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Abstract: Stability is the most relevant property of dynamical systems. The stability of stochastic
differential equations is a challenging and still open problem. In this article, using a fuzzy Mittag–
Leffler function, we introduce a new fuzzy controller function to stabilize the stochastic differential
equation (SDE) ν

′
(γ, µ) = F

(
γ, µ, ν(γ, µ)

)
. By adopting the fixed point technique, we are able to

prove the fuzzy Mittag–Leffler–Hyers–Ulam–Rassias stability of the SDE.
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1. Introduction and Mathematical Preliminaries

Morsi [1] used the concepts of Minkowski functionals of L-fuzzy sets and fuzzy
metric space to introduce the notion of fuzzy (pseudo) normed spaces. Subsequently,
Jäger and Shi [2], using random normed spaces, introduced the fuzzy normed spaces.
In the last years, the fuzzy functional analysis and its applications, especially the Hyers–
Ulam–Rassias stability [3–5] in fuzzy normed spaces, was widely investigated by several
authors [6,7]. Furthermore, several fixed-point (FP) results were obtained, with applications
to nonlinear functional analysis. To learn more about applications of FP theory, please see
references [8–10].

Stability is crucial in any dynamical systems. Specifically, the stability of stochastic
differential equations is a challenging and still open problem. In this paper, we consider
the stochastic differential equation (SDE) of the form:

ν
′
(γ, µ) = F

(
γ, µ, ν(γ, µ)

)
. (1)

Using a new fuzzy controller function, constructed based on the fuzzy Mittag–Leffler
(FML) function, we are able to stabilize the pseudo SDE (1). Additionally, by adopting the
FP technique [11–13] we prove the fuzzy Mittag–Leffler–Hyers–Ulam–Rassias (MLHUS)
stability of the SDE [14,15]. Our findings extend and improve some existing results [16,17]
by using a new fuzzy controller function that allows studying the MLHUS stability of
SDEs in fuzzy normed spaces, and by using the alternative of FP-theorem [18,19].

In the subsequent analysis, for simplicity, we use the notions: Π = (0, 1), J = (0, 1],
Ω = [0, ∞] and ∆ = (0, ∞).

Definition 1 ([9,20,21]). Consider that S is a linear space and that η represents a fuzzy set from
S× ∆ to J. Then, the ordered pair (S, η) is a fuzzy normed (FN) space whenever:
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(FN1) η(ζ, τ) = 1, ∀τ ∈ ∆ iff ζ = 0;
(FN2) η(aζ, τ) = η

(
ζ, τ
|a|

)
, ∀ζ ∈ S, ∀a ∈ R\{0};

(FN3) η(ξ + ζ, τ + ς) ≥ ∧(η(ξ, τ), η(ζ, ς)), ∀ξ, ζ ∈ S, ∀τ, ς ∈ ∆;
(FN4) η(ζ, .) : ∆→ J is continuous.

A complete FN space is denoted by FB space.
Consider that (S, ‖.‖) is a linear normed space. If for all ς ∈ ∆

η(ζ, ς) = exp
(
−‖ζ‖

ς

)
,

then (S, η) is a FN-space.
Consider that (z, Σ, ξ) is a probability measure space. Assume that (T,BT) and

(S,BS) are Borel measurable spaces, in which T and S are FB spaces. A mapping F :
z× T → S is called a random operator (RO) if {γ : F(γ, ξ) ∈ B} ∈ Σ for all ξ in T and
B ∈ BS. In addition, F is RO if F(γ, ξ) = ζ(γ) is a S-valued random variable for every
ξ in T. A RO F : z× T → S is called linear if F(γ, aξ1 + bξ2) = aF(γ, ξ1) + bF(γ, ξ2)
almost everywhere for each ξ1, ξ2 in T and a, b are scalars, and bounded if there exists a
non-negative real-valued random variable M(γ) such that

η(F(γ, ξ1)− F(γ, ξ2), M(γ)τ) ≥ η(ξ1 − ξ2, τ),

almost everywhere for each ξ1, ξ2 in T, τ ∈ ∆ and γ ∈ z.
In this work, we present the FP technique, which is the second most popular tool for

proving the stability of functional equations [22,23].

Theorem 1 ([10]). (The alternative of FP). Assume that (T, ρ) is a complete generalized metric
space and that Λ : T → T is a strictly contractive function with the Lipschitz constant ι < 1. Then,
for every ξ ∈ T, either

ρ(Λnξ, Λn+1ξ) = ∞,

for each n ∈ N, or there is a n0 ∈ N for which:
(i) ρ(Λnξ, Λn+1ξ) < ∞, ∀n ≥ n0;
(ii) the FP ξ∗ of Λ is the convergent point of the sequence {Λnξ};
(iii) in the set V = {ζ ∈ T | ρ(Λn0 ξ, ζ) < ∞}, ξ∗ is the unique FP of Λ;
(iv) (1− ι)ρ(ζ, ξ∗) ≤ ρ(ζ, Λζ) for every ζ ∈ V.

Definition 2 ([24]). The Mittag–Leffler function is given by the series:

Eq(µ) =
∞

∑
k=0

µk

Γ(qk + 1)
,

where q ∈ C, Re(q) > 0 and Γ(µ) is a gamma function:

Γ(µ) =
∫ ∞

0
e−ttµ−1dt,

with Re(µ) > 0. In particular, if q = 1, we get:

E1(µ) =
∞

∑
j=0

µj

Γ(j + 1)
=

∞

∑
j=0

µj

j!
= eµ.

Using Definition 2, we introduce the FML function as:

Eq(µ, τ) =
τ

τ + Eq(µ)
, ∀τ > 0.
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2. Fuzzy MLHUS Stability

The norm L1(z× Ξ, S) is written η(., τ)L1(z×Ξ). We prove the fuzzy MLHUS stability

for the SDE ν
′
(γ, µ) = F(γ, µ, ν(γ, µ)).

Theorem 2. Consider that c ∈ R, r > 0,

Ξ = {µ ∈ R | |µ− c| ≤ r},

and F : z× Ξ×R→ R is a continuous RO which satisfies a Lipschitz condition:

η(F(γ, µ, ν(γ, µ))− F(γ, µ, ω(γ, µ)), τ) ≥ η
(

ν−ω,
τ

L

)
, (2)

for any µ ∈ Ξ, τ ∈ ∆, γ ∈ z and ν, ω ∈ R, where L is a constant with rL ∈ Π. If a continuously
differentiable operator ν : z× Ξ→ R satisfies the differential inequality:

η

(∫ µ

c
[F(γ, ξ, ν(γ, ξ))− ν

′
(γ, ξ)]dξ, τ

)
≥ Eq(µ, τ), (3)

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z, where Eq is a FML function,

inf
ξ∈Ξ

Eq(ξ,
τ

2r
) ≥ Eq

(
µ,

τ

r

)
, (4)

for any µ ∈ Ξ, τ ∈ ∆, γ ∈ z, then there exists a unique continuous RO ν0 : z×Ξ→ R such that

ν0(γ, µ) = ν(γ, c) +
∫ µ

c
F(γ, ξ, ν0(γ, ξ))dξ.

Furthermore, ν0 is a solution of (1) and

η(ν(γ, µ)− ν0(γ, µ), τ) ≥ Eq(µ, (1− rL)τ), (5)

for any µ ∈ Ξ, τ ∈ ∆, γ ∈ z.

Proof. Consider the space of continuous ROs

Υ = {α : z× Ξ→ R | α is a continuous RO}. (6)

Introduce the below function on Υ2 as,

ρ(α, β) (7)

= inf
{

λ ∈ ∆ | η
(
α(γ, µ)− β(γ, µ), τ

)
≥ Eq

(
µ,

τ

λ

)
, ∀µ ∈ Ξ, τ ∈ ∆, γ ∈ z

}
.

Mihet and Radu [25] proved that (Υ, ρ) is a complete generalized metric (see also [26]).
We introduce the RO Λ : Υ→ Υ by:

(Λα)(γ, µ) = ν(γ, c) +
∫ µ

c
F
(
γ, ξ, α(γ, ξ)

)
dξ, (8)

for every α ∈ Υ, γ ∈ z and µ ∈ Ξ. The continuity of RO α implies the continuity of Λα and
well-defined Λ.

Consider α, β ∈ Υ and γ ∈ z. Additionally, consider λα,β ∈ ∆ such that:

η
(
α(γ, µ)− β(γ, µ), τ

)
≥ Eq

(
µ,

τ

λαβ

)
. (9)
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Assume that c = v1 < v2 < · · · < vk = µ, ∆µi = vi − vi−1 = |µ−c|
k , i = 1, 2, · · · , k,

and ‖∆µ‖ = max1≤i≤k(∆µi), for every µ ∈ Ξ, τ ∈ ∆ and γ ∈ z. Utilizing (2), (4), (8), and
(9) we have the following

η
(
(Λα)(γ, µ)− (Λβ)(γ, µ), τ

)
,

by equality (8)

= η

(∫ µ

c

(
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
dµ, τ

)
,

by integral definition

= η

(
lim
‖∆µ‖→0

k

∑
i=1

(
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
∆µi, τ

)
,

by continuity property of η

= lim
‖∆µ‖→0

η

(
k

∑
i=1

(
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
∆µi, τ

)
,

by triangular inequality

≥ lim
‖∆µ‖→0

∧
η
((

F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))
)
∆µi,

τ

k

)
,

by property of infimum

≥ inf
ξ∈Ξ

η

((
F(γ, ξ, α(γ, ξ))− F(γ, ξ, β(γ, ξ))

)
,

τ

k∆µi

)
≥ inf

ξ∈Ξ
η

((
F(γ, ξ, α(γ, ξ))− F(γ, ξ, β(γ, ξ))

)
,

τ

k‖∆µ‖

)
≥ inf

ξ∈Ξ
η

((
F(γ, ξ, α(γ, ξ))− F(γ, ξ, β(γ, ξ))

)
,

kτ

k|µ− c|

)
,

by equality (2)

≥ inf
ξ∈Ξ

η

(
α(γ, ξ)− β(γ, ξ),

τ

(2rL)

)
,

by equality (9)

≥ inf
ξ∈Ξ

Eq

(
ξ,

τ

(2rL)λα,β

)
,

by equality (4)

≥ Eq

(
µ,

τ

(rL)λα,β

)
,

for every µ ∈ Ξ, τ ∈ ∆ and γ ∈ z, that is, ρ(Λα, Λβ) ≤ (rL)λα,β. Therefore, we can
conclude that ρ(Λα, Λβ) ≤ (rL)ρ(α, β) for any α, β ∈ Υ, in which (rL) ∈ Π. Therefore, Λ is
a strictly contraction mapping.
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By (3), (5), (8), and ν ∈ Υ, we obtain:

η
(
(Λν)(γ, µ)− ν(γ, µ), τ

)
,

by equality (8)

= η

(
ν(γ, c) +

∫ µ

c
F
(
γ, ξ, ν(γ, ξ)

)
dξ − ν(γ, µ), τ

)
,

by property of integral

= η

(∫ µ

c
[F
(
γ, ξ, ν(γ, ξ)

)
− ν′(γ, ξ)]dξ, τ

)
,

by equality (3)

≥ Eq

(
µ,

τ

1

)
,

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z. Thus, (7) implies that

ρ(Λν, ν) < 1, (10)

and hence,

ρ(Λn+1ν, Λnν) < 1 < ∞.

Now, Theorem 1 implies that:
(i) there is a continuous RO ν0 : z× Ξ → R where Λν0 = ν0, that is, ν0 is FP of Λ,

which is uniqu in the set
V = {α ∈ Υ : ρ(α, ν) < ∞}.

(ii) Λnν→ ν0 in (Υ, ρ) as n→ ∞.
(iii) using (10) we obtain:

ρ(ν, ν0) ≤
1

1− rL
ρ(Λν, ν) ≤ 1

1− rL
,

which implies the validity of (5) for each µ ∈ Ξ, τ ∈ ∆ and γ ∈ z.

Consider that (Υ, η) is a FN space. We introduce the fuzzy set ηB as:

ηB(α(γ, ξ), τ) := inf
ξ∈Ξ

{
η
(

α(γ, ξ),
τ

eθξ

)
: θ ∈ ∆, Ξ ⊂ R+

}
,

for every µ ∈ Ξ, τ ∈ ∆ and γ ∈ z. Then, (Υ, ηB) is a FN space (Bielecki FN space). In fact,
(FN1), (FN2), and (FN4) are obvious. Now, we prove only (FN3). Observe that:∧

(ηB(α(γ, ξ), τ), ηB(β(γ, ξ), ς))

=
∧(

inf
ξ∈Ξ

{
η
(

α(γ, ξ),
τ

eθξ

)}
, inf

ξ∈Ξ

{
η
(

β(γ, ξ),
ς

eθξ

)})
≤

∧(
inf
ξ∈Ξ

{
η
(

α(γ, ξ),
τ

eθξ

)
, η
(

β(γ, ξ),
ς

eθξ

)})
≤ inf

ξ∈Ξ

{
η

(
(α + β)(γ, ξ),

(τ + ς)

eθξ

)}
= inf

ξ∈Ξ

{
η

(
(α + β)(γ, ξ),

(τ + ς)

eθξ

)}
= ηB((α + β)(γ, ξ), (τ + ς)),

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z, which proves the triangle inequality (FN3).
Now, we prove the fuzzy MLHUS stability of the random Equation (1) via the Bielecki

fuzzy norm.
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Theorem 3. Assume that c ∈ R, r > 0 and Ξ = {µ ∈ R | |µ− c| ≤ r}. Consider that F :
z× Ξ×R→ R is a continuous RO which satisfies in the Lipschitz condition:

η(F(γ, µ, ν(γ, µ))− F(γ, µ, ω(γ, µ)), τ) ≥ η
(

ν−ω,
τ

L

)
,

for any µ ∈ Ξ, τ ∈ ∆, γ ∈ z and where L is a constant with rL ∈ Π. If a continuously
differentiable function ν : z× Ξ→ R satisfies the differential inequality:

η

(∫ µ

c
[F(γ, ξ, ν(γ, ξ))− ν

′
(γ, ξ)]dξ, τ

)
≥ Eq(µ, τ),

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z, where Eq is a FML function; then, with the Bielecki fuzzy norm,
the fuzzy MLHUS stability is verified for the Equation (1).

Proof. By the same method used in the proof of Theorem 2, we assume that c = v1 <

v2 < · · · < vk = µ, ∆µi = vi − vi−1 = |µ−c|
k , i = 1, 2, · · · , k and ‖∆µ‖ = max1≤i≤k(∆µi).

Now, we show the contraction of Λ on Υ with respect to the Bielecki fuzzy norm introduced
in (6):

η
(
(Λα)(γ, µ)− (Λβ)(γ, µ), τ

)
by equality (8)

= η

(∫ µ

c

(
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
dµ, τ

)
by integral definition

= η

(
lim
‖∆µ‖→0

k

∑
i=1

(
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
∆µi, τ

)
by continuity property of η

= lim
‖∆µ‖→0

η

(
k

∑
i=1

(
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
∆µi, τ

)
by triangular inequality

≥ lim
‖∆µ‖→0

∧
η
((

F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))
)
∆µi,

τ

k

)
by property of infimum

≥ inf
ξ∈Ξ

η

((
F(γ, ξ, α(γ, ξ))− F(γ, ξ, β(γ, ξ))

)
,

τ

k∆µi

)
≥ inf

ξ∈Ξ
η

((
F(γ, ξ, α(γ, ξ))− F(γ, ξ, β(γ, ξ))

)
,

τ

k‖∆µ‖

)
≥ inf

ξ∈Ξ
η

((
F(γ, ξ, α(γ, ξ))− F(γ, ξ, β(γ, ξ))

)
,

kτ

k|µ− c|

)
by equality (2)

≥ inf
ξ∈Ξ

η

(
α(γ, ξ)− β(γ, ξ),

τ

(rL)

)
≥ inf

ξ∈Ξ
η

(
α(γ, ξ)− β(γ, ξ),

τ

(rL)eθξ

)
by definition ηB

≥ ηB

(
α− β,

τ

(rL)

)
.
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then,

η((Λα)(γ, µ)− (Λβ)(γ, µ), τ) ≥ ηB

(
α− β,

τ

(rL)

)
,

for any µ ∈ Ξ, τ ∈ ∆, γ ∈ z, that is, ρ(Λα, Λβ) ≤ ηB

(
α− β, τ

(rL)

)
. Hence, we can conclude

that ρ(Λα, Λβ) ≤ (rL)ρ(α, β) for any α, β ∈ Υ. By letting (rL) ∈ Π, we obtain the strict
continuity.Furthermore, by Theorem 1, we obtain:

ρ(ν, ν0) ≤
1

1− rL
ρ(Λν, ν) ≤ 1

1− rL
,

so, the fuzzy MLHUS stability of Equation (1) is verified.

Theorem 4. Suppose that a and b are real numbers such that a < b. Let Ξ = [a, b] and c ∈ Ξ.
Assume that K and L are positive constants such that LK ∈ Π. Consider that F : z× Ξ×R→ R
is a continuous RO which satisfies a Lipschitz condition:

η(F(γ, µ, ν)− F(γ, µ, ω), τ) ≥ η
(

ν−ω,
τ

L

)
, (11)

for any µ ∈ Ξ, τ ∈ ∆, γ ∈ z and ν, ω ∈ R. If a continuously differentiable operator ν : z× Ξ→
R satisfies the differential inequality:

η

(∫ µ

0
[F(γ, ξ, ν(γ, ξ))− ν

′
(γ, ξ)]dξ, τ

)
≥ Eq(µ, τ), (12)

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z, where Eq is a FML function,

inf
ξ∈Ξ

Eq(ξ,
τ

(b− a)
) ≥ Eq

(
µ,

τ

K

)
, (13)

for any µ ∈ Ξ, τ ∈ ∆, γ ∈ z, then there exists a unique continuous RO ν0 : z× Ξ → R
such that:

ν0(γ, µ) = ν(γ, c) +
∫ µ

0
F(γ, ξ, ν0(γ, ξ))dξ.

Furthermore, ν0 is a solution of (1) and

η(ν(γ, µ)− ν0(γ, µ), τ) ≥ Eq(µ, (1− rL)τ),

for any µ ∈ Ξ, τ ∈ ∆, γ ∈ z.

Proof. Consider the space of continuous ROs:

Υ = {α : z× Ξ→ R | α is a continuous RO}.

Introduce the below function on Υ2 as,

ρ(α, β) = inf
{

λ ∈ ∆ | η(α(γ, µ)− β(γ, µ), τ) ≥ Eq

(
µ,

τ

λ

)
, ∀µ ∈ Ξ, τ ∈ ∆, γ ∈ z

}
. (14)

Further, introduce the RO Λ : Υ→ Υ by:

(Λα)(γ, µ) = ν(γ, c) +
∫ µ

0
F
(
µ, ξ, α(γ, ξ)

)
dξ, (15)

for every α ∈ Υ, γ ∈ z and µ ∈ Ξ. The continuity of RO α implies the continuity of Λα and
well defining Λ.
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Consider α, β ∈ Υ and γ ∈ z. Let λα,β ∈ ∆ such that:

η(α(γ, µ)− β(γ, µ), τ) ≥ Eq

(
µ,

τ

λα,β

)
. (16)

In addition, let a = v1 < v2 < · · · < vk = b, ∆µi = vi −vi−1 = b−a
k , i = 1, 2, · · · , k

and ‖∆µ‖ = max1≤i≤k(∆µi), for every µ ∈ Ξ, τ ∈ ∆ and γ ∈ z. Utilizing (11), (13), (14)
and (15) we have the following

η((Λα)(γ, µ)− (Λβ)(γ, µ), τ),

by equality (15)

= η

(∫ µ

0

(
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
dµ, τ

)
,

by integral definition

= η

(
lim
‖∆µ‖→0

k

∑
i=1

(
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
∆µi, τ

)
,

by continuity property of η

= lim
‖∆µ‖→0

η

(
k

∑
i=1

(
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
∆µi, τ

)
,

by triangular inequality

≥ lim
‖∆µ‖→0

∧
η
((

F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))
)
∆µi,

τ

k

)
,

by property of infimum

≥ inf
ξ∈Ξ

η

((
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
,

τ

k∆µi

)
≥ inf

ξ∈Ξ
η

((
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
,

τ

k‖∆µ‖

)
≥ inf

ξ∈Ξ
η

((
F(γ, vi, α(γ, vi))− F(γ, vi, β(γ, vi))

)
,

kτ

k(b− a)

)
,

by equality (11)

≥ inf
ξ∈Ξ

η

(
α(γ, ξ)− β(γ, ξ),

τ

L(b− a)

)
,

by equality (16)

≥ inf
ξ∈Ξ

Eq

(
ξ,

τ

L(b− a)λα,β

)
,

by equality (13)

≥ Eq

(
µ,

τ

LKλα,β

)
,

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z, that is, ρ(Λα, Λβ) ≤ (LK)λα,β. Hence, we can conclude
that ρ(Λα, Λβ) ≤ (LK)ρ(α, β) for all α, β ∈ Υ, in which (LK) ∈ Π. Therefore, Λ is a strict
contraction mapping.
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By (3), (5), (7) and ν ∈ Υ, we obtain:

η
(
(Λν)(γ, µ)− ν(γ, µ), τ

)
,

by equality (15)

= η

(
ν(γ, c) +

∫ µ

c
F
(
γ, ξ, ν(γ, ξ)

)
dξ − ν(γ, µ), τ

)
,

by property of integral

= η

(∫ µ

c
[F
(
γ, ξ, ν(γ, ξ)

)
− ν′(γ, ξ)]dξ, τ

)
,

by equality (12)

≥ Eq

(
µ,

τ

1

)
,

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z. Thus, (7) implies that:

ρ(Λν, ν) < 1, (17)

and hence,

ρ(Λn+1ν, Λnν) < 1 < ∞.

Now, Theorem 1 implies that:
(i) there is a continuous RO ν0 : z× Ξ → R where Λν0 = ν0, that is, ν0 is FP of Λ,

which is unique in the set
V = {α ∈ Υ : ρ(α, ν) < ∞}.

(ii) Λnν→ ν0 in (Υ, ρ) as n→ ∞.
(iii) using (17) we obtain:

ρ(ν, ν0) ≤
1

1− rL
ρ(Λν, ν) ≤ 1

1− rL
,

which implies the validity of (5) for each µ ∈ Ξ, τ ∈ ∆ and γ ∈ z.

3. Application

Example 1. Consider positive real numbers K and L such that LK ∈ Π, K < b(b−a)
a . Assume

that Ξ = [a, b]. For an arbitrary polynomial p(γ, µ), we let a continuously differentiable RO
ν : z× Ξ→ R to satisfy:

η

(∫ µ

0
[F(γ, ξ, ν(γ, ξ))− ν

′
(γ, ξ)]dξ, τ

)
≥ Eq(µ, τ),

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z. If we set F(γ, µ, ν) = Lν(γ, µ) + p(γ, µ), where Eq is a FML
function,

inf
ξ∈Ξ

Eq(ξ,
τ

(b− a)
) ≥ Eq

(
µ,

τ

K

)
,

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z, then, by Theorem 4, there is a unique continuous RO
ν0 : z× Ξ→ R such that:

ν0(γ, µ) = ν(γ, 0) +
∫ µ

0
(Lν(γ, ξ) + p(γ, ξ))dξ,

and

η(ν(γ, µ)− ν0(γ, µ), τ) ≥ Eq(µ, (1− rL)τ),
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for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z.

Example 2. Consider that r and L are positive constants with rL ∈ Π and

Ξ = {µ ∈ R | |µ− c| ≤ r, for some c ∈ R}.

Let a continuous discrete random function ν : z× Ξ→ R satisfy the following inequality:

η

(∫ µ

c
[F(γ, ξ, ν(γ, ξ))− ν

′
(γ, ξ)]dξ, τ

)
≥ Eq(µ, τ),

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z, where p(γ, µ) is a polynomial. If we set F(γ, µ, ν) =
Lν(γ, µ) + p(γ, µ), where Eq is a FML function,

inf
ξ∈Ξ

Eq(ξ,
τ

2r
) ≥ Eq

(
µ,

τ

r

)
,

for any µ ∈ Ξ, τ ∈ ∆, γ ∈ z, then, by Theorem 2 there exists a unique random operator
ν0 : z× Ξ→ R such that:

ν0(γ, µ) = ν(γ, 0) +
∫ µ

0
(Lν(γ, ξ) + p(γ, ξ))dξ,

and

η(ν(γ, µ)− ν0(γ, µ), τ) ≥ Eq(µ, (1− rL)τ),

for any µ ∈ Ξ, τ ∈ ∆ and γ ∈ z.

4. Conclusions

In this paper we introduced a new fuzzy controller function to stabilize the SDE
of the form ν

′
(γ, µ) = F

(
γ, µ, ν(γ, µ)

)
. By adopting the FP technique, we proved the

fuzzy MLHUS stability of the SDE. Some examples were given to illustrate the theoretical
findings and to show the effectiveness of the method. Extension of the method to SDEs of
different types will be further investigated.
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