Editorial

Advanced Optimization Methods and Applications

Adrian Marius Deaconu ${ }^{1, *(D)}$, Daniel Tudor Cotfas ${ }^{2(1)}$ and Petru Adrian Cotfas ${ }^{2}$ (D)
1 Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Brașov, 50003 Brașov, Romania
2 Electronics and Computers Department, Transilvania University of Braşov, 50003 Braşov, Romania; dtcotfas@unitbv.ro (D.T.C.); pcotfas@unitbv.ro (P.A.C.)
* Correspondence: a.deaconu@unitbv.ro

Citation: Deaconu, A.M.; Cotfas, D.T.; Cotfas, P.A. Advanced Optimization Methods and Applications. Mathematics 2023,11, 2205. https://doi.org/10.3390/ math11092205

Received: 26 April 2023
Accepted: 4 May 2023
Published: 8 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Optimization methods are finding more applications in all domains, as they play an essential role when dealing with real-life problems. Algorithms for such problems are being continuously developed and improved in order to obtain higher-quality solutions within a reasonable time frame. Metaheuristic methods inspired by the behavior of populations of different groups of people or by the behavior of swarms of animals or insects are currently used to solve optimization problems where optimal solutions cannot be obtained using exact methods in a reasonable amount of time. These metaheuristic algorithms can be classified into four groups: mathematics algorithms, physics algorithms, sociology algorithms, and biology algorithms [1]; or, another classification is evolutionary algorithms, physics-based algorithms, human-based algorithms, and swarm-based algorithms [2]. Metaheuristic algorithms deal with both discrete optimization (e.g., the traveling salesman problem [3]) and continuous optimization problems (e.g., the calculation of parameters of photovoltaic cells and panels [4]). In this Special Issue, different optimization problems are addressed using different methods, where many of the approaches consist of metaheuristic algorithms. The topic of this Special Issue (optimization methods and their applications) attracted many researchers from different countries and different domains (computer science, mathematics, electronics, engineering, economics, statistics, etc.). In Section 2, some statistics are presented about the papers and the authors of the Special Issue. In Section 3, the authors are presented together with their affiliations and contributions to this Special Issue.

2. Statistics of the Special Issue

In total, there were 50 papers submitted to this Special Issue. Out of these papers, 20 papers were published (40%), 39 papers were rejected (58%), and 1 paper (2%) was withdrawn (see Figure 1).

Figure 1. Papers submitted for publication in thi Special Issue.

There were 70 authors that contributed to the papers that were published in the Special Issue. Most of them (64 authors) contributed to only one paper, while the other 6 authors contributed to two papers. Table 1 and Figure 2 present the geographic distribution of the authors. The authors are from 17 different countries.

Table 1. Geographic distribution of authors by country.

No.	Country	No. of Authors
1	China	14
2	Egypt	9
3	India	7
4	Saudi Arabia	6
5	Romania	5
6	Chile	4
7	Japan	4
8	Greece	3
9	Lithuania	3
10	Morocco	3
11	Spain	3
12	Thailand	3
13	Ghana	2
14	Bangladesh	1
15	Colombia	1
16	Iran	1
17	UK	1

Figure 2. Geographic distribution of authors by country.

3. Authors of the Special Issue

The authors of this Special Issue and their main affiliations are shown in Table 2. The average number of authors per manuscript is 3.5 .

Table 2. Authors and their affiliations.

No.	Author's Name	Affiliation(s)	Country	Papers
1	Rana Muhammad Adnan	School of Economics and Statistics, Guangzhou University, Guangzhou	China	[5]
2	Sarita Gajbhiye Meshram	Water Resources and Applied Mathematics Research Lab, Nagpur	India	[5]
3	Reham R. Mostafa	Information Systems Department, Faculty of Computers and Information Sciences, Mansoura University	Egypt	[5]
4	Abu Reza Md. Towfiqul Islam	Department of Disaster Management, Begum Rokeya University, Rangpur	Bangladesh	[5]
5	S. I. Abba	Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum \& Minerals, Dhahran	Saudi Arabia	[5]
6	Francis Andorful	Department of Geography and Resource Development, University of Ghana, Accra	Ghana	[5]
7	Zhihuan Chen	Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan	Ghana	[5]
8	Lili Zhang	School of Maritime Economics and Management, Dalian Maritime University, Dalian	China	[6]
9	Zhengrui Chen	School of Business, Dalian University of Technology, Panjin	China	[6]
10	Dan Shi	School of Business, Dalian University of Technology, Panjin	China	[6]
11	Yanan Zhao	School of Economics and Management, Liaoning Petrochemical University, Fushun	China	[6]
12	Ke Wang	Department of Mathematics, Shanghai University, Shanghai	China	[7]
13	Zhuo Chen	Department of Mathematics, Shanghai University, Shanghai	China	[7]
14	Shihui Ying	Department of Mathematics, Shanghai University, Shanghai	China	[7]
15	Xinjian Xu	Qianweichang College, Shanghai University, Shanghai	China	[7]
16	Shuen Guo	School of Mathematics and Statistics, Zhengzhou University, Zhengzhou	China	[8]
17	Hao Lang	Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong SAR	China	[8]
18	Hanxiang Zhang	Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong SAR	China	[8]
19	Manoharan Madhiarasan	Department of Electronics and Computers, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brașov	Romania	[9]
20	Daniel T. Cotfas	Department of Electronics and Computers, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brașov	Romania	[9]
21	Petru A. Cotfas	Department of Electronics and Computers, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brașov	Romania	[9]

Table 2. Cont.

No.	Author's Name	Affiliation(s)	Country	Papers
22	Mohamed Abd El-Hady Kassem	Department of Mathematics, Faculty of Science, Tanta University	Egypt	[10]
23	Huda M. Alshanbar	Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, Riyadh	Saudi Arabia	[10]
24	Diego Noceda-Davila	MODES Research Group, Department of Mathematics, Faculty of Computer Science and CITIC Research Centre, University of A Coruña	Spain	[11]
25	Silvia Lorenzo-Freire	MODES Research Group, Department of Mathematics, Faculty of Computer Science and CITIC Research Centre, University of A Coruña	Spain	[11]
26	Luisa Carpente	MODES Research Group, Department of Mathematics, Faculty of Computer Science and CITIC Research Centre, University of A Coruña	Spain	[11]
27	Mohsine Jennane	LASMA, FSDM, Department of Mathematics Sidi Mohamed Ben Abdellah University, Fez	Morocco	[12]
28	El Mostafa Kalmoun	School of Science and Engineering, Al Akhawayn University in Ifrane, Ifrane	Morocco	[12]
29	Lahoussine Lafhim	LASMA, FSDM, Department of Mathematics, Sidi Mohamed Ben Abdellah University, Fez	Morocco	[12]
30	Anouar Houmia	Department of Mathematics, College of Science, King Khalid University, Abha	Saudi Arabia	[12]
31	Guillermo Cabrera-Guerrero	Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso,	Chile	[13]
32	Aníbal Álvarez	Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso,	Chile	[13]
33	Joaquín Vásquez	Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso,	Chile	[13]
34	Pablo A. Maya Duque	Research Group of Analytics for Decision Making (ALIADO), Industrial Engineering Department, Universidad de Antioquia,	Colombia	[13]
35	Lucas Villavicencio	Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso,	Chile	[13]
36	Jayashree Piri	Department of CSE, GITAM Institute of Technology (Deemed to be University), Visakhapatnam	India	[14]
37	Puspanjali Mohapatra	Department of CSE, International Institute of Information Technology, Bhubaneswar	India	[14]
38	Biswaranjan Acharya	Department of Computer Engineering-AI, Marwadi University, Rajkot	India	[14]
39	Farhad Soleimanian Gharehchopogh	Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia	Iran	[14]
40	Vassilis C. Gerogiannis	Department of Digital Systems, University of Thessaly, Geopolis Campus, Larissa	Greece	[14]
41	Andreas Kanavos	Department of Digital Media and Communication, Ionian University, Kefalonia	Greece	[14]
42	Stella Manika	Department of Planning and Regional Development, University of Thessaly, Volos	Greece	[14]

Table 2. Cont.

No.	Author's Name	Affiliation(s)	Country	Papers
43	Jiawei Li	School of Computer Science, University of Nottingham Ningbo China, Ningbo	China	[15]
44	Tianxiang Cui	School of Computer Science, University of Nottingham Ningbo China, Ningbo	China	[15]
45	Graham Kendall	School of Computer Science, University of Nottingham UK, Nottingham	UK	[15]
46	Mona A. S. Ali	-Computer Science Department, College of Computer Science and Information Technology, King Faisal University, Al Ahsa -Computer Science, Faculty of Computers and Artificial Intelligence, Benha University, Benha	Saudi Arabia	[16,17]
47	Fathimathul Rajeena P. P.	Computer Science, Faculty of Computers and Artificial Intelligence, Benha University, Benha	Egypt	[16,17]
48	Diaa Salama Abd Elminaam	-Faculty of Computers and Information, Misr International University, Cairo -Computer Science Department, Faculty of Computer Science, Misr International University, Cairo	Egypt	[16,17]
49	Gintaras Palubeckis	Faculty of Informatics, Kaunas University of Technology, Kaunas	Lithuania	[18]
50	Armantas Ostreika	Faculty of Informatics, Kaunas University of Technology, Kaunas	Lithuania	[18]
51	Jurate Platužiene	Faculty of Informatics, Kaunas University of Technology, Kaunas	Lithuania	[18]
52	Mohamed Khamies	Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan	Egypt	[19]
53	Salah Kamel	Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan	Egypt	[19,20]
54	Mohamed H. Hassan	Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan	Egypt	[19,20]
55	Mohamed F. Elnaggar	-Department of Electrical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj -Department of Electrical Power and Machines Engineering, Faculty of Engineering, Helwan University	Saudi Arabia	[19]
63	Ahmed M. Abd-El Wahab	Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan	Egypt	[20]
64	Mohamed I. Mosaad	Electrical \& Electronics Engineering Technology Department, Royal Commission Yanbu Colleges \& Institutes	Saudi Arabia	[20]
65	Tarek A. AbdulFattah	Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University	Egypt	[20]
56	Yaxiong Liu	-Department of Informatics, Kyushu University, Fukuoka -AIP RIKEN, Tokyo	Japan	[21]
57	Ken-ichiro Moridomi	SMN Corporation, Tokyo	Japan	[21]
58	Kohei Hatano	-Department of Informatics, Kyushu University, Fukuoka -AIP RIKEN, Tokyo	Japan	[21]
59	Eiji Takimoto	Department of Informatics, Kyushu University, Fukuoka	Japan	[21]

Table 2. Cont.

No.	Author's Name	Affiliation(s)	Country	Papers
60	Adisak Hanjing	Department of Science and Mathematics, Rajamangala University of Technology Isan Surin Campus	Thailand	[22]
61	Limpapat Bussaban	Faculty of Science, Chiang Mai University, Chiang Mai	Thailand	[22]
62	Suthep Suantai	-Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University -Research Group in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University	Thailand	[22]
66	Ganesh Bhagwat	Mercedes-Benz Research and Development India, Whitefield, Bangalore	India	[23]
67	Shristi Kumari	Robert Bosch Engineering \& Business Solutions Pvt. Ltd., Adugodi, Bangalore	India	[23]
68	Vaishnavi Patekar	KPIT Technologies Pvt. Ltd., Bellandur, Bangalore	India	[23]
69	Adrian Marius Deaconu	Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Brașov	Romania	[23,24]
70	Luciana Majercsik	Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Brașov	Romania	[24]

Author Contributions: Conceptualization, A.M.D.; methodology, A.M.D.; validation, D.T.C. and P.A.C.; formal analysis, A.M.D.; data curation, D.T.C. and P.A.C.; writing-original draft preparation, A.M.D.; writing-review and editing, A.M.D. and D.T.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, S.; Gong, W.; Gu, Q. A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models. Renew. Sustain. Energy Rev. 2021, 141, 110828. [CrossRef]
2. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51-67. [CrossRef]
3. Available online: https:/ /www.math.uwaterloo.ca/tsp/world/ (accessed on 9 April 2023).
4. Cotfas, D.T.; Deaconu, A.M.; Cotfas, P.A. Hybrid successive discretisation algorithm used to calculate parameters of the photovoltaic cells and panels for existing datasets. IET Renew. Power Gener. 2021, 15, 3661-3687. Available online: https: / /ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/rpg2.12262 (accessed on 9 April 2023). [CrossRef]
5. Adnan, R.M.; Meshram, S.G.; Mostafa, R.R.; Islam, A.R.M.T.; Abba, S.I.; Andorful, F.; Chen, Z. Application of Advanced Optimized Soft Computing Models for Atmospheric Variable Forecasting. Mathematics 2023, 11, 1213. [CrossRef]
6. Zhang, L.; Chen, Z.; Shi, D.; Zhao, Y. An Inverse Optimal Value Approach for Synchronously Optimizing Activity Durations and Worker Assignments with a Project Ideal Cost. Mathematics 2023, 11, 1178. [CrossRef]
7. Wang, K.; Chen, Z.; Ying, S.; Xu, X. Low-Rank Matrix Completion via QR-Based Retraction on Manifolds. Mathematics 2023, 11, 1155. [CrossRef]
8. Guo, S.; Lang, H.; Zhang, H. Scheduling of Jobs with Multiple Weights on a Single Machine for Minimizing the Total Weighted Number of Tardy Jobs. Mathematics 2023, 11, 1013. [CrossRef]
9. Madhiarasan, M.; Cotfas, D.T.; Cotfas, P.A. Black Widow Optimization Algorithm Used to Extract the Parameters of Photovoltaic Cells and Panels. Mathematics 2023, 11, 967. [CrossRef]
10. Kassem, M.A.E.-H.; Alshanbari, H.M. Generalizations of Higher-Order Duality for Multiple Objective Nonlinear Programming under the Generalizations of Type-I Functions. Mathematics 2023, 11, 889. [CrossRef]
11. Noceda-Davila, D.; Lorenzo-Freire, S.; Carpente, L. Two-Stage Optimization Methods to Solve the DNA-Sample Allocation Problem. Mathematics 2022, 10, 4359. [CrossRef]
12. Jennane, M.; Kalmoun, E.M.; Lafhim, L.; Houmia, A. Quasi Efficient Solutions and Duality Results in a Multiobjective Optimization Problem with Mixed Constraints via Tangential Subdifferentials. Mathematics 2022, 10, 4341. [CrossRef]
13. Cabrera-Guerrero, G.; Álvarez, A.; Vásquez, J.; Maya Duque, P.A.; Villavicencio, L. A VNS-Based Matheuristic to Solve the Districting Problem in Bicycle-Sharing Systems. Mathematics 2022, 10, 4175. [CrossRef]
14. Piri, J.; Mohapatra, P.; Acharya, B.; Gharehchopogh, F.S.; Gerogiannis, V.C.; Kanavos, A.; Manika, S. Feature Selection Using Artificial Gorilla Troop Optimization for Biomedical Data: A Case Analysis with COVID-19 Data. Mathematics 2022, 10, 2742. [CrossRef]
15. Li, J.; Cui, T.; Kendall, G. Equilibrium in a Bargaining Game of Two Sellers and Two Buyers. Mathematics 2022, 10, 2705. [CrossRef]
16. Ali, M.A.S.; P.P., F.; Salama Abd Elminaam, D. A Feature Selection Based on Improved Artificial Hummingbird Algorithm Using Random Opposition-Based Learning for Solving Waste Classification Problem. Mathematics 2022, 10, 2675. [CrossRef]
17. Ali, M.A.S.; P.P., F.; Abd Elminaam, D.S. An Efficient Heap Based Optimizer Algorithm for Feature Selection. Mathematics 2022, 10, 2396. [CrossRef]
18. Palubeckis, G.; Ostreika, A.; Platužienè, J. A Variable Neighborhood Search Approach for the Dynamic Single Row Facility Layout Problem. Mathematics 2022, 10, 2174. [CrossRef]
19. Khamies, M.; Kamel, S.; Hassan, M.H.; Elnaggar, M.F. A Developed Frequency Control Strategy for Hybrid Two-Area Power System with Renewable Energy Sources Based on an Improved Social Network Search Algorithm. Mathematics 2022, 10, 1584. [CrossRef]
20. Abd-El Wahab, A.M.; Kamel, S.; Hassan, M.H.; Mosaad, M.I.; AbdulFattah, T.A. Optimal Reactive Power Dispatch Using a Chaotic Turbulent Flow of Water-Based Optimization Algorithm. Mathematics 2022, 10, 346. [CrossRef]
21. Liu, Y.; Moridomi, K.-i.; Hatano, K.; Takimoto, E. An Online Semi-Definite Programming with a Generalized Log-Determinant Regularizer and Its Applications. Mathematics 2022, 10, 1055. [CrossRef]
22. Hanjing, A.; Bussaban, L.; Suantai, S. The Modified Viscosity Approximation Method with Inertial Technique and ForwardBackward Algorithm for Convex Optimization Model. Mathematics 2022, 10, 1036. [CrossRef]
23. Bhagwat, G.; Kumari, S.; Patekar, V.; Deaconu, A.M. Novel Static Multi-Layer Forest Approach and Its Applications. Mathematics 2021, 9, 2650. [CrossRef]
24. Deaconu, A.M.; Majercsik, L. Flow Increment through Network Expansion. Mathematics 2021, 9, 2308. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and / or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

