure composed of Sigmoid layers and convolutional
operations. Whenever a new input arrives, the reset gate controls the decision to clear
the previous state, and the update gate controls the amount of new information entering
the state.

3.2. Model Building

To ensure that the model can represent spatio-temporal features well and effectively
predict changes in wave height spatio-temporal sequences, an encoder-predictor structure
similar to that of Shi et al. [30] is used to predict spatio-temporal sequences. The encoder
module consists of two convolutional downsampling layers and three ConvGRU layers.
The predictor module consists of two transposed convolutional upsampling layers and
three ConvGRU layers.

Using the wave height values and wave height directions of the past 24 h, a three-
layer Encoder-Forecaster model is built based on the ConvGRU framework for training
to establish a spatio-temporal prediction model for wave height values and to predict the
wave height values for the next 12 h. Figure 4 shows the network structure of the Encoder-
Forecaster model. The Encoder module learns the image features from low-dimensional to
high-dimensional, i.e., after the convolutional downsampling to reduce the image feature
size and the ConvGRU unit to learn the image sequence features, the intermediate vector is
obtained, and then the intermediate vector is input to the Forecaster forecasting module,
and the transposed convolutional upsampling part of the Forecaster module increases the
image feature size and the ConvGRU unit learns the image sequence features, and output
the future region wave height values. The loss function is continuously updated during the
training process so that the loss function value is continuously reduced.
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the Encoder module to the Forecaster module. In the Encoder phase, the size of the feature 

Figure 4. A ConvGRU-based model for predicting wave height spatio-temporal series.

Figure 5 shows the change of the feature map during the process of the model from
the Encoder module to the Forecaster module. In the Encoder phase, the size of the feature
map gradually becomes smaller while the number of channels gradually increases, and the
extracted features gradually change from low-dimensional to high-dimensional, and in the
Forecaster phase, the size of the feature map gradually becomes larger while the number of
channels gradually becomes smaller, until finally the output image with the same size as
the input image is obtained.
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3.3. Loss Function and Model Setup

The regional wave height prediction model uses the Frobenius paradigm as the loss
function and performs one gradient calculation and network parameter update using the
loss function value of each batch. Compared with using the entire sample set for a single
parameter update, this strategy improves the computational speed and facilitates the search
for extreme value points on large data sets. The loss function on each batch is shown in
Equation (9).

J =
1

M× N × C

C

∑
c=1
‖x(o) − x̂(o)‖

2
F (9)

where C denotes the number of samples in this batch, and the size is equal to the batch size.
The variable C is an integer multiple of τ to ensure that a set of τ-step prediction samples
appear in the same batch. The variables x(o) and x̂(o) represent the true and predicted
values of the target variable (wave height) corresponding to the samples, respectively, both
containing M× N elements.

The hyperparameters of the model are batch size set to 12 and learning rate set to 0.001,
and the model uses Adam optimizer. (The parameter settings are explained in Section 4.1)
The training process uses an Encoder-Forecaster network consisting of three layers of
ConvGRU, and the information on the network structure parameters is shown in Table 1.
The multi-layer ConvGRU can be used to obtain information on the wave height data in
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both temporal and spatial dimensions to better establish temporal relationships. Dropout
allows each iteration to go randomly to update the network parameters. Introducing such
randomness not only increases the ability to handle wave height data but also keeps the
input and output neurons unchanged by randomly deleting some hidden neurons in the
network layers and back propagating the errors through the modified network by the
operation of forward propagation.

Table 1. ConvGRU network structure parameter information.

Parts Network Layer Filters Kernel_Size Strides

Input Input-1

Encoder

E-ConvGRU2D-1 20 2 1
TimeDistributed-Conv2D-1 20 2 2

E-ConvGRU2D-2 40 2 1
TimeDistributed-Conv2D-2 40 2 2

E-ConvGRU2D-3 60 2 1

Forecaster

F-ConvGRU2D-3 60 2 1
TimeDistributed-

Conv2DTranspose-2 60 3 1

F-ConvGRU2D-2 40 2 1
TimeDistributed-

Conv2DTranspose-1 40 2 2

F-ConvGRU2D-1 20 2 1

output TimeDistributed-Conv2D 1 1 1

3.4. Experimental Setup and Evaluation Indicators

The hardware platform is equipped with NVIDIA GeForce RTX 3080, GPU configura-
tion CUDA 11.3 parallel framework, and cuDNN8.2 acceleration library. The model is built
based on Tensorflow 2.3.0 and Numpy 1.18.5, and the code is based on Python 3.8.

The first 24 h of data were used in the experiment to predict the second 12 h. The
data set samples were divided into training, validation, and test sets in a 4:1:1 ratio. Stan-
dard wave height, mean wave direction, and mean wave period were subjected to [–1, 1]
maximum-minimum normalization, and inverse normalization was performed before
evaluating the prediction results. The models are trained using the training set, hyper-
parameterized using the validation set, and the prediction results are derived using the
test set. The weight matrices and bias vectors of all deep learning models are initialized
using normal distributions. All deep learning models are trained using batches, and the
maximum training period (epochs) for the ConvGRU-based models is 30, and the optimizer
is Adam.

Evaluation metrics and images are used to evaluate the prediction results. Both
evaluation metrics and comparison images are used to accurately quantify the strengths
and weaknesses of different models’ prediction results while enabling visual comparisons
from different perspectives. In order to evaluate the results of a single prediction moment
in multi-step forecasting, the average results of all locations in a single prediction moment
in regional multi-step forecasting are evaluated using root mean square error RMSEt, mean
absolute error MAEt, and mean absolute error percentage MAPEt, with the three indicators
expressed as shown in Equations (10)–(12).

RMSEt =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

(xi,j,t − x̂i,j,t)
2 (10)

MAEt =
1

M× N

M

∑
i=1

N

∑
j=1

∣∣xi,j,t − x̂i,j,t
∣∣ (11)
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MAPEt =
1

M× N

M

∑
i=1

N

∑
j=1

∣∣xi,j,t − x̂i,j,t
∣∣∣∣xi,j,t

∣∣ × 100% (12)

xi,j,t and x̂i,j,t represent the true and predicted values of wave height at the (i, j)
coordinate, respectively. The closer the RMSE and MAE are to 0, the lower the prediction
error in meters. The MAPE is also closer to 0 the lower the prediction error in %. In order
to evaluate the multi-step spatio-temporal prediction effect as a whole, the mean values of
the above indicators at H prediction time steps are taken and denoted as MRMSE, MMAE,
and MMAPE, respectively.

4. Results and Discussion
4.1. Optimal Setting of Hyperparameters

After determining the use of MRMSE, MMAE, and MMAPE as evaluation metrics, a
hyperparameter grid search is performed for the regional wave height multi-step prediction
model set up for this experiment. The training hyperparameters include the batch size
and the learning rate of the Adam optimizer. The experiments were conducted, and the
MRMSE, MMAE, and MMAPE under different hyperparameters were obtained, as shown
in Table 2, and the bold entries indicate the best results and the best combination of training
hyperparameters under this network setup was: a batch size of 12 and learning rate of 0.001.

Table 2. MRMSE, MMAE, and MMAPE under different hyperparameters.

Learning Rate Batch Size MRMSE MMAE MMAPE

0.001

12 0.0986 0.0710 3.1375
24 0.1003 0.0742 3.3980
36 0.1005 0.0772 3.7344
48 0.1086 0.0781 3.4124

0.0001

12 0.1037 0.0751 3.3259
24 0.1096 0.0796 3.5492
36 0.1192 0.0912 4.1226
48 0.1259 0.0924 4.0918

4.2. Comparison of Prediction Errors for Different Input Steps

To prove that the input 24 h is the better choice. The comparison experiments with
different input steps were performed under the best hyperparameters selected. 12–36 h
was chosen as the input, and the results are shown in Table 3, with bold entries indicating
the best results.

Table 3. Prediction error results with different input steps.

Input Step Error 1 2 3 4 5 6 7 8 9 10 11 12 Mean

12
RMSE 0.0625 0.0621 0.0710 0.0802 0.0905 0.1009 0.1112 0.1211 0.1310 0.1410 0.1513 0.1618 0.1070
MAE 0.0521 0.0508 0.0580 0.0653 0.0731 0.0810 0.0886 0.0959 0.1032 0.1108 0.1186 0.1268 0.0853
MAPE 2.6415 2.5395 2.8811 3.1963 3.5357 3.8824 4.2226 4.5467 4.8738 5.2075 5.5558 5.9160 4.0832

18
RMSE 0.0586 0.0613 0.0666 0.0753 0.0846 0.0943 0.1038 0.1131 0.1222 0.1314 0.1409 0.1506 0.1002
MAE 0.0470 0.0480 0.0508 0.0567 0.0630 0.0699 0.0767 0.0833 0.0898 0.0965 0.1034 0.1105 0.0746
MAPE 2.2392 2.2435 2.3417 2.5848 2.8528 3.1510 3.4457 3.7356 4.0225 4.3119 4.6123 4.9241 3.3721

24
RMSE 0.0446 0.0499 0.0594 0.0704 0.0819 0.0935 0.1047 0.1155 0.1258 0.1359 0.1459 0.1559 0.0986
MAE 0.0345 0.0372 0.0428 0.0501 0.0583 0.0667 0.0748 0.0826 0.0902 0.0975 0.1049 0.1122 0.0710
MAPE 1.6250 1.7045 1.9111 2.2194 2.5661 2.9332 3.2848 3.6306 3.9610 4.2808 4.6043 4.9291 3.1375

30
RMSE 0.0667 0.0702 0.0778 0.0872 0.0976 0.1081 0.1187 0.1292 0.1397 0.1501 0.1607 0.1712 0.1149
MAE 0.0559 0.0590 0.0646 0.0716 0.0796 0.0874 0.0951 0.1027 0.1103 0.1179 0.1257 0.1337 0.0920
MAPE 2.8505 2.9459 3.1930 3.5026 3.8721 4.2303 4.5832 4.9276 5.2784 5.6257 5.9892 6.3630 4.4468

36
RMSE 0.0531 0.0573 0.0645 0.0752 0.0859 0.0975 0.1088 0.1200 0.1310 0.1416 0.1522 0.1625 0.1041
MAE 0.0390 0.0414 0.0463 0.0540 0.0614 0.0698 0.0779 0.0861 0.0942 0.1023 0.1103 0.1183 0.0751
MAPE 1.8427 1.9254 2.1101 2.4518 2.7490 3.1248 3.4698 3.8315 4.1820 4.5358 4.8873 5.2410 3.3626
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4.3. Predicted Results

After determining the input steps, to visualize the performance of the proposed
model, the prediction results are presented from both spatial and temporal perspectives,
considering that the output data are multi-step spatio-temporal prediction results. The
results of the spatial perspective are shown in Figure 6, which illustrates the comparison
between the target and predicted images of the sample at the 1st, 2nd, . . . , and 12th hour.
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results of random sample B.

In Figure 6, the regional wave height prediction model obtained better results for both
samples. In sample A, the prediction map is very similar to the real map in the t = 1–7 h
images. In the t = 7–12 h images, in the edge region, the prediction is better, and in the
middle region, the prediction is worse. The wave height in sample B changes faster, and
the prediction is more difficult than that in sample A. The prediction map has a delay, but
the trend of the wave height values at different locations on each time step is consistent
with the true map, and the overall error is still low, which can ensure a highly accurate
prediction. The changing trend of wave height in the images in both samples A and B can
be better reflected, and better results are obtained in each prediction moment.

The results of the time angles on three randomly selected locations from the A and B
samples selected in the test set are shown in Figure 7.

As can be seen in Figure 7, the model’s prediction results are accurate from a time
perspective. As shown in (c) and (d), the model outputs the correct “up then down”
variation. As shown in subfigures (a) and (e), the model outputs the correct “overall up”
variation. Subplots (b) and (f) have opposite trends in some time periods, but the errors are
small. This indicates that the prediction model can obtain the correct pattern of changes for
most of the time periods for all types of time trends.
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4.4. Ablation Experiments

Since wave height (swh), mean wave direction (mwd), and mean wave period (mwp)
can jointly express wave phenomena, the regional wave height prediction model uses mwd
and mwp as exogenous variables to improve the accuracy of swh prediction. The MIMO
strategy has the advantages of relatively small computational resources, no cumulative
errors, and small computational resource requirements and is the most suitable multi-step
prediction for neural networks strategy. In order to confirm that the above two changes
bring enhancements to the model, the following ablation experiments are conducted based
on the control variable method.

4.4.1. Impact of Exogenous Variables

The mwd exogenous variable is added considering the need to predict wave heights at
multiple proximity locations. Considering the need to predict multi-step wave heights, the
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mwp exogenous variable is added. To confirm the enhancement of the exogenous variables
on the prediction effect, mwd, and mwp are selected as exogenous variables for comparison
experiments. The results are shown in Table 4, and the bold entries indicate the best results.

Table 4. MRMSE, MMAE, and MMAPE under different exogenous variables.

Input Variables MRMSE MMAE MMAPE

swh 0.1091 0.0802 3.5561
swh,mwd 0.1075 0.0785 3.4959

swh,mwd,mwp 0.0986 0.0710 3.1375

A major improvement in the regional multi-step wave height prediction is obtained
from the wave phenomenon mechanism by correlating wave direction and wave period
with wave height and using them as exogenous variables in the interpretable series predic-
tion. As shown in Table 4, the MRMSE, MMAE, and MMAPE of the prediction model are
reduced by 1.47%, 2.12%, and 1.69%, respectively, by adding the mean wave direction. The
addition of wave direction and wave period variables reduces the MRMSE, MMAE, and
MMAPE of the prediction model by 9.62%, 11.47%, and 11.77%, respectively. Therefore, the
simultaneous input of wave direction and wave period exogenous variables can effectively
assist regional multi-step wave height prediction, reduce the fluctuation of the output, and
improve prediction accuracy.

4.4.2. Impact of Multiple Input—Multiple Output Strategy (MIMO)

The prediction effectiveness of the model also depends on the forecasting strategy
used. The Iterative Multi-step strategy (IMS) strategy starts with a single-step prediction,
after which the single-step prediction is added to the end of the input vector, the first
element is removed, and the same model is re-entered for prediction. Each prediction of the
IMS still produces a single prediction, and the H-step prediction is obtained by iterating
H times. The Direct Multi-step strategy (DMS) strategy models the data separately for
predicting each moment. Implementing H-step prediction requires building H independent
models that use the same input data and predict variables at different moments. To confirm
the enhancement brought by the MIMO strategy, IMS, DMS, and MIMO are compared.
Since the trends of RMSE, MAE, and MAPE error curves are almost the same, only the
RMSE error results are shown in Figure 8.
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As can be seen from Figure 8, the error of the multi-input multi-output strategy is
slightly higher than that of the direct multi-step prediction strategy at the approaching
moments from 1–6 h and significantly lower from 8–12 h. The error of the iterative multi-
step prediction strategy gradually increases with the increase in the prediction step length,
and the errors are all larger than those of the multi-input multi-output strategy. The above
results demonstrate that the multi-input multi-output strategy can improve the prediction
effect at a later time, and the computational resources of the multi-input multi-output strat-
egy are relatively small compared with the direct multi-step prediction strategy. Compared
with the iterative multi-step prediction strategy, the multi-input multi-output strategy has
no cumulative error advantage and is the most suitable multi-step prediction strategy for
the regional prediction task, which can meet the requirements of the ocean navigation
regional wave height prediction for the leaning moment prediction with high accuracy.

4.5. Comparison of Different Models and Prediction Results

The regional multi-step wave height prediction model designed in this paper needs
to be compared with various advanced models to confirm its superiority. The SVR, MLP,
LSTM, GRU, and CNN+GRU models are selected for comparison. The SVR, MLP, LSTM,
and GRU models are designed to predict the time series of a single location for spatio-
temporal sequence data, and 64 wave height-wave direction-wave period prediction wave
height models are established, and all prediction results are summarized as time series.
The CNN+GRU model spatio-temporal Sequence data, designed to predict the spatial
sequences of a single moment, built 12 wave height-wave direction-wave period prediction
wave height models and aggregated all prediction results into spatial sequences. mwd and
mwp exogenous variables were added to SVR, MLP, LSTM, GRU, and CNN+GRU models.

(1) SVR is a form of SVM applied to regression problems. SVR treats the regression
problem as an optimization problem by constructing a hyperplane that minimizes the
distance to sample points in the sample space. However, unlike the general regression
model, SVR incorporates fault tolerance for outlier samples to improve generaliza-
tion [38,39]. In the experiments, SVR uses an rbf kernel with kernel coefficients taken
as the reciprocal of the number of sample features and a penalty parameter of 1.
Multi-step prediction is achieved using the DMS strategy.

(2) MLP has good nonlinear regression because it can theoretically approximate any
nonlinear function through the nonlinear activation of multilayer neurons and the
fully connected structure [24,25]. Moreover, the fully connected structure enables the
MLP to perform multi-step prediction using the MIMO strategy. The MLP uses three
network layers with 200, 400, and 12 neurons in the experiment.

(3) LSTM is a classical RNN model that uses a gating mechanism to control the forgetting
and selection of memory states [18]. Unlike GRU, LSTM has two states. The cell state is
responsible for preserving the long-term information of the time series, and the hidden
state is the output on the current time step. To handle both states, the LSTM has one
more control gate than the GRU and thus has a larger number of parameters for the
same setup. The network structure used is a single LSTM layer—Dropout layer—fully
connected output layer. The LSTM layer size is 400, and the tanh activation function
is used. The Dropout layer discard rate is 0.2, and the fully connected layer size is 12,
using linear activation. The model is trained at batch size = 32, learning rate = 0.0001.

(4) GRU enables the transfer of information memory between time steps through a
circular connection structure along the time axis. GRU not only captures the temporal
correlation between multidimensional time series efficiently but also has a faster
training speed than LSTM [40]. Since the structure of LSTM and GRU is more similar,
the same grid structure and training hyperparameters as LSTM are used for GRU in
the experiments.
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(5) CNN+GRU adds a convolutional layer shared on the time axis to GRU to achieve
successive extraction of spatial and temporal structures. At each time step, the spatial
features are extracted using the convolutional layer to transform the input information
of a single moment into a one-dimensional sequence containing spatial information.
Thereafter, the temporal structure of the one-dimensional sequence at each moment is
extracted using GRU, and the single-step regional prediction results are output.

The error values of the comparison experiment at 12 moments and the average values
are shown in Table 5. The error curve plots of the comparison experiments at 12 moments
are shown in Figure 9. Since the MAE curve is similar to the RMSE curve, only the RMSE
and MAPE plots are shown in the image.

Table 5. Error experimental results of model comparison experiments.

Model Error 1 2 3 4 5 6 7 8 9 10 11 12 Mean

SVR
RMSE 0.1696 0.1713 0.1795 0.1881 0.1986 0.2071 0.2148 0.2178 0.2224 0.2269 0.2378 0.2419 0.2063
MAE 0.1576 0.1612 0.1676 0.1838 0.1912 0.2043 0.2069 0.2096 0.2143 0.2208 0.2249 0.2284 0.1976
MAPE 6.1076 6.6984 7.0042 7.1985 7.6037 7.8020 8.1490 8.3553 8.8201 9.5414 10.0658 11.3289 8.2229

MLP
RMSE 0.1445 0.1495 0.1591 0.1618 0.1665 0.1773 0.1892 0.1971 0.2013 0.2132 0.2244 0.2387 0.1852
MAE 0.1292 0.1398 0.1449 0.1456 0.1575 0.1692 0.1755 0.1813 0.1950 0.2018 0.2144 0.2257 0.1733
MAPE 6.0294 6.8732 7.0264 7.7628 8.2841 8.4627 9.6008 9.8731 10.6233 10.7755 11.3936 12.9243 9.1358

LSTM
RMSE 0.1156 0.1221 0.1396 0.1568 0.1678 0.1837 0.2079 0.2247 0.2422 0.2632 0.2710 0.2875 0.1985
MAE 0.1126 0.1298 0.1396 0.1407 0.1586 0.1662 0.1689 0.1725 0.1885 0.2156 0.2259 0.2338 0.1717
MAPE 4.9765 5.1250 6.3860 7.2080 7.4165 8.4579 8.7160 9.2815 9.5755 10.3267 11.2312 11.7987 8.3750

GRU
RMSE 0.1123 0.1278 0.1380 0.1559 0.1688 0.1841 0.2056 0.2141 0.2270 0.2489 0.2565 0.2619 0.1917
MAE 0.0999 0.1146 0.1219 0.1361 0.1442 0.1550 0.1727 0.1765 0.1866 0.2053 0.2107 0.2137 0.1614
MAPE 4.6107 5.2614 5.4458 6.1504 6.3911 6.8728 7.6227 7.6893 8.1477 8.8649 9.1178 9.1318 7.1089

CNN+GRU
RMSE 0.0556 0.0612 0.0697 0.0756 0.0899 0.1034 0.1132 0.1302 0.1478 0.1589 0.1602 0.1675 0.1111
MAE 0.0421 0.0496 0.0509 0.0631 0.06716 0.0705 0.0891 0.0951 0.1205 0.1321 0.1406 0.1489 0.0891
MAPE 2.0321 2.4231 2.8621 3.0012 3.1326 3.9682 4.5312 5.3521 5.6531 6.4325 6.7675 7.3654 4.4600

Conv GRU
RMSE 0.0446 0.0499 0.0594 0.0704 0.0819 0.0935 0.1047 0.1155 0.1258 0.1359 0.1459 0.1559 0.0986
MAE 0.0345 0.0372 0.0428 0.0501 0.0583 0.0667 0.0748 0.0826 0.0902 0.0975 0.1049 0.1122 0.0710
MAPE 1.6250 1.7045 1.9111 2.2194 2.5661 2.9332 3.2848 3.6306 3.9610 4.2808 4.6043 4.9291 3.1375
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As can be seen from Figure 9, the error of each model gradually increases with the
delay of the prediction moment. Among them, the errors of SVR, MLP, LSTM, and GRU
are higher at each moment, significantly higher than CNN+GRU and ConvGRU, indicating
that the missing spatial information greatly increases the errors of spatio-temporal series
prediction. It leads to low accuracy of regional wave height prediction. In the approaching
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moments from 1–6 h, the CNN+GRU errors and ConvGRU errors are similar, and both
errors are relatively low. However, starting from 6 h, the MAPE error of CNN+GRU is
higher, and the RMSE and MAE error errors are lower in the leaning moments, but the
overall errors of CNN+GRU are both lower than those of MLP and GRU. The results show
that ConvGRU exhibits the lowest error in MAPE, MAE, and RMSE errors at all moments
compared with the other three models, and the average error at all moments is also the
lowest, which proves the superior multi-step prediction performance of ConvGRU for
spatio-temporal sequences.

As can be seen from Table 5, ConvGRU has the lowest average of all three metrics and
is the best model (Marked in bold in Table 5), while CNN+GRU ranks second and is the
second-best model. Compared with the CNN+GRU model, the average values of RMSE,
MAE, and MAPE at 12 moments were reduced by 11.25%, 20.31%, and 29.65%, respectively,
for the model using ConvGRU and the multiple-input multiple-output strategy.

To evaluate in more detail the predictability of the regional multi-step wave height
prediction model based on the ConvGRU network compared to other models, Figure 10
shows the true value-predicted value scatter density distribution of 3486 prediction samples
under different models of SVR, MLP, LSTM, GRU, CNN+GRU, and ConvGRU, which
predicted a total of 2,677,247 (3486 * 12 * 8 * 8) wave height values, and because of the
large number of predictions, one is taken every 50 prediction points. It is obvious from
Figure 10 that using SVR, MLP, and LSTM models appear to have several points with large
prediction point errors, while the GRU model has small errors in most of the prediction
points. The overall errors of SVR, MLP, LSTM, and GRU time series prediction methods are
large, indicating that it is not good practice to use input data with loss of spatial correlation
to predict regional wave heights at a single moment in time. The CNN+GRU method has a
small number of prediction points with small errors, but the errors are much smaller than
those of the time series methods due to the inclusion of spatial information. The error of
the regional multi-step prediction model based on ConvGRU proposed in this paper is
small overall, and the predicted and true values of the prediction points are close to each
other, and the prediction accuracy is significantly improved.
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4.6. Applicability of the Model

Considering that the model needs to be used for medium to large wave forecasting
and needs to adapt to different wave areas, two wave areas, C and D, are randomly selected
in this paper. The spatial and temporal series of the wave height, wave direction, and wave
period for the period of 2020–2021 were extracted from ERA5, containing 17,544 h of data.
The maximum value, mean, variance, and standard deviation of wave heights in the sea
area and the results of wave height prediction errors obtained under the model of this
paper are shown in Table 6. Despite the slight increase in errors, the model has low errors
in all regions and can achieve high accuracy regional prediction.
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Table 6. Information and error results for different sea areas.

Sea Areas MAX (m) MEAN (m) VAR (m2) STD (m) MRMSE MMAE MMAPE

C 3.5578 1.5766 0.2450 0.4950 0.0814 0.0631 4.2154
D 5.0784 2.2308 0.3066 0.5538 0.1248 0.0862 3.9586

Original 5.9778 2.2551 0.4121 0.6420 0.0986 0.0710 3.1375

5. Conclusions

In this paper, we propose a model with ConvGRU as the main body and a multi-
input, multioutput, and multi-step prediction strategy for the sea surface wave height
multi-step spatio-temporal prediction problem. The model can better capture the global
spatial information and map it to the desired multi-location output and can learn different
prediction moment samples simultaneously to achieve accurate spatio-temporal prediction.
In addition, this paper also improves the ConvGRU model by adding wave direction and
wave period exogenous variables to the input using the Leaky ReLU activation function,
and these improvements are proven to be effective. The paper presents a novel wave
height prediction model based on ConvGRU, which makes significant contributions in
several areas. Firstly, the proposed model addresses the challenges of multi-location and
multi-step prediction in wave height forecasting, which is not possible with traditional
models. Secondly, the model achieves low prediction errors even for long-term predic-
tions, which is important for applications such as marine operations and meteorological
hydrological support.

In summary, the paper’s contributions demonstrate the effectiveness of the proposed
ConvGRU-based model for wave height prediction in multiple locations and steps, with
potential applications in ocean engineering, marine operations, and other related fields.

The limitation of this paper is that it only focuses on predicting waves in regions that
are significant for global crude oil transportation routes. In the future, the paper intends to
expand the prediction area and duration beyond these regions.
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