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Abstract: DDoS attacks remain a persistent cybersecurity threat, blocking services to legitimate users
and causing significant damage to reputation, finances, and potential customers. For the detection
of DDoS attacks, machine learning techniques such as supervised learning have been extensively
employed, but their effectiveness declines when the framework confronts patterns exterior to the
dataset. In addition, DDoS attack schemes continue to improve, rendering conventional data model-
based training ineffectual. We have developed a novelty open-set recognition framework for DDoS
attack detection to overcome the challenges of traditional methods. Our framework is built on
a Convolutional Neural Network (CNN) construction featuring geometrical metric (CNN-Geo),
which utilizes deep learning techniques to enhance accuracy. In addition, we have integrated an
incremental learning module that can efficiently incorporate novel unknown traffic identified by
telecommunication experts through the monitoring process. This unique approach provides an
effective solution for identifying and alleviating DDoS. The module continuously improves the
model’s performance by incorporating new knowledge and adapting to new attack patterns. The
proposed model can detect unknown DDoS attacks with a detection rate of over 99% on conventional
attacks from CICIDS2017. The model’s accuracy is further enhanced by 99.8% toward unknown
attacks with the open datasets CICDDoS2019.

Keywords: cybersecurity; distributed denial-of-service (DDoS); convolutional neural networks
(CNN); geometrical metric; incremental learning; open-set recognition (OSR); machine learning; deep
learning; unknown attack; CICIDS2017; CICDDoS2019

MSC: 68T07

1. Introduction

In recent years, the development of Artificial Intelligence (AI) technology has signifi-
cantly contributed to various disciplines, including cybersecurity [1]. One significant issue
in cybersecurity is the DDoS attacks, which has escalated over many years [2]. DDoS attacks
disrupt legitimate users’ access to services by injecting enormous volumes of malicious
traffic quickly, costing the victims their reputation, resources, and potential clients [3].
The outbreak of the COVID-19 pandemic in 2020 has resulted in an increased reliance
on network infrastructure, leading to a notable surge in DDoS attacks [4,5]. Since many
businesses function as service providers, they must maintain uninterrupted operations.
Consequently, any disruptions stemming from a compromised network or service can
lead to significant financial and reputational damages [6]. According to Cloudflare, a
vendor of Content Delivery Networks (CDN), a considerable number of DDoS attacks
are initiated each month, as stated in their quarterly report on DDoS attacks [7]. Even
though most malicious traffic records are beneath 500 Mbps, such a volume possesses
the capability to cause temporary interruptions to multiple enterprise systems. Quarterly,
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targeted assaults with a maximum capacity of 100 Gbps transpire, leading to extensive
service interruptions and probable shutdowns of data centers and culminating in revenue
losses for service providers.

The techniques employed in DDoS attacks are subject to constant evolution, as evi-
denced by the literature [8]. Employing outdated countermeasures is insufficient to protect
against novel threats [9]. As a result, there is a need for an approach that facilitates the
identification of unknown data attributes by the existing intrusion detection system (IDS).
This mechanism would assist telecommunications technicians in detecting covert intrusion.
In recent years, significant progress has been achieved in AI technology, and the associated
work has been applied in various fields, consisting of cybersecurity [10]. Several differ-
ent IDSs based on deep learning have been developed, and they all expose remarkable
accuracy. Relevant experiments demonstrate that the accuracy of identifying standard
DDoS may reach higher than 90% [11–13]. In the event that a conventional IDS is faced
with novel forms of attacks, it does not classify them as unknown and inept in addressing
them. Consequently, there is a necessity for an IDS that can promptly notify the telecom
technician of any unfamiliar traffic for examination at the onset of an attack, instead of
assessing its nature as positive or negative. This is particularly crucial when the distinction
between previous and current threats is markedly apparent. The response of the defense
system will be of utmost importance in the event of an assault characterized by discrete
fundamental components. This suggests that the problem no longer pertains to the efficacy
of the training process. One possible solution to address the issue at hand is to update
both the training and test datasets. However, it is important to note that the model faces a
significant challenge regarding unknown traffic, and the open set presents a more complex
scenario than the closed set.

This study addresses the limitations of existing IDS architectures, which often struggle
to detect unknown traffic in DDoS attacks, by proposing a novel IDS architecture that
leverages deep learning technology. Our approach combines deep learning techniques and
geometrical metrics to enhance accuracy and improved detection of unknown traffic. The
model’s backbone, CNN-Geo, is based on CNN architecture and incorporates a geometrical
metric, which offers enhanced detection capabilities. Furthermore, the system’s incremental
learning module allows it to adapt to new attack patterns by incorporating newly labeled
samples provided by telecom engineers, continuously improving its defensive perfor-
mance. Given that it employs machine learning techniques such as supervised learning,
CNN, geometrical metrics, and incremental learning modules to continuously enhance the
model’s performance by learning how to incorporate new information and adapt to new
attack patterns, it is a smart and clever system. This framework’s extraordinary level of
intelligence allows it to detect unexpected DDoS attacks with high accuracy and maneuver
around the restrictions of classical approaches.

The practical applications of our IDS architecture lie in its ability to protect networks
and systems against DDoS attacks more effectively than classical approaches. The high
detection rate of over 99% against conventional attacks from the well-known CICIDS2017
dataset demonstrates its efficacy. Moreover, the model’s accuracy is further enhanced by
99.8% toward unknown attacks as tested on the recent CICIDDoS2019 open datasets. Our
findings suggest that the proposed IDS architecture can significantly improve the detection
and defense against DDoS attacks, ensuring the security and reliability of network systems
in real-world applications.

The remainder of this paper is organized in the following manner: Section 2 offers
an overview of relevant literature. Section 3 outlines the underlying assumptions and
the proposed detection framework. Section 4 presents the experimental findings, while
Section 5 concludes the study and discusses potential avenues for future research.
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2. Related Work
2.1. MC-Based and DL-Based IDS

Over the past several years, a significant amount of research has been carried out
regarding the incorporation of AI technologies into IDS. The study has reported exceptional
performance of Random Forest (RF), Support Vector Machine (SVM), CNN, and Long Short-
Term Memory (LSTM), which have been extensively researched as reported in reference [14].
However, IDSs that rely on these technologies exhibit limitations in detecting novel attacks,
thereby posing potential security threats. Unsupervised learning methodologies, such as
autoencoders, have the capability to detect attacks through the modification of thresholds.
Nonetheless, it is important to note that the occurrence of false positives may potentially
escalate to ten percent [15]. Researchers have developed advanced IDS models utilizing
deep learning architectures to address the limitations of traditional IDS systems. The
utilization of CNN architectures in IDS models has been explored by Chen et al. [11] and
Kim et al. [12], who have reported favorable outcomes with accuracy levels of 94% or
greater. Furthermore, the utilization of CSV files and image reconstruction technologies
developed by Kaur et al. [16] in CNN defense models has yielded favorable outcomes.

One of the major issues during IDS training is unbalanced data, which can lead to
poor model performance. In order to tackle this matter, M. Azizjon and colleagues [17]
employed a 1DCNN framework for data categorization, which has been demonstrated
to enhance the efficacy of the model. In a previous study, Toupas et al. (2018) utilized
SMOTE ENN pseudo-sampling to address imbalanced data and integrated Yeo–Johnson
transformation during the preprocessing stage to mitigate the skewed data distribution [18].
It is essential to proceed with caution when utilizing synthetic data, as the characteristics
of the simulation may differ from those of the initial distribution and could potentially
be erroneous for malicious activity. In addition to CNN architecture, some deep learning
architectures, such as LSTM and RNN, have been employed in IDS models and have shown
reasonable accuracy, possibly exceeding 90% [19]. These architectures can capture temporal
patterns and have been shown to be effective in detecting network intrusions.

Recent research in IDS systems has focused on the development of hybrid models
that combine multiple DL architectures. For instance, Mu et al. [20] proposed a hybrid
IDS model that integrates CNN, LSTM, and attention mechanisms. The model that was
proposed demonstrated superior performance in comparison to conventional machine
learning-based IDS models. Additionally, it exhibited a high level of accuracy in identifying
both known and unknown attacks. Moreover, the recent development of explainable AI
(XAI) techniques has enabled researchers to interpret the predictions of deep learning-
based IDS models and enhance their transparency and trustworthiness [21]. For example,
Sivamohan and Sridhar [22] proposed a novel XAI-based IDS model that uses an attention-
based mechanism to visualize the feature importance and improve the interpretability of
the model. These advancements have opened up new possibilities for the development of
more robust and transparent IDS systems.

We propose to evaluate an overview of studies of general relevance to the purposes of
our proposed work, as well as to compare different approach strategies in the intrusion
detection context, based on similar datasets. Equivalently, we have compiled a series of
recent works presented in Table 1. The first column indicates the source of each work;
the second column describes the dataset applied in the study; the third column gives
the characteristic of the problem (collection closed identity or set open identity); and the
fourth column provides a summary assessment of the applied method, where the term
“heterogeneous” refers to making a comparison between methods.
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Table 1. Related research was conducted on applying machine learning and deep learning method-
ologies to detect DDoS attacks.

Author Dataset Coverage of
Problems Technical Year

Chen. J et al. [23] KDD99,
CICIDS2017 CSR Multichanel CNN and various MC frameworks to

detect DDoS. 2019

Roopak et al. [13] CICIDS2017 CSR Four distinct classification models based on deep
learning: MLP, LSTM, CNN+LSTM, and 1D-CNN, 2019

Kurniabudi et al. [24] CICIDS2017 CSR Information Gain, RF, Bayes Net, Random Tree, Naive
Bayes, and J48 classifier algorithms. 2020

Swe et al. [25] CICIDS2017,
CSE-CIC-IDS 2018 CSR

Slow DDoS attack types analysis, gain ratio, chi
squared ranking methods, and various machine

learning techniques for detection DDoS.
2021

Chen et al. [11] CICIDS2017 CSR
CNN-based network intrusion detection system

(NIDS). Detection models were trained using both
extracted features and original network data.

2020

Chapaneri et al. [26] CICIDS2017 CSR, OSR
Multilevel Gaussian mixture model capable of

accurately classifying network traffic into
multiple classifications.

2021

Shieh et al. [27] CICIDS2017,
CICDDoS 2019 CSR, OSR

DDoS detection framework using Reconstruct Error
and One-Class SVM Featuring Stochastic

Gradient Descent.
2022

Najafimehr et al. [28] CICIDS2017,
CICDDoS 2019 CSR, OSR Clustering algorithm and statistical measures to label

traffic and MC framework for DDoS detection. 2022

Proposed Model CICIDS2017,
CICDDoS 2019 CSR, OSR

CNN-based framework to detect DDoS, Geometrical
Metric calculate module and incremental learning as a

solution for openset.
2023

2.2. Open-Set Recognition

Open-set recognition poses a more significant challenge than closed-set recognition
since it deals with unknown patterns. In recent years, scholars have conducted investiga-
tions in this field. A. Bendale et al. have suggested the Openmax category, which alters
the quantity of layer outputs from N to N + 1 [29]. The Weibull function was employed for
probability estimation, which was subsequently subtracted from the overall probability of
1 prior to being fed into the Softmax function. The Weibull analysis is exclusively applied
to certain samples obtained from the extremities of the distribution. Subsequently, the
distances from the center of the hyper-sphere are computed by utilizing the mean activation
vector’s output in the feature space. If the distance surpasses the permissible range, it is
inferred that the sample does not pertain to any category. The aforementioned approach
is commonly referred to as the Out-of-Distribution (OOD) method. Bendale’s research is
founded on highly theoretical principles and is frequently employed in the task of categoriz-
ing images. The Classification-Reconstruction learning for Open-Set Recognition (CROSR)
architecture [30], which combines reconstruction and distribution, is used to determine
the hypersphere distribution. Concurrently, the reconstructed hidden layer’s output is
utilized to improve the detection efficacy. The theoretical framework of the extreme theory
is founded on the notion of a spatial distribution that closely approximates a probability
density function. In the event that a recently acquired specimen is situated outside the
acceptable range, it is classified as unknown.

Over the past few years, there have been several advancements in open-set recognition.
For example, the Deep Dual Support Vector Data Description-based Autoencoder (Dual-
SVDAE) algorithm was introduced by Zhang et al. [31]. It combines the strengths of deep
learning and support vector data description to improve the ability to identify anomalies.
The algorithm uses a deep autoencoder to create a latent space, which is then trained using
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the support vector data description method to classify samples as belonging to a known
or unknown class. Deep Support Vector Data Description achieved state-of-the-art results
on several datasets, demonstrating its effectiveness in OSR. Another approach to open-set
recognition is to use generative models to create data that closely resembles the training
data but is not the same. This method creates a distribution that can be used to detect
unknown samples. Variational Autoencoder with Outlier Detection (VAE-OD) is one such
method that uses a variational autoencoder to generate data and then employs an outlier
detection method to identify unknown samples [32].

2.3. Unknown DDoS Detection

Detecting unknown Distributed Denial-of-Service (DDoS) attacks is a challenging task
that various approaches have tackled. Extreme value theory has been utilized in several
studies to identify unknown DDoS attacks [33]. However, Gaussian Mixture Model (GMM)
and its associated methodologies have been employed to ascertain the distribution of the
input [26,34]. In one study, J. Henrydoss et al. used Extreme Vector Machines (EVMs) to find
samples whose feature spaces are out of distribution [33]. The study yielded outstanding
outcomes on the KDD99 dataset; however, its scope is confined to a particular dataset and
lacks scalability to other datasets.

In contrast, Shieh and colleagues employed a deep learning framework for binary
classification, utilizing the distribution threshold of GMM and BI-LSTM [34]. The utilization
of OOD for the purpose of unknown identification was implemented by the researchers.
Specifically, the feature values of BI-LSTM were utilized as the defining characteristics
of unknown identities. In contrast, Chapaneri and colleagues employed several GMMs
to accurately model individual input features in their study [26]. The GMMs utilized in
this research utilized unprocessed data as opposed to the characteristic outputs of deep
learning models. The CICIDS2017 dataset was utilized in the experimentation of the two
GMM papers. The results indicated that the dataset has the potential to detect unidentified
traffic to a certain degree.

In their study, Yang and colleagues employed an autoencoder technique that in-
corporated a reconstruction error metric, known as AE-D3F, for the purpose of threat
detection [35]. The efficacy of the framework was evaluated on three distinct datasets,
yielding a detection rate of 82% and a false positive rate of 0%. Despite the absence of
unknown samples in the framework, it yielded favorable outcomes in terms of detection.
In contemporary times, Generative Adversarial Networks (GANs) have surfaced as a
propitious technique for detecting DDoS attacks, as evidenced by sources [36,37]. The
IDSGAN framework, as presented by Z. Lin and colleagues, employs a GAN network for
the purpose of safeguarding the defending system against malevolent traffic that is aimed
at it directly [36]. Chauhan et al. utilized Wasserstein GAN (WGAN) as a solution to the
primary training issue encountered in GANs [37]. The authors exhibited that the efficacy of
the initial trained model could be nullified by adversarial attacks.

2.4. Geometrical Metric

In the realm of data analysis, geometric metrics have emerged as essential instruments
for differentiating dataset distributions. Evaluating the quality of generative models is
vital for scientific progress, and a multitude of quantitative metrics have been developed,
each with its unique trade-offs. The Frechet Inception Distance (FID), a commonly used
measure in image generation activities, was first introduced by Heusel et al. [38] and has
shown an amazing correlation to human perception ratings. FID, nevertheless, is unable to
adequately capture the full range of dataset characteristics because it can only produce a
single value when contrasting two distributions. Precision and recall indicators should be
used as measures of fidelity and diversity according to Sajjadi et al. [39]. Despite this, these
metrics encounter limitations in real-world applications due to their lack of sensitivity to
data fluctuations. To tackle these practical issues, Naeem et al. suggested the use of density
and coverage metrics [40]. By adopting a carefully designed manifold estimation proce-
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dure, these metrics provide a theoretically sound and empirically dependable approach
for assessing fidelity and reliability in diverse situations. When applied to Generative
Adversarial Network (GAN)-generated data, a widely used model in recent years, these
innovative metrics have proven their effectiveness in distinguishing the distribution of
image datasets.

This research introduces an Out-of-Distribution (OOD) framework that utilizes geomet-
ric metrics to identify unknown DDoS attacks. The OOD system, as proposed, demonstrates
the ability to detect samples that do not align with any established class by integrating
insights gleaned from previous research. Implementing these techniques improves the
robustness and accuracy of the model in identifying novel attacks.

3. Proposed Methodology

We proposed a framework incorporating a CNN architecture to classify the conven-
tional traffic. The OSR obstacle to identifying DDoS attacks is addressed by utilizing a
geometrical metrics calculation module and an incremental learning approach, in con-
junction with the aforementioned system. The operational illustration of the suggested
structure is illustrated in Figure 1.
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In order to equip the model with the ability to identify unknown samples, the study
adopted the Geometrical Metrics Calculate module approach, which calculates the metric
threshold and enables the identification of samples that fall outside the distribution. Once
the threshold is defined, the classification process proceeds only for the elements that
satisfy the threshold condition, whereas the samples with the calculation results below the
threshold are considered as outliers. The current study’s utilization of the CNN model
has several advantages, including its ability to recognize spatial and temporal patterns
in the input data. Additionally, the sparse categorical cross-entropy loss function allows
for a simpler optimization process, and the adopted coding approach mitigates issues of
linear dependence between labels. Moreover, the approach of the calculating module uses
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geometrical metrics aids in identifying data that deviate from the distribution, thereby
augmenting the model’s capability to detect unknown samples.

3.1. CNN Classifier

The present investigation employed a CNN as the basis of the framework due to
its aptitude for identifying patterns in data, particularly in the context of datasets with
high dimensionality, as depicted in Figure 2. CNNs can acquire intricate features from
unprocessed data, rendering them a suitable option for identifying unfamiliar traffic in
Distributed DDoS attacks. The framework inputs a 9 × 9 matrix representing a network
flow, and the output comprises two prediction levels corresponding to Benign and Attack
classifications. The proposed classifier uses a CNN-based architecture with several convo-
lutional layers followed by batch normalization, dropout, and fully connected layers. The
number of filters and the filter size is progressively reduced, resulting in decreasing feature
maps, which helps the model capture increasingly complex patterns in the network flow
data. The batch normalization and dropout layers help to reduce overfitting and improve
the convergence of the model during training. The model achieved promising results in
accurately identifying different types of conventional DDoS attacks.
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3.2. Density and Coverage

The ability to accurately assess the similarity between a real distribution P(X) and a
generative model Q(Y) is crucial in machine learning applications. To achieve this objective,
it is imperative to devise an algorithm that is capable of assessing the probability of the sets
of samples {Xi} and

{
Yj
}

originating from a typical distribution. The density and coverage
metrics have been proposed as two metrics that can effectively assess the performance of
generative models.

3.2.1. Density Metric

Density is a metric that quantifies the degree to which the neighborhoods of real
samples overlap with those of unknown samples. Specifically, density counts the number
of real-sample neighborhood spheres {B(Xi; NNDk(Xi))}i that contain Yj. Here, B(x; r)
represents the sphere in RD centered around x with a radius of r, and NNDk(Xi) denotes
the distance from Xi to the kth the nearest neighbor among {Xi}, excluding itself. The
manifold consists of the superimposition of the neighborhood spheres {B(Xi; NNDk(Xi))}i,
and an expected likelihood of unknown samples is measured. The density metric is defined
as formula (1) and illustrated according to Figure 3, where k represents the k-nearest
neighborhoods. By taking into account the degree to which unknown samples overlap
with real samples in densely packed regions, the density metric is less vulnerable to the
effects of outliers.

Density :=
1

kM

M

∑
j=1

N

∑
i=1

1Yj∈B(Xi ,NNDk(Xi))
(1)



Mathematics 2023, 11, 2145 8 of 24

Mathematics 2023, 11, x FOR PEER REVIEW  8  of  25 
 

 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∶  
1
𝑘𝑀

1 ∈  ,   (1)

 

Figure 3. Illustration of density metric with k = 2. 

The process of calculating density will be executed following Algorithm 1. 

Algorithm 1 Calculation of Density 

Input: 𝐷 : Dataset of real samples, 𝐷 : Dataset of unknown samples, 𝑁 : Number of 

real samples, 𝑁 : Number of unknown samples ,  𝑘  : Number of nearest neighbors to 

use for density calculation ,  𝐶𝑜𝑢𝑛𝑡  : Array of number neighbourhood spheres of real 

sample that contain each unknown sample. 

Output: density value 

1. Real sample ← 𝑟 ∈ 𝐷  

2. Unknown sample ← 𝑢 ∈ 𝐷  

3. Define distance between the unknown sample 𝑚  and real sample  𝑛: 

            𝑑   𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 , 𝑟  

4. Define  𝑘   nearest neighbour distances for real sample  𝑛: 
             𝑁𝑁𝐷  𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑟 , 𝑘  
5.     𝐶𝑜𝑢𝑛𝑡  = array[𝑁 ] of zeros 

6. for  𝑖  in range 𝑁   : 

7.       for  𝑗  in range 𝑁   : 

8.             if  𝑑  𝑁𝑁𝐷  
9.                   𝐶𝑜𝑢𝑛𝑡 𝑖  𝐶𝑜𝑢𝑛𝑡 𝑖 1 
10.       end for 

11. end for 

12. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦  𝑚𝑒𝑎𝑛 𝐶𝑜𝑢𝑛𝑡  
13. return 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 
 

Figure 4 provides a detailed flowchart of Algorithm 1, illustrating the key stages and 

components involved 

Figure 3. Illustration of density metric with k = 2.

The process of calculating density will be executed following Algorithm 1.

Algorithm 1 Calculation of Density

Input: DR: Dataset of real samples, DU : Dataset of unknown samples, NR:
Number of real samples, NU : Number of unknown samples, k :
Number of nearest neighbors to use for density calculation, Count: Array of number
neighbourhood spheres of real sample that contain each unknown sample.
Output: density value

1. Real sample ← r ∈ DR
2. Unknown sample ← u ∈ DU
3. Define distance between the unknown sample m and real sample n:

dmn = distance (um, rn)
4. Define kth nearest neighbour distances for real sample n:

NNDn = nearest_neighbour_distances(rn, k)
5. Count = array[NU] of zeros
6. for i in range NU :
7. for j in range NR:
8. if dij < NNDj

9. Count[i] = Count[i] + 1
10. end for
11. end for
12. Density = mean (Count)
13. return Density

Figure 4 provides a detailed flowchart of Algorithm 1, illustrating the key stages and
components involved.

3.2.2. Coverage Metric

Coverage, on the other hand, is a metric that aims to quantify diversity by measuring
the extent to which unknown samples cover the real samples. In other words, coverage
measures the ratio of real samples that are covered by unknown samples. To improve the
accuracy of coverage, the nearest neighbor manifolds are built around the real samples
instead of the unknown ones, as the former are less prone to outliers. Moreover, the
manifold can only be computed per dataset instead of per model, reducing the heavy
nearest neighbor computations in a recall. The coverage metric is defined as formula (2) [40],
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illustrated by Figure 5, and represents the fraction of real samples whose neighborhoods
contain at least one unknown sample. The coverage metric ranges from 0 to 1.

Coverage :=
1
N

N

∑
i=1

1∃j:Y j∈B(Xi ,NNDk(Xi))
(2)
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The process of calculating coverage will be executed following Algorithm 2.

Algorithm 2 Calculation of Coverage

Input: DR: Dataset of real samples, DU : Dataset of unknown samples, NR:
Number of real samples, NU : Number of unknown samples, k:
Number of nearest neighbors to use for coverage calculation, Count: Array of number
neighbourhood spheres of real sample that contain at least one unknown sample.
Output: coverage value

1. Real sample ← r ∈ DR
2. Unknown sample ← u ∈ DU
3. Define distance between the unknown sample m and real sample n:

dmn = distance (um, rn)
4. Define kth nearest neighbour distances for real sample n:

NNDn = nearest_neighbour_distances(rn, k)
5. Count = array[NR] of zeros
6. for i in range NR:
7. for j in range NU :
8. if dji < NNDi

9. Count[i] = 1
10. break
11. end for
12. end for
13. Coverage = mean (Count)
14. return Coverage

Figure 6 provides a detailed flowchart of Algorithm 2, illustrating the key stages and
components involved.

3.2.3. Density and Coverage Behavior Analysis

To verify the effectiveness of the density and coverage metrics, it is necessary to exam-
ine whether they reach their best values when the intended criteria are met. Analyzing the
expected values E[Density] and E[Coverage] for identical real and unknown distributions
reveals that these metrics approach 100% as the sample sizes (N; M) and the number of
neighborhoods k increase. This analysis further leads to a systematic algorithm for selecting
the hyperparameters (k; N; M) for generative models. Specifically, the algorithm can be
used to determine the optimal values of k, N, and M that will maximize the effectiveness of
the density and coverage metrics in assessing the similarity between the real and unknown
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distributions. We derive the expected values of density and coverage under the identical
real and unknown data in formulas (3) and (4) [40]:

E[Density] = 1 (3)

E[Coverage] = 1− (N − 1) · · · (N − k)
(M + N − 1) · · · (M + N − k)

(4)

As M = N → ∞ : E[Coverage] = 1− 1
2k .

By taking into account the degree to which unknown samples overlap with real
samples in densely packed regions and measuring the extent to which unknown samples
cover the real samples, these metrics offer a comprehensive evaluation of the dataset’s
distribution. Additionally, by analyzing the expected values of density and coverage for
identical real and unknown distributions, it is possible to develop a systematic algorithm
for selecting the model’s hyperparameters, thereby optimizing their performance.
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3.3. Unknown Identification Module

The proposed Unknown Detecting Module is designed to address the challenge of
identifying unknown attacks in the cybersecurity domain. The need for such a module
arises due to the ever-evolving threat landscape and the difficulty in identifying and
isolating unknown attacks. The proposed module is designed to work with the CICIDS2017-
Wednesday dataset, which is a widely used benchmark dataset for network intrusion
detection systems. To accomplish its goal, we divide the original data of the CICIDS2017-
Wednesday dataset into batch samples with an element number of 10,000 and according to
the ratio of the original labels in the dataset. By dividing the dataset into batches, we can
assess the similarity between the batches and the baseline dataset without processing the
entire dataset simultaneously. This improves the speed and efficiency of the module.

Subsequently, the density and coverage metrics are computed to determine the corre-
lation between the data batches. The density and coverage metrics have been proposed
as two metrics that can effectively assess the performance of generative models. Density
quantifies the degree to which the neighborhoods of real samples overlap with those of
unknown samples. In contrast, coverage aims to quantify diversity by measuring the extent
to which unknown samples cover the real samples. We can assess the similarity between
the batches and the baseline dataset by calculating the density and coverage metrics. This
step allows us to determine the similarity of each batch to the baseline dataset, which is
crucial for identifying unknown attacks. To evaluate outliers, we build a threshold for
evaluating outliers from the average of all metric density and coverage correlation values
as formula (5) and (6) [40].

Dthreshold :=
2

(N − 1)N

N

∑
i=1

∑
j 6=i

Density
(
batchi, batchj

)
(5)

Cthreshold :=
2

(N − 1)N

N

∑
i=1

∑
j 6=i

Coverage
(
batchi, batchj

)
(6)

where N is the number of batchs.
The threshold is an important component of the proposed module, allowing us to

distinguish between known and unknown attacks. When the metric density and coverage
results of the data correlated with the baseline dataset fall below the threshold level, they
will be considered outliers. This step enables us to identify unknown attacks that are
not present in the baseline dataset and isolate them from the network. By combining the
density and coverage metrics, we can effectively identify and isolate unknown attacks
from the network. The proposed module can potentially serve as a valuable instrument
in augmenting the cybersecurity of networks. The efficacy of the module lies in its ability
to detect outliers. Furthermore, the module that has been suggested exhibits scalability,
as it can be modified to function with additional datasets. The present study employs a
double-index approach for categorization in the unidentified identification module. The
schematic representation of the strategy architecture is depicted in Figure 7.
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3.4. Incremental Learning

The model will feature an identification module capable of detecting unknown sam-
ples. In the event of the detection of unidentified traffic, communication experts are alerted
to label the data for subsequent model retraining. To this end, the proposed framework
employs a fine-tuned strategy to update specific modules within the architecture of the
model, thereby allowing for the acquisition of new knowledge by including additional
classifications. Additionally, the model’s learning rate during training is moderated to
mitigate the risk of catastrophic forgetting of previously learned information.

4. Experiment
4.1. Dataset

In this article, the performance of the suggested framework is thoroughly evaluated
by two prominent network datasets: CICIDS2017 and CICDDoS2019. The CICIDS2017
dataset comprises network traffic logs spanning over five days, which capture various
types of Denial-of-Service (DoS) and Distributed DoS (DDoS) attacks that occurred on
7 May 2017 and 7 July 2017. On the other hand, CICDDoS2019 is a widely used dataset
that contains network traffic data of amplification attacks. Both datasets are characterized
by a set of features and corresponding labels, where the label information indicates the
presence of either benign network traffic or malicious. Specifically, the attack signatures in
the dataset provide comprehensive information about the various types of network attacks,
such as HTTP flood, TCP SYN flood, and UDP flood, among others. Table 2 in this study
summarizes the primary attack vectors of the datasets above.

Table 2. The statistical examination of datasets.

Dataset Label Quantity Proportion Total

CICIDS2017 Wed
<train dataset>

BENIGN 319,186 64.260%

496,709

DoS Hulk 159,049 32.021%

DoS GoldenEye 7647 1.540%

DoS Slowloris 5707 1.149%

DoS Slowhttptest 5109 1.029%

HeartBleed 11 0.002%

CICIDS2017 Tuesday

BENIGN 432,074 96.897%

445,909FTP-Patator 7938 1.780%

SSH-Patator 5897 1.323%

CICDDoS2019 LDAP
BENIGN 1602 0.073%

2,181,530
DrDoS_LDAP 2,179,928 99.927%

CICDDoS2019 MSSQL
BENIGN 1995 0.044%

4,524,484
DrDoS_MSSQL 4,522,489 99.956%

CICDDoS2019 DNS
BENIGN 3380 0.067%

5,074,382
DrDoS_DNS 5,071,002 99.933%

CICDDoS2019 NetBIOS
BENIGN 1705 0.042%

4,094,978
DrDoS_NetBIOS 4,093,273 99.958%

CICDDoS2019 NTP
BENIGN 14,337 1.178%

1,216,976
DrDoS_NTP 1,202,639 98.822%

CICDDoS2019 UDP
BENIGN 2151 0.069%

3,136,794
DrDoS_UDP 3,134,643 99.931%
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Table 2. Cont.

Dataset Label Quantity Proportion Total

CICDDoS2019 SNMP
BENIGN 1502 0.029%

5,161,365
DrDoS_SNMP 5,159,863 99.971%

CICDDoS2019 SSDP
BENIGN 762 0.029%

2,611,372
DrDoS_SSDP 2,610,610 99.971%

CICDDoS2019 SYN
BENIGN 389 0.028%

1,380,404
Syn 1,380,015 99.972%

The proposed model will undergo training using the CICIDS2017 Wednesday dataset,
which includes benign traffic and DoS attacks. This approach aims to enhance the model’s
capability to detect benign traffic and DoS attacks. Meanwhile, the CICIDS2017 Tuesday and
CICDDoS2019 datasets were utilized as unseen traffic to evaluate the model’s performance.

Evaluation metrics were gathered using the confusion matrix, as indicated in Table 3.
The confusion matrix’s parameters include True Positive (TP), which represents malicious
traffic correctly identified, and True Negative (TN), which represents benign traffic correctly
identified. False Positive (FP) represents benign traffic identified as malicious traffic, and
False Negative (FN) represents malicious traffic mistakenly identified as benign traffic. This
evaluation methodology is an essential aspect of the experiment and aims to accurately
measure the model’s effectiveness in distinguishing between benign and malicious traffic.

Table 3. Confusion Matrix.

Actual
Predict

Attack Benign

Attack TP FP

Benign FN TN

The evaluation of the proposed model was performed using the confusion matrix
shown in Table 2, along with the commonly used performance metrics, namely accuracy,
precision, recall, and F1 score, as defined in formulas (7), (8), (9), and (10), respectively. The
precision metric assesses the proportion of true positive identifications out of all positive
identifications, while recall refers to the ratio of correctly identified actual positives. The
metric of accuracy evaluates the proportion of accurately classified instances, whereas the
F1 score metric offers a balance between precision and recall.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1Score =
2× Precision× Recall

Precision + Recall
(10)

4.2. Framework

Following a thorough study process, a CNN architecture has been identified, featuring
the configuration illustrated in Figure 8 and the parameter configurations outlined in
Table 4. The experiment was carried out utilizing a workstation equipped with an Ubuntu
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20.04 operating system, an AMD Ryzen 5700X 8C16T processor, and 96 GB DDR4 memory.
Additionally, Nvidia RTX3070 devices were utilized for computing acceleration purposes.
The driver component employs the NVIDIA Driver Server 510 version.
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 BatchNorm-2 (BatchNormaliza  (None, 9, 9, 80)         320        
 tion)                                                            
                                                                  
 Conv2D-3 (Conv2D)           (None, 9, 9, 60)          43260      
                                                                  
 BatchNorm-3 (BatchNormaliza  (None, 9, 9, 60)         240        
 tion)                                                            
                                                                  
 Conv2D-4 (Conv2D)           (None, 9, 9, 40)          21640      
                                                                  
 BatchNorm-4 (BatchNormaliza  (None, 9, 9, 40)         160        
 tion)                                                            
                                                                  
 Flatten (Flatten)           (None, 3240)              0          
                                                                  
 Dense-1 (Dense)             (None, 128)               414848     
                                                                  
 Dropout-1 (Dropout)         (None, 128)               0          
                                                                  
 Dense-2 (Dense)             (None, 64)                8256       
                                                                  
 Dropout-2 (Dropout)         (None, 64)                0          
                                                                  
 Output (Dense)              (None, 2)                 130        
                                                                  
================================================================= 
Total params: 521,834 
Trainable params: 521,274 
Non-trainable params: 560 
_________________________________________________________________ 

Figure 8. CNN classifier model architecture.

Table 4. Parameters configuration.

Parameter Value

Optimizer Adam

Weight_decay 3 × 10−5

Learning rate 0.001

Number of nearest neighbor 5

Random seed 0; 42; 133; 207; 417; 830; 920; 1377; 65,536; 815; 123

Training split ratio (train; test) 0.8; 0.2

Batch size 512

For the numerical implementation, we used the Python programming language,
version 3.9.12. The programming environment utilized in this study consisted of VSCode
and Conda. The model framework relied on Tensorflow 2.12, a popular open-source
machine learning library, which provided the necessary tools for building and training
the CNN architecture. Additionally, we used the Scikit-learn (sklearn) library, a widely
used Python library for machine learning and data science, to assist in data preprocessing,
model evaluation, and other related tasks. To handle numerical computations efficiently,
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we incorporated the NumPy library, a fundamental Python scientific computing package,
which facilitated operations with multi-dimensional arrays and matrices. These tools and
libraries enabled us to effectively implement and analyze the proposed CNN-Geo method
in our study.

To ensure the robustness of the proposed CNN model, we conducted ten separate
training runs with different random seeds and averaged the results. The model’s perfor-
mance was evaluated on a closed dataset, and the results presented in Table 5 demonstrate
its effectiveness.

Table 5. Training outcomes for CICIDS2017 Wed.

Dataset Accuracy Precision Recall F1Score

CICIDS2017 Wed 0.9983 0.9966 0.9954 0.9960

4.3. Unknown Attack Recognition and Evaluation
4.3.1. Identify Unknown Attack by CNN Classifier

Upon completing the CICIDS2017 Wednesday dataset training, the CNN exhibited
commendable efficiency in countering conventional attacks. An initial assessment was
performed on the CICIDS2017 Tuesday dataset to determine its efficacy in safeguarding
against unknown attacks. Table 6 displays the outcomes and correlation analysis in relation
to the initial dataset.

Table 6. Identifying unknown attack outcomes with CICIDS2017 Tuesday.

Dataset Accuracy Precision Recall F1Score

CICIDS2017 Wed 0.9983 0.9966 0.9954 0.9960

CICIDS2017 Tuesday 0.9626 0.6737 0.6370 0.6528

The experimental findings reveal that the model maintains its accuracy in defending
against unknown traffic, as evidenced by the consistent score of 0.9626 on the CICIDS2017
Tuesday dataset. Notably, the precision score plummets to 0.6737, indicating that the
model’s ability to detect novel kinds of attacks is inadequate. Additionally, comparable
declines are observed in recall and F1 scores.

Delving further into this issue, it becomes clear that the discrepancy between the
Accuracy metric and the other indices on the classification of the Tuesday dataset primarily
stems from the imbalance and nature of the dataset. As indicated in Table 1, the BENIGN
sample in CICIDS2017-Tuesday constitutes 96.897% of the data. The Confusion Matrix of
the CICIDS2017-Tuesday data classification results, as depicted in Figure 9, reveals that
the notably high True Negative (TN) index is responsible for the elevated Accuracy metric
outcomes. However, the low True Positive (TP) rate significantly decreases precision, recall,
and F1 scores.

Given that the CICIDS2017-Wednesday and CICIDS2017-Tuesday datasets were col-
lected from the same network environment, the BENIGN samples from both sets display
similarities, enabling the model to detect benign samples from the CICIDS2017-Tuesday
dataset effectively. Nonetheless, the model struggles to identify new attack patterns from
the CICIDS2017-Tuesday dataset, highlighting its limitations in addressing unknown at-
tacks. The results of additional experiments conducted on OSR datasets associated with
CICDDoS2019 are presented in Table 7.
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Table 7. Model’s detection outcomes on each set.

Dataset Accuracy Precision Recall F1Score

CICIDS2017 Wed 0.9983 0.9966 0.9954 0.9960

CICIDS2017 Tuesday 0.9626 0.6737 0.6370 0.6528

CICDDoS 2019 LDAP 0.0020 0.0003 0.1378 0.0007

CICDDoS 2019 MSSQL 0.0004 0.0239 0.1434 0.0001

CICDDoS 2019 NetBIOS 0.0003 0.0001 0.1446 0.0001

CICDDoS 2019 Portmap 0.0227 0.0161 0.1464 0.0074

CICDDoS 2019 SYN 0.0074 0.0070 0.1400 0.0024

CICDDoS 2019 UDP 0.0007 0.0001 0.1455 0.0002

CICDDoS 2019 DNS 0.0006 0.2001 0.1815 0.0002

CICDDoS 2019 NTP 0.0116 0.2023 0.1974 0.0046

CICDDoS 2019 SNMP 0.0003 0.0001 0.1839 0.0001

CICDDoS 2019 SSDP 0.0003 0.0001 0.1878 0.0001

The accuracy is very low for the datasets (except for the first two) presented in Table 6
because the model struggles to identify new and unknown attack patterns that were not
present in the training data. When evaluating traffic from a disparate dataset such as CICD-
DoS2019, the model’s performance indicators experienced a substantial reduction. This is
because the attack patterns in the CICDDoS2019 dataset are different and unknown to the
model, as it was not exposed to these patterns during training. The model’s limitations in
addressing unknown attacks become evident when faced with the challenge of identifying
traffic originating from a different dataset. To improve the overall defense capabilities of
the structure, it is imperative to screen the unknown identity module in the second stage.

4.3.2. Unknown Identification Index

Outlier Detection Rate (ODR), which is defined by the formula (11), is used as the
evaluation metric for determining the performance of the unknown detection component.
This metric allows the assessment of the module’s ability to identify outliers among incom-
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ing data samples. By utilizing this metric, the performance of the unknown recognition
module can be accurately quantified, and any areas of improvement can be identified for
further optimization.

ODR =
NOutlier

N
(11)

where NOutlier is the number of observed samples that fall short of the threshold following
analysis by the framework, and N is the total amount of samples in the procedure.

4.3.3. Outcome of Unknown Attack Detection

The model’s efficiency to confront unknown attacks is reflected in Table 8, which
presents the ODR metrics that demonstrate the model’s ability to detect unseen threats.

Table 8. Outcome of unknown attack detection.

Dataset ODR

CICIDS2017 Tuesday 0.7461

CICDDoS 2019 LDAP 0.9902

CICDDoS 2019 MSSQL 0.9871

CICDDoS 2019 NetBIOS 0.9867

CICDDoS 2019 Portmap 0.9944

CICDDoS 2019 SYN 0.9888

CICDDoS 2019 UDP 0.9861

CICDDoS 2019 DNS 0.9895

CICDDoS 2019 NTP 0.9892

CICDDoS 2019 SNMP 0.9897

CICDDoS 2019 SSDP 0.9870

The CICIDS2017-Tuesday dataset’s traffic was captured within the same network
environment and timeframe as the training data, resulting in an ODR of 0.7461 that implies
some degree of similarity between the two datasets, yet the model still exhibits satisfactory
performance. In relation to the model’s efficacy in countering CICDDoS 2019 attacks, it is
noteworthy that the ODR score surpassed 0.98, with LDAP exhibiting the highest ODR of
0.99. The findings indicate that the model can proficiently identify a significant portion of
unidentified traffic, particularly in cases where the data display minimal correlation, using
the unknown identifies module.

4.3.4. Incremental Learning and the Outcomes Following

After being detected by an unknown identification component, the unidentified traf-
fic is forwarded to telecommunications technician for analysis and labeling. It is then
transmitted to a progressive learning module for further improvement. The fine-tuning
process exclusively employs novel data, refraining from utilizing the initial training dataset.
Despite causing a minor decline in performance, this method retains a satisfactory degree
of competence for the preceding task and aligns more appropriately with real-world online
operational scenarios. With respect to the performance of incremental learning, a sorted list
is presented in Table 9. To enable a comprehensive assessment of incremental learning’s
efficacy, the performance metrics of the model before incremental learning, as presented
in Table 7, are incorporated under the tag “before incremental learning”. The “post in-
cremental learning” entry within the table indicates that the evaluation also incorporates
the pre-training dataset, employed alongside CICIDS2017 Tuesday, to substantiate that
previously acquired knowledge is not excessively compromised.
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Table 9. CNN-Geo’s detection outcomes post incremental learning.

Dataset Test Accuracy Precision Recall F1 Score

CICIDS2017 Wed

Before incremental
learning 0.9983 0.9966 0.9954 0.9960

Post incremental
learning 0.9979 0.9962 0.9944 0.9953

CICIDS2017 Tuesday

Before incremental
learning 0.9626 0.6737 0.6370 0.6528

Post incremental
learning 0.9996 0.9989 0.9944 0.9966

CICDDoS 2019
LDAP

Before incremental
learning 0.0020 0.0003 0.1378 0.0007

Post incremental
learning 0.9999 0.9998 0.9995 0.9996

CICDDoS 2019
MSSQL

Before incremental
learning 0.0004 0.0239 0.1434 0.0001

Post incremental
learning 0.9973 0.9952 0.9984 0.9968

CICDDoS 2019
NetBIOS

Before incremental
learning 0.0003 0.0001 0.1446 0.0001

Post incremental
learning 0.9997 0.9981 0.9992 0.9987

CICDDoS 2019
Portmap

Before incremental
learning 0.0227 0.0161 0.1464 0.0074

Post incremental
learning 0.9998 0.9976 0.9993 0.9985

CICDDoS 2019 SYN

Before incremental
learning 0.0074 0.0070 0.1400 0.0024

Post incremental
learning 0.9957 0.9986 0.9999 0.9993

CICDDoS 2019 UDP

Before incremental
learning 0.0007 0.0001 0.1455 0.0002

Post incremental
learning 0.9992 0.9842 0.9813 0.9836

CICDDoS 2019 DNS

Before incremental
learning 0.0006 0.2001 0.1815 0.0002

Post incremental
learning 0.9990 0.9989 0.9963 0.9976

CICDDoS 2019 NTP

Before incremental
learning 0.0116 0.2023 0.1974 0.0046

Post incremental
learning 0.9989 0.9988 0.9989 0.9989

CICDDoS 2019
SNMP

Before incremental
learning 0.0003 0.0001 0.1839 0.0001

Post incremental
learning 0.9997 0.9987 0.9973 0.99800.

CICDDoS 2019 SSDP

Before incremental
learning 0.0003 0.0001 0.1878 0.0001

Post incremental
learning 0.9994 0.9974 0.9944 0.9953
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Table 9 illustrates that integrating the suggested system adequately resolves the problem
of OSR in detecting unfamiliar attacks. By leveraging the proficiency of telecommunication
technicians, recently classified instances are reintegrated into the proposed model to facili-
tate incremental learning. The enhancement in performance for CICDDoS2019/LDAP and
CICDDoS2019/PORTMAP is significantly evident. Moreover, the implementation of the
recommended CNN-Geo framework in conjunction with the incremental learning approach
ensures that all performance metrics revert to satisfactory levels. Consequently, the refined
model can competently and elegantly handle established and emerging traffic patterns.

4.4. Comparative Analysis of the Proposed Method and Existing Approachs

In the next stage of the analysis, we conduct a comprehensive comparison between the
CNN-Geo and traditional ML algorithms. Many recent and related studies have suggested
using conventional ML algorithms or a combination of innovative and combined methods
to detect DDoS attacks. CNN-Geo was compared with the results of three MC algorithms
found in the literature: Decision Tree [41], Random Forest [13], SVM [23]. To provide a
more thorough assessment of our proposed method, we present an overall comparison in
Table 10, highlighting the main performance differences between our method and the ML
algorithms used in the aforementioned studies on dataset CICIDS2017 where the superior
outcomes will be distinctly emphasized by displaying them in bold font.

Table 10. CNN-Geo’s result in comparison with the traditional ML algorithms on CICIDS2017.

Method Accuracy Precision Recall

Decision Tree (2020) [41] 0.0194 0.9938 0.0163

Random Forest (2019) [13] 0.0032 0.9967 0.00004

SVM (2019) [23] 0.0147 0.9621 0.0120

CNN-Geo 0.9979 0.9962 0.9944

Upon examining the results presented in Table 10, it is evident that the CNN-Geo out-
performs traditional ML algorithms in terms of accuracy, precision, and recall. Specifically,
the CNN-Geo achieves an accuracy of 0.9979, a precision of 0.9962, and a recall of 0.9944.
These values are significantly higher than those of the other algorithms, demonstrating the
superior performance of the CNN-Geo method for detecting DDoS attacks. In contrast,
the Decision Tree, Random Forest, and SVM methods exhibit lower performance levels in
comparison to CNN-Geo. The Decision Tree algorithm shows a relatively high precision of
0.9938 but suffers from low accuracy (0.0194) and recall (0.0163). The Random Forest algo-
rithm, despite having a high precision of 0.9967, demonstrates the weakest performance in
terms of accuracy (0.0032) and recall (0.00004). Lastly, the SVM method reports a precision
of 0.9621, an accuracy of 0.0147, and a recall of 0.0120, indicating that it also struggles with
detecting DDoS attacks effectively.

In order to further demonstrate the efficacy of the CNN-Geo method in handling not
only conventional DDoS attacks but also effectively addressing out-of-sample or unknown
attacks, we have conducted a comparative analysis of the performance of CNN-Geo against
state-of-the-art approaches, including the Gaussian Mixture Model (GMM) [26], GMM-
Bidirectional Long Short-Term Memory (GMM-BiLSTM) [34], Density-Based Spatial Clus-
tering of Applications with Noise-Random Forest (DBSCAN-RF) [28], Density-Based Spatial
Clustering of Applications with Noise-Support Vector Machine (DBSCAN-SVM) [28], and
One-Dimensional Deep High-Resolution Network-One-Class Support Vector Machine
(1D-DHRNet-OCSVM) [27]. These comparison models are all trained on the original CI-
CIDS2017 dataset and subsequently tested on a distinct dataset that differs from the original
training set. The comprehensive comparison of averaged results is presented in Table 11
where the superior outcomes will be distinctly emphasized by displaying them in bold font.
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Table 11. CNN-Geo’s result in comparison with the existing DL algorithms on unknown DDoS
attack detection.

Method Accuracy Precision Recall

GMM (2021) [26] - 0.970 0.950

GMM-BiLSTM (2021) [34] 0.952 0.994 0.957

DBSCAN-RF (2022) [28] 0.148 0.998 0.145

DBSCAN-SVM (2022) [28] 0.314 0.998 0.312

1D-DHRNet-OCSVM (2022) [27] 0.992 0.999 0.991

CNN-Geo 0.996 0.997 0.996

After conducting a thorough examination of the results presented in Table 11, it be-
comes apparent that the CNN-Geo method demonstrates a well-balanced performance in
detecting unknown DDoS attacks when compared to existing state-of-the-art approaches.
While the 1D-DHRNet-OCSVM [27] method achieves the highest precision of 0.999, its ac-
curacy and recall values are slightly lower than those of the CNN-Geo method. Specifically,
the CNN-Geo achieves an accuracy of 0.996, a precision of 0.997, and a recall of 0.996, sur-
passing the overall performance of GMM [26], GMM-BiLSTM [34], DBSCAN-RF [28], and
DBSCAN-SVM [28]. This comparative analysis highlights the robustness and adaptability
of the CNN-Geo approach in handling not only known but also out-of-sample or unknown
DDoS attacks. It is important to note that while some of the other approaches may excel in
certain performance metrics, the CNN-Geo method provides a more balanced and consis-
tent performance across all evaluation criteria. By effectively addressing these emerging
threats, our proposed method offers a significant contribution to enhancing the overall se-
curity and resilience of computer networks in the face of evolving DDoS attack scenarios.

5. Conclusions

Existing studies primarily focus on general categories, resulting in intrusion detection
systems’ limitations when detecting unknown attacks. This study presents the novel CNN-
Geo framework, a hybrid network architecture combining unsupervised and supervised
networks’ features to address these challenges. Utilizing datasets such as CICIDS2017-
Wed and CICIDDoS2019, the framework effectively detects unknown cyber-attacks by
employing DL techniques and geometrical metric calculating during training alongside
the incremental learning solution. Our comprehensive comparison of CNN-Geo with
traditional ML algorithms and state-of-the-art approaches demonstrates its superior perfor-
mance in detecting conventional and unknown DDoS attacks. The experimental results
validate the proposed architecture’s effectiveness, achieving a detection rate of more than
99% for conventional attacks in the CICIDS2017-Wed dataset and enhancing the frame-
work’s efficiency to 99.8% in confronting unknown attacks in the recent CICIDDoS2019
unseen datasets. CNN-Geo demonstrates the adaptability to address evolving threats by
leveraging telecommunications technicians for traffic defining and incrementally learning.
The verified benefits of this research lie in the enhanced detection capabilities of unknown
traffic in DDoS attacks and the framework’s ability to incorporate new information and
adapt to new attack patterns, making it a powerful and intelligent solution for intrusion
detection systems.

The CNN-Geo system was initially developed to provide protection against L3, L4
DDoS attacks. Moreover, it is currently incapable of mitigating the latest attack techniques,
such as Connection-less Lightweight Directory Access Protocol (CLDAP) or L7 DDoS
attacks, as proposed by Cloudflare. The utilization of this particular attack is prevalent
due to the lack of a dataset that encompasses corresponding attack patterns. The L7 attack
poses a significant challenge due to the potential for its traffic to originate from a natural
source. An avenue for enhancing the efficacy of the model is to integrate deep learning
models with metaheuristic optimization algorithms such as Particle Swarm Optimization
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(PSO). Integrating deep learning and PSO can potentially optimize the model, resulting
in an enhanced and flexible intrusion detection system. Subsequent academic pursuits
will encompass supplementary modules aimed at tackling those matters. The expectation
is that following the confirmation of the efficacy of this research framework, it can be
implemented within an intranet setting as a cybersecurity solution for enterprises.
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