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Abstract: We discuss the dynamic mean-variance (MV) problem for pairs trading with the assump-
tions that one of the security prices satisfies a stochastic volatility model (SVM) and the corresponding
price spread follows an Ornstein–Uhlenbeck (OU) process. We provide a semi-closed-form of the
optimal strategy based on the solution of a PDE, which is difficult to solve explicitly. Thus, we assume
that one of the security prices satisfies the Scott model, a fast-mean-reverting volatility model, and
give a closed-form approximation for the optimal strategy. Empirical studies, by using historical data
from Chinese security markets, show that the Scott model produces a more stable strategy by better
capturing mean-reverting volatility.
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1. Introduction

Pairs trading is a statistical arbitrage strategy that emerged from a Morgan Stanley
quantitative group from in the 1980s. Investors choose a pair of highly-correlated securi-
ties, buy the relatively under-priced security, and sell the relatively over-priced security
simultaneously, with the expectation of making a profit from the price spread regression.
In this paper, we discuss the dynamic mean-variance (MV) problem for pairs trading in the
Scott model, a fast-mean-reverting volatility model.

The cointegration approach is popular in pairs trading and was proposed by Vidya-
murthy [1]. Vidyamurthy assessed the co-movement of securities through conintegration
testing and designed a trading rule based on a simple nonparametric threshold. Lin et al. [2]
studied the optimal trading threshold problem by introducing a minimum profit condition
for a conintegrated pair of stocks. In a recent work by Yan et al. [3], they discussed pairs
trading under a delayed cointegration model. In the cointegration framework, it is very
important to model price spread. Elliott et al. [4] described spread using a mean-reverting
Gaussian Markov chain model and developed an analytical framework for pairs trading
strategies. Bertram [5] developed a statistical arbitrage model for the spread of two log
price series under the assumption of the OU process. Many authors have viewed the
optimal pairs trading problem as a stochastic control problem and have considereded it by
maximizing a variety of utility functions. Jurek and Yang [6] discussed asset allocation
strategies between a mean reverting arbitrage opportunity described by an OU process
and a risk-free asset and assigned a closed-form optimal allocation for CRRA utility over a
finite time horizon. Suzuki [7,8] and Endres and Stübinger [9] solved an optimal regime
switching problem with the constraints of finite transaction times and transaction fees. Liu
and Timmermann [10] derived a closed-form optimal strategy based on the cointegration
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assumption with the power utility over the terminal wealth. Chiu and Wong [11] assumed
that the log prices of the risky assets satisfy the linear stochastic differential equation
with a constant matrix of cointegration coefficients. They considered the time-consistent
dynamic mean-variance problem (according to dynamic programming)and provided a
closed-form optimal strategy. Recently, Zhu et al. [12] assumed that price spread follows
an OU process and that one of the corresponding securities satisfies the geometric Brown-
ian motion(GBM) model with a constant volatility. They considered the time-consistent
mean-variance problem (see Björk et al. [13]) for pairs trading and provided a closed-form
optimal strategy.

However, in all of the models mentioned above, the drift and the volatility of the (log)
price processes are all deterministic functions or constants that are unable to capture some
of the stochastic volatility characteristics that can be observed in many markets, such as
mean reversion effects, see Cont [14,15], Teräsvitra and Zhao [16], and Gatheral et al. [17]
for empirical evidence related to this. Therefore, in this paper, we assume that price spread
follows an OU process and that one of the log prices of the securities satisfies a stochastic
volatility model (SVM). Additionally, we discuss the dynamic mean-variance problem in
the means of Björk et al. [13]. Because an SVM can describe price dynamics better, it is
more likely to develop strategies that can be used to control trading risk more precisely
and bring about greater utility. In this paper, we first discuss the optimal strategy for pairs
trading under a general SVM by a PDE. Then, we specify a fast mean-reverting stochastic
volatility model, the Scott model [18], and discuss the approximate optimal strategy.

The main contributions of this paper are as follows: First, we provide a semi-closed-
form of the optimal strategy under a general SVM based on the solution of a PDE.
Second, we provide an closed-form approximation of the optimal strategy under a fast
mean-reverting volatility model that captures the mean-reverting property of volatilities
by using the asymptotic analysis technique. Our approximate formula can be proven to
have sufficient precision and extremely high computational efficiency compared with the
traditional finite difference method(FDM), which is of great practical value. Finally, we
calibrate the model parameters using securities data from the Chinese stock markets, and
demonstrate the effect of our approximated optimal strategy by comparing it with the
optimal strategy described in Zhu et al. [12]. Empirical studies show that the Scott model
can produce a more stable strategy by better capturing mean-reverting volatility.

The remainder of this paper is organized as follows: In Section 2, we describe the
model specifications as well as the optimal dynamic MV problem and provide the semi-
closed-form optimal strategy based on a PDE. In Section 3, we provide a closed-form
approximation of the optimal strategy for the Scott volatility model. In Section 4, we
validate the trading strategy empirically using Chinese securities market data. Section 5
concludes the paper.

2. The Dynamic Mean-Variance Problem for a General Stochastic Volatility Model

In this section, we set up the dynamic mean-variance(MV) problem for pairs trading
under a general SVM. Since the MV problem is time inconsistent, we discuss the optimal
strategy, according to the definition of the equilibrium strategy introduced by [13] by
transforming the dynamic MV problem to a non-cooperative Nash equilibrium game.

Assume that (Ω,F ,P) is a complete probability space and that W1 = {W1(t);
t ∈ [0, T]}, W2 = {W2(t); t ∈ [0, T]} and W3 = {W3(t); t ∈ [0, T]} are Brownian
motions with

dW1(t)dW2(t) = ρ12dt, dW1(t)dW3(t) = ρ13dt, dW2(t)dW3(t) = ρ23dt.

We assume that F = {Ft; t ∈ [0, T]} is the filtration generated by W1, W2 and W3. The
conditional expectation and conditional variance with respect to Ft are denoted as Et(·)
and Vart(·).

We assume that there is a pair of conintegrated securities denoted as P and Q. The
price processes of P and Q are denoted by Pt and Qt, and there is a tradable risk-free asset



Mathematics 2023, 11, 2191 3 of 19

Π whose price process is denoted by Πt. Furthermore, we also assume that the market is
frictionless, i.e., there are no transaction costs and taxes, and that short selling is allowed.

Assume that the dynamic of the price Qt satisfies the following stochastic volatility
model:

dQt = ξQtdt + γ(yt)QtdW1(t),

dyt = α(yt)dt + β(yt)dW2(t),
(1)

where ξ is a constant. We assume that the spread of the log-prices of P and Q satisfies an
OU process. Let Xt = ln(Pt)− ln(Qt) be the spread of the log-prices; then Xt satisfies the
following SDE:

dXt = κ(θ − Xt)dt + ηdW3(t), (2)

where κ, θ, and η are all constants. The dynamic of the risk-free asset Πt is given by

dΠt = rΠtdt.

Remark 1. Since Pt = QteXt , according to Itô’s formula, one can see that Pt satisfies the following
SDE:

dPt = Pt

[
κ(θ − Xt) + ξ +

1
2

η2 + ρ13ηγ(yt)

]
dt

+ Ptγ(yt)dW1(t) + PtηdW3(t). (3)

We denote ht as the weights invested in the securities P and Q at time t in a symmetric
pairs trading strategy, and the corresponding wealth process Vh

t is given by

dVh
t = Vh

t

(
ht

dPt

Pt
− ht

dQt

Qt
+

dΠt

Πt

)
. (4)

Substituting (1) and (3) into (4), one can see that

dVh
t = Vh

t ht

[
(κ(θ − Xt) +

1
2

η2 + ρ13ηγ(yt))dt + ηdW3(t)
]
+ Vh

t rdt. (5)

Let πt : = e−rtVh
t ht be the discounted money invested in the security P, which can

be viewed as a strategy; then, the discounted wealth process Vt(π) : = Vh
t e−rt is given by

dVt(π) = πt

[
(κ(θ − Xt) +

1
2

η2 + ρ13ηγ(yt))

]
dt + πtηdW3(t).

Assume that the discounted wealth at time t ∈ [0, T) is Vt, then

VT(π) = Vt +
∫ T

t
πu

(
κ(θ − Xu) +

1
2

η2 + ρ13ηγ(yu)

)
du +

∫ T

t
πuηdW3(u). (6)

Let
J(t, Vt; π) : = Et

(
VT(π)

)
− λVart

(
VT(π)

)
, (7)

where λ > 0, we consider the following dynamic MV problem:

J(t, Vt) = sup
πu ;u∈[t,T]

J(t, Vt; π). (8)

Because of the time-inconsistency of the MV problem (8), we introduce the optimal
strategy according to the definition of equilibrium strategy provided in Björk et al. [13].
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Definition 1. The strategy π∗ = {π∗u; u ∈ [0, T]} is called an optimal strategy if for any
permutation ππ̂,ε

u = π̂u Iu∈[t,t+ε) + π∗u Iu∈[t+ε,T],

lim sup
ε→0

1
ε

{
J
(
t, Vt(π

∗); ππ̂,ε)− J
(
t, Vt(π

∗); π∗
)}
≤ 0

holds for any t ∈ [0, T].

We have the following theorem

Theorem 1 (Main result I). Define M(x, y) := κ(θ − x) + 1
2 η2 + ρ13ηγ(y). The optimal

strategy for the dynamic MV problem (8) is given by

π∗t =
1

2λη2 M(Xt, yt)− fx(t, Xt, yt)−
ρ23β(yt)

η
fy(t, Xt, yt), (9)

where f (t, x, y) is a solution to the following equation:

0 =
1

2λη2 M2(x, y) + ft(t, x, y)− fx(t, x, y)
(

1
2

η2 + ρ13ηγ(y)
)

− ρ23β(yt)

η
M(x, y) fy(t, x, y) + α(y) fy(t, x, y)

+
1
2

η2 fxx(t, x, y) +
1
2

β2(y) fyy(t, x, y) + ρ23ηβ(y) fxy(t, x, y),

(10)

where (x, y, t) ∈ R× R× (0, T] with the terminal condition f (T, ·, ·) = 0.

Lemma 1. Let π∗ be the strategy given in Theorem 1 and f (t, x) be a solution of the Equation (10);
then,

f (t, Xt, yt) = Et

[∫ T

t
π∗u

(
κ(θ − Xu) +

1
2

η2 + ρ13ηγ(yu)

)
du
]

. (11)

Proof. Let Ft : = f (t, Xt, yt). It follows from Itô’s formula that

dFt =

[
ft + fxκ(θ − Xt) + fyα(yt) +

1
2

fxxη2 +
1
2

fyyβ2(yt) + fxyηβ(yt)ρ23

]
dt

+ fxηdW3(t) + fyβ(yt)dW2(t).

Let

Mt : = Ft +
∫ t

0
π∗u M(Xt, yt)du,

then

dMt = π∗t M(Xt, yt)dt + dFt

=

[
1

2λη2 M(Xt, yt)
2 − fx(t, Xt, yt)

(
M(Xt, yt)− κ(θ − Xt)

)
− ρ23β(yt)

η
fy(t, Xt, yt)M(Xt, yt) + ft(t, Xt, yt) + fy(t, Xt, yt)α(yt)

+
1
2

fxx(t, Xt, yt)η
2 +

1
2

fyy(t, Xt, yt)β2(yt) + fxy(t, Xt, yt)ηβ(yt)ρ23

]
dt

+ fx(t, Xt, yt)ηdW3(t) + fy(t, Xt, yt)β(yt)dW2(t)

= fx(t, Xt, yt)ηdW3(t) + fy(t, Xt, yt)β(yt)dW2(t).



Mathematics 2023, 11, 2191 5 of 19

One can see thatMt is a martingale; thus,

Ft = f (t, Xt, yt) = Et

[∫ T

t
π∗u M(Xt, yt)du

]
,

which implies (11).

Proof of Theorem 1. For the given ε > 0, let ππ̂,ε
u : = π̂u Iu∈[t,t+ε) + π∗u Iu∈[t+ε,T] be any

permutation of π∗. For any strategy π, introduce

∆εVt(π) = Vt+ε(π)−Vt(π), ∆ε ft = f (t + ε, Xt+ε, yt+ε)− f (t, Xt, yt).

Since π∗ is not dependent on the corresponding discounted wealth process V(π∗), it
follows from (6) that

VT(π
π̂,ε) = Vt(π

∗) + {Vt+ε(π̂)−Vt(π̂)}+ {VT(π
∗)−Vt+ε(π

∗)}

= VT(π
∗) + ∆εVt(π̂ − π∗).

Because

Vart

(
VT(π

π̂,ε)
)
= Et

(
Vart+ε

(
VT(π

π̂,ε)
))

+ Vart

(
Et+ε

(
VT(π

π̂,ε)
))

= Et

(
Vart+ε

(
VT(π

∗)
))

+ Vart

(
Vt+ε(π

∗) + ∆ε ft + ∆εVt(π̂ − π∗)
)

= Et

(
Vart+ε

(
VT(π

∗)
))

+ Vart

(
∆ε ft + ∆εVt(π̂)

)
,

one can see that

J
(
t, Vt(π

∗); ππ̂,ε) = Et

(
VT(π

π̂,ε)
)
− λVart

(
VT(π

π̂,ε)
)

= Et

(
VT(π

∗)
)
+ Et

(
∆εVt(π̂ − π∗)

)
− λEt

(
Vart+ε

(
VT(π

∗)
))

− λVart

(
∆ε ft + ∆εVt(π̂)

)
= Et

(
J(t + ε, Vt+ε(π

∗); π∗)
)
+ Et

(
∆εVt(π̂ − π∗)

)
− λVart

(
∆ε ft + ∆εVt(π̂)

)
.

Furthermore, it follows from the proof of Lemma 1 and (6) that

∆ε ft + ∆εVt(π̂) =
∫ t+ε

t
(π̂u − π∗u)M(Xu, yu)du

+
∫ t+ε

t

{
π̂u + fx(u, Xu, yu)

}
ηdW3(u) +

∫ t+ε

t
fy(u, Xu, yu)β(yu)dW2(u),

thus

lim
ε→0+

1
ε

(
J
(
t, Vt(π

∗); ππ̂,ε)− J
(
t, Vt(π

∗); π∗
))

= lim
ε→0+

1
ε

[
Et

(
∆εVt(π̂ − π∗)

)
− λVart

(
∆ε ft + ∆εVt(π̂)

)
+ λVart

(
∆ε ft + ∆εVt(π

∗)
)]

= (π̂t − π∗t )M(Xt, yt)− λ
(

π̂t + fx(t, Xt, yt)
)2

η2

− 2λ
(

π̂t + fx(t, Xt, yt)
)

fy(t, Xt, yt)β(yt)ηρ23 − λ fy(t, Xt, yt)
2β(yt)

2

+ λ
(

π∗t + fx(t, Xt, yt)
)2

η2

+ 2λ
(

π∗t + fx(t, Xt, yt)
)

fy(t, Xt, yu)β(yu)ηρ23 + λ fy(u, Xu, yu)
2β(yu)

2

=− λη2(π̂t − π∗t )
2 ≤ 0,



Mathematics 2023, 11, 2191 6 of 19

which completes the proof.

Remark 2. From the proof of Theorem 1, we can see that π∗t is the solution of the following HJB
equation:

0 = sup
πt

{
Et(dJ(t, Xt, yt))− λVart

(
d f (t, Xt, yt) + dVt(πt)

)}
.

Remark 3. It is unlikely that a closed-form solution of the PDE (10) can be achieved without
specifying α, β, andγ. Therefore, we will consider the Scott model, one of the most widely known
mean-reverting stochastic volatility models, and will discuss the approximate solution.

3. Closed-Form Approximation under the Scott Model

In order to capture the fast mean-reverting characteristics of volatility (see Fouque [19,20]
for empirical studies), we introduce the Scott model, initially proposed by Scott (1987) [18],
which is a well-known mean-reverting volatility model. Under the Scott model, the under-
lying security price is modeled by:

dQt = ξQtdt + eyt QtdW1(t),

dyt = a(b− yt)dt + σdW2(t),

where a > 0 and σ > 0. Since α(y) = a(b− y), β(y) = σ, γ(y) = ey. Clearly, the volatility
is modeled by an OU process. We assume a� 1 to ensure the fast mean-reverting property
and set ρ = 0 for convenience. According to Theorem 1, the corresponding PDE for the
optimal strategy is given by:

0 =
1

2λη2 M2(x, y) + ft(t, x, y)− fx(t, x, y)
(

1
2

η2 + ρ13ηey
)

+ a(b− y) fy(t, x, y) +
1
2

η2 fxx(t, x, y) +
1
2

σ2 fyy(t, x, y),
(12)

where (x, y, t) ∈ R× R× (0, T] with the terminal condition f (T, ·, ·) = 0. It is difficult to
solve the PDE (12) explicitly and to achieve a closed-form optimal strategy. Therefore, in this
section, we will use the asymptotic analysis technique to find a closed-form approximation
of the PDE (12).

Let g(t, x, y) : = fx(t, x, y); one can see from (12) that g(t, x, y) satisfies the following
PDE:

0 = gt(t, x, y) +
1
2

η2gxx(t, x, y) +
1
2

σ2gyy(t, x, y)

− gx(t, x, y)
(

1
2

η2 + ρ13ηey
)
+ a(b− y)gy(t, x, y)− κ

λη2 M(x, y).
(13)

Let ε = a−1 and ν2 = ε
2 σ2. Since a� 1, it is reasonable to assume that 0 < ν < 1. We

introduce the following operator

Lε =
1
ε
L0 + L1,

where

L0 = ν2 ∂2

∂y2 + (b− y)
∂

∂y
,

L1 =
∂

∂t
+

1
2

η2 ∂2

∂x2 −
(1

2
η2 + ρ13ηey

) ∂

∂x
.

Then the PDE (13) can be written in the following form

Lε(g) =
κ

λη2 M(x, y), g(T, ·, ·) = 0. (14)
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To provide an approximation for g(t, x, y), we need to introduce φ(y) : = 1√
2πv

e−
(y−b)2

2v2

and define the functional Ψ(·) as

Ψ(h) :=
∫ +∞

−∞
φ(y)h(y)dy

for all h such that Ψ(|h|) < +∞. The following lemma can be found in Fouque [19].

Lemma 2. The following equation

L0u(t, x, y) = h(t, x, y)

only has a solution if h(t, x, y) satisfies

Ψt,x(h) : =
∫ +∞

−∞
φ(y)h(t, x, y)dy = 0,

for each t ∈ [0, T], x ∈ (−∞,+∞).

3.1. An Approximation for g(t, x, y)

Assume that g is a solution of (14). We can construct an asymptotic expansion with
respect to

√
ε for g as the following

g(t, x, y) = g0(t, x, y) +
√

εg1(t, x, y) + εg2(t, x, y) + · · · .

Substituting it into (14), we obtain

κ

λη2 M(x, y) = Lεg(t, x, y)

=
1
ε
L0g0(t, x, y) +

1√
ε
L0g1(t, x, y) + (L0g2(t, x, y) + L1g0(t, x, y))

+
√

ε(L0g3(t, x, y) + L1g1(t, x, y)) + · · · . (15)

For simplicity, we assume that g0(t, x, y) ≡ g0(t, x), g1(t, x, y) ≡ g1(t, x). Since the
operator L0 only involves partial derivatives with respect to y, one can see that

L0g0(t, x, y) = 0,

L0g1(t, x, y) = 0.

Then, Equation (15) can be simplified into the following form

κ

λη2 M(x, y) = (L0g2(t, x, y) + L1g0(t, x))

+
√

ε(L0g3(t, x, y) + L1g1(t, x)) + · · · . (16)

It is natural to consider the following equations

L0g2(t, x, y) = −L1g0(t, x) +
κ

λη2 M(x, y), (17)

L0g3(t, x, y) = −L1g1(t, x). (18)

To make sure the Equation (17) has a solution, it follows from Lemma 2 that for each
(t, x), the right part of (17) should satisfy the following equation

Ψt,x

(
L1g0(t, x)− κ

λη2 M(x, y)
)
= 0. (19)
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Since L1g0(t, x) = ∂
∂t g0(t, x) + 1

2 η2 ∂2

∂x2 g0(t, x) − ( 1
2 η2 + ρ13ηey) ∂

∂x g0(t, x), if we let
c : = 1

2 η2 + ηρ13Ψ(ey), one can see that

Ψt,x(L1g0(t, x)) =
∂

∂t
g0(t, x) +

1
2

η2 ∂2

∂x2 g0(t, x)− cg0(t, x).

Furthermore, from the definition of M(x, y), one can see that

Ψt,x(M(x, y)) = Ψt,x

(
κ(θ − x) +

1
2

η2 + ρ13ηey
)

= κ(θ − x) + c,

which is a linear function of x. Assigning the boundary value of g0(t, x) as g0(T, ·) = 0, the
solution can be directly given by

g0(t, x) =
κ2

λη2 (t− T)(θ − x)− cκ2

2λη2 (t− T)2 +
cκ

λη2 (t− T). (20)

Similarly, to ensure that Equation (18) has a solution, we need

Ψt,x(L1g1(t, x)) =
∂

∂t
g1(t, x) +

1
2

η2 ∂2

∂x2 g1(t, x)− cg1(t, x) = 0.

With the bound condition g1(T, ·) = 0, one can see that

g1(t, x) = 0

is a solution. Therefore, a natural approximation for g(t, x, y) is given by

g∗(t, x, y) = g0(t, x) +
√

εg1(t, x).

Thus, we have the following theorem:

Theorem 2 (Main result II). Denote c : = 1
2 η2 + ρ13ηΨ(ey). Let

g∗(t, x, y) =
κ2

λη2 (t− T)(θ − x)− cκ2

2λη2 (t− T)2 +
cκ

λη2 (t− T). (21)

Then, there exists a constant C that is independent of ε such that

|g(t, x, y)− g∗(t, x, y)| ≤
√

εC(1 + e|y|). (22)

An approximate optimal strategy is given by

π̂∗t =
1

2λη2 κ(θ − Xt) +
1

4λ
+

1
2λη

ρ13eyt − g∗(t, Xt, yt).

Remark 4. Compared with the traditional finite difference method(FDM), we can obtain an explicit
solution with a significant advantage in computational complexity using the asymptotic analysis
technique. In practice, at each decision moment, we only need to calculate the optimal strategy at one
specific point (x, y, t), which describes the market state at that time, rather than all values on a series
of grid points. In addition, since our problem is defined on an unbounded domain, in order to apply
the FDM, the solution area must be cutoff from infinity and additional artificial boundary conditions
must be added. This will introduce additional boundary errors and increase the complexity of the
theoretical analysis and numerical calculations.
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Remark 5. From the error estimation given in Theorem 2, we can see that the accuracy of our
closed-form approximation of the optimal strategy is mainly controlled by volatility mean-reversion
speed parameter a. Faster mean-reversion speed implies a more accurate strategy.

3.2. Some Auxiliary Approximations

We established the following lemmas to helping prove Theorem 2.

Lemma 3. (i) If y < ν2 + b, then

1
φ(y)

∫ y

−∞
φ(z)dz ≤

√
2πνe

1
2 , (23)

1
φ(y)

∫ y

−∞
ezφ(z)dz ≤

√
2πνey. (24)

(ii) If y ≥ ν2 + b, then

1
φ(y)

∫ +∞

y
ezφ(z)dz ≤

√
2πνey. (25)

Lemma 4. Given h(y) that satisfies Ψ(h) = 0 and |h(y)| ≤ C1(1 + ey), for some positive
constants C1, let X (y) satisfy the following equation

L0X (y) = h(y).

Then, |X (y)| < C2(1 + e|y|)ε−
1
2 for some positive constant C2 independent of ε.

This lemma provides an estimation for the linear operator L0 . If we choose C1 = 0 in
Lemma 4, by using (A1), we obtained the following corollary:

Corollary 1. Let X (y) be the solution of the equation L0X (y) = 0; then, there exists a positive
constant C2 independent of ε such that

|X (y)| ≤ C2.

Lemma 5. Let {yt; t ∈ [0, T]} be the OU process in the Scott model; then, for all τ ≥ 0, there
exists a positive constant Ĉ independent of ε such that

E
[

e|yt+τ |
∣∣∣ yt = y

]
≤ Ĉe|y|. (26)

Proofs of Lemmas 3–5 are given in the Appendices A–C.

3.3. The Proof of Theorem 2

We only need to consider error estimation. The residue portion can be defined as

Rε(t, x, y) : = g0(t, x) +
√

εg1(t, x) + εg2(t, x, y) + ε
√

εg3(t, x, y)− g(t, x, y).

Recalling Lεg(t, x, y) = κ
λη2 M(x, y) and

L0g0(t, x) = 0,

L0g1(t, x) = 0,

L0g2(t, x, y) = −L1g0(t, x) +
κ

λη2 M(x, y),

L0g3(t, x, y) = −L1g1(t, x),

(27)
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we have

LεRε(t, x, y) =
1
ε
L0g0(t, x) +

1√
ε
L0g1(t, x) +

{
L0g2(t, x, y) + L1g0(t, x)

}
+
√

ε
{
L0g3(t, x, y) + L1g1(t, x)

}
+ εL1g2(t, x, y) + ε

√
εL1g3(t, x, y)−Lεg(t, x, y)

= ε(L1g2(t, x, y) +
√

εL1g3(t, x, y)).

Defining
Gε(t, x, y) = L1g2(t, x, y) +

√
εL1g3(t, x, y),

Hε(x, y) = g2(T, x, y) +
√

εg3(T, x, y).

One can see that Rε(t, x, y) solves following equation:{
LεRε(t, x, y) = εGε(t, x, y),

Rε(T, ·, ·) = εHε(·, ·).

Applying Feymann–Kac formula, Rε demonstrates probabilistic representation as follows:

Rε(t, x, y) = εEt

[
Hε(X̂T , yT) +

∫ T

t
Gε(s, X̂s, ys)ds

∣∣∣ X̂t = x, yt = y
]

, (28)

where X̂t is driven by

dX̂t = −
(

1
2

η2 + ρ13ηeyt

)
dt + ηdW3(t).

From (28), one can see that the boundary of Rε is controlled by both Gε and Hε. In the
following sections, we provide estimations for these two parts.

Let ψ(y) solves
L0ψ(y) = ey −Ψ(ey).

According to Lemma 4,

|ψ(y)| ≤ C2(e|y| + 1)ε−
1
2 (29)

holds for some positive constants C2. We choose

g2(t, x, y) : =
κρ13

λη

[
κ(T − t) + 1

]
ψ(y), (30)

g3(t, x, y) : = 0. (31)

One can see from (19) that

L0g2(t, x, y) =
κρ13

λη
[κ(T − t) + 1](ey −Ψ(ey))]

= −{L1g0(t, x)−Ψt,x(L1g0(t, x))}+ κ

λη2 {M(x, y)−Ψt,x(M(x, y))}

= −L1g0(t, x) +
κ

λη2 M(x, y),

L0g3(t, x, y) = 0.

Thus, g0(t, x), g1(t, x), g2(t, x, y), and g3(t, x, y) satisfy Equation (27). Furthermore,
one can easily see that there exists a constant C∗ such that

|g2(t, x, y)| ≤ C∗
(
e|y| + 1

)
ε−

1
2 ,

|Gε(t, x, y)| =
∣∣L1g2(t, x, y) +

√
εL1g3(t, x, y)

∣∣
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≤ C∗
(

e|y| + 1
)

ε−
1
2 ,

|Hε(x, y)| ≤ C∗
(
e|y| + 1

)
ε−

1
2 .

Using Lemma 5, one can see that

|Rε(t, x, y)| = ε

∣∣∣∣E[Hε(X̂T , yT) +
∫ T

t
Gε(s, X̂s, ys)ds

∣∣∣ X̂t = x, yt = y
]∣∣∣∣

≤C∗ε
1
2 E
[

e|yT | + 1 +
∫ T

t

(
e|ys | + 1

)
ds
∣∣∣ yt = y

]
≤C∗ε

1
2

(
Et

[
e|yt+(T−t) |

]
+ T + 1

)
+ C∗ε

1
2

∫ T−t

0
Et

[
e|yt+τ |

]
dτ

≤C∗ε
1
2

(
Ĉe|y| + T + 1

)
+ C∗ε

1
2 TĈe|y|

≤
[
C∗
(
Ĉ + 1

)
(T + 1)

](
e|y| + 1

)
ε

1
2 .

Thus, we obtain

|g0(t, x)− g(t, x, y)| =
∣∣Rε(t, x, y)− εg2(t, x, y)− ε

√
εg3(t, x, y)

∣∣
≤|Rε(t, x, y)|+ ε|g2(t, x, y)|+ ε

√
ε|g3(t, x, y)|

≤
[
C∗
(
Ĉ + 1

)
(T + 1) + C∗

](
e|y| + 1

)
ε

1
2 + C3ε

3
2 .

Denote
C = C∗

[(
Ĉ + 1

)
(T + 1) + 1

]
,

then (22) follows. The approximate optimal strategy is given by directly applying Theorem 1.

4. Empirical Experiments

In this section, we compare the effect of our strategy (the optimal approximate strategy
in the Scott model) and the strategy proposed by Zhu et al. (the optimal strategy in the
constant volatility model (see Zhu et al. [12])) on both real scenarios and simulated scenarios.
We select three stock pairs (listed in Table 1) traded on the Chinese security markets SSE and
SZSE to illustrate our results using the standard cointegration testing method mentioned by
Chambers [21]. For the estimation of the Scott model, we combine the maximum likelihood
estimation(MLE) with the extended Kalman filter to produce an on-line updated estimation
(see Wang et al. [22] and Simon [23] for details). We also recommended Aihara [24] for an
alternative robust filtering estimation. Then, we empirically validate the strategies given in
Section 3 based on the real market data from the Chinese security markets SSE and SZSE.

Table 1. Selected stock pairs.

Label Stock P Stock Q Industry

1 Cecep Wind Power Cecep Solar Energy Clean Energy Industry

2 Shanxi Lu’An
Environmental Energy

Shanxi Coking
Coal Energy Coal Industry

3 Haitong Securities Citic Securities Security Industry

The sample period is from 1 June 2019 to 1 December 2022 across different industries,
but the stocks in each pair are in the same industry and are highly correlated in terms of
both fundamentals and price series. The data were obtained from TDX software, and we
only used the daily closing prices. Typically, we used the forward-adjusted prices to avoid
the dividend effect. Figure 1 presents the forward-adjusted stock prices and the dynamics
of the corresponding price spread for the first pair as an example.
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Figure 1. Stock prices and price spread dynamics for Cecep Wind Power and Cecep Solar Energy.

Starting from 1 December 2021, we performed out-of-sample testing for all cases using
the moving-window method. Parameters were updated everyday by using data from
last 375 trading days (on and a half years). We chose λ = 0.5 and equally allocate the
initial endowment of 100 units among the selected pairs. The paths of the wealth processes
obtained from our strategy under the Scott model and from the strategy proposed by
Zhu et al. are shown in Figure 2, respectively. Table 2 presents some of the commonly used
statistics denoting strategy performance.

Figure 2. The wealth dynamics of the out-of-sample testing. Strategy proposed by Zhu et al. [12].



Mathematics 2023, 11, 2191 13 of 19

Table 2. Statistics for the out-of-sample testing.

Model Win Rate Profit-Loss Ratio Average Profit Max Drawdown Sharp Ratio

Our strategy 56.967% 1.762 0.140% −2.136% 3.582
Strategy proposed by Zhu et al. [12] 55.328% 1.670 0.122% −1.909% 3.209

Figure 2 and Table 2 indicate that our strategy under the Scott model outperforms
the strategy proposed by Zhu et al. under the constant volatility model with respect to
important indicators such as the Sharp ratio, the profit-loss ratio and the win rate in the
out-of-sample testing.

To further compare the value of the mean-variance objective function J for these two
strategies, we implemented simulations with respect to the parameters estimated using real
market data for the stock pairs listed in Table 1. Parameters for the simulation are given in
Table 3. As for the strategy proposed by Zhu et al., we used e|b| as the constant volatility,
which is the long-term average volatility in the Scott model.

Table 3. Parameters for simulation.

Label κ θ η ξ a b σ ρ13 y0

1 11.633 −0.233 0.377 1.206 5.324 −0.695 2.826 −0.338 −0.554
2 5.183 −0.173 0.366 0.792 4.109 −0.796 2.986 −0.348 −0.876
3 7.961 −0.244 0.205 −0.022 9.987 −1.246 3.235 −0.398 −1.314

We chose T = 1.5, r = 0.03, dt = 1/250, X0 = 0, V0 = 100, and simulated each
pair 1000 times with risk aversion λ values ranging from 0.5 to 1.5. The statistics of the
discounted terminal wealth for each pair are shown in Tables 4–6. J is the value of the
objective function defined in (7).

Table 4. Cecep Wind Power and Cecep Solar Energy.

λ
Strategy Proposed by Zhu et al. [12] Our Strategy

Mean S.D. J Mean S.D. J

0.25 767.267 43.255 299.519 548.729 27.084 365.340
0.5 435.940 21.627 202.065 326.670 13.542 234.976

0.75 325.497 14.418 169.581 252.651 9.028 191.521
1.0 270.276 10.814 153.339 215.641 6.771 169.794

1.25 237.143 8.651 143.593 193.435 5.417 156.758
1.5 215.055 7.209 137.096 178.631 4.514 148.067

Table 5. Shanxi Lu’An Environmental Energy and Shanxi Coking Coal Energy.

λ
Strategy Proposed by Zhu et al. [12] Our Strategy

Mean S.D. J Mean S.D. J

0.25 220.566 18.173 138.004 181.554 8.569 163.198
0.5 162.589 9.086 121.308 143.083 4.284 133.905

0.75 143.263 6.058 115.743 130.259 2.856 124.141
1.0 133.600 4.543 112.960 123.847 2.142 119.258

1.25 127.803 3.635 111.290 120.000 1.714 116.329
1.5 123.938 3.029 110.177 117.436 1.428 114.376
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Table 6. Haitong Securities and Citic Securities.

λ
Strategy Proposed by Zhu et al. [12] Our Strategy

Mean S.D. J Mean S.D. J

0.25 981.336 50.993 331.271 518.334 17.535 441.463
0.5 542.969 25.496 217.937 311.468 8.768 273.033

0.75 396.847 16.998 180.158 242.513 5.845 216.889
1.0 323.786 12.748 161.269 208.035 4.384 188.818

1.25 279.949 10.199 149.936 187.349 3.507 171.975
1.5 250.725 8.499 142.380 173.558 2.923 160.746

Tables 4–6 indicate the effectiveness of both strategies by comparing the average
terminal wealth with the initial asset V0 = 100. Both strategies yield a discounted final
wealth greater than V0 in every case, which means that profit is always higher than the
risk-free return. Furthermore, comparing the strategy statistics of the strategy proposed
by Zhu et al. and our strategy in each case, we found that the standard deviation of the
terminal wealth of our strategy is always smaller than that of the strategy proposed by
Zhu et al. Although the mean may be lower, ultimately, the J value of our strategy is
always greater than that of the strategy proposed by Zhu et al. This phenomenon suggests
that the approximate optimal strategy under the Scott model outperforms the optimal
strategy under the constant volatility strategy, by producing more stable profits. It is
noteworthy that λ plays a critical role in controlling the uncertainty of the outcome result
of both strategies. The mean and the standard deviation of the terminal wealth decrease
as λ increases. Intuitively, a larger λ indicates more risk aversion, which leads to smaller
allocation on the risky assets and thus lower uncertainty.

Clearly, our strategies show effectiveness for both simulated and real out-of-sample
data. The comparison of the strategy proposed by Zhu et al. and our approximate strategy
shows that the Scott model can better capture the mean-reverting characteristic of volatility,
resulting in a more stable trading strategy.

5. Conclusions

In this paper, we provide a semi-closed-form optimal strategy of the mean-variance
problem for pairs trading by assuming that one of the security prices satisfies a general
stochastic volatility model and that the corresponding price spread follows the Ornstein–
Uhlenbeck process. Then, we provide a closed-form approximate formula for the optimal
strategy in the Scott model using the asymptotic analysis technique. Our approximate
formula has extremely high computational efficiency and has been proven to be accurate.
We implemented our approximate optimal strategy on the real historical data selected from
Chinese security markets and compared it with the optimal strategy under the constant
volatility model proposed by Zhu et al. [12]. The numerical results show that both strategies
are effective and that the Scott model produces a more stable strategy by better capturing
mean-reverting volatility.
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Appendix A. Proof of Lemma 3

(i) Let

c0(y) :=
y− b√

2v
.

One can see that c0(y) ≤
ν√
2

. Through direct computation, we have

1
φ(y)

∫ y

−∞
φ(z)dz = e

(y−b)2

2v2

∫ y

−∞
e−

(z−b)2

2v2 dz =
√

2νec2
0(y)

∫ c0(y)

−∞
e−x2

dx.

If c0(y) ≤ 0, then

1
φ(y)

∫ y

−∞
φ(z)dz =

√
2νec2

0(y)
∫ 0

−∞
e−(u+c2

0(y))du

≤
√

2ν
∫ 0

−∞
e−u2

du =

√
2π

2
ν;

if c0(y) > 0, then

1
φ(y)

∫ y

−∞
φ(z)dz ≤

√
2νec0(y)2

∫ +∞

−∞
e−x2

dx ≤
√

2πνe
ν2
2 .

Recalling that 0 < ν < 1, (23) follows. Furthermore, if we introduce

c1(y) =
y− b− ν2
√

2ν
,

then

1
φ(y)

∫ y

−∞
ezφ(z)dz = e

(y−b)2

2v2

∫ y

−∞
ez− (z−b)2

2v2 dz

= e
(y−b)2

2v2 +b+ 1
2 ν2
∫ y

−∞
e−

(z−b−ν2)2

2v2 dz

=

√
2

ν
e
(y−b)2

2v2 +b+ 1
2 ν2
∫ c(y)

−∞
e−x2

dx

=
√

2νey+c1(y)
2
∫ +∞

0
e−(x−c1(y))2

dx

≤
√

2νey+c1(y)
2
∫ +∞

0
e−(x2+c1(y)

2)dx

=
√

2πνey,

and (24) follows.
(ii) If y ≥ b + ν2, then c1(y) ≥ 0, one can see that

1
φ(y)

∫ +∞

y
ezφ(z)dz =

√
2νey+c1(y)

2
∫ +∞

0
e−(x+c1(y))2

dx

≤
√

2νey+c1(y)
2
∫ ∞

0
e−(x2+c1(y)

2)dx

=
√

2πνey,

and (25) follows.
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Appendix B. Proof of Lemma 4

One can easily see that

L0X (y) =
ν2

φ(y)
∂

∂y

(
φ(y)

∂X
∂y

)
= h(y),

thus

Xy(y) =
1

ν2φ(y)

∫ y

−∞
h(z)φ(z)dz = − 1

ν2φ(y)

∫ +∞

y
h(z)φ(z)dz. (A1)

(i) If y ≥ ν2 + b, we can see from Lemma 3 (ii) that

∣∣Xy(y)
∣∣ = 1

ν2φ(y)

∣∣∣∣∫ +∞

y
h(z)φ(z)dz

∣∣∣∣ ≤ C1

ν2φ(y)

∫ +∞

y
(1 + ez)φ(z)dz

≤ C1

ν2φ(y)
e−b−ν2

∫ +∞

y
(ez + ez+b+ν2

)φ(z)dz

≤
C1

(
1 + e−b

)
ν2φ(y)

∫ ∞

y
ezφ(z)dz

≤C1

ν

√
2π
(

1 + e−b
)

ey.

Since
X (y) =

∫ y

ν2+b
Xy(z)dz +X (ν2 + b),

one can see that:

|X (y)| ≤
∫ y

ν2+b

∣∣Xy(s)
∣∣ds +

∣∣∣X (ν2 + b)
∣∣∣

≤C1

ν

√
2π
(

1 + e−b
) ∫ y

ν2+b
ezdz +

∣∣∣X (ν2 + b)
∣∣∣

=
C1

ν

√
2π
(

1 + e−b
)(

ey − ev2+b
)
+
∣∣∣X (ν2 + b)

∣∣∣
≤
√

2σ−1ε−
1
2

[
C1
√

2π(1 + e−b) + |X (ν2 + b)|
]
(ey + 1)

≤Ĉ0ε−
1
2 (e|y| + 1), (A2)

where Ĉ0 = σ−1
[
C1
√

2π(1 + e−b) + |X (ν2 + b)|
]
.

(ii) If y < ν2 + b, from Lemma 3 (i), we can see that

∣∣Xy(y)
∣∣ ≤ C1

ν2φ(y)

∫ y

−∞
(1 + ez)φ(z)dz

=
C1

ν2φ(y)

∫ y

−∞
ezφ(z)dz +

C1

ν2φ(y)

∫ y

−∞
φ(z)dz

≤C1

ν

√
2πey +

C1

ν

√
2πe

1
2

≤C1

ν

√
2π
(

e|y| + e
1
2+|y|

)
≤C1

ν

(
1 + e

1
2

)
e|y|.

Since
X (y) = −

∫ y

ν2+b
Xy(z)dz +X (ν2 + b),
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one can see that:

|X (y)| ≤
∫ ν2+b

y

∣∣Xy(s)
∣∣ds +

∣∣∣X (ν2 + b)
∣∣∣

≤C1

ν

(
1 + e

1
2

) ∫ ν2+b

y
e|z|dz +

∣∣∣X (ν2 + b)
∣∣∣.

Furthermore, if ν2 + b < 0, we have

|X (y)| ≤C1

ν

(
1 + e

1
2

) ∫ ν2+b

y
e−zdz +

∣∣∣X (ν2 + b)
∣∣∣

≤C1

ν

(
1 + e

1
2

)(
e−y − e−(ν

2+b)
)
+
∣∣∣X (ν2 + b)

∣∣∣
≤C1

ν

(
1 + e

1
2

)
e|y| +

∣∣∣X (ν2 + b)
∣∣∣

≤Ĉ1ε−
1
2

(
e|y| + 1

)
, (A3)

where Ĉ1 = σ−1
[
C1
√

2π
(

1 + e
1
2

)
+
∣∣X (ν2 + b)

∣∣]. If ν2 + b ≥ 0, we have

|X (y)| ≤C1

ν

(
1 + e

1
2

)(∫ 0

−|y|
e−zdz +

∫ ν2+b

0
ezdz

)
+
∣∣∣X (ν2 + b)

∣∣∣
≤C1

ν

(
1 + e

1
2

)(
e|y| + eν2+b

)
+
∣∣∣X (ν2 + b)

∣∣∣
≤C1

ν

(
1 + e

1
2

)(
1 + eν2+b

)
e|y| +

∣∣∣X (ν2 + b)
∣∣∣

≤Ĉ2ε−
1
2

(
e|y| + 1

)
, (A4)

where Ĉ2 = σ−1
[
C1
√

2π
(

1 + e
1
2

)(
1 + e1+b

)
+
∣∣X (ν2 + b)

∣∣]
Using (A2)–(A4) to define

C2 = σ−1

[
C1
√

2π
(

1 + e
1
2

)(
1 + e1+|b|

)
+ sup

y∈(b,1+b)
|X (y)|

]
,

we know that C2 is greater than Ĉ0, Ĉ1, Ĉ2 and is independent of ε. Naturally, we have

|X (y)| ≤ C2

(
1 + e|y|

)
ε−

1
2 .

Appendix C. Proof of Lemma 5

We denote Et[·] = E[·|yt = y], Vart[·] = Var[·|yt = y] for convenience. Since yt+τ can
be written as

yt+τ = (1− e−aτ)b + yte−aτ + σ
∫ t+τ

t
e−a(τ−s)dW3(s),

one can see that

µτ := Et[yt+τ ] = b + (y− b)e−aτ ,

σ2
τ := Vart[yt+τ ] = σ2 1− e−2aτ

2a
,
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and yt+τ follows the Gaussian law N (µτ , σ2
τ); thus,

Et

[
e|yt+τ |

]
=

1
στ

√
2π

[∫ +∞

0
exe
− (x−µτ )2

2σ2
τ dx +

∫ 0

−∞
e−xe

− (x−µτ )2

2σ2
τ dx

]

=
1√
π

eµτ+
1
2 σ2

τ

∫ +∞

−
(

µτ√
2στ

+
√

2
2 στ

) e−z2
dz +

1√
π

e−µτ+
1
2 σ2

τ

∫ +∞

µτ√
2στ
−
√

2
2 στ

e−z2
dz

≤2e|µτ |+ 1
2 σ2

τ

= 2eb(1−e−aτ)+ σ2
4a (1−e−2aτ)+|y|e−aτ

≤2e|b|+
σ2
4a e|y|.

Since a > 1, let Ĉ = 2e|b|+
σ2
4 , then (26) follows.
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