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Abstract: This study is intended as a note and provides an extension to a much-used and established
test for portfolio efficiency, the Gibbons, Ross, and Shanken GRS-Wald test. Tests devised to measure
portfolio efficiency are crucial to the theoretical issues related to CAPM (Capital Asset Pricing Model)
testing and have applications for the fund manager who seeks to rank portfolio performance. This
study looks at the GRS-Wald test for portfolio efficiency and extends it to make it visually more
interpretive without any loss of generality in its structure. The geometrically recast statistic draws
upon the trigonometric properties of a portfolio in the mean-variance space and a mathematical proof
of the equivalence of the two statistics is provided. The GRS-Wald test is a widely used statistic in
studies addressing the issue of portfolio efficiency and CAPM deviations. A simulation demonstrates
the use of the recast GRS-Wald test in testing for the mean-variance efficiency of a test portfolio. The
study also provides a table of the GRS-Wald test, based on a range of mean-variance locations (cosine
of portfolio angles) at which the test portfolio and the efficient market portfolio can be placed.

Keywords: GRS-Wald test; GRS statistic; trigonometric test; geometric portfolio efficiency; CAPM;
minimum-variance simulation; tangency portfolios; mean-variance optimization
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1. Introduction

The GRS-Wald test statistic, Gibbons, Ross, and Shanken [1] (hereinafter the GRS-W
test or the GRS-test, or the GRS-statistic), is a widely used statistic to test for portfolio
efficiency. This study is a note and provides an extension to the GRS test, which is also
used to study the CAPM (Capital Asset Pricing Model) deviations (Galea, Curci, and
Molina [2]; Fama and French [3]). The test is recast in a form that is visually more intuitive
(geometrically), while maintaining its original structure. At the same time, the recast
statistic does not suffer from any loss of generality or rigor in its structure. The recast
statistic draws upon the trigonometric properties (Gustafson [4,5], Rodriguez [6]) of a
portfolio in the mean-variance space, and a mathematical proof of the equivalence of the
two statistics is provided. A simulation is also employed to demonstrate the use of the
recast GRS statistic in testing for the mean-variance efficiency of a test portfolio, and a table
of values, based on a range of angles, spanning the various points on the mean-variance
spectrum is presented (Appendix A.3). The GRS~W test is a multivariate statistic for testing
the mean-variance efficiency of a portfolio, it also has a geometric interpretation. The
statistic tests for the efficiency of proxies used for the market portfolio and enables them
to address issues related to the critique by Roll [7] regarding the validity of the empirical
testing procedures on the CAPM (Capital Asset Pricing Model, Chen [8]. Testing for the
efficiency of the proxies used is important because, “if the proxy is not a valid surrogate,
then as tests of the CAPM the existing empirical investigations are somewhat beside the
point” (Gibbons, Ross, and Shanken [1]). Hu et al. [9] solved the portfolio optimization
problem of the mean-variance model (as used in the GRS-test) by developing an interactive
multi-criterion, self-learning system that does not require an a priori assumption of the
agent’s utility preference structure.
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2. The Gibbons, Ross, and Shanken Test Statistic and Its Relevance

Bodnar and Schmid [10] speak of the GRS test as an exact F-test for the efficiency
of a given portfolio which has become a fundamental test in portfolio theory. Cueto,
Grané, and Caascos [11], deploy the GRS test to assess the ability of a multifactorial risk
model to explain excess returns, by determining if the regression intercepts are jointly zero,
α1 = α2 = . . . = αn = 0. Ryan et al. [12], utilizing the GRS-test, look at the average value
of absolute intercepts, αi = 0 to test whether the regression intercepts are jointly equal
to zero, with the idea being that the intercept is indistinguishable from zero if an asset
pricing model completely captures the expected returns (in which case the portfolio is
efficient). Suarez and Alonso-Conde [13] looked at an entropy-based decomposition that
captures the divergence between the factor-mimicking portfolio and the minimum-variance
pricing kernel as distinct from quadratic test statistics, such as the GRS-test (determined as a
function of pricing errors). Solórzano-Taborga et al. [14], utilize the GRS test for identifying
restrictions (they termed ‘efficiency factor’) to test the null of asset pricing errors equaling
zero. Barillas et al. [15] utilized the GRS test to accommodate the comparison of non-
nested models as in a squared Sharpe-ratio (Sharpe [16]). Kamstra and Shi [17] rigorously
generalized the Sharpe ratio-based interpretation of the GRS test to the multiple portfolio
case but also suggested modifications to it when extended to multiple factors.

It may be noted that the GRS test does not accommodate short-selling restrictions
(Fletcher [18]). Vigo-Pereira and Laurini [19] stated that for the GRS test to be effective the

error terms have to be i.i.d N(0,1), normally distributed ~ N(µ, σ2); f (x) = 1
σ
√

2π
e−

1
2 (

x−µ
σ )

2
,

homoscedastic with the diagonal elements jj and kk of two var-cov matrices A and B being
equal, ∑A jj = ∑B kk, ∀j = k, and uncorrelated ρ

(
εj, εk

)
= 0. Kamstra and Shi [17] asserted

that the GRS statistic can lead to higher failure rates especially when the returned model
has K-factors, K > 1 and N-assets, N < N*; “the bias to over-reject is non-negligible in small
samples”. The short-selling constraint prevents the replication of an investible benchmark
index, thus invoking Roll’s Critique [7] of whether the benchmark is representative of the
test portfolio. However, tests of mean-variance efficiency with no short sales constraints
have been proposed by Basak et al. [20]. Kim and Robinson [21] also point out that perfect
efficiency cannot exist in practice and that it would be unrealistic that all intercept values
were jointly and exactly zero, hence they introduce an interval-based hypothesis testing
and get lower rejection rates with the GRS-test.

Shanken [22] provided an exhaustive review of 23 statistical methods that have been
used in testing mean-variance portfolio efficiency. Kamstra and Shi [17] posited that “the
Gibbons, Ross, and Shanken ([1], GRS) test of mean-variance efficiency of asset returns is
the gold standard of empirical asset pricing, used by virtually every paper in the literature
exploring empirical asset pricing models. Not only is it used to establish if an asset pricing
model can account for expected returns of a set of test assets, but the GRS test is also used to
rank models for relatively superior performance, that is, which model produces the lower
GRS statistic (see, for instance, Fama and French [3])”. Essentially, this is done by testing for
the intercepts on a multifactor risk model to be jointly zero, indicating that there is no excess
return to the factor loadings. Cueto et al. [11], deploy the GRS test to assess the ability
of a multifactorial risk model to explain excess returns, by determining if the regression
intercepts are jointly zero, α1 = α2 = . . . = αn = 0. Ryan et al. [12], utilizing the GRS test,
looked at the average value of absolute intercepts, αi = 0 to test whether the regression
intercepts are jointly equal to zero, with the idea being that the intercept is indistinguishable
from zero if an asset pricing model completely captures the expected returns (in which case
the portfolio is efficient). It can be surmised that there is a substantive link between the GRS
test, and portfolio performance evaluation and that it has been well-researched. This paper
abstracts from those empirical tests and seeks to provide a trigonometric interpretation of
the GRS test.

MacKinlay [23] discriminated between the risk-based and the non-risk-based explana-
tions of CAPM deviations and indicates that models that base their explanations on the
need for additional risk factors may be making premature conclusions (Roll and Ross [24].
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He further adds that on an ex ante basis, “CAPM deviations due to missing risk factors will
be very difficult to statistically detect”. The main point of his study is that the adoption of
empirically developed multifactor models is not the answer to observed CAPM deviations.
His study utilized the GRS test to detect CAPM deviations on an ex ante basis. Using a
342-month time series of excess returns for 32 portfolios (25 stock and 7 bond portfolios)
as the dependent variable, with market excess returns being the independent variable, he
tested for the null hypothesis that the intercept on the CAPM is zero. He finds that on an
ex ante basis, it is more probable that the deviations are better explained by non-risk-based
alternatives than by additional risk-based alternatives. This is inferred from the degree
of overlap the alternative distributions have over the GRS-test statistic MacKinlay [23].
For purposes of comparing a risk-based model with a non-risk-based alternative, MacKin-
lay [23] stated, “the zero-intercept test can be very useful since the distributions of the test
statistic for these alternatives have little overlap”.

Zhou [25] stated, “the GRS test has rich economic interpretations and attractive statis-
tical properties . . . the GRS test is fundamental for testing MV (mean-variance) efficiency
under normality.” He uses the statistic and rejects the MV efficiency on the CRSP (Center
for Research in Security Prices, WRDS [26]; Agrrawal [27]) value-weighted stock index for
three of the six consecutive ten-year sub-periods from 1926 to 1986 besides rejecting the
normality assumption of the data at the same time. Zhou [25] conducts the zero-intercept
test on the CAPM under the normality as well as the alternative (elliptical) distribution
assumption and uses the values of the GRS statistic to calculate the p-values (level of
significance). Bodnar et al. [28] also mentioned that Zhou [25] extended the findings of
Gibbons et al. [1] by applying their GRS test of the validity of the CAPM to elliptically
distributed returns. For the alternative distributions of excess returns, he reported that
the p-values for five of the six sub-periods from 1926–1976 exceed 5% and are larger than
the p-values under the normality assumption (Table V, Panel B, p. 1938, Zhou [25]). This
prevents the rejection of the null hypothesis (zero-intercept on the excess return form of the
CAPM) for the period under study. The Zhou [25] paper thus introduces a refinement to the
GRS-test by way of testing the implications of the GRS-test to alternative distributions and
cautions that “empirical studies that ignore the nonnormality are likely to over reject the
theory being tested”. At the same time, it brings out the appeal of the GRS test to situations
that call for the testing of portfolios.

The Fama and French [29] study used 32 portfolios over 342 monthly observations to
arrive at the GRS-test F-value of 1.91 (for the single factor case with excess market returns as
the sole independent factor). The study rejects the null of a zero-intercept at the 99.6% level
(Fama and French [29]). Their lowest F-statistic (closer to zero, implying higher efficiency)
has a value of 1.56 and rejects the null at the 96.1% level; in this case, their model is the
three-factor stock market model. Despite its ‘marginal rejection’ in the F-tests, they feel “the
three-factor model does a good job on the cross-section of stock returns”. The five-factor
(3 stock and 2 bond market) model has an F-value of 1.66 and rejects the null at the 97.5%
level, which is lower than the three other scenarios. This prompts them to conclude that
“the five-factor regressions provide the best model for returns on bonds and stocks”. A look
at the p-values for the overall regressions clearly shows that the null of a zero-intercept
is rejected at least at the 96.1% level (which is the lowest on the table referred to above).
Evidently, the Fama and French [29] study makes a strong case for multi-factor risk-based
alternates to the univariate proposition of the CAPM. Hou, Karolyi, and Kho [30] used the
GRS-test statistic for their country, industry, and characteristic-based global test portfolios.
Ehsani and Linnainmaa [31] utilized the GRS test to see if factor momentum contributes to
the returns of cross-sectional momentum strategies and test the null hypothesis of the alphas
being jointly zero. This note provides an extension/recharacterization of the GRS test with
the objective of giving it a geometrical interpretation and making its implementation easier.
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3. Suggested Recharacterization of the GRS-Statistic

Gibbons, Ross, and Shanken [1] devised a statistic to test for the MV efficiency of any
particular portfolio. Their motivation was to examine the MV efficiency of market proxies
used in CAPM testing, especially given the equivalence of the CAPM to MV efficiency of
the market. They derived an exact form test and examined its sensitivity to the choice of the
portfolio and the number of assets used to derive the MV efficiency frontier (Merton [32]).
They found that “conclusions regarding the efficiency of a given index can be altered by
the type of assets used to construct the ex post frontier”. Their tests reject the efficiency of
the CRSP value-weighted (VW) index but do not reject the efficiency of the CRSP equal-
weighted (EW) index, and utilized monthly data over the period from 1931–1965. They
also provided a geometrical (Gomez-Deniz et al. [33]; Danko and Soltés [34]) interpretation
of their test in “the mean-standard deviation space of portfolio theory”, something that this
study attempted to extend.

The GRS statistic measures the distance, in mean-standard deviation space, between
a test portfolio (market index), and a tangency portfolio (on the efficient frontier) and
returns a value, which is then used to assess the relative efficiency of the portfolio under
consideration. The GRS test statistic, also called the GRS-W, statistic is as follows:

W =


√

1 + θ̂2∗√
1 + θ̂2

p

2

− 1 ≡ ψ2 − 1 (1)

and θ̂∗ is the Sharpe measure of the ex post efficient portfolio (ratio of expected excess
return to the standard deviation of the excess return), and θ̂p is the Sharpe measure of
the test portfolio. Note that Ψ cannot be less than one since θ̂∗ is the slope of the ex post
frontier and is based on all the assets in the test (including the test portfolio p). To accept the
efficiency of the test portfolio, Ψ2 should be close to 1. Larger numerical values of Ψ2 imply
portfolio inefficiency (MacKinlay et al. [35]) arising out of the increased distance between
the test portfolio and the global MV efficient portfolio on the frontier (W = Ψ2 − 1→ 0
implies efficiency). In other words, for values of W close to zero, the test portfolio cannot
be called inefficient.

The null hypotheses of a zero intercept on the excess-return form of the CAPM can be
rejected when the value of W is greater than the F-statistic value with degrees of freedom N
and (T-N-1), where N is the number of assets and T is the number of time series observations
on the underlying asset returns.

It may be noticed that the above statistic involves the prior calculation of the slopes of
the tangent to the efficient frontier and the segment joining the test portfolio to the origin.
Additionally, θ is a slope measure (θ ≡ r/σ) with excess return (r) and standard deviation
of return (σ). The simplification of this approach involves the direct use of the angles
stretched by the two lines, and could perhaps aid in a more visually intuitive use of the
GRS test statistic. The suggested modification on the original form of the GRS statistic is
as follows.

Let φ* be the angle between tangent OM and the X-axis (Figure 1), and φp be the angle
between the segment OP and the X-axis.
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Figure 1. The geometric basis of the GRS-W test statistic. The test coordinates of the EW portfolio (P)
and the tangency portfolio (M) are plotted relative to the mean-variance efficient frontier. The further
away P is from the tangency portfolio, the less efficient the portfolio P is.

Then, we can recast the GRS-W statistic as
∼
W, where:

∼
W=

[
cos φp

cos φ*

]2
− 1 (2)

If
∼
W = Ψ2 − 1→ 0 , we cannot reject Ho (which indicates that the test portfolio P is

efficient), and φ* is the angle between the tangency portfolio and the X-axis:[
sec φ*

sec φp

]2

− 1 (3)

and φp is the angle between the test portfolio and the X-axis,√sec2 φ*√
sec2 φp

2

− 1

√1 + tan2φ*√
1 + tan2φp

2

− 1

√1 + θ̂*2√
1 + θ̂2

p

2

− 1

where θ is a slope measure (θ ≡ r/σ); tan(φ) = θ, which is the exact form of W̃, the original
GRS-W test statistic (Gibbons, Ross, and Shanken [1]).
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The return vectors ri ≡ xi generate a scalar variance product x1.x2 → var(x).

where correlation ρx1x2 =
cov(x1x2)

σx1σx2

=

→
x1·
→
x2

/
(η − 1)

‖x1‖√
η−1

/
1

‖x2‖√
η−1

/
1

for scaled returns x1, x2 and η observations.
Where the squared length of vector

→
x1,
→
x2 is :

‖x1‖2 =
[√

a2
1 + a2

2 + . . . a2
n

]2

‖x2‖2 =
[√

b2
1 + b2

2 + . . . b2
n

]2

Product of vectors
→
A,
→
B is

→
a .
→
b = ‖a‖·‖b‖ cos(α)

∀→a = (a1, a2 . . . an) ≡ x1

∀
→
b = (b1, b2 . . . bn) ≡ x2

Note that P denotes the test portfolio, so it lies on or below the frontier (above it would
violate the budget constraint and is hence infeasible). The proof involves the use of some
basic axioms of trigonometry (such as 1 + tan2θ = sec2θ), and displays the equivalence of
the original form of the GRS test to its recast form. This is important because the recast
GRS-W statistic leaves the numerical value of the test unchanged while at the same time
providing a geometrical interpretation (the closer the test portfolio line is to the tangency
portfolio line, the more efficient the test portfolio is) and computational ease. In that sense,
there is no structural change to the original GRS-W test; it is just extended to provide a
geometric and trigonometric interpretation.

A calculator with trigonometric functions can easily compute the
∼
W statistic, thus

giving it a quick-and-ready status. It also obviates the need to calculate the length of the
hypotenuse for the two points under consideration, and all that is needed is the value of the

angles between the two lines and the X-axis. This quick-and-ready
∼
W statistic that measures

the efficiency of a portfolio can be useful for professional fund manager presentations and

instruction on the MV efficiency criterion. At the same time the recast statistic
∼
W does

not suffer from any loss of generality or rigor in its structure. The study suggests this
recast portfolio efficiency test statistic as an extension and not a replacement for the GRS-W
test statistic.

4. A Simulated Efficient Frontier and a Test of Portfolio Efficiency

This section delves into the mechanics of tracing out an efficient MV frontier and
identifying the relative location of the global MV-efficient portfolio. Thereafter, the location
of an EW portfolio having the same return distribution as those of the assets employed in
the formation of the efficient frontier is noted and its efficiency is tested using the recast
GRS statistic. This enables us to improve on the simple eyeballing technique employed in
testing the efficiency of a test portfolio used in the works of Roll and Ross [24].

The simulations begin with an initial set of five assets i whose returns are randomly
generated under the assumption of normality. More specifically, the distribution specified
is a Gaussian distribution of the return (r) random variable x, with mean and standard
deviation ~ N(µ, σ2) and having a p.d.f.:

f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )

2
(4)

where µi was successively set at 0, 2, 4, 6, 8, 10 and σi was set at 0, 5, 10, 15, 20, 25.
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Now, the problem reduces to one of minimizing the variance of a portfolio subject
to a target rate of return and a budget constraint. The MV portfolio selection problem is
one where the investor seeks to minimize the portfolio variance subject to the budget and
target return constraint. A short selling, Black [36] non-negativity constraint is optional,
depending on the model (Buckle [37] utilized a bivariate normal distribution due to option
payoffs). Simply stated, the problem is to

Minimize σ2(x) = xTΣx
subject to,
xTe = 1 where eT = [1, 1, . . . 1]
xTµ = µp
and x ≥ o (optional)

(5)

where, µ and x are n-vectors composed of asset rates of return and portfolio weights
respectively:

Σ is an n x n positive-definite non-singular covariance matrix;
e is a unit vector;
µp is a scalar equal to the targeted portfolio return;
And x ≥ 0 is the short-selling constraint.
The equivalent Parametric Quadratic Programming (PQP) problem (Best and

Grauer [38,39]) is

Max
[(

xTµ− xTΣx
2

)
|Ax ≤ γ

]
(6)

where, A is an m × n constraint matrix, γ an m × 1 vector, for a given var-cov matrix Σ
and |Σ| = σ11σ22sin2α, where σ is the standard deviation of returns; it is well known that
Generalized Variance is

GV =

[
‖x1‖‖x2‖sin α

η − 1

]2

for η observations, with α, the angle between the vectors x1 and x2 respectively. Another
approach, called the Risk parity based allocation approaches does not require an estimate
of the return vectors. Lee [40] outlined a process that is elaborated in Appendix A.4).

The solution involves the use of the Kuhn-Tucker [41] conditions (please see
Appendix A.1 for the K-T conditions) to arrive at a global optimum portfolio (it is a saddle
point where the variance is minimized in one plane and the mean return is maximized in
the other).

However, computational solutions that hinge on algorithms, are developed for the
solution of non-linear quadratic programming situations. Greene [42] reviewed some
commonly used NLP algorithms and stated that the quasi-Newton algorithms belong
to a ”very effective class of algorithms that eliminates second derivatives altogether and
has excellent convergence properties, even for ill-behaved problems”. The results of this
optimization can be seen in Table 1, which gives us the GRS-test values for a range of
portfolio returns and standard deviations (Appendix A.2). Following Roll and Ross [24]
and Shefrin and Statman [43], feasible portfolios away from the tangency portfolio will plot
below the efficient frontier (infeasible above the frontier).

The plot of the efficient frontier (Figure 2) shows that this is indeed the case. The
inefficient EW portfolio lies inside the frontier and considerably away from the global MV
efficient portfolio. The global tangency portfolio (M) produces the highest return per unit
of risk amongst all other efficient portfolios; in other words, it generates the highest value
of the Sharpe ratio [16] measure for portfolio performance.
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Table 1. Showing the values of the GRW-W test statistic and the Sharpe ratio θ.

GRS~W Stat θ = (r − rf)/s

r\s 10.00 12.00 14.00 16.00 10.00 12.00 14.00 16.00 s/r
5.00 0.198 0.276 0.328 0.364 0.400 0.333 0.286 0.250 5.00
5.50 0.150 0.2374 0.297 0.339 0.450 0.375 0.321 0.281 5.50
6.00 0.101 0.198 0.265 0.313 0.500 0.417 0.357 0.313 6.00
6.50 0.053 0.158 0.232 0.285 0.550 0.458 0.393 0.344 6.50
7.00 0.005 0.117 0.198 0.257 0.600 0.500 0.429 0.375 7.00
7.50 0.077 0.163 0.228 0.542 0.464 0.406 7.50
8.00 0.037 0.129 0.198 0.583 0.500 0.438 8.00
8.50 0.094 0.168 0.536 0.469 8.50
9.00 0.060 0.137 0.571 0.500 9.00
9.50 0.025 0.107 0.607 0.531 9.50

10.00 0.077 0.563 10.00
10.50 0.047 0.594 10.50

Bold numbers are r: return and s: std. dev.; p-value is <0.05 for all non-bold, non-italicized cells, implying

inefficient portfolios. The italicized numbers are the GRS-W values W =


√

1+
ˆ
θ

2

∗√
1+

ˆ
θ

2

p

2

− 1 ≡ ψ2− 1, that correspond

to efficient portfolios.
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Table 2. These represent a range of actual GRS-W test statistic values and the associated Sharpe ratio
values for a set of mean-variance points (as applied in Figure 2). This table has the p-values as well.
N = 30 and a 10-year weekly period of T = 520. The top panel of the table illustrates the values arrived
in the first two rows of the larger table, with the first row corresponding to the tangency portfolio
(7.93 r, 9.83 σ), which is also applied in Figure 2, as the tangency portfolio on the efficient frontier.
Cells in bold text are the efficient portfolios with low GRS-W statistics.

Tangency Portfolio (*) Test Portfolio (p)

mean, r 7.93 10.50

risk free, rf 1.00 1.00

sigma, s 9.83 8.00

θ = (r − rf)/s 0.705 1.188

GRS~W Stat 0.046

N No. of Assets 30

T No. of Weekly Intervals 520

XF 0.759

p-value Rej. H0 (is an Efficient Port) iff p~0 0.8202

Mean, r Sigma, s θ = (r − rf)/s GRS~W Stat N T XF p-Value

Tangency
Portfolio (*) 7.93 9.83 0.705 No. of

Assets

No. of
Weekly

Intervals

Rej. H0
(Efficient

Port) iff p~0
Test Portfolio (p) 10.50 16.00 0.594 0.047 30 520 0.763 0.81564721900 Eff.
Test Portfolio (p) 3.00 10.00 0.2 0.3737 30 520 6.115 0.00000000000 Not Efficient
Test Portfolio (p) 5.00 10.00 0.400 0.198 30 520 3.238 0.00000004498 Not Efficient
Test Portfolio (p) 5.50 10.00 0.450 0.150 30 520 2.448 0.00004374410 Not Efficient

6.00 10.00 0.500 0.101 30 520 1.652 0.01746340000 Not Efficient
6.50 10.00 0.550 0.053 30 520 0.861 0.68131012700 Eff.
7.00 10.00 0.600 0.005 30 520 0.081 1.00000000000 Eff.

Test Portfolio (p) 5.00 12.00 0.333 0.276 30 520 4.513 0.00000000000 Not Efficient
5.50 12.00 0.375 0.237 30 520 3.884 0.00000000012 Not Efficient
6.00 12.00 0.417 0.198 30 520 3.238 0.00000004498 Not Efficient
6.50 12.00 0.458 0.158 30 520 2.580 0.00001444100 Not Efficient
7.00 12.00 0.500 0.117 30 520 1.917 0.00279042500 Not Efficient
7.50 12.00 0.542 0.077 30 520 1.256 0.16816038300 Eff.
8.00 12.00 0.583 0.037 30 520 0.599 0.95601098600 Eff.

Test Portfolio (p) 5.00 14.00 0.286 0.328 30 520 5.366 0.00000000000 Not Efficient
5.50 14.00 0.321 0.297 30 520 4.862 0.00000000000 Not Efficient
6.00 14.00 0.357 0.265 30 520 4.336 0.00000000000 Not Efficient
6.50 14.00 0.393 0.232 30 520 3.793 0.00000000028 Not Efficient
7.00 14.00 0.429 0.198 30 520 3.238 0.00000004498 Not Efficient
7.50 14.00 0.464 0.163 30 520 2.674 0.00000646460 Not Efficient
8.00 14.00 0.500 0.129 30 520 2.107 0.00067275200 Not Efficient
8.50 14.00 0.536 0.094 30 520 1.539 0.03571892400 Not Efficient
9.00 14.00 0.571 0.060 30 520 0.973 0.50892160100 Eff.
9.50 14.00 0.607 0.025 30 520 0.413 0.99780363100 Eff.

Test Portfolio (p) 5.00 16.00 0.250 0.364 30 520 5.958 0.00000000000 Not Efficient
5.50 16.00 0.281 0.339 30 520 5.549 0.00000000000 Not Efficient
6.00 16.00 0.313 0.313 30 520 5.117 0.00000000000 Not Efficient
6.50 16.00 0.344 0.285 30 520 4.667 0.00000000000 Not Efficient
7.00 16.00 0.375 0.257 30 520 4.202 0.00000000001 Not Efficient
7.50 16.00 0.406 0.228 30 520 3.724 0.00000000053 Not Efficient
8.00 16.00 0.438 0.198 30 520 3.238 0.00000004498 Not Efficient
8.50 16.00 0.469 0.168 30 520 2.745 0.00000351764 Not Efficient
9.00 16.00 0.500 0.137 30 520 2.249 0.00022052900 Not Efficient
9.50 16.00 0.531 0.107 30 520 1.752 0.00899892900 Not Efficient

10.00 16.00 0.563 0.077 30 520 1.256 0.16816038300 Eff.
10.50 16.00 0.594 0.047 30 520 0.763 0.81564721900 Eff.

Glabadanidis [44] proposed a new finite sample mean-variance efficiency test based
on the risk reduction of the global minimum variance (GMV) portfolio, which he found has
a straightforward geometric and portfolio interpretation and complements the celebrated
GRS-test well Notice that M is tangential to a line emanating from the origin and has the
property of maximizing the angle formed between the axis that measures risk and the line
through the origin. Any other portfolio on or below the frontier will generate an angle
that will be lesser in value. The study noted the significance of this property of the global
MV efficient portfolio and employed this unique characteristic to devise a formal test for
portfolio efficiency using the values of the angles formed by the test and the global MV
efficient portfolio with the risk axis. While it may be visually appealing to comment on the
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efficiency of a test portfolio based on its distance from the global MV efficient portfolio, a
mathematically precise test conveys the information with greater clarity and conviction.

The first step in arriving at the values of the recast GRS statistic requires the precise
calculation of the “portfolio angles”, since these values form an integral part of the test of
portfolio efficiency. The change in the gradient of the “W stat” as (x, y) changes is shown in
Figure 3; with the X-coordinate representing return and the Y-coordinate measuring the
standard deviation on the portfolio, an application of the Pythagorean theorem allows us
to arrive at the values of the angles created by such coordinates in the Cartesian plane.
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Figure 3. A plot of the left panel of Table 1, showing the spike in the GRS−W as variance approaches
16% with a low return of 5%, high “W stat” values imply inefficiency of the test portfolio.

Stated simply, the theorem states that for any right-angled triangle, the value of the
hypotenuse-squared (h2) equals the sum of the values of the perpendicular (p2)-squared
and the base-squared (b2), i.e., h2 = p2 + b2. For example, for the coordinates of the EW
portfolio and the M portfolio (8, 4.67) and (12, 5.05); the values of the angles stretched by
the two given coordinates are found as follows:

h(φp) =
√

4.672 + 82 = 9.263 (7)

where h(φp
)

is the hypotenuse of the right angled triangle formed with two
known vertices at (0, 0) and (4 .67, 8).
⇒ cos

(
φp
)
= (b/h) = (4.67/9.263) = 0.5042

⇒ cos−1(0.5042) = 59.717o

⇒ φp = 59.717o

Similarly, h(φ∗) = 13.019
⇒ φ∗ = 67.176o, the angle stretched by the global min− var portfolio M.

Recalling that the GRS-statistic also called the GRS-W statistic is

W =


√

1 + θ̂2∗√
1 + θ̂2

p

2

− 1 ≡ ψ2 − 1 (8)

(For values of W close to zero, the test portfolio cannot be called inefficient).
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It has been shown that it can be recast in the following form:

W̃ =
[

cos φp
cos φ∗

]2
− 1

And if W̃ → 0, we cannot reject the efficiency of the test portfolio p.
(9)

Using the values found above we can see that W̃ = 0.689 which is not close to zero,
thus implying inefficiency of the test portfolio p, which, in this case, is the EW portfolio
comprised of the five asset universe. Is the value of the recast GRS statistic W̃ equal to the
original form value of W? The original form of the GRS construction θ is the slope of a line
and the Sharpe measure for the ex post price of risk. The GRS test defines θ ≡ r/σ as the
Sharpe measure with excess return (r) and standard deviation of return (σ). On a more
specific basis, θ̂∗ is the Sharpe measure of the ex post efficient portfolio (ratio of expected
excess return to the standard deviation of the excess return), while θ̂p is the Sharpe measure
of the test portfolio. Jurdi [45] and Agrrawal et al. [46] note that investors rely on the ex-post
performance of portfolios to assess the economic utility of their asset allocation and guide
the portfolio rebalancing decision. Bazhutov et al. [47] further note that no market portfolio
is clearly defined in CAPM testing. The coordinates of the EW test portfolio (P) and the M
portfolio are (8, 4.67) and (12, 5.05), respectively, with the X-coordinate representing return
and the Y-coordinate measuring the standard deviation on the portfolio. Then,

W =

[√
1+θ̂2∗√
1+θ̂2

p

]2

− 1

=


√

1+
(

12
/

5.05

)2

√
1+
(

8
/

4.67

)2


2

− 1

= 0.689
= Ŵ

(10)

The above mentioned demonstration shows the equality of the two statistics when
actual numbers are used. The recast approach, however, involves the direct use of the
angles stretched by the two lines in the hope that this could perhaps aid in a visually more
intuitive use of the GRS statistic.

The GRS statistic also measures the distance, in mean-standard deviation space, be-
tween a test portfolio (market index) and a tangency portfolio (on the efficient frontier) and
returns a value which is then used to assess the relative efficiency of the portfolio under
consideration. The GRS statistic denoted by GRS-W is given as

W =


√

1 + θ̂2∗√
1 + θ̂2

p

2

− 1 ≡ ψ2 − 1 (11)

where, θ̂∗ is the Sharpe measure of the ex post efficient portfolio (ratio of expected excess
return to the standard deviation of the excess return), and θ̂p is the Sharpe measure of the
test portfolio. Essentially, θ is a slope measure (θ ≡ r/σ) with excess return (r) and standard
deviation of return (σ), and is the ray emanating from the origin on the Y-axis connecting
to a portfolio in the first quadrant. Note that ψ cannot be less than one since θ̂∗ is the slope
of the ex post frontier and is based on all the assets in the test (including portfolio p). To
accept the efficiency of the test portfolio, ψ2 should be close to 1. Larger values of ψ2 imply
portfolio inefficiency arising out of the increased distance between the test portfolio and
the global MV efficient portfolio on the frontier (W = Ψ2 − 1→ 0 implies efficiency). In
other words, for values of W close to zero, the test portfolio cannot be called inefficient
(visual implementation in Appendix A.5).
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The test statistic is numerically determined as

[T(T−N− 1)/N(T− 2)]


√

1 + θ̂2∗√
1 + θ̂2

p

2

≡ XF (12)

It follows an F-distribution ~ F (N, T-N-1), where N is the number of assets and T is
the number of time series observations on the underlying asset returns.

H0: Portfolio is efficient.
The decision rule to reject H0 is Rej. H0, iff. F(XF, N, T-N-1) < a threshold p-value. For

the two portfolios with the given sample (r, rf, σ) in the table below, the various parameters
required to determine the GRS statistic are displayed below:

The GRS test confirmed that the test portfolio is not efficient relative to the tangency
portfolio.

5. Conclusions

The implication of using such an inefficient portfolio as a market index can be best
stated in the words of Roll and Ross [24], who said “if the index is not efficient, the
ex ante cross-sectional relation does not hold exactly and no other variables can have
explanatory power”. Gibbons, Ross, and Shanken [1]) had earlier stated that “if the proxy
is not a valid surrogate, then as tests of the CAPM the existing empirical investigations are
somewhat beside the point”. Tests devised to measure portfolio efficiency are crucial to the
theoretical issues related to CAPM testing, Fama and French [48] and have applications
for fund managers who seek to rank portfolio performance. This study provides an
extension/recharacterization of the GRS-test with the objective of giving it a geometrical
interpretation (Agrrawal [49]) and making its implementation easier; there is no structural
change to the original GRS-W test, only that it is extended to provide a visual interpretation
(Appendix A.5). It utilized the trigonometric properties of a portfolio in the mean-variance
space to arrive at the mathematical equivalence of the two tests. A simulation demonstrates
the use of the recast GRS-Wald test in testing for the mean-variance efficiency of a test
portfolio. The study also provides a table of the GRS-Wald test, based on a range of mean-
variance locations (cosine of portfolio angles, Appendix A.3) at which the test portfolio and
the efficient market portfolio can be placed.
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Appendix A.

Appendix A.1. The Kuhn-Tucker [41] Saddle Point Theorem
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The dual for the LagrangianL(x, λ) = f0(x)+∑n
i=1 λi fi(x) is given as λ? ∈ argmax

λ
g(λ)

s.t. λ ≥ 0 where g(λ) = min
x

L(x, λ) is the dual function. Duality holds when:

min
x

max
λ≥0

L(x, λ) = max
λ≥0

min
x

L(x, λ).

The problem of minimizing risk while simultaneously maximizing return is a con-
strained optimization problem (Markowitz [50]), where the budget constraint is ∑n

i=0 wi = 1
and the short selling constraint on asset weights is ∀i, wi ≥ 0) to which the K-T saddle point
(Balbás et al. [51]) conditions apply.

The first of these three plots is the K-T saddle point minmax optimal point, the next
two are when the axis is rotated 90◦ and show the same optimal point, but on different
reference planes.
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Bold numbers are r: return and s: std. dev.; p-value is <0.05 for all non-bold, non-
italicized cells, implying inefficient portfolios. The italicized numbers are the GRS-W values

W =


√

1+
ˆ
θ

2

∗√
1+

ˆ
θ

2

p

2

− 1 ≡ ψ2 − 1, that correspond to efficient portfolios.

Appendix A.3. Values of the GRS-W Statistic for a Range of Angles

Test Port

ANGLE 0 10 20 30 40 45 50 60 70 80 90

m
kt

ta
ng

en
cy

po
rt

cosine
(xo) 1.00 0.98 0.94 0.87 0.77 0.71 0.64 0.50 0.34 0.17 0.00

0 1.00 0.000

10 0.98 0.031 0.000

20 0.94 0.132 0.098 0.000

30 0.87 0.333 0.293 0.177 0.000

40 0.77 0.704 0.653 0.505 0.278 0.000

45 0.71 1.000 0.940 0.766 0.500 0.174 0.000

50 0.64 1.420 1.347 1.137 0.815 0.420 0.210 0.000

60 0.50 3.000 2.879 2.532 2.000 1.347 1.000 0.653 0.000

70 0.34 7.549 7.291 6.549 5.411 4.017 3.274 2.532 1.137 0.000

80 0.17 32.163 31.163 28.284 23.873 18.461 15.582 12.702 7.291 2.879 0.000

90 0.00 2.6,10+32 2.58,10+32 2.35,10+32 1.99,10+32 1.56,10+32 1.33,10+32 1.10,10+32 6.66,10+31 3.12,10+31 8.04,10+30 0.000

This table provides the values of the recast GRS—test statistic and is based on the
angles (in italics) stretched by the portfolio under test (test port) and the globally MV
efficient portfolio (mkt tangent port). Only the lower triangular matrix is relevant because
the test portfolio has to lie in the feasible zone of the ellipse. Values of the statistic close to
zero (in italics) imply efficiency (say 40◦ test port, and 45◦ tangency port (cosine(.) values
in Bold text (0.77, 0.71), results in a GRS-test value of 0.174). The further the location of
a test portfolio from the tangency portfolio the larger the distance (GRS-test values) and
the lower the portfolio efficiency. The values of N and T impact the p-values as applied
to the test and not the GRS-W test per se. They are also provided in Table 2 for a set of
mean-variance locations. Essentially the trigonometric test has to be digitized since there
would be a very large number of mean-variance combinations and locations on the X-Y
plane. A digital copy can be supplied upon request.

Appendix A.4. Risk Parity: Avoiding the Problem of Error Maximization in a Mean-Variance
Optimization Framework

Lee (2011), shows that for a portfolio with a variance–covariance structure Σ, risk
parity is the state when the percentage contribution to total risk (PCTR) of an asset equals
that of another, resulting in an even distribution of risk across all constituent asset classes.
Mathematically, as reported in Agrrawal [52] for the “bivariate (Maillard, Roncalli, and
Teiletche [53] also provide the general case for n > 2 assets, and Qian [54] for the n = 2
case) n = 2 asset case, where ρ12 is the correlation, σ1, σ2 and σp the standard deviations of
the assets and the portfolio, and non-negative weights such that w1 + w2 =1, the problem
reduces to equating PCTRi = PCTRj ∀i 6= j:

σ2
p = w2

1σ2
1 + w2

2σ2
2 ++2w1w2ρ12σ1σ2

PCTR1 =

[
w1

∂σp

∂w1

/
σp

]
=

w2
1σ2

1 + w1w2ρ12σ1σ2

σ2
p
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PCTR2 =

[
w2

∂σp

∂w2

/
σp

]
=

w2
2σ2

2 + w1w2ρ12σ1σ2

σ2
p

βi =

[
σip

σ2
p

]
⇒ wi ∝ βi

−1 ∀ i = 1, 2

This also implies that wi, the weight of asset i is inversely proportional to its beta
βi. Choueifaty and Coignard [55], also abstract from the classic mean-variance optimized
portfolios and thereafter developed risk-parity based strategies.Yu [56], in a comprehensive
study on the leading methodological issues surrounding CAPM modeling identified nine
major mathematical issues that affect beta estimation, of which Agrrawal [46] and Fama
and French [3] link to frequency, interval and dynamic weighting constructs that ultimately
affect portfolio efficiency measures. In a recent paper, de Jong and diBartolomeo [57],
discuss evolving implications of optimization that deal with new alpha sources emanating
from multiple performance sources and portfolio efficiency measures. Stone et al. [58] find
evidence that points to a fundamental revision in the theory of the relationship between
cash levels in an financial system and central bank interest rates; this paper fundamentally
recasts the GRS-W statistic based on its trigonometric properties.

Appendix A.5. Risk Parity: Efficient Portfolio Zone as a Floating Hyperplane, the Tangency
Portfolio and the GRS-W Statisctic Gradient -3D Efficient Frontier with Actual ETFs

Based on large scale numerical runs with actual pricing data, using a variety of multi-
asset portfolios, WRDS [26], Agrrawal [52], a stable and realistic tangency portfolio placed
at 8% annual return with a standard deviation of 10% per year. Utilizing that central point

a mesh grid of the GRS-W test values W =


√

1+
ˆ
θ

2

∗√
1+

ˆ
θ

2

p

2

− 1 ≡ ψ2 − 1, were spanned for

µ ∈ (5% to 15%) and σ ∈ (5% to 25%). The gradient of the Z-axis values is indicative of
the inefficiencies associated with even minor perturbations in the mean-variance space
around the tangency portfolio (blue sphere). The floating hyperplane is the efficiency space
projected around the tangency portfolio.
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At a reviewer’s suggestion, a set of highly liquid and diversified Exchange traded
Funds -ETFs (VT, VTI, IWM, VEU, BND, GLD, AOK, AOM, UUP, FXE, IYR), were plotted
in the mean-variance-GRS-test space. As can be seen in the figure with the multiple spheres,
these ETFs plotted around the bright-blue tangency portfolio. However, this efficient
frontier is now an “efficient dome” and the GRS-W test is the Z-axis, making it visually
quite apparent which of the assets are in the efficiency zone.
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