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Abstract: Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of
all bounded linear operators on H. In this paper, we characterized the linear maps ¢ : B(H) — B(H),
which are surjective up to compact operators preserving the set of left semi-Weyl operators in both
directions. As an application, we proved that ¢ preserves the essential approximate point spectrum
if and only if the ideal of all compact operators is invariant under ¢ and the induced map ¢ on the
Calkin algebra is an automorphism. Moreover, we have ind(¢(T)) = ind(T) if both ¢(T) and T
are Fredholm.
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1. Introduction

Let H be an infinite-dimensional separable complex Hilbert space, B(H) the algebra
of all bounded linear operators on H, and K(H) C B(H) the closed ideal of all compact
operators. For an operator T € B(H), we write T* for the conjugate operator of T, N(T) for
its kernel, and R(T) for its range. The dimension, codimension, and index of T are denoted
by dimT, codimT, and indT, respectively.

An operator T € B(H) is called upper semi-Fredholm if R(T) is closed and N(T)
is finite- dimensional. If R(T) is closed and finite-codimensional, T € B(H) is called a
lower semi-Fredholm operator. We call T € B(H) Fredholm if R(T) is closed and finite-
codimensional and N(T) is finite-dimensional. For a semi-Fredholm operator (upper
semi-Fredholm operator or lower semi-Fredholm operator), let n(T) = dimN(T) and
d(T) = dimH/R(T) = codimR(T). The index of a semi-Fredholm operator T € B(H) is
given by ind(T) = n(T) —d(T). The operator T is Weyl if it is Fredholm of index zero.
T € B(H) is called left (right) semi-Weyl if T is upper (lower) semi-Fredholm with ind(T) <
0 (ind(T) > 0). Let SF_ (H) denote the set of all left semi-Weyl operators. For an operator
T € B(H), the spectrum ¢(T), the essential spectrum o0.(T), the Weyl spectrum o, (T),
and the essential approximate point spectrum o¢,(T) of T are defined by o(T) = {A € C :
T — Al is not invertible}, 0.(T) = {A € C: T — Al is not Fredholm}, 0;,(T) = {A € C:
T — Alisnot Weyl}, and 0,,(T) = {A € C: T — Al is not left semi — Weyl}, respectively.

Let ®(H) C B(H) be the set of all Fredholm operators. We denote the Calkin algebra
B(H)/K(H) by C(H). Let 7t : B(H) — C(H) be the quotient map. It is well known that
T € ®(H) if and only if 77(T) is invertible in C(H).

A bijective linear map ¢ : B(H) — B(H) is called a Jordan isomorphism if
$(A?) = (¢p(A))? for every A € B(H) or, equivalently, ¢(AB + BA) = ¢(A)p(B) +
¢(B)p(A) for all A and B in B(H). It is obvious that every isomorphism and every anti-
isomorphism is a Jordan isomorphism. For further properties of Jordan homomorphismes,
we refer the reader to [1,2].

In the last two decades, there has been considerable interest in the so-called linear
preserver problems (see the survey articles [3-5]). The goal of studying linear preservers is
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to give structural characterizations of linear maps on algebras having some special proper-
ties such as leaving invariant a certain subset of the algebra or leaving invariant a certain
function on the algebra. One of the most-famous problems in this direction is Kaplansky’s
problem ([6]): Let ¢ be a surjective linear map between two semi-simple Banach algebras A
and B. Suppose that o(¢(x)) = o(x) forall x € A. Is it true that ¢ is a Jordan isomorphism?
This problem was first solved in the finite-dimensional case. Dieudonné ([7]) and Marcus
and Purves ([8]) proved that every unital invertibility preserving linear map on a complex
matrix algebra is either an inner automorphism or a linear anti-automorphism. This result
was later extended to the algebra of all bounded linear operators on a Banach space by
Sourour ([9]) and to von Neumann algebra by Aupetit ([10]). Many linear preserver prob-
lems have been of interest for infinite-dimensional cases. For the most-significant partial
results relevant to our discussions, we refer the reader to [9-11]. New contributions to
the study of the linear preserver problem have been recently made by Mbekhta in [12],
Alizadeh and Shakeri in [13], Bueno, Furtado, and Sivakumar in [14], Buenoa, Furtadob,
Klausmeierc, and Veltrid in [15], and Bendaoud, Bourhim and Sarih in [16].

In this article, we studied linear maps preserving left (right) semi-Weyl operators in
both directions. We characterized the linear maps ¢ : B(H) — B(H), which are surjective
up to compact operators preserving the set of semi-Weyl operators in both directions. As
an application, we proved that ¢ preserves the essential approximate point spectrum if
and only if the ideal of all compact operators is invariant under ¢, the induced map ¢
on the Calkin algebra is an automorphism, and ind(¢(T)) = ind(T) if both ¢(T) and T
are Fredholm.

2. Linear Maps Preserving the Set of Left (Right) Semi-Weyl Fredholm Operators

We say that a linear map ¢ preserves property X in both directions, which means that
if T is in the domain, then T has property X if and only if ¢(T) has property X. Therefore,
a linear map ¢ : B(H) — B(H) preserves the set of left semi-Weyl operators in both
directions if T € SF,_ (H) < ¢(T) € SF_(H).

A linear map ¢ : B(H) — B(H) is said to be surjective up to compact operators if, for
every T € B(H), there exists T € B(H) such that T — ¢(T’) € K(H). Itis clear that if ¢ is
surjective, then it is surjective up to compact operators.

In order to prove the theorem and the corollaries, we need some known results.

Lemma 1 (Theorem 4.2 in [5]). Let H be an infinite-dimensional separable Hilbert space and
¢ : B(H) — B(H) be a linear map surjective up to compact operators. Then, the following
are equivalent:

(1) ¢ preserves upper semi-Fredholm operators in both directions;

(2) ¢ preserves lower semi-Fredholm operators in both directions;

(3) ¢(K(H)) C K(H), and the induced map ¢ : C(H) — C(H),pom = mo¢ isan
automorphism multiplied by an invertible element a € C(H).

Lemma 2 (Theorem 2.1 in [12]). Let H be an infinite-dimensional separable Hilbert space and

¢ : B(H) — B(H) be a linear map surjective up to compact operators. Then, the following

are equivalent:

(1) ¢ preserves the set of Fredholm operators in both directions;

(2) ¢(K(H)) € K(H), and the induced map ¢ : C(H) — C(H), ¢ ot = 1o ¢, is the
composition of either an automorphism or an anti-automorphism and left multiplication by an
invertible element in C(H).

Lemma 3 (Theorem 4.8 in [3]). Let A be a factor, and let B be a primitive Banach algebra. For a
surjective up to inessential elements linear map ¢ : A — B, the following are equivalent:

(1) ¢ preserves Fredholm elements in both directions and ¢(I) is the Weyl element of B;
(2) ¢ preserves Weyl elements in both directions;
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(3) Let Z(A) and Z(B) be the ideal of the inessential elements of A and B. Then, ¢p(Z(A)) C
Z(B), and the induced map ¢ : C(A) — C(B) is either an isomorphism or an anti-
isomorphism multiplied by an invertible element a € B.

Lemma 4 (Theorem 3.1 in [4]). Let A be a unital C*-algebra of real rank zero and B a uni-
tal semi-simple complex Banach algebra. Let A(-) denote any one of the spectral functions
o(-),01(:),0¢(:),01(-) N oy (+),00(+), and no(-). Suppose ¢ : A — B is a surjective linear
map. If A(¢(T)) C A(T) for every T € A, then ¢ is a Jordan homomorphism. Furthermore, if B is
prime, then ¢ is either a homomorphism or an anti-homomorphism.

Theorem 1. Let H be an infinite-dimensional Hilbert space, and let ¢ : B(H) — B(H) be a
linear map preserving left (or right) semi-Weyl operators in both directions. Assume that ¢ is
surjective up to compact operators and ¢(I) is Weyl, then $(K(H)) C K(H), and the induced
map ¢ : C(H) — C(H), ¢ ot = 7 o ¢ is an automorphism multiplied by an invertible element

[B] € C(H).

Proof. Suppose that ¢ : B(H) — B(H) is a linear map preserving left semi-Weyl operators
in both directions. Let ¢(I) = G + Ky, where G € B(H) is invertible and Ky € K(H). There
exists By € B(H) such that GBy = ByG = I.

The linear map ¢4 : B(H) — B(H) is defined by:

¢1(T) = Bog(T),VT € B(H).

Then, ¢, preserves the left semi-Weyl operators in both directions and ¢ (I) = I + Ky,
where K; € K(H). Let us give some properties for the linear map ¢q: (i) ¢ is surjective
up to compact operators.

In fact, for any T € B(H), there exists T € B(H) and K, € K(H) such that GT =
(P(T,) + Kp. Then, T = ByGT = BQ(P(T,) + K3 = (Pl(T/) + K3, where K3 = ByK; € ]C(H)

(i) Forany T € B(H), 0ea(T) = 0ea(¢1(T)).

Since T — AI € .Sl:_;(ff)<:)> 4)1(T — )\I) = ¢1(T) — )\4)1(1) = (Pl(T) — Al — AKy €
SF, (H) ¢ (T) — Al € SE_ (H), it follows that 04 (T) = 0ea(¢1(T)) forany T € B(H).

(iii) ¢ preserves compact operators in both directions.

First, we claim that

K(H) = {K € B(H) : K+ SF; (H) € SF_ (H)}

={K € B(H) :00(T+K) = 054(T) forall T € SF_(H)}.

From the stability properties of the index function, it is clear that (H) C {K € B(H) :
K+ SF_(H) € SF.(H)}={K € B(H) : 0a(T + K) = 0¢4(T) forall T € SF_(H)}.

Let oE and #E denote the boundary and the polynomial convex hull of a compact
subset E of C, respectively. For any T € B(H), since

00y (T) C 90e(T) C 0.(T) C 0(T) and 90, (T) C 90ea(T) C 0a(T) C 0(T),

it follows that 70, (T) = 10w (T) = yo.(T).

Now, let K € B(H) such that 0, (T + K) = 044(T) for all T € B(H). Then, o.(T +
K) = no,(T) for all T € B(H). Taking into account the semisimplicity of C(H) and the
spectral characterization of the radical, it is not difficult to prove that K(H) = {K € B(H) :
K+ SF_(H) € SF,(H)}={K € B(H) : 004(T + K) = 0¢(T)forall T € SF (H)}.

Let K € K(H), forany T € SF_(H); since ¢ preserves left semi-Weyl operators in
both directions, there exists T" € SF_ (H) and K’ € K(H) for which T = ¢(T') + K'.
Hence, T+ ¢1(K) = ¢p1(T") + K + ¢1(K) = ¢1(T' + K) + K € SF_ (H). Then, ¢;(K) €
IC(H). For the converse, let ¢ (K) € K(H), for any T € SF_(H), $1(T +K) = ¢1(T) +
$1(K) € SF_(H), then T + K € SF_ (H). It follows that K € (H). Now, we prove that ¢
preserves compact operators in both directions.
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(iv) N(¢1) € K(H), and consequently, N(¢) C K(H).

If K € N(¢1) and T € SF_(H), then ¢1(T 4+ K) = ¢1(T) € SF_(H). Thus, for all
T € SF{(H), T+ K € SF, (H). From the proof of (iii), we know that K € (H).

(v) Let¢q:C(H) — C(H) be an induced linear map such that ¢, o 1 = 7w o ¢, then
@1 is an isomorphism or an anti-isomorphism.

From the fact that K(H) is invariant under ¢, then ¢; induces a linear map ¢ :
C(H) — C(H) such that ¢1 o T = 71 0 ¢;. Clearly, ¢, is surjective, since ¢, is surjective up
to compact operators. We prove now that ¢; is injective. Since N(¢1) = m(N(¢;)) and
N(¢1) € K(H), we can obtain that ¢y is injective.

From (ii), we know that, for any T € B(H), 10, (T) = 110ea($1(T)). Then, from (iii),
170e(T) = 170e(¢1(T)). This shows that ¢; is an yo,-preserving map. Thus, the induced
mapping ¢ is an yo-preserving map. By Lemma 4, ¢; is either an isomorphism or an
anti-isomorphism.

(vi) ¢ is an isomorphism.

First, we will prove that ¢; preserves upper semi-Fredholm operators in both direc-
tions. By Lemma 2, we know that ¢; preserves Fredholm operators in both directions. Let
T € B(H) be an upper semi-Fredholm; there are two cases to consider: d(T) = oo and
d(T) < oo. If d(T) = oo, using the fact that ¢; : B(H) — B(H) is a linear map preserving
left semi-Weyl operators in both directions, we know that ¢ (T) is upper semi-Fredholm. If
d(T) < oo, then T is Fredholm; thus, ¢;1(T) is Fredholm since ¢ preserves Fredholm opera-
tors in both directions. Using the same way, we can prove that T is upper semi-Fredholm if
¢1(T) is upper semi-Fredholm. By Lemma 1, ¢; is an isomorphism.

From the definition of ¢1, we know that ¢ preserves compact operators in both direc-
tions, and hence, (H) is invariant under ¢. Let ¢ induce a linear map ¢ : C(H) — C(H)
such that ¢ o 1 = 71 0 ¢. Then, ¢ = [B] L ¢;.

Similar to the above proof, the result is true if ¢ is a linear map preserving right
semi-Weyl operators in both directions. The proof is completed. [J

Under the same hypothesis and notation as in Theorem 1, we obtain that ¢; preserves
the essential spectrum ([12], Theorem 3.2). Then, ind(¢(T)) = ind(T) or ind(¢(T)) =
—ind(T) for any T € ®(H). Since ¢; preserves left semi-Weyl operators in both directions,
it follows that ind(¢(T)) - ind(T) > 0 for any T € ®(H). Thus, ind(¢(T)) = ind(T) for
any T € ®(H). Furthermore, we can prove that ind(¢(T)) = ind(T) for any upper (lower)
semi-Fredholm operator T € B(H). By Lemma 1, Lemma 2, and Lemma 3, we can obtain:

Corollary 1. Let ¢ : B(H) — B(H) be a linear map preserving left (right) semi-Weyl operators
in both directions. Assume that ¢ is surjective up to compact operators and ¢(I) is Weyl, then:

(1) ¢ preserves Fredholm operators in both directions;

(2) ¢ preserves Weyl operators in both directions;

(3) ¢ preserves upper semi-Fredholm operators in both directions;

(4) ¢ preserves lower semi-Fredholm operators in both directions;

(5) ¢ preserves semi-Fredholm operators in both directions;

(6) Forany T € ®(H), ind(¢(T)) = ind(T);

(7)  For any upper (lower) semi-Fredholm operator T, ind(¢(T)) = ind(T).

Remark 1. If ¢ : B(H) — B(H) is a linear map preserving Fredholm operators (or upper
semi-Fredholm operators, or lower semi-Fredholm operators, or semi-Fredholm operators) in both
directions, we cannot induce that ¢ is a linear map preserving left semi-Weyl operators in both
directions. For example, let A, B € B({y) be defined by:

A(xq,x2,x3,-++) = (x2,x3,X4,- -+ ), B(x1,x2,x3,---) =(0,0,0,x1,x2,--),

then there exists A1, By € B({y) such that AA; = B1B = I. Define ¢ : B(¢3) — B({p) as
¢(T) = ATB, T € B({p). We can see that ¢ is surjective and preserves Fredholm operators
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(upper semi-Fredholm operators, lower semi-Fredholm operators, semi-Fredholm operators) in both
directions, but ¢ is not a linear map preserving left semi-Weyl operators in both directions.

From Remark 1, we have the question: If ¢ : B(H) — B(H) is a linear map preserving
Fredholm operators (or upper semi-Fredholm operators, or lower semi-Fredholm operators, or semi-
Fredholm operators) in both directions, when does ¢ preserve left semi-Weyl operators in both
directions. To answer this question, let us begin by a Lemma (Lemma 2.4 in [5]).

Lemma 5. Let A € B(H) be a lower (respectively upper) semi-Fredholm. If A is not Fredholm,
then there exists a lower (respectively upper) semi-Fredholm operator B such that every non-trivial
linear combination AA 4+ uB, A # 0 or u # 0, is lower (respectively upper) semi-Fredholm, but
not Fredholm.

Corollary 2. Let ¢ : B(H) — B(H) be a linear map preserving left (right) semi-Weyl operators
in both directions. Assume that ¢ is surjective up to compact operators, then ¢(I) is a Fredholm
operator.

Proof. Denote ¢(I) = T. We will prove that T is Fredholm. On the contrary, we assumed
that this is not the case. Since [ is a left semi-Weyl operator, T must be a left semi-Weyl
operator. Then, by Lemma 5, there exists S € B(H) such that AT — S is upper semi-
Fredholm, but not Fredholm, which means that AT — S is left semi-Weyl. We can further
find R € B(H) such that ¢(R) = S + K for some K € K(H). Any compact perturbation of
a left semi-Weyl operator is a left semi-Weyl operator; thus, AT — ¢(R) = ¢(AI — R) is left
semi-Weyl for every A € C. As ¢ : B(H) — B(H) is a linear map preserving left semi-Weyl
operators in both directions, we obtain that 0,,(R) = @, a contradiction. [

Corollary 3. Let linear map ¢ : B(H) — B(H) be surjective up to compact operators, then the
following statements are equivalent:

(1) ¢ preserves left semi-Weyl operators in both directions, and ¢(I) is Weyl;

(2) ¢ preserves left semi-Weyl operators in both directions, and ind(¢(T)) = ind(T) if both
¢(T) and T are Fredholm;

(3) ¢ preserves right semi-Weyl operators in both directions, and ind(¢(T)) = ind(T) if both
¢(T) and T are Fredholm;

(4) ¢ preserves Fredholm operators in both directions, and ind(¢(T)) = ind(T) if both ¢(T) and
T are semi-Fredholm;

(5) ¢ preserves upper semi-Fredholm operators in both directions, and ind(¢(T)) = ind(T) if
both ¢(T) and T are upper semi-Fredholm;

6) ¢(K(H)) C K(H); the induced map ¢ : C(H) — C(H), ¢ o m = 7 0 ¢ is an automor-
phism multiplied by an invertible element [B] € C(H), and ind(¢(T)) = ind(T) if both
¢(T) and T are Fredholm.

Proof. By the proof of Theorem 1 and Corollary 1, we only need to prove that (6) = (1). By
Lemma 1, we know that ¢ preserves upper semi-Fredholm operators and Fredholm opera-
tors in both directions. Let T € SF, (H), then ¢(T) is upper semi-Fredholm. If d(T) = oo,
then d(¢(T)) = co because ¢ preserves Fredholm operators in both directions, thus ¢(T) €
SF_(H).Ifd(T) < oo, then ¢(T) is Fredholm, and hence, ind(¢(T)) = ind(T) < 0, again
¢(T) € SF (H). Using the same way, we can prove that T € SF (H) if ¢(T) € SF, (H).
This proves that ¢ preserves left semi-Weyl operators in both directions. Thus, ¢(I) is
Fredholm. Since both ¢(I) and I are Fredholm, it follows that ind(¢(I)) = ind(I) =
Then, ¢(I) is Weyl. O

Let ¢ : B(H) — B(H) be surjective up to compact operators. If ¢ preserves left
semi-Weyl operators in both directions and ¢(I) is Weyl, we cannot induce that ¢ is 0e,-
preserving. For example, let A1, By € B({3) be defined by:

Al (xl/x2r X3, ) - ('XZI X3, X4, " )1 Bl(xll X2, X3, " ) - (0/ X1,X2, " )/
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and define A = <%1 (I))andB = (é Ig ) Let x : Blla® {p) — Kby @ bp)
1

be a linear map, and consider the linear map ¢ : B(¢y @ fp) — B(¢, @ £3) defined by
¢(T) = ATB + x(T). Then, ¢ is surjective up to compact operators and preserves the set of
left semi-Weyl operators in both directions; also, ¢(I) is Weyl. According to the calculation,
we obtain that 0., (I) = {1}, while 0,,(¢(T)) = {A € C : |A] = 1}. This says that ¢ is
not o,.-preserving. There is a question: When does a map satisfying the hypothesis of
Theorem 1 preserve the essential approximate point spectrum?

Corollary 4. Let H be an infinite-dimensional Hilbert space, and let ¢ : B(H) — B(H) be a
linear map. Assume that ¢ is surjective up to compact operators, then the following statements
are equivalent:

(1) ¢ preserves left semi-Weyl operators in both directions and I — (1) € K(H);

(2) ¢ preserves right semi-Weyl operators in both directions and I — ¢(I) € K(H);

(3) ¢ is opg-preserving, i.e., Oeq(P(T)) = 0ea(T) forall T € B(H);

(4) ¢(K(H)) C K(H); the induced map ¢ : C(H) — C(H), ¢ o T = 70 ¢ is an automor-
phism, and ind(¢(T)) = ind(T) if both ¢(T) and T are Fredholm.

Proof. In view of the preceding theorem and corollaries, we only need to prove the equiva-
lence of (1) and (3). Suppose that ¢ preserves the left semi-Weyl operators in both direc-
tions and I — ¢(I) € K(H). Let ¢(I) = I+ Ky, Ko € K(H). Since T — AI € SF_ (H)&
$(T = AI) = ¢(T) = Ap(I) = ¢(T) — Al — AKy € SF, (H) <¢(T) — Al € SF (H), it
follows that 0,4 (T) = 0ea(¢(T)) for any T € B(H). For the converse, suppose that
Oea(p(T)) = 0ea(T) for all T € B(H), then ¢ preserves the left semi-Weyl operators in
both directions. We need to prove that I — ¢(I) € K(H). PutK = ¢(I) — I. Let T € B(H),
T' € B(H), and K’ € K(H) for which T = ¢(T") + K’ (¢ is surjective up to compact
operators). Then, 0,4 (T) = 0ea (P(T') + K') = 0ea(p(T")) = 0ea(T") and

Tea(T + K) = 0ea(T + ¢(I) — I) = 0ea(T + (1)) — 1
= 0a(@(T) + (1) +K') =1 = 0ea(¢p(T' +1)) =1
= (T +1) =1 =0,4(T) = 0ea(T),

This gives 0y (T + K) = 04(T) for all T € B(H). It follows from the proof of Theorem 1
that K € B(H) is compact. [

Let SW(H) = {T € B(H) : T be left semi-Weyl or right semi-Weyl}. Define the semi-
Weyl spectrum sy (T) of an operator T € B(H) asosy(T) ={A € C: T—AI ¢ SW(H)}.
Similar to the proof of Theorem 1, we have that K(H) = {K € B(H) : K+ SW(H) €
SW(H)}= {K € B(H) : osw(T+K) = osw(T) forall T € SW(H)}. We can prove
the following:

Corollary 5. Let H be an infinite-dimensional Hilbert space, and let ¢ : B(H) — B(H) be a

linear map. Assume that ¢ is surjective up to compact operators, then the following statements

are equivalent:

(1) ¢ preserves semi-Weyl operators in both directions, and I — ¢(I) € K(H);

(2) ¢ is ogw-preserving, i.e., osw (¢(T)) = osw(T) forall T € B(H);

(3) ¢ preserves semi-Fredholm operators in both directions, and I — ¢(I) € K(H);

4)  ¢(K(H)) € K(H); the induced map ¢ : C(H) — C(H), ¢ o m = 7 0 ¢ is an automor-
phism or an anti-isomorphism.

We conclude this paper by a natural conjecture that we have been unable to answer:

Conjecture 1. Let H be an infinite-dimensional Hilbert space, and let ¢ : B(H) — B(H) be a
linear map. Assume that ¢ is surjective up to compact operators, then the following statements
are equivalent:
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(1) ¢ preserves the essential approximate point spectrum,

(2)  There exists  : B(H) — B(H) an automorphism and there exists x : B(H) — K(H) a
linear map such that ¢(T) = (T) + x(T) for every T € B(H);

(3)  ¢(T) = ATA= + x(T) for every T € B(H), where A is an invertible operator in B(H) and
X : B(H) — K(H) is a linear map.
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