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Abstract: Quaternion Fourier transform (QFT) has gained significant attention in recent years due
to its effectiveness in analyzing multi-dimensional signals and images. This article introduces two-
dimensional (2D) right-sided quaternion offset linear canonical transform (QOLCT), which is the most
general form of QFT with additional free parameters. We explore the properties of 2D right-sided
QOLCT, including inversion and Parseval formulas, besides its relationship with other transforms.
We also examine the convolution and correlation theorems of 2D right-sided QOLCT, followed by
several uncertainty principles. Additionally, we present an illustrative example of the proposed
transform, demonstrating its graphical representation of a given signal and its transformed signal.
Finally, we demonstrate an application of QOLCT, where it can be utilized to generalize the treatment
of swept-frequency filters.
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MSC: 11R52; 15A66; 42A38; 44A35

1. Introduction

An expansion of two-dimensional (2D) Fourier transform (FT) in Hamiltonian quater-
nion algebra is called 2D quaternion Fourier transform (QFT) [1,2]. QFT plays a crucial role
in representing 2D quaternion-valued signals, which is an essential tool for multi-channel
and multi-dimensional space. Because of the non-commutative property of multiplica-
tion of quaternion algebra, there are mainly three types of quaternion integral transforms:
two-sided, left-sided, and right-sided [1]. The simplicity of the Hamiltonian algebra rep-
resentation of signals, where red, green, and blue channels are controlled simultaneously,
has led to diverse applications of QFTs in signal detection, steganography systems, speech
recognition, and color image processing [3–7], as well as in partial differential systems and
mathematical statistics [8,9]. Over the last few years, there has been a growing interest in
establishing the various properties of quaternion-valued FTs, including duality, sampling,
product, convolution and correlation, uncertainty principle, etc. [10–16]. Furthermore,
QFT has been generalized to quaternion fractional Fourier and quaternion linear canonical
domains [17–22], and their associated localized transforms have been investigated
in [23–25]. The collective findings of these studies have contributed significantly to the elu-
cidation of the underlying principles governing quaternion-valued FTs and their potential
utility across a broad spectrum of disciplines.

Offset linear canonical transform (OLCT) is a six-parameter A = (a, b, c, d, τ, η) class
of linear integral transforms including the Fourier, fractional Fourier, and linear canonical
transforms (LCT) [26–28]. OLCT is a powerful tool that not only generalizes the classical
transforms but also provides better flexibility in its applicability in signal processing, optics,
and many other areas [29–33]. When different matrix A parameters are considered, OLCT
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converts to its special cases, thus enabling deeper insights into its special cases. The
applications of OLCT are similar to LCT, but they are more general and flexible than LCT. It
is proven that OLCT is not just a generalization of LCT, but able more than LCT. Although
significant progress has been made in investigating the fundamental theories and properties
of OLCT in recent years, a few attempts have been made to extend OLCT to quaternion
domains [34–38]. However, a formal extension of right-sided OLCT to quaternion domains
remains unknown. The development of the quaternion offset linear canonical transform
(QOLCT) provides a pathway towards a broader understanding of its special cases and is
worth attention.

The purpose of this article is to define the 2D right-sided QOLCT. Importantly, by
introducing the relationship between right and left-sided QOLCT, we show that right-sided
QOLCT is easily converted to left-sided QOLCT. All research on right-sided QOLCT is
true for left-sided QOLCT. Furthermore, we illustrate right-sided QOLCT relationships
with other transforms and obtain different basic properties, such as linearity, translation,
modulation, parity, and others. Moreover, using the proposed Parseval formula, we obtain
an inversion formula for right-sided QOLCT. Furthermore, we investigate the convolution
and correlation theorems of right-sided QOLCT, which is not reported yet in the open
literature and is vital for QOLCT applications. In addition, we establish Heisenberg-Pauli-
Weyl and Pitt’s inequalities for right-sided QOLCT. After that, using a sharp form of Pitt’s
inequality and the Parseval formula, we derive the logarithmic uncertainty principle for
the 2D right-sided QOLCT, which is a general form of the Heisenberg uncertainty principle.
Then, we give an example of QOLCT, where we graphically represent the given signal
and the transformed signal. Moreover, we show an application of the proposed transform,
where QOLCT generalizes the treatment of swept-frequency filters. Also, we discuss the
advantages of the QOLCT in optical systems compared to previously known quaternion-
valued FT-related integral transforms. Finally, we discuss why such transforms should be
studied using color image processing as an example.

The article is organized as follows: In Section 2, we review the quaternion algebra and
present some notations. In Section 3, we consider the 2D right-sided QOLCT definition,
together with its properties and relationships. In Section 4, the concepts of convolution
and correlation theorems are introduced. In Section 5, the uncertainty principles are
described. Section 6 shows the QOLCT example and application. In Section 7, future
potential applications are discussed. Finally, this article is concluded in Section 8.

2. Preliminaries
2.1. Quaternion Algebra

Quaternion, denoted by H, is an extension of a complex field C to 4D algebra, intro-
duced by Hamilton in 1843. Since it has been used to represent the rotations of objects in 3D
space and become an active area of research with different applications in signal processing,
applied mathematics, and engineering. Quaternion is a linear combination of a real scalar
and three orthogonal imaginary elements i, j, k with real coefficients, written as

H = { f = q0 + iq1 + jq2 + kq3 ; q0, q1, q2, q3 ∈ R},

here the three different imaginary elements obey Hamiltonian multiplication rules

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (1)

It is obvious from (1) that the quaternion multiplication is not commutative.
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Every quaternion f has a quaternion conjugate

f = q0 − iq1 − jq2 − kq3. (2)

An anti-involution property takes a form

f g = g f , f + g = f + g,
=
f = f . (3)

From (2), the norm of f ∈ H can be defined as the multiplication of a quaternion f
with the conjugate f as

‖ f ‖L2 =
√

f f =
√

q2
0 + q2

1 + q2
2 + q2

3.

Any quaternion can be represented by

f = (q0 + iq1) + j(q2 − iq3) = f1 + j f2,

where f1, f2 ∈ C are two complex numbers.
The inner product of any two quaternions f , g ∈ H is defined by

〈 f , g〉L2 = f g =
(

f1g1 + f2g2

)
− j
(

f1g2 − f2g1

)
.

Throughout this article, from now and on, we will use the subsequent real vector notations

z = (z1, z2) ∈ R2,|z|2 = z2
1 + z2

2, f (z) = f (z1, z2),dz = dz1dz2.

The quaternion-valued function can be written as

f (z) = f0(z) + f (z),

where f0(z) is the real scalar part and f (z) = i f1(z) + j f2(z) + k f3(z) is the vector (pure)
part of f (z).

It is easy to determine that the quaternion-valued function f : R2 → H can be decom-
posed as f (z) = f1 (z) + j f2(z), where f1, f2 are complex-valued functions.

Let us denote L2(R2,H
)
, the space of all quaternion-valued functions f satisfying

‖ f ‖2 =

{∫
R2
| f (z)|

2
dz
}1/2

< ∞.

The norm of L2(R2,H
)

is obtained from the inner product of the quaternion-valued
functions f (z) = f1 + j f2 and g(z) = g1 + j g2 as

〈 f , g〉L2(R2,H) =
∫
R2

f (z)g(z)dz. (4)

Consequently, the quaternionic Cauchy-Schwarz inequality for any f , g ∈ L2(R2,H)
can be obtained as ∣∣∣〈 f , g〉L2(R2,H)

∣∣∣ ≤ ‖ f ‖L2(R2,H)‖ g ‖L2(R2,H). (5)

2.2. Existing Quaternion Transforms

This subsection will recall the 2D right-sided QFT and quaternion linear canonical
transform (QLCT) definitions that are used in the subsequent sections.

Definition 1. (2D right-sided QFT) [1]. For any quaternion-valued signal f ∈ L2(R2,H
)
, the 2D

right-sided QFT (denoted by RFH) is given as
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RFH,µ{ f (z)}(v) =
∫
R2

f (z)e−µz1v1 e−µz2v2 dz, (6)

where e−µz1v1 e−µz2v2 is a quaternion Fourier kernel, and i+j+k√
3

= µ ∈ H is a pure unit

quaternion, such as µ2 = −1.

Definition 2. (2D right-sided QLCT) [8,9]. Let An = (an, bn, cn, dn) with real parameters
an, bn, cn, dn ∈ R, such as andn − bncn = 1, n = 1, 2. For any quaternion-valued signal
f ∈ L2(R2,H

)
the 2D right-sided QLCT (denoted by RL

H,µ
A1,A2

) is given as

RL
H,µ
A1,A2

{ f (z)}(v) =
∫
R2

f (z)KA1(z1, v1)KA2(z2, v2)dz,

where KA1(z1, v1) KA2(z2, v2) is a quaternion linear canonical kernel

KAn(zn, vn) =
1√

2πbnµ
eµ 1

2bn
(anz2

n−2znvn+dnv2
n),bn 6= 0,

with the polar form of 1/
√

µ = e−µ π
4 . It is clear that

e−µ π
4 = eµ π

2 (−
1
2 ) =

(
cos

π

2
+ µ sin

π

2

)− 1
2
= µ−

1
2 .

For a more precise understanding of quaternion integral transforms, one can refer
to [1,17,20,23,24,34].

3. Right-Sided Quaternion Offset Linear Canonical Transform (QOLCT)

Motivated by the importance of quaternion algebra in signal/image processing and
the flexibility of OLCT, we introduce the 2D right-sided and left-sided QOLCTs, then list
their special cases. After then, we show the relationship between right and left-sided
QOLCTs, and present QOLCT relationships with QFT and QLCT. At the end of this section,
different properties, including linearity, additivity, translation, modulation, and parity, are
listed. Notably, Parseval and inversion formulas are depicted.

3.1. Definitions

We obtain the 2D right-sided QOLCT by replacing the kernel of OLCT with the
quaternion-valued OLCT kernels on the right side of the OLCT definition.

Definition 3. (2D right-sided QOLCT). Let An = (an, bn, cn, dn, τn, ηn), with real parameters
an, bn, cn, dn, τn, ηn ∈ R, such as andn − bncn = 1, for n = 1, 2. The right-sided QOLCT RO

H,µ
A1,A2

of the 2D quaternion-valued signal f ∈ L2(R2,H
)

is defined by

RO
H,µ
A1,A2

{ f (z)}(v) =
{ ∫

R2 f (z)KA1(z1, v1)KA2(z2, v2)dz, b1b2 6= 0,
√

d1d2 f (d1(v1 − τ1), d2(v2 − τ2))eµ(
c1d1

2 (v1−τ1)
2+v1τ1)eµ(

c2d2
2 (v2−τ2)

2+v2τ2), b1b2 = 0,
(7)

where the exponential product KA1(z1, v1), KA2(z2, v2) is the quaternion offset linear canon-
ical kernel, given by

KAn(zn, vn) =
1√

µ2πbn
e

1
2 µ( an

bn
z2

n− 2
bn

zn(vn−τn)− 2
bn

vn(dnτn−bnηn)+
dn
bn

(v2
n+τ2

n )), for b1b2 6= 0, (8)

with the polar form of 1/
√

µ = e−µ π
4 .
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From now on, in this article, the abbreviation QOLCT stands for the 2D right-sided QOLCT.

Note 1. When b1b2 = 0, the QOLCT of a function is a chirp multiplication and is of no particular
interest in our objective interests. In this article, we deal with only the case when b1b2 6= 0, without
loss of generality, we set bn > 0 (n = 1, 2).

Note 2. For the matrixes A1 = A2 = (0, 1,−1, 0, 0, 0), QOLCT boils down to right-sided QFT
RFH,µ (6) as follows

RO
H,µ
A1,A2

{ f (z)}(v) = RFH,µ{ f (z)}(v) 1
2πµ

.

When An = (an, bn, cn, dn, 0, 0), n = 1, 2, QOLCT boils down to QLCT; it additionally
gives birth to the other quaternion transforms, regarded as the special cases of QOLCT.
Some special cases of QOLCT are summarized in Table 1.

Table 1. Some of the special cases of QOLCT.

Transform Parameters of An, n=1,2

Quaternion Fourier transform (QFT) An = (0, 1,−1, 0, 0, 0)
Quaternion offset Fourier transform (QOFT) An = (0, 1,−1, 0, τn, ηn)
Quaternion fractional Fourier transform (QFrFT) An = (cos θ, sin θ,− sin θ, cos θ, 0, 0)
Quaternion offset fractional Fourier transform (QOFrFT) An = (cos θ, sin θ,− sin θ, cos θ, τn, ηn)
Quaternion linear canonical transform (QLCT) An = (an, bn, cn, dn, 0, 0)
Quaternion Fresnel transform An = (1, bn, 0, 1, 0, 0)

The offset parameter allows the input signal to be shifted in the quaternion domain,
which can be useful for signal-processing applications such as image registration and object
tracking. Compared to other quaternion-based transformations such as QFT and QLCT,
QOLCT has several advantages. First, QOLCT is shift-invariant, meaning that shifting the
input signal in the quaternion domain does not change the transform coefficients. This
makes QOLCT more robust to noise and distortions in the input signal. Second, QOLCT
provides more flexibility in signal-processing applications than QFT or QLCT, because
the offset parameter can be used to adjust the phase and position of the input signal.
Although QFT and QLCT also have their own unique advantages and applications, QOLCT
provides an additional tool for solving a wide range of signal-processing problems. Figure 1
illustrates the role of the offset parameter of QOLCT in comparison with QFT and QLCT.
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To obtain left-sided QOLCT, we replace the kernel of OLCT with the QOLCT kernels
on the left side of the OLCT definition.

Definition 4. (left-sided QOLCT). Let An = (an, bn, cn, dn, τn, ηn), with the parameters an, bn, cn,
dn, τn, ηn ∈ R, such that andn − bncn = 1, n = 1, 2. The left-sided QOLCT LO

H,µ
A1,A2

of the 2D
quaternion-valued signal f ∈ L2(R2,H

)
is defined by

LO
H,µ
A1,A2

{ f (z)}(v) =
∫
R2

KA1(z1, v1)KA2(z2, v2) f (z)dz, b1, b2 6= 0,

where KAn(zn, vn), n = 1, 2, with 1/
√

µ = e−µ π
4 , same as (8).

Lemma 1. The relationship between left-sided and right-sided QOLCTs is as follows

LO
H,µ
A1,A2

{ f (z)}(v) = RO
H,−µ
A2,A1

{
f (z)

}
(v).

Proof of Lemma 1. Using the properties of quaternions (2) and (3), the relationship between
left-sided QOLCT and right-sided QOLCT is deduced as follows

LO
H,µ
A1,A2

{ f (z)}(v) =
∫
R2 Kµ

A1
(z1, v1)K

µ
A2
(z2, v2) f (z)dz

=
∫
R2 f (z)K−µ

A2
(z2, v2)K

−µ
A1

(z1, v1)dz = RO
H,−µ
A2,A1

{
f (z)

}
(v).

Using Lemma 1, it is easy to perform all the results of right-sided QOLCT to left-sided
QOLCT. �

3.2. Relationship with Other Transforms

The relationship between QOLCT and QFT and QLCT of a signal f is described in the
next lemmas.

Lemma 2. The QOLCT of a quaternion-valued signal f with An = (an, bn, cn, dn, τn, ηn),
n = 1, 2, can be seen as QFT given by (6) of a signal f in the form

RO
H,µ
A1,A2

{ f (z)}(v)

= RFH
{

f (z)eµ(a1/2b1)z2
1 eµ(a2/2b2)z2

2 eµ(τ1/b1)z1 eµ(τ2/b2)z2
}(v1

b1
,

v2

b2

)
×
(

1/
√

2µπb1

)(
1/
√

2µπb2

)
e−µ( 1

b1
v1(d1τ1−b1η1)+

1
b2

v2(d2τ2−b2η2))eµ(
d1
2b1

(v2
1+τ2

1 )+
d2
2b2

(v2
2+τ2

2 )).

Proof of Lemma 2. By a straightforward computation, it follows from the definition of
QOLCT that

RO
H,µ
A1,A2

{ f (z)}(v)

=
∫
R2

(
f (z)e

1
2 µ(

a1
b1

z2
1+

a2
b2

z2
2)eµ(

τ1
b1

z1+
τ2
b2

z2)
)

e−µz1
v1
b1 e−µz2

v2
b2 dz

×
(

1/
√

2µπb1

)(
1/
√

2µπb2

)
e−µ( 1

b1
v1(d1τ1−b1η1)+

1
b2

v2(d2τ2−b2η2))e
1
2 µ(

d1
b1
(v2

1+τ2
1 )+

d2
b2
(v2

2+τ2
2 ))

= RFH,µ
{

f (z)e
1
2 µ(

a1
b1

z2
1+

a2
b2

z2
2)eµ(

τ1
b1

z1+
τ2
b2

z2)
}(

v1

b1
,

v2

b2

)
×
(

1/
√

2µπb1

)(
1/
√

2µπb2

)
e−µ( 1

b1
v1(d1τ1−b1η1)+

1
b2

v2(d2τ2−b2η2))e
1
2 µ(

d1
b1
(v2

1+τ2
1 )+

d2
b2
(v2

2+τ2
2 )),

thus proving the lemma. �
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Lemma 3. The QOLCT of a signal f with An = (an, bn, cn, dn, τn, ηn), n = 1, 2, can be seen as
QLCT RLHA1,A2

of a signal f in the form

RO
H,µ
A1,A2

{ f (z)}(v) = RL
H,µ
A1,A2

{ f (z)}
(

v1
b1

, v2
b2

)
1√

2µπb1

1√
2µπb2

×e−µ( 1
b1

v1(d1τ1−b1η1)+
1

b2
v2(d2τ2−b2η2))eµ(

d1
2b1

(v2
1+τ2

1 )+
d2
2b2

(v2
2+τ2

2 )).

The proof of the lemma has been omitted due to its resemblance to the proof of the
preceding lemma.

3.3. Properties

Below, we introduce the Parseval formula that will be used in proving the uncertainty
principle. Next, we give an inversion formula of QOLCT, which is proven in a different
way that is more accurate and has fewer computations compared to QLCT. We list the
properties of QOLCT in Table 2.

Table 2. Properties of QOLCT.

Property QOLCT

Linearity RO
H,µ
A1,A2

{α f + βg}(v) = αRO
H,µ
A1,A2

{ f }(v) + βRO
H,µ
A1,A2

{g}(v), for arbitrary constants α and β.

Additivity RO
H,µ
A2

{
RO

H,µ
A1
{ f (z1)}(v1)

}
(v2) = RO

H,µ
A1,A2

{ f (z1, z2)}(v1, v2), where RO
H,µ
A1

and RO
H,µ
A2

are
one-dimensional right-sided QOLCTs.

Translation RO
H,µ
A1,A2

{ f (z− y)}(v) = exp
{

µ
2b1

(
a1y2

1 − 2y1(v1 − τ1)− a1y1
(
d1τ1 − b1η1 − d1

(
a2

1y2
1 − 2v1a1y1

)))}
× exp

{
µ

2b2

(
a2y2

2 − 2y2(v2 − τ2)− a2y2
(
d2τ2 − b2η2 − d2

(
a2

2y2
2 − 2v2a2y2

)))}
RO

H,µ
A1,A2

{ f (x)}(v− ay).

Modulation RO
H,µ
A1,A2

{
f (z)eµ(z1w1+z2w2)

}
(v)

= exp
{
−µ
(

w1 +
d1b1w2

1
2 − d1v1w1 + w2 +

d2b2w2
2

2 − d2v2w2

)}
·RO

H,µ
A1,A2

{ f (z)}(v− bw).

Parity RO
H,µ
A1,A2

{P f (z)}(v) =RO
H,µ
A′1,A′2

{ f (y)}(−v), where A′n = (an, bn, cn, dn, −τn, −ηn), n = 1, 2. P f (z)
is the parity of f (z), that is given by P f (z) = f (−z).

Parseval formula
〈

RO
H,µ
A1,A2

{ f }, RO
H,µ
A1,A2

{g}
〉

L2(R2,H)
= 〈 f , g〉L2(R2,H).

Inversion formula f (z) =
∫
R2 RO

H,µ
A1,A2

{ f }(v( KA2 (z2, v2) KA1 (z1, v1)dv.

Property 1. (Parseval formula). Let RO
H,µ
A1,A2

{ f } and RO
H,µ
A1,A2

{g} be right-sided QOLCT of
quaternion-valued functions f and g, respectively. Then

〈
RO

H,µ
A1,A2

{ f }, RO
H,µ
A1,A2

{g}
〉

L2(R2,H)
= 〈 f , g〉L2(R2,H).
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Proof of Property 1. By Equation (4) and the inner product of any two quaternions,
we have〈

RO
H,µ
A1,A2

{ f }, RO
H,µ
A1,A2

{g}
〉

L2(R2,H)

=
∫
R2

RO
H,µ
A1,A2

{ f }(v)RO
H,µ
A1,A2

{g}(v)dv

=
∫
R2

(∫
R2

f (z)KA1(z1, v1)KA2(z2, v2)dz
)(∫

R2
g(x)KA1(x1, v1)KA2(x2, v2)dx

)
dv

=
∫
R2

∫
R2

∫
R2

f (z)KA1(z1, v1)KA2(z2, v2)KA2(x2, v2)KA1(x1, v1)g(x)dzdxdv

=
∫
R6

f (z1, z2)KA1(z1, v1)

(
1

2π
√

µ2b1b2
exp

{
µ

2b2

(
a2

(
z2

2 − x2
2

)
+ 2τ2(z2 − x2)

)})

× exp
{
−µv2(z2 − x2)

b2

}
KA1(x1, v1) g(x1, x2)dz1dz2dx1dx2dv1dv2

=
∫
R5

f (z1, z2)KA1(z1, v1)
1√

µ2b1b2
exp

{
µ

2b2

(
a2

(
z2

2 − x2
2

)
+ 2τ2(z2 − x2)

)}
×
(

1
2π

∫
R

exp
{
−µv2(z2 − x2)

b2

}
dv2

)
KA1(x1, v1) g(x1, x2)dz1dz2dx1dx2dv1

=
∫
R5

f (z1, z2)KA1(z1, v1)
1√

µ2b1b2
exp

{
µ

2b2

(
a2

(
z2

2 − x2
2

)
+ 2τ2(z2 − x2)

)}
×(b2δ(z2 − x2))KA1(x1, v1) g(x1, x2)dz1dz2dx1dx2dv1

=
∫
R4

f (z1, z2)KA1(z1, v1)
b2√

µ2b1b2
KA1(x1, v1) g(x1, z2)dz1dz2dx1dv1

=
∫
R4

f (z1, z2)
1√

µ2πb1
exp

{
µ

2b1

(
a1z2

1 − 2z1(v1 − τ1)− 2v1(d1τ1 − b1η1) + d1

(
v2

1 + τ2
1

))} b2√
µ2b1b2

× 1√
µ2πb1

exp
{

µ

2b1

(
a1x2

1 − 2x1(v1 − τ1)− 2v1(d1τ1 − b1η1) + d1
(
v2

1 + τ2
1
))}

g(x1, z2)dz1dz2dx1dv1

=
∫
R3

f (z1, z2)
1√

µ2b1b2
exp

{
µ

2b1

(
a1

(
z2

1 − x2
1

)
+ 2τ1(z1 − x1)

)} 1
2π

×
∫
R

exp
{

µ

2b1
v1(z1 − x1)

}
dv1g(x1, z2)dz1dz2dx1

=
∫
R3

f (z1, z2)
1√

µ2b1b2

b2√
µ2b1b2

exp
{

µ

2b1

(
a1

(
z2

1 − x2
1

)
+ 2τ1(z1 − x1)

)}
×(b1δ(z1 − x1))g(x1, z2)dz1dz2dx1

=
∫
R2

f (z1, z2)
1√

µ2b1b2

b1b2√
µ2b1b2

g(z1, z2)dz1dz2

=
∫
R2

f (z1, z2)g(z1, z2)dz1dz2

= 〈 f , g〉L2(R2,H).�
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Property 2. (Inversion formula). For an arbitrary quaternion-valued function g ∈ L2(R2,H),
using the Parseval formula (Property 1) and Fubini’s theorem, we have

〈 f , g〉L2(R2,H) =
〈

RO
H,µ
A1,A2

{ f }, RO
H,µ
A1,A2

{g}
〉

L2(R2,H)

=
∫
R2 RO

H,µ
A1,A2

{ f }(v)
(∫

R2 g(z)KA1(z1, v1)KA2(z2, v2)dz
)
dv

=
∫
R2

∫
R2 RO

H,µ
A1,A2

{ f }(v)KA2(z2, v2) KA1(z1, v1) g(z)dzdv

=
∫
R2

(∫
R2 RO

H,µ
A1,A2

{ f }(v)KA2(z2, v2) KA1(z1, v1)dv
)

g(z)dz

=
〈∫

R2 RO
H,µ
A1,A2

{ f }(v)KA2(z2, v2) KA1(z1, v1)dv, g
〉

L2(R2,H)

Equivalently, we have

f (z) =
∫
R2

RO
H,µ
A1,A2

{ f }(v) KA2(z2, v2) KA1(z1, v1)dv, a.e. �

4. Convolution and Correlation Theorems for QOLCT

Convolution is an operation used in many fields, such as communications, computer
vision, signal and image processing, radar systems, also used in finding statistical rela-
tionships, etc. Correlation is another important operation with applications in astronomy,
engineering, financial analysis, and statistical physics. Because of their simplicity, it is
easy to implement and can be computed very efficiently. It is necessary to study QOLCT
convolution and correlation properties to strengthen its applications. For this reason, we
present the next two subsections.

4.1. Convolution Theorem for QOLCT

In this subsection, we define the convolution of the 2D right-sided QOLCT.

Definition 5. For f , g ∈ L2(R2,H
)
, the convolution operator of QOLCT is defined by(

f ⊗A1,A2 g
)
(z) =

∫
R2

f (t)g(z− t)eµ(a1/b1)t1(t1−z1)eµ(a2/b2)t2(t2−z2)dt. (9)

Definition 5 implies the subsequent theorem, which shows how two quaternion-valued
functions’ convolution interacts with their QOLCTs.

Theorem 1. Let
f (z) = f0(z) + i f1(z) + j f2(z) + k f3(z),

g(z) = g0(z) + i g1(z) + j g2(z) + k g3(z),
(10)

belong to L2(R2,H
)
. Then, the QOLCT of the convolution of f and g is given by

RO
H,µ
A1,A2

{
f ⊗A1,A2 g

}
(v) =

(
RO

H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f0}(v)
+i RO

H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f1}(v)
+j RO

H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f2}(v)
+k RO

H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f3}(v)
)

×
√

2πb1µ
√

2πb2µeµ((v1/b1)(d1τ1−b1η1)−(d1/2b1)(v2
1+τ2

1 ))eµ((v2/b2)(d2τ2−b2η2)−(d2/2b2)(v2
2+τ2

2 )).
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Proof of Theorem 1. Let RO
H,µ
A1,A2

{ f } and RO
H,µ
A1,A2

{g} denote QOLCTs of f and g, re-
spectively. Expanding QOLCT of the left-hand side of the above identity using (9),
we obtain

RO
H,µ
A1,A2

{
f ⊗A1,A2 g

}
(v)

=
∫
R2

(
f ⊗A1,A2 g

)
(z)KA1(z1, v1)KA2 (z2, v2)dz

=
∫
R2

[∫
R2 f (t)g(z− t)eµ(a1/b1)t1(t1−z1)eµ(a2/b2)t2(t2−z2)dt

]
KA1(z1, v1) KA2(z2, v2)dz.

By changing variables z− t = y in the above expression, we have

RO
H,µ
A1,A2

{
f ⊗A1,A2 g

}
(v) =

∫
R2

[∫
R2 f (t)g(y)eµ(a1/b1)(−t1y1)eµ(a2/b2)(−t2y2)dt

]
1√

2µπb1

1√
2µπb2

×eµ((a1/2b1)(y1+t1)
2−(1/b1)(y1+t1)(v1−τ1)−(1/b1)v1(d1τ1−b1η1)+(d1/2b1)(v2

1+τ2
1 ))

×eµ((a2/2b2)(y2+t2)
2−(1/b2)(y2+t2)(v2−τ2)−(1/b2)v2(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 ))dy

=
∫
R2

∫
R2 f (t)g(y) 1√

2µπb1

1√
2µπb2

×eµ((a1/2b1)y2
1−(1/b1)(v1−τ1)y1−(v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2

1+τ2
1 ))

×eµ((a2/2b2)y2
2−(1/b1)(v2−τ2)y2−(v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 ))

×eµ(a1/2b1)t2
1 e−µ(1/b1)(v1−τ1)t1 eµ(a2/2b2)t2

2 e−µ(1/b2)(v2−τ2)t2 dydt.

Applying the QOLCT Definition (7) yields

RO
H,µ
A1,A2

{
f ⊗A1,A2 g

}
(v)

=
∫
R2 f (t) RO

H,µ
A1,A2

{g}(v)eµ(a1/2b1)t2
1 e−µ(1/b1)(v1−τ1)t1 eµ(a2/2b2)t2

2 e−µ(1/b2)(v2−τ2)t2 dt.

Now we decompose f (t) into f0(t) + i f1(t) + j f2(t) + k f3(t). This gives

RO
H,µ
A1,A2

{
f ⊗A1,A2 g

}
(v) =

∫
R2 [ f0(t) + i f1(t) + j f2(t) + k f3(t)]RO

H,µ
A1,A2

{g}(v)
×eµ(a1/2b1)t2

1 e−µ(1/b1)(v1−τ1)t1 eµ(a2/2b2)t2
2 e−µ(1/b2)(v2−τ2)t2 dt

=
∫
R2

[
RO

H,µ
A1,A2

{g}(v) f0(t) + i RO
H,µ
A1,A2

{g}(v) f1(t) + j RO
H,µ
A1,A2

{g}(v) f2(t) + k RO
H,µ
A1,A2

{g}(v) f3(t)
]

×eµ(a1/2b1)t2
1 e−µ(1/b1)(v1−τ1)t1 eµ(a2/2b2)t2

2 e−µ(1/b2)(v2−τ2)t2 dt.

Post-multiplying both sides of the above identity by
(
1/
√

2πµb1
)

eµ(−(v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2
1+τ2

1 )) and
(
1/
√

2πµb2
)
eµ(−(v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 )),

we obtain

RO
H,µ
A1 ,A2

{
f ⊗A1 ,A2 g

}
(v)

× 1√
2πµb1

eµ(−(v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2
1+τ2

1 ))
1√

2πµb2
eµ(−(v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 ))

=
∫
R2

[
RO

H,µ
A1 ,A2

{g}(v) f0(t) + i RO
H,µ
A1 ,A2

{g}(v) f1(t) + j RO
H,µ
A1 ,A2

{g}(v) f2(t) + k RO
H,µ
A1 ,A2

{g}(v) f3(t)
]

× 1√
2πµb1

eµ((a1/2b1)t2
1−(1/b1)(v1−τ1)t1−(v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2

1+τ2
1 ))

1√
2πµb2

eµ((a2/2b2)t2
2−(1/b1)(v2−τ2)t2−(v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 ))dt.
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Finally, arrive at

RO
H,µ
A1,A2

{
f ⊗A1,A2 g

}
(v)

× 1√
2πµb1

eµ(−(v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2
1+τ2

1 ))
1√

2πµb2
eµ(−(v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 ))

=
(

RO
H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f0}(v) + i RO
H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f1}(v)

+j RO
H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f2}(v) + k RO
H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f3}(v)
)

,

which completes the proof. �

Property 3. (Linearity). For quaternion-valued functions f , g and h, and quaternion constants α and β we have

[
(α f + βg)⊗A1,A2 h

]
(z) = α

[
f ⊗A1,A2 h

]
(z) + β

[
g⊗A1,A2 h

]
(z).

Property 4. (Distributive).For quaternion-valued functions f , g and h, we have

[
h⊗A1,A2 ( f + g)

]
(z) =

[
h⊗A1,A2 f

]
(z) +

[
h⊗A1,A2 g

]
(z).

The convolution theorem has important practical significance for QOLCT, as it allows for
the efficient computation of QOLCT using Fourier-based techniques. The convolution theorem
allows for the point-wise multiplication of the transformed input signal and the transformed kernel
function, reducing the computation to a single inverse QOLCT. The kernel function enables the
shift-invariance and flexibility of QOLCT, making QOLCT more practical and accessible for a wide
range of signal-processing applications such as filtering, cross-correlation, and feature extraction.

4.2. Correlation Theorem for QOLCT
In this subsection, we define the correlation of the 2D right-sided QOLCT.

Definition 6. For f , g ∈ L2(R2,H
)
, the correlation operator of QOLCT is defined as

(
f ◦A1,A2 g

)
(z) =

∫
R2

f (t)g(t + z)eµ(a1/b1)t1(t1+z1)eµ(a2/b2)t2(t2+z2)dt. (11)

Then, we reap a consequence of Definition 6.

Theorem 2. Suppose that f , g ∈ L2(R2,H
)
, QOLCT of the correlation of f and g is given by

RO
H,µ
A1,A2

{
f ◦A1,A2 g

}
(v) =

(
RO

H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f0}(v)
−i RO

H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f1}(−v)

−j RO
H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f2}(−v)

−k RO
H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f3}(−v)
)

.

When An = (an, bn, cn, dn, 0, 0), n = 1, 2 the above expression reduces to the correlation of
right-sided QLCT RL

H,µ
A1,A2

{
f ◦A1,A2 g

}
(v) as
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RL
H,µ
A1,A2

{
f ◦A1,A2 g

}
(v) =

(
RL

H,µ
A1,A2

{g}(v)RL
H,µ
A1,A2

{ f0}(v)
−i RL

H,µ
A1,A2

{g}(v)RL
H,µ
A1,A2

{ f1}(−v)

−j RL
H,µ
A1,A2

{g}(v)RL
H,µ
A1,A2

{ f2}(−v)

−k RL
H,µ
A1,A2

{g}(v)RL
H,µ
A1,A2

{ f3}(−v)
)

.

When A1 = A2 = (0, 1,−1, 0, 0, 0), the convolution of right-sided QFT is recovered as follows

RFH,µ
{

f ◦A1,A2 g
}
(v) = RFH,µ{g}(v)RFH,µ

{
f
}
(−v)

√
2πµb1

√
2πµb2.

Proof of Theorem 2. From the QOLCT Definition (7) and correlation Definition (11), we obtain

RO
H,µ
A1,A2

{
f ◦A1,A2 g

}
(v)

=
∫
R2

(
f ◦A1,A2 g

)
(z)

1√
2µπb1

1√
2µπb2

×e
1
2 µ(

a1
b1

z2
1− 2

b1
z1(v1−τ1)− 2

b1
v1(d1τ1−b1η1)+

d1
b1
(v2

1+τ2
1 ))e

1
2 µ(

a2
b2

z2
2− 2

b2
z2(v2−τ2)− 2

b2
v2(d2τ2−b2η2)+

d2
b2
(v2

2+τ2
2 ))dz

=
∫
R2

[∫
R2

f (t)g(z + t)eµ(a1/b1)t1(t1+z1)eµ(a2/b2)t2(t2+z2)dt
]

1√
2µπb1

1√
2µπb2

×e
1
2 µ(

a1
b1

z2
1− 2

b1
z1(v1−τ1)− 2

b1
v1(d1τ1−b1η1)+

d1
b1
(v2

1+τ2
1 ))e

1
2 µ(

a2
b2

z2
2− 2

b2
z2(v2−τ2)− 2

b2
v2(d2τ2−b2η2)+

d2
b2
(v2

2+τ2
2 ))dz.

Setting z + t = y, we obtain

RO
H,µ
A1,A2

{
f ◦A1,A2 g

}
(v) =

∫
R2

[∫
R2 f (t)g(y)eµ(a1/b1)t1y1 eµ(a2/b2)t2y2 dt

]
1√

2µπb1

1√
2µπb2

×e
1
2 µ(

a1
b1
(y1−t1)

2− 2
b1
(y1−t1)(v1−τ1)− 2

b1
v1(d1τ1−b1η1)+

d1
b1
(v2

1+τ2
1 ))

×e
1
2 µ(

a2
b2
(y2−t2)

2− 2
b2
(y2−t2)(v2−τ2)− 2

b2
v2(d2τ2−b2η2)+

d2
b2
(v2

2+τ2
2 ))dtdy

=
∫
R2

∫
R2 f (t)g(y) 1√

2µπb1

1√
2µπb2

×eµ(a1/2b1)y2
1 e−µ(1/b1)(v1−τ1)y1 e−µ(v1/b1)(d1τ1−b1η1)eµ(d1/2b1)(v2

1+τ2
1 )

×eµ(a2/2b2)y2
2 e−µ(1/b1)(v2−τ2)y2 e−µ(v2/b2)(d2τ2−b2η2)eµ(d2/2b2)(v2

2+τ2
2 )

×eµ(a1/2b1)t2
1 eµ(1/b1)(v1−τ1)t1 eµ(a2/2b2)t2

2 eµ(1/b2)(v2−τ2)t2 dtdy.

Using the QOLCT definition, we obtain

RO
H,µ
A1,A2

{
f ◦A1,A2 g

}
(v)

=
∫
R2

∫
R2 f (t)RO

H,µ
A1,A2

{g}(v)eµ(a1/2b1)t2
1 eµ(1/b1)(v1−τ1)t1 eµ(a2/2b2)t2

2 eµ(1/b2)(v2−τ2)t2 dt.

By substituting f (t) = f0(t)− i f1(t)− j f2(t)− k f3(t), we have

RO
H,µ
A1,A2

{
f ◦A1,A2 g

}
(v) =

∫
R2 [ f0(t)− i f1(t)− j f2(t)− k f3(t)]RO

H,µ
A1,A2

{g}(v)

×eµ(a1/2b1)t2
1 eµ(1/b1)(v1−τ1)t1 eµ(a2/2b2)t2

2 eµ(1/b2)(v2−τ2)t2 dt
=

∫
R2

[
RO

H,µ
A1,A2

{g}(v) f0(t)− i RO
H,µ
A1,A2

{g}(v) f1(t)− j RO
H,µ
A1,A2

{g}(v) f2(t)− k RO
H,µ
A1,A2

{g}(v) f3(t)
]

×eµ(a1/2b1)t2
1 eµ(1/b1)(v1−τ1)t1 eµ(a2/2b2)t2

2 eµ(1/b2)(v2−τ2)t2 dt.
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Post-multiplying both sides of the above equation first by
(
1/
√

2πµb1
)

×eµ(−(v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2
1+τ2

1 )), then by
(
1/
√

2πµb2
)
eµ(−(v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 )), we

obtain

RO
H,µ
A1,A2

{
f ◦A1,A2 g

}
(v)

× 1√
2πµb1

eµ((v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2
1+τ2

1 ))
1√

2πµb2
eµ((v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 ))

= RO
H,µ
A1,A2

{g}(v)
∫
R2

f0(t)
1√

2πµb1
eµ(a1/2b1)t2

1 eµ(1/b1)(v1−τ1)t1 eµ((v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2
1+τ2

1 ))

× 1√
2πµb2

eµ(a2/2b2)t2
2 eµ(1/b2)(v2−τ2)t2 eµ((v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 ))dt

−i RO
H,µ
A1,A2

{g}(v)
∫
R2

f1(t)
1√

2πµb1
eµ(a1/2b1)t2

1 eµ(1/b1)(v1−τ1)t1 eµ((v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2
1+τ2

1 ))

× 1√
2πµb2

eµ(a2/2b2)t2
2 eµ(1/b2)(v2−τ2)t2 eµ((v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 ))dt

−j RO
H,µ
A1,A2

{g}(v)
∫
R2

f2(t)
1√

2πµb1
eµ(a1/2b1)t2

1 eµ(1/b1)(v1−τ1)t1 eµ((v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2
1+τ2

1 ))

× 1√
2πµb2

eµ(a2/2b2)t2
2 eµ(1/b2)(v2−τ2)t2 eµ((v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 ))dt

−k RO
H,µ
A1,A2

{g}(v)
∫
R2

f3(t)
1√

2πµb1
eµ(a1/2b1)t2

1 eµ(1/b1)(v1−τ1)t1 eµ((v1/b1)(d1τ1−b1η1)+(d1/2b1)(v2
1+τ2

1 ))

× 1√
2πµb2

eµ(a2/2b2)t2
2 eµ(1/b2)(v2−τ2)t2 eµ((v2/b2)(d2τ2−b2η2)+(d2/2b2)(v2

2+τ2
2 ))dt.

We finally obtain

RO
H,µ
A1,A2

{
f ◦A1,A2 g

}
(v) =

(
RO

H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f0}(v)
−i RO

H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f1}(−v)

−j RO
H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f2}(−v)

−k RO
H,µ
A1,A2

{g}(v)RO
H,µ
A1,A2

{ f3}(−v)
)

,

thus proving the theorem. �

5. Uncertainty Principles for QOLCT
The importance of Heisenberg uncertainty principle in harmonic analysis is crucial to the time-

frequency analysis. In the time and frequency domains, it provides a lower bound for the optimal
concurrent resolution. Several other variations of the uncertainty principle have been investigated,
and Heisenberg’s uncertainty principle has been extended to distinctive time-frequency transforms
(see [13,36–38]).

This section will establish several uncertainty inequalities, including Heisenberg-Pauli-Weyl
uncertainty inequality, Pitt’s inequality, and logarithmic uncertainty inequality for the 2D right-sided
QOLCT as defined by (7). Initially, we introduce a notion.

Notion. Let S(R2,H) denotes the Schwartz class in L2(R2,H) given by

S
(
R2,H

)
=

{
f ∈ C∞(R2,H) : sup

z∈R2

∣∣∣zα∂
β
z f (z)

∣∣∣ < ∞

}
,

where C∞(R2,H) is the class of smooth quaternion-valued functions, α, β denote multi-indices, and
∂z denotes the usual partial differential operator.

Before establishing the uncertainty principles for right-sided QOLCT, we have the following
lemma, which will be employed for deriving certain uncertainty inequalities.

Lemma 4. Let RO
H,µ
A1,A2

{ f }(v) be right-sided QOLCT of f ∈ S(R2,H). Then, we have the following formula∫
R2

v2
n

∣∣∣ROH,µ
A1,A2

{ f }(v)
∣∣∣2 dv = b2

n

∫
R2

∣∣∣∣ ∂

∂zn
f (z)

∣∣∣∣2 dz, n = 1, 2.
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Proof of Lemma 4. By invoking Definition 3 and the application of Fubini’s theorem, we have for the
case n = 1.∫

R2
v2

1

∣∣∣ROH,µ
A1,A2

{ f (z)}(v)
∣∣∣2 dv

=
∫
R2

v2
1

∣∣∣∣∫R2
f (z)KA1 (z1, v1)KA2 (z2, v2)dz

∣∣∣∣2 dv

=
∫
R2

v2
1

(∫
R2

f (z)KA1 (z1, v1)KA2 (z2, v2)dz
)(∫

R2
f (x)KA1 (x1, v1)KA2 (x2, v2)dx

)
dv

=
∫
R6

v2
1 f (z1, z2)KA1 (z1, v1)KA2 (z2, v2)KA2 (x2, v2) KA1 (x1, v1) f (x1, x2)dz1dz2dx1dx2dv1dv2

=
∫
R6

v2
1 f (z1, z2)KA1 (z1, v1)

(
1

2π
√

µ2b1b2
exp

{
µ

2b2

(
a2

(
z2

2 − x2
2

)
+ 2τ2(z2 − x2)

)})

×e
−µv2(z2−x2)

b2 KA1 (x1, v1) f (x1, x2)dz1dz2dx1dx2dv1dv2

=
∫
R5

v2
1 f (z1, z2)KA1 (z1, v1)

1√
µ2b1b2

exp
{

µ

2b2

(
a2

(
z2

2 − x2
2

)
+ 2τ2(z2 − x2)

)}
×
(

1
2π

∫
R

e
−µv2(z2−x2)

b2 dv2

)
KA1 (x1, v1) f (x1, x2)dz1dz2dx1dx2dv1

=
∫
R5

v2
1 f (z1, z2)KA1 (z1, v1)

1√
µ2b1b2

exp
{

µ

2b2

(
a2

(
z2

2 − x2
2

)
+ 2τ2(z2 − x2)

)}
×(b2δ(z2 − x2))KA1 (x1, v1) f (x1, x2)dz1dz2dx1dx2dv1

=
∫
R4

v2
1 f (z1, z2)KA1 (z1, v1)

b2√
µ2b1b2

KA1 (x1, v1) f (x1, z2)dz1dz2dx1dv1

=
∫
R3

f (z1, z2)
b2√

µ2b1b2

∫
R

(
v2

1KA1 (z1, v1)KA1 (x1, v1)
)

dv1 f (x1, z2)dz1dz2dx1

=
∫
R3

f (z1, z2)
b2√

µ2b1b2

(
1

2π
√

µ2b1b2
exp

{
µ

2b1

(
a1

(
z2

1 − x2
1

)
+ 2τ1(z1 − x1)

)})

×
∫
R

v2
1e
−µv1(z1−x1)

b1 dv1 f (x1, z2)dz1dz2dx1

=
∫
R3

f (z1, z2)
b2√

µ2b1b2

1
2π
√

µ2b1b2
exp

{
µ

2b1

(
a1

(
z2

1 − x2
1

)
+ 2τ1(z1 − x1)

)}
×
(

b2
1

∫
R

v′12e−µv′1(z1−x1)b1dv′1

)
f (x1, z2)dz1dz2dx1

= −b2
1

∫
R3

f (z1, z2) exp
{

µ

2b1

(
a1

(
z2

1 − x2
1

)
+ 2τ1(z1 − x1)

)}( 1
2π

∫
R

v′12e−µv′1(z1−x1)dv′1

)
f (x1, z2)dz1dz2dx1

= −b2
1

∫
R3

f (z1, z2) exp
{

µ

2b1

(
a1

(
z2

1 − x2
1

)
+ 2τ1(z1 − x1)

)}( ∂2

∂z2
1

δ(z1 − x1)

)
f (x1, z2)dz1dz2dx1

= −b2
1

∫
R2

f (z1, z2)
∂2

∂z2
1

f (x1, z2)dz1dz2 = b2
1

∫
R2

∣∣∣∣ ∂

∂z1
f (z1, z2)

∣∣∣∣2 dz1dz2.

Similarly, the result for the case n = 2 can be proved. This completes the proof of the lemma. �
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Definition 7. For n = 1, 2, let f , zn f ∈ L2(R2,H) and RO
H,µ
A1,A2

{ f }, vn RO
H,µ
A1,A2

{ f } ∈ L2(R2,H),
then the effective spatial width or spatial uncertainty in time and QOLCT frequency domain of a signal f are,
respectively, denoted by ∆zn and ∆vn, and are evaluated by

∆zn :=
√

Varn{ f }, and ∆vn :=
√

Varn

{
RO

H,µ
A1,A2

{ f }
}

where Varn{ f } and Varn

{
RO

H,µ
A1,A2

{ f }
}

are the variance of the energy distribution of f , respectively,
along the zn–axis and vn–axis and are given by

Varn{ f } :=
‖zn f ‖2

L2(R2,H)

‖ f ‖2
L2(R2,H)

and Varn

{
RO

H,µ
A1,A2

{ f }
}

:=

∥∥∥vn RO
H,µ
A1,A2

{ f }
∥∥∥2

L2(R2,H)∥∥∥RO
H,µ
A1,A2

{ f }
∥∥∥2

L2(R2,H)

.

We are now ready to introduce Heisenberg-Weyl inequality for the proposed QOLCT RO
H,µ
A1,A2

{ f }.

5.1. Heisenberg-Weyl Inequality for QOLCT

Theorem 3. (Heisenberg inequality). For n = 1, 2 , let f ∈ S(R2,H), then the next uncertainty relations
are fulfilled

∆z1∆v1 ≥
b1
2

and ∆z2∆v2 ≥
b2
2

.

The combination of these two leads to the uncertainty principle for the 2D quaternion signal f (z1, z2) of
the form

∆z1∆v1∆z2∆v2 ≥
b1b2

4
.

Equality holds only if signal f is a 2D Gaussian signal given by

f (z1, z2) = γ exp

{
−

C1z2
1 + C2z2

2
2

}
,

where C1 and C2 are real constants and γ = (C1C2)
1/4

√
π
‖ f ‖L2(R2,H).

Proof of Theorem 3. Following Lemma 4 and using Schwartz inequality (5), we have

{∫
R2 z2

n| f (z)|
2 dz

}{∫
R2 v2

n|RO
H,µ
A1,A2

{ f }(v)|2 dv
}

=
{∫

R2 z2
n| f (z)|

2 dz
}{

b2
n
∫
R2

∣∣∣ ∂
∂zn

f (z)
∣∣∣2 dz

}
≥ b2

n

∣∣∣∫R2 zn f (z) ∂
∂zn

f (z)dz
∣∣∣2.

(12)

Using the exponential form of 2D quaternion signals, let

f (z) = f0(z) + f (z) =
∣∣∣ f (z)∣∣∣ eεθ ,

where ε =
f (z)

| f (z)| and θ = arc tan
(
| f |
f0

)
, then

zn f (z) ∂
∂zn

f (z) = zn

∣∣∣ f (z)∣∣∣e−εθ ∂
∂zn

(∣∣∣ f (z)∣∣∣eεθ
)

= zn

∣∣∣ f (z)∣∣∣ e−εθ
[

∂
∂zn

(| f (z)|)eεθ + | f (z)|
(

∂
∂zn

eεθ
)]

= 1
2

∂
∂zn

(
zn| f (z)|2

)
− 1

2 | f (z)|2 + zn| f (z)|2 ∂
∂zn

(εθ).

(13)
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Then, we have

b2
n

∣∣∣∣∫R2
zn f (z)

∂

∂zn
f (z)dz

∣∣∣∣2 = b2
n

∣∣∣∣∫R2

(
1
2

∂

∂zn

(
zn| f (z)|2

)
− 1

2
| f (z)|2 + zn| f (z)|2

∂

∂zn
(εθ)

)
dz
∣∣∣∣2. (14)

We observe that the first term is a perfect differential and integrates to zero. The second term
gives − 1

2 the energy ‖ f ‖2
L2(R2,H)

. Hence, by (12) we obtain

{∫
R2

z2
n| f (z)|

2 dz
}{∫

R2
v2

n|RO
H,µ
A1,A2

{ f }(v)|2 dv
}
≥ b2

n

∣∣∣∣−1
2
‖ f ‖2

L2(R2,H)

∣∣∣∣2 =
b2

n
4
‖ f ‖4

L2(R2,H)

Finally, by definition of ∆zn, ∆vn and the Parseval theorem of QOLCT (Property 1), we have

(∆zn·∆vn)
2 =

‖zn f ‖2
L2(R2,H)

‖ f ‖2
L2(R2,H)

·
‖vn ROH,µ

A1,A2
{ f }‖

2

L2(R2,H)

‖ROH,µ
A1,A2

{ f }‖
2

L2(R2,H)

=

{∫
R2 z2

n | f ( z)|2 dz
}

‖ f ‖2
L2(R2,H)

·
{∫

R2 v2
n

∣∣∣ROH,µ
A1,A2

{ f }(v )|2 dv
}

‖ f ‖2
L2(R2,H)

≥ 1
‖ f ‖4

L2(R2,H)

· b
2
n

4 ‖ f ‖4
L2(R2,H)

= b2
n

4 .

This proves the first assertion of the theorem, and now we will see that equality holds only if f
is a Gaussian signal. Consider a signal h = −C f , where C is a quaternionic constant, and the −1 has
been embedded for convenience. Therefore, the necessary condition for the uncertainty product to be
the minimum is

∂

∂zn
f (z) = −Ckzk f (z). (15)

The solution of (15) is in the form f (z) = γe−(C1z2
1+C2z2

2)/2, for some constant γ, to be determined
later. However, from (14), we see that (15) is not sufficient, since we must also have the term∫

R2
zk | f (z)|2

(
∂

∂zn
(εθ)

)
dz = 0,

to obtain a sharp value. Since
∂

∂zn
(εθ) = −NSc(Cn)zn,

where Cn = Sc(Cn) + NSc(Cn), the sum of a scalar and non-scalar part. Therefore, we have∫
R2

zk | f (z)|2
(

∂

∂zn
(εθ)

)
dz = −NSc(Cn)γ

2
∫
R2

z2
ke−(Sc(C1)z2

1+Sc(C2)z2
2)/2dz.

The only way this can be zero is if NSc(Cn) = 0, and hence Cn must be real-valued. Thus, we
obtain the solution of (15) as

f (z) = γ exp

{
−

C1z2
1 + C2z2

2
2

}
,

where C1 and C2 are real constants and γ = (C1C2)
1/4

√
π

‖ f ‖L2(R2,H) .
This completes the proof of the theorem. �
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5.2. Pitt’s Inequality for QOLCT
The classical Pitt’s inequality expresses a fundamental relationship between a sufficiently smooth

function and the corresponding FT [39,40]. We will now derive the classical Pitt’s type inequality for the
proposed right-sided QOLCT (7). First, we have the following Pitt’s inequality for right-sided QFT RFH,
the proof of which can be followed in a similar line as in [13] for two-sided QFT.

Lemma 5. (Pitt’s inequality for right-sided QFT). For f ∈ S(R2,H), and 0 ≤ λ < 2,∫
R2
|v|−λ

∥∥∥RFH,µ{ f }(v)
∥∥∥2

L2(R2,H)
dv ≤ Cλ

∫
R2
|z|λ| f (z)|2L2(R2,H) dz

with Cλ := πλ
[
Γ
(

2−λ
4

)
/Γ
(

2+λ
4

)]
, and Γ(·) is the Gamma function.

Theorem 4. (Pitt’s inequality for RO
H,µ
A1,A2

{ f }). For every f ∈ S(R2,H) and 0 ≤ λ < 2, Pitt’s inequality
for right-sided QOLCT (7) is given by

∫
R2

∣∣∣∣( ξ

b

)∣∣∣∣−λ∣∣∣ROH,µ
A1,A2

{ f }(ξ)
∣∣∣2 dξ ≤ Cλ

4π2

∫
R2
|z|λ| RO

H,µ
A1,A2

{ f }(v)|2 dv, (16)

where Cλ is given as Lemma 5.

Proof of Theorem 4. Invoking Lemma 2, we have

RO
H,µ
A1,A2

{ f }(v) = RFH,µ{g(z)}
(

v1
b1

, v2
b2

)
1√

2µπb1

1√
2µπb2

× exp
{
−µ
(

v1
b1
(d1τ1 − b1η1) +

v2
b2
(d2τ2 − b2η2)− d1

2b1
(v2

1 + τ2
1 )−

d2
2b2

(v2
2 + τ2

2 )
)}

,

where

g(z) = f (z) exp

{
µ

(
a1z2

1
2b1

+
a2z2

2
2b2

+
τ1z1
b1

+
τ2z2
b2

)}
.

We see that g ∈ S(R2,H) and |g(z)|L2(R2,H) = | f (z)|L2(R2,H).
Inserting Lemma 5, we have∫
R2 |v|−λ

∣∣∣ROH,µ
A1,A2

{ f }(bv)
∣∣∣2
L2(R2,H)

dv =
∫
R2 |v|−λ

∣∣∣ 1
2π
√

b1b2
RFH,µ{g(z)}(v)

∣∣∣2
L2(R2,H)

dv

≤ 1
4π2b1b2

Cλ

∫
R2 |z|λ|g(z)|2L2(R2,H)

dz

= 1
4π2b1b2

Cλ

∫
R2 |z|λ| f (z)|2L2(R2,H)

dz.

Substituting bv = ξ in the left-hand side of the above inequality, we have

∫
R2

∣∣∣∣( ξ

b

)∣∣∣∣−λ∣∣∣ROH,µ
A1,A2

{ f }(ξ)
∣∣∣2 dξ

b1b2
≤ 1

4π2b1b2
Cλ

∫
R2
|z|λ| f (z)|2L2(R2,H) dz.

Equivalently,

∫
R2

∣∣∣∣( ξ

b

)∣∣∣∣−λ ∣∣∣ROH,µ
A1,A2

{ f }(ξ)
∣∣∣2 dξ ≤ 1

4π2 Cλ

∫
R2
|z|λ|RO

H,µ
A1,A2

{ f }(v )|2 dv,

which establishes Pitt’s inequality for right-sided QOLCT. �

5.3. Logarithmic Uncertainty Principle for QOLCT
We now establish the logarithmic uncertainty principle for right-sided QOLCT using a sharp

form of Pitt’s inequality.
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Theorem 5. (Logarithmic uncertainty principle for RO
H,µ
A1,A2

{ f }). For every f ∈ S(R2,H),and 0 ≤ λ < 2,
then right-sided QOLCT satisfies the following logarithmic estimate of the uncertainty inequality∫

R2
ln
∣∣∣∣( ξ

b

)∣∣∣∣|ROH,µ
A1,A2

{ f }(ξ)|2 dξ +
∫
R2

ln |z|| f (z )|2 dz ≥ D
∫
R2
| f (z)|2 dz,

where D = ψ
(

1
2

)
− ln(π), ψ = d

dt [ln(Γ(t))].

Proof of Theorem 5. For the quaternion-valued function f ∈ S(R2,H), 0 ≤ λ < 2, and

Dλ = 1
2λ

[
Γ
(

2−λ
4

)
/Γ
(

2+λ
4

)]
, consider sharp Pitt’s inequality (16) as

P(λ) :=
∫
R2

∣∣∣∣( ξ

b

)∣∣∣∣−λ∣∣∣ROH,µ
A1,A2

{ f }(ξ)
∣∣∣2 dξ − Dλ

∫
R2
|z|λ| f (z)|2 dz.

Differentiating P(λ), we obtain

P ′(λ) := −
∫
R2 ln

(
ξ
b

)∣∣∣( ξ
b

)∣∣∣−λ∣∣∣ROH,µ
A1,A2

{ f }(ξ)
∣∣∣2 dξ − D′λ

∫
R2 |z|λ| f (z)|2 dz

−Dλ

∫
R2 ln(|z|)|z|λ| f (z)|2 dz,

here

D′λ = − ln (2)2−λ
[
Γ
(

2−λ
4

)
/Γ
(

2+λ
4

)]
+2−(λ+1)

[
Γ
(

2−λ
4

)
Γ′
(

2−λ
4

)
Γ2
(

2+λ
4

)
,−Γ2

(
2−λ

4

)
Γ
(

2+λ
4

)
Γ′
(

2+λ
4

)
/Γ4

(
2+λ

4

)
.

We see that D0 = 1 and D′0 = − ln(2) − Γ′
(

1
2

)
/Γ
(

1
2

)
. Additionally, from Pitt’s inequality

(16) and Parseval theorem (Property 1), we observe that P(λ) ≤ 0, for 0 ≤ λ < 2 and P(0) = 0,
and hence,

P ′(0+) = lim
λ→0+

P(λ)−P(0)
λ

≤ 0.

Therefore, we have

(ln(2)) +
(

Γ′
(

1
2

)
/Γ
(

1
2

)) ∫
R2
| f (z)|2 dz ≤

∫
R2

ln
∣∣∣∣( ξ

b

)∣∣∣∣∣∣∣ROH,µ
A1,A2

{ f }(ξ)
∣∣∣2 dξ +

∫
R2

ln |z|| f (z )|2 dz.

Equivalently, from this, we obtain the desired inequality, which completes the proof of Theorem 5. �

6. QOLCT Example and Application
In this section, we shall present an illustrative example for the demonstration of the proposed

2D right-sided QOLCT. Next, we use QOLCT to study the generalized swept-frequency filters.

6.1. Example
Consider the 2D quaternion-valued signal

f (z) = (1 + 2i + 3j + 4k)e
−(z2

1+z2
2)

2 .

Then right-sided QOLCT of f (z) is given by
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RO
H,µ
A1,A2

{ f (z)}(v)

=
∫
R2

(1 + 2i + 3j + 4k)e
−(z2

1+z2
2)

2 KA1 (z1, v1)KA2 (z2, v2)dz

=
(1 + 2i + 3j + 4k)

2π(−1)
√

b1b2

× exp
{

1
2b1

µ
(
−2v1(d1τ1 − b1η1) + d1

(
v2

1 + τ2
1

))
+

1
2b1

µ
(
−2v2(d2τ2 − b2η2) + d2

(
v2

2 + τ2
2

))}
×
∫
R

exp
{
−z2

1
(b1 − µa1)

2b1
− z1µ(v1 − τ1)

b1

}
dz1

∫
R

exp
{
−z2

2
(b2 − µa2)

2b2
− z2µ(v2 − τ2)

b2

}
dz2

=
(1 + 2i + 3j + 4k)

2π(−1)
√

b1b2
exp

{
µ

2

(
−2v1(d1τ1 − b1η1) + d1

(
v2

1 + τ2
1
)

b1
+
−2v2(d2τ2 − b2η2) + d2

(
v2

2 + τ2
2
)

b2

)}

×
√

2πb1
b1 − µa1

exp

{
− (v1 − τ1)

2

2b1(b1 − µa1)

}
×
√

2πb2
b2 − µa2

exp

{
− (v2 − τ2)

2

2b2(b2 − µa2)

}

=−(1 + 2i + 3j + 4k) exp

{
µ

2

(
−2v1(d1τ1 − b1η1) + d1

(
v2

1 + τ2
1
)

b1
+
−2v2(d2τ2 − b2η2) + d2

(
v2

2 + τ2
2
)

b2

)}

×
√

1
(b1 − µa1)(b2 − µa2)

exp

{
− (v1 − τ1)

2

2b1(b1 − µa1)
− (v2 − τ2)

2

2b2(b2 − µa2)

}
.

(17)

For computational convenience, we choose A1 = A2 = (1, 1, 0, 1, 1, 1) and imaginary unit µ = i,
so that (17) yields

RO
H,µ
A1,A2

{ f (z)}(v)

= −(1 + 2i + 3j + 4k) exp

{
i
(
v2

1 + 1
)
+
(
v2

2 + 1
)

2

}
1

(1− i)
exp

{
− (v1 − 1)2 + (v2 − 1)2

2(1− i)

}

= −(1 + 2i + 3j + 4k) exp

{
i
(
v2

1 + 1
)
+
(
v2

2 + 1
)

2

}
1

(1− i)
exp

{
− (v1 − 1)2 + (v2 − 1)2

4
(1 + i)

}

= − (1 + 2i + 3j + 4k) + (1 + 2i + 3j + 4k)i
2

exp

{
i
(
v2

1 + 1
)
+
(
v2

2 + 1
)

2

}

× exp

{
−i
(
v2

1 + 1− 2v1
)
+
(
v2

2 + 1− 2v2
)

4

}
exp

{
−
(
v2

1 + 1− 2v1
)
+
(
v2

2 + 1− 2v2
)

4

}

= − (−1 + 3i + 7j + k)
2

exp

{
i
2
(
v2

1 + v2
2 + 2

)
4

− i
v2

1 + v2
2 − 2(v1 + v2) + 2

4

}
exp

{
−

v2
1 + v2

2 − 2(v1 + v2) + 2
4

}

=
1− 3i− 7j− k

2
exp

{
i
v2

1 + v2
2 − 2(v1 + v2) + 2

4

}
exp

{
−

v2
1 + v2

2 − 2(v1 + v2) + 2
4

}

=
1− 3i− 7j− k

2
(cos α + i sin α)e−α,

where α =
v2

1+v2
2−2(v1+v2)+2

4 .
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RO
H,µ
A1,A2

{ f (z)}(v) = (1−3i−7j−k)
2 cos αe−α + (1−3i−7j−k)i

2 sin αe−α

= (1−3i−7j−k)
2 cos αe−α + (i+3+7k−j)

2 sin αe−α

= 1
2 (cos α + 3 sin α)e−α + i

2 (−3 cos α + sin α)e−α

+
j
2 (−7 cos α− sin α)e−α + k

2 (− cos α + 7 sin α)e−α.

The graphical representation of the given quaternion-valued signal f (z) is presented in Figure 2,
whereas its right-sided QOLCT is depicted in Figure 3, for A1 = A2 = (1, 1, 0, 1, 1, 1) and µ = i.
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6.2. Application
The output of generalized swept-frequency filters is given by

h(z) =
(

f (z)⊗A1,A2 g(z)
(

e−µ
a1
2 z2

1 e−µ
a2
2 z2

2 e−µv1(−η1)e−µv2(−η2)
))

eµ
a1
2 z2

1 eµ
a2
2 z2

2 eµv1(−η1)eµv2(−η2)

=
(∫

R2 f (z− t)g(t)e−µ
a1
2 t2

1 e−µ
a2
2 t2

2 e−µv1(−η1)e−µv2(−η2)dt
)

eµ
a1
2 z2

1 eµ
a2
2 z2

2 eµv1(−η1)eµv2(−η2),
(18)

where g(z) is the impulse response of the shift-invariant filter. First, we choose the matrixes as
An = (an, 1,−1, 0, 0, ηn), n = 1, 2, and then take QOLCT from both sides of (18), we obtain

RO
H,µ
A1,A2

{h}(v)
=
∫
R4 f (z− t)g(t)e−µ

a1
2 t2

1 e−µ
a2
2 t2

2 e−µv1(−η1)e−µv2(−η2) 1√
2πµ

1√
2πµ

e−µv1z1 e−µv2z2 dtdz

Let z− t = y, we have

RO
H,µ
A1,A2

{h}(v) =
∫
R2

f (y)RO
H,µ
A1,A2

{g}(v)e−µv1y1 e−µv2y2 dy.

By decomposing f (y) as in (10), then by considering Definition 1, we arrive at the final result

RO
H,µ
A1,A2

{h}(v) = RO
H,µ
A1,A2

{g}(v)RFH,µ{ f0}(v)
+i RO

H,µ
A1,A2

{g}(v)RFH,µ{ f1}(v)
+j RO

H,µ
A1,A2

{g}(v)RFH,µ{ f2}(v)
+k RO

H,µ
A1,A2

{g}(v)RFH,µ{ f3}(v),

(19)
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where RO
H,µ
A1,A2

{g}(v) is the transfer function of the generalized swept-frequency filter in the QOLCT
domain. From (19), we see the use of QOLCT generalizes the treatment of swept-frequency filters.

7. Discussion
Overall, the idea to extend FT-related integral transforms to quaternion algebra is relatively new

and constructed using the recipe: “take X (quaternions) and Y (transform) and make XY transform”.
At first, it may be seen that there is not much of a difference between all these transforms, but the
difference is significant and it is easily can be noticed from Figure 1. Moreover, the results and
applications of all these transforms are not the same. For example, quaternion-valued optical systems
with prisms or shifted lenses cannot be analyzed by QFT or QLCT because those transforms lack
parameters that correspond to time shift and frequency modulation. Such problems, therefore, push
us to study QOLCT, which has more parameters compared to other transforms.

Moreover, we would like to discuss why such transforms should be studied using color image
processing as an example. Presently, we are surrounded by color images. Color image processing is a
multidisciplinary topic that uses mathematical tools. With the rapid development of technologies,
it seems that color imaging is well-studied at first. However, we still lack high-quality medical
imaging, video calls, optical character recognition (e.g., converting scanned mathematical formulas
into editable formulas), etc. One of the roles of mathematics here is to introduce new tools for
engineering. With the proven advantage of QFT in color image processing [5,6] in this article we have
introduced a new tool—right-sided QOLCT, which is more general than previously introduced tools
and easily can be boiled down to its special cases. Additionally, QOLCT has a similar computational
cost as the conventional QFT. Since images are defined over two dimensions our study object is 2D
QOLCT. Regardless of optical and color image processing applications, QOLCT due to its advantage
and flexibility can be also useful for a broad range of signal-processing applications such as object
tracking and filter designing. The study of quaternion-valued OLCT is interesting and has a promising
future in applications.

8. Conclusions
This article defines the most general form of QFT with more free parameters, the so-called 2D

right-sided QOLCT. In other words, we extend the 2D right-sided QFT to the OLCT domain. The
addition of the offset parameter in QOLCT enhances its flexibility and enables the input signal to
be shifted within the quaternion domain. This feature can prove to be valuable in various signal-
processing applications, including object tracking and image registration. Various properties of the
2D right-sided QOLCT, including linearity, additivity, translation, modulation, parity, inversion
formula, and the Parseval theorem, are derived thoroughly. Furthermore, we obtain the convolution
and correlation theorems related to QOLCT, which can be useful in engineering. Additionally, several
forms of uncertainty principles for the 2D right-sided QOLCT are presented. First, we derive the
Heisenberg-type uncertainty principle, and then we propose Pitt’s inequality for the 2D right-sided
QOLCT. Moreover, by employing a sharp form of Pitt’s inequality and using the Parseval formula,
we show the logarithmic uncertainty principle, which is a more general form of the Heisenberg
uncertainty principle. Then, we give an example with illustrations to demonstrate the proposed 2D
right-sided QOLCT and show its usage to study the generalized swept-frequency filters.
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