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Abstract: This brief paper shows that robust chaotic behavior can be detected within a tuned-collector
single-stage transistor-based oscillator. The content of this work also contributes to the problem of
chaos localization in simplified mathematical model of standard analog building block. Searching
for chaos is performed via numerical optimization routine applied onto the principal schematic of
oscillator where generalized bipolar transistor is modelled as a two-port described by impedance
as well as admittance matrix. In both cases, the presence of dense chaotic attractor is proved via
calculation of the largest Lyapunov exponent, while its structural stability is validated by real
measurement, i.e., visualization of captured oscilloscope screenshots.
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1. Introduction

Chaos is a term that has many different interpretations based on the physical subject
that generates it. If it relates to mathematical model expressed in the form of the ordinary
differential equations, chaos can be understood as a long-term unpredictable evolution
caused by the specific formation of vector field. The solution of chaotic system is very
sensitive to small changes in initial conditions due to the exponential divergence of two
neighboring state orbits. This feature of vector field is commonly denoted as stretching,
while trajectory folding answers to intrinsic system nonlinearity and is responsible for
strange attractor boundedness. The term strange attractor is also related to the subject of
nonlinear dynamics, that is, we are speaking about theω-limit set that comprises density
and mixing.

Chaos belongs to a complex motion that can be revealed within very simple circuits,
both autonomous and driven. To mention the famous example, isolated Chua’s oscillator
contains only four linear passive components and one piecewise-linear [1] or cubic poly-
nomial [2] active resistor. The same number of the passive elements and active two-port
working in the trans-admittance mode with quadratic polynomial transfer function can
lead to the steady state chaotic oscillations as well, as indicated in the paper [3]. These
circuits belong to those that are deliberately constructed, with the knowledge of describing
sets of ordinary differential equations as the robust chaos generators. However, chaos can
be observed in the conventional non-chaotic building blocks dedicated for analogue signal
processing. To find this kind of behavior, the initial step covers mathematical modeling of
inspected dynamical system, considering an appropriately high level of abstraction. After
that, elimination of nonessential parameters from the viewpoint of chaos evolution could
be done. For example, fingerprints of deterministic chaos were reported in phase-locked
loops [4], power converters [5], dc-dc converters [6], switching regulators [7], multi-state
static memory cells [8], switched capacitor circuits [9], analog representation of simplified
abandoned neuron [10], and many others.
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This paper extends a list of typical sinusoidal oscillators forced into chaotic steady state,
such as Colpitts [11], Hartley [12], or Wien bridge-based [13], Clapp [14], RC phase shift [15],
by one additional case: single-stage tuned collector oscillator. Further text is organized as
follows. The next section deals with numerical analysis of derived mathematical model
which is, after removing parasitic properties of the generalized bipolar transistor, a third-
order autonomous dynamical system in the dimensionless form. An active three-port,
biased into hypothetical operating point, undergoes a multi-objective optimization routine.
This results in a few sets of numerical values of internal parameters for which the oscillator
becomes chaotic for all common perspectives: the positive largest Lyapunov exponent
(LE), sensitivity to small changes of initial conditions, broad-band frequency spectrum,
increased entropy of produced waveform, etc. Experimental construction and verification
of flow-equivalent chaotic oscillator demonstrates, at least from the most interesting set of
internal parameters, that chaos is neither a numerical artifact nor long transient behavior.

2. Mathematical Model of Single Transistor-Based Tuned-Collector Oscillator

The derivation process starts with a complete circuitry of this famous analog building
block as depicted in Figure 1a. After removing parts dedicated to setup and stabilize
bias point, we reached the most simplified structure in Figure 1b where only principal
accumulation elements are presented. As a third step, assume the lossless transformer with
voltage-current relations, namely(

vC
vX

)
=

(
L1

d
dt M d

dt
M d

dt L2
d
dt

)
·
(

i1
i2

)
, (1)

where M is a mutual inductance of transformer and determines the coupling constant of
transformer via formula k = M/

√
L1·L2 ∈ (0, 1). Even though M is related to the physical

construction of the feedback transformer, mutual inductance enters the optimization routine
as a free parameter; how it works will be clarified later. Unfortunately, in practice, it is very
difficult (almost impossible for hand-made realizations of transformers) to reach the exact
value of M defined up to two decimal places.
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Figure 1. Single transistor-based tuned-collector oscillator: (a) network ready for practical application,
(b) simplified calculation schematic, (c) calculation model with transistor modeled by impedance
parameters, (d) calculation schematic considering two-port admittance parameters. Open arrow
marks orientation of voltage, short thick arrow represents orientation of current.
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2.1. Two-Port Model of Transistor Described by Impedance Parameters

If considered as two-port, a generalized bipolar transistor can be modelled by two-port
impedance parameters, i.e., by following a pair of the algebraic equations

vbe = z11·ib + z12·ic, vce = α·i3b + β·ib + z22·ic, (2)

where vbe and vce are base-emitter and collector-emitter voltages and ib and ic are the
base and collector current, respectively. Forward trans-resistance is defined as a cubic
polynomial function having odd symmetry z21(ib) = −z21(−ib), without offset, and sat-
uration shape is characterized by relation α < 0, β > 0. The circuit configuration de-
picted in Figure 1c) will be denoted as case Z, the state vector consists of circuit variables
x =

(
vC i1 i2

)T, and can be described by the following system of first-order ordinary
differential equations

d
dt vC = 1

C ·
[
− vC

z22
− i1 − 1

z22
·
(
α · i32 + β · i2

)]
,

d
dt i1 = 1

L1
·
{

vC + L1·M
L1·L2−M2 ·

[(
M
L1

+ z12
z22

)
· vC − z11 · i2 + z12

z22
·
(
α · i32 + β · i2

)]}
,

d
dt i2 = L1

L1·L2−M2 ·
[(

M
L1

+ z12
z22

)
· vC − z11 · i2 + z12

z22
·
(
α · i32 + β · i2

)]
,

(3)

where M 6=
√

L1·L2 is a mandatory condition. It should be noted that transformer’s
full decoupling (value M = 0H) does not completely prevent the System (3) to behave
chaotically since the accumulation elements are still coupled via forward and backward
trans-impedance of the bipolar transistors. Regardless of the values of impedance parame-
ters, state space origin is always the equilibrium point of this dynamical system. System (3)
can possess two additional equilibrium points located symmetrically with respect to origin,
namely in the following positions

z0 = ± 1
a·z12
·
√
−α · z12(β · z12 − z11 · z22), x0 = ∓L1

z12(α·z3
0+β·z0)−z11·z22·z0

L1·z12+M·z22

y0 = ∓ 1
z22

(
x0 + α · z3

0 + β · z0
) (4)

The stability of fixed point located at the origin of the state space is determined by the
eigenvalues, i.e., roots of characteristic polynomial

det(λ·E− J) = λ3 +

(
1

C·z22
+

L1

z22
· β·z12 − z11·z22

M2 − L1·L2

)
·λ2 − β·M + L1·z11 + L2·z22 + M·z12

C·z22(M2 − L1·L2)
·λ +

β·z12 − z11·z22

C·z22(M2 − L1·L2)
= 0, (5)

where E is unity matrix and J is Jacobi matrix. Since unstable equilibrium of any type is
needed, polynomial (5) should be non-Hurwitz. Of course, in an optimization routine
itself, numerical calculations are considered rather than symbolic calculations. For this
dynamical system, the divergence of the vector field is also a watched function and can be
established as

∇F = − 1
C·z22

+
L1

M2 − L1·L2

[
z11 −

z12

z22
·
(

3·α·i22 + β
)]

, (6)

i.e., calculated impedance parameters depend only on the state variable i2(t).

2.2. Two-Port Model of Transistor Described by Admittance Parameters

In this case, the global behavior of transistor is modelled by using admittance parame-
ters calculated for the biasing point, that is, by two nonlinear equations

ib = y11·vbe + y12·vce, ic = α·v3
be + β·vbe + y22·vce. (7)
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Similarly, as it is for the previous case Z of the tuned-collector oscillator simplified
schematic, the vector field is symmetrical with respect to origin and inequalities α < 0, β > 0
applies. The circuit structure depicted in Figure 1d will be marked in further text as case Y,
transistor part being dual to case Z dynamical system, state vector stands x =

(
vC i1 i2

)T,
and can be described by the following system of ordinary differential equations

d
dt vC = 1

C ·
[
−y22 · vC − i1 + α ·

(
y12·vC+i2

y11

)3
+ β ·

(
y12·vC+i2

y11

)]
,

d
dt i1 = L1·L2

L1·L2−M2 ·
[(

1
L1
− M·y12

L1·L2·y11

)
· vC − M

y11·L1·L2
· i2
]
,

d
dt i2 = L1·L2

L1·L2−M2 ·
[

M
L1·L2

− y12
L2·y11

]
· vC − 1

L2·y11
· i2.

(8)

This dynamical system always has equilibrium point located at the origin of the state
space. It is also the only fixed point this system possesses. The stability of this fixed point
and local geometry of neighborhood vector field is uniquely determined by eigenvalues,
i.e., roots of characteristic polynomial

det(λ·E− J) = λ3 −
(

L1

y11(M2 − L1·L2)
+

β·y12 − y11·y22

C·y11

)
·λ2 − β·M + L2·y11 − L1·y22 + M·y12

C·y11(M2 − L1·L2)
·λ− 1

C·y11(M2 − L1·L2)
= 0, (9)

During the search for chaos process, the numerical calculation of eigenvalues was
preferred over the test if the polynomial (9) belonged to non-Hurwitz. At this point,
continuation in symbolic calculations can be discontinued, as formulas for the eigenvalues
are overly complicated long expressions. Note that attractors excited by fixed point at
origin are sought after. Therefore, it is supposed that parameter values give rise to unstable
equilibrium, having any type of local geometry and index of stability less than three.
Speaking in terms of the optimization routine, the divergence of the vector field associated
with this dynamical system also belongs to an important function. It can be calculated as

∇F =
1
C

[
β·y12

y11
− y22 +

3·α·y12(i2 + vC·y12)
2

y3
11

]
+

L1

y11(M2 − L1·L2)
, (10)

and generally depends on the state variables vC(t) and i2(t). However, for transistor without
backward trans-conductance, function ∇F is constant throughout state space and, as such,
needs to be negative.

3. Searching for Chaos and Numerical Analysis

For further numerical analysis, the parameter constraints that reflect the conventional
operational state of the sinusoidal oscillator should be considered. First of all, input and
output impedance (case Z), as well as input and output admittance (case Y), will be positive
numbers (zeroes are not excluded). Simultaneously, the backward trans-resistance (trans-
conductance) should be as low as possible for case Z (case Y) dynamical system. Thanks to
impedance and frequency rescaling, normalized values of all accumulation elements can be
removed from the hyperspace of system parameters dedicated for optimization, i.e., we can
keep them unified L1 = L2 = 1H, C = 1F. Additionally, it is quite complicated to realize
the coupling coefficient k of a feedback transformer close to unity. Since k ≡ M, high values
of the mutual inductance are penalized during optimization. Because of the nature of the
search engine, where the initial conditions in each optimization step are chosen randomly
in the vicinity of the state space, all strange attractors discovered and mentioned in this
paper belong to the group of the self-excited attractors. Therefore, the existence of the
so-called hidden attractors is not excluded.

As pointed out in papers [16–20], searching for the chaos process can be transformed
into an optimization problem. In doing so, robust chaos was detected within the analyzed
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model of the tuned collector oscillator for the following mutual inductance and hypothetical
bias point of the transistor modeled by impedance parameters

M = 0.75 H, z11 = 0.33 Ω, z12 = 0.3 Ω, z22 = 1.45 Ω, α = −1 V3 A−1, β = 4.3 Ω. (11)

For these values, the fixed point located at origin is a full repeller with a stability index
of zero, characterized by the following eigenvalues λ1,2 = 0.217± 2.851j, λ3 = 0.156.

Within many runs of the search for chaos algorithm, another set of “chaotic system
parameters” leading to geometrically different strange attractor was revealed, namely

M = 0.86 H, z11 = 0.12 Ω, z12 = 0.08 Ω, z22 = 1.42 Ω, α = −1 V3 A−1, β = 4.1 Ω. (12)

In this case, origin is a fixed point with stability index two, i.e., different local vector
field geometry if compared to system with parameter set (8). Eigenvalues can be established
as λ1,2 = −0.154± 3.7251j, λ3 = 0.031.

For transistor modeled using admittance parameters, the following group of the
internal system parameters that leads to robust chaos was discovered

M = 0.49 H, y11 = 3.3 S, y12 = y22 = 0 S, α = −10 A3V−1, β = 15 S. (13)

Note that, in this case, the transistor behaves close to an ideal current source without
backward trans-conductance. This is an interesting situation since it is rather close to
the conventional operation regime of sinusoidal oscillator. Sinusoidal oscillations with
quite low harmonic distortion can be excited if forward transconductance of generalized
transistor β < 10S.

In the upcoming two figures, numerical integration results were obtained by using a
fourth order Runge–Kutta method with final time 10,000 s and step size 10 ms. Note that
step size is much smaller than the time constant of dynamical system expressed in terms of
the eigenvalues [21]. Figure 2 brings selected results coming from the numerical analysis of
case Z dynamical system. Namely, Figure 2a shows the typical shape of a strange attractor
generated by parameter set (12) in full 3D perspective. The sets of initial conditions leading
to proposed chaotic motions are x0 = ±

(
0 −2 1.5

)T for orange and blue trajectory
respectively. Figure 2b provides a typical strange attractor for parameter case (11). This
plot also demonstrates the sensitive dependance of the solution to small perturbations of
initial conditions. Small cubes with an edge of 0.01 (uniform distribution) containing 104

initial states were randomly generated (black dots). Following that, final states were stored
after 2 s short-time evolution (blue dots), about 4 s average time evolution (green dots), and
10 s long-time evolution (red dots). Figure 2c,d show all plane projections of the typical
strange attractor, together with a one-dimensional curve of divergence of the vector field as
a function of state variable z(t). Figure 2d–m provide rainbow-scaled contour graphs of
distribution of kinetic energy over the state space, calculated for time instance 100 ms and
time step 1 ms. Cross-sections of generated attractors with individual horizontal planes
of the state space were provided as well. Two-dimensional rainbow-scaled surface plots
of the largest LE as function of bias point of the generalized transistor were provided
via Figure 2n–p. There, strong chaos is marked by red color, weak chaos by yellow, a
limit cycle using a green color, and the blue area corresponds to the trivial solution. Each
high-resolution plot contains 101 × 101 = 10,201 points. Of course, only a very small
fragment of hyperspace of the system parameters investigated by an optimization routine
is visualized here. For a slightly increased normalized value of the input impedance,
z11 = 0.33 Ω→ 0.35 Ω of generalized transistor large attractor becomes separated into two
funnel strange attractor, as illustrated in Figure 2q. Finally, Figure 2r,x provide basins
of attraction for attractor generated by system (3) with parameter set (11). Each subplot
represents horizontal planes where voltage across capacitor is constant, i1∈(–10, 10) A and
i2∈(–10, 10) A. All initial states that eventually end up on the strange attractor are marked
by red color, and the only other solution is unbounded (purple areas). Note that the basin
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for chaotic attractor fills an interestingly-shaped connected three-dimensional object in the
state space.
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Figure 3 provides selected results coming from the numerical analysis of case Y dynam-
ical system. The figure begins by showing two mirrored typical strange attractors obtained
for initial conditions x0 =

(
−1.2 −1 0

)T for purple trajectory and x0 =
(
1.2 1 0

)T,
leading to state attractor plotted using an orange color. This subplot also demonstrates the
sensitivity of system solution to small differences in initial conditions. In the beginning, a
group of 104 initial conditions with uniform distribution were placed about origin, forming
a cube with an edge size of 0.01 (black points). After 2 s short-time evolution (blue dots),
4 s evolution (green dots), and 10 s long-time evolution (red dots), the final states were
visualized. Figure 3b,g provide rainbow-scaled contour graphs showing distribution of
kinetic energy over the state space, calculated for time instance 100 ms and time step 1 ms.
Figure 3h shows the colored plot of the largest LE as a two-dimensional function of two
system parameters. The area visualized here represents only a tiny fragment of hyperspace
investigated by an optimization routine. Strong chaos is marked by a red color, weak chaos
is marked by yellow, limit cycle uses a green color, and the blue area corresponds to the
trivial solution. Each high-resolution plot contains 101 × 101 = 10,201 points.
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(b) i2 = –3 A, (c) i2 = –1 A, (d) i2 = 0 A, (e) i2 = 1 A, (f) i2 = 4 A, (g) i2 = 5 A. Subplot (h) shows
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Adopting “the most chaotic” numerical values revealed, the Kaplan–Yorke dimension
of corresponding strange attractor approximately equals DKY = 2.156. The composition
of plots in Figure 3i,p can be understood as slices of the state space, showing interesting
geometric structure of basins of attraction that lead to the chaotic (red area) or unbounded
(purple region) behavior. Each subplot represents horizontal planes where voltage across
capacitor is constant, i1∈(–10, 10) A and i2∈(–10, 10) A. Note that only slices for positive
values of voltage vC are provided. Because of vector field symmetry, the geometrical
structure will be repeated for negative values.

4. Experimental Verification via Construction of Flow-Equivalent Oscillator

For research papers that present a new chaotic dynamical system, practical construc-
tion followed by experimental verification became the common standard long ago [22].
There are several reasons for this:

1. The trajectory that originates in numerical integration is subject to inevitable errors and
represents only an approximation of real behavior, regardless of the method chosen.

2. A smooth integration process instead of problem discretization is performed using an
electronic circuit.

3. With a suitable choice of time constant, we can easily decide if observed motion is a
long transient or a robust, structurally stable solution.

4. Since individual bifurcation parameters can be associated with variable resistors, a
smooth and wide change of its value can reveal dynamical phenomena unobserved
during the numerical analysis, i.e., the behavior of chaotic circuit can be thoroughly
studied without time-consuming re-simulations.

There are drawbacks that suggest that practical construction of transformer should
be avoided: cumbersome realization of large values of self- and mutual inductances,
hardly defined coupling coefficient, nonzero losses that can neither be precisely described
nor included into the mathematical model. Assuming matrix Equation (1), the synthetic
transformer suitable for our purposes can be designed, not directly, but considering ideal
transformer´s dual circuit. Figure 4 shows two port circuit that behaves close to ideal trans-
former´s dual circuit. Moreover, the coupling coefficient is adjustable (or even electroni-
cally tunable using external DC voltage) via the main transfer constant of both operational
trans-conductance amplifiers (OTA). Since admittance and impedance two-port models of
transistor are dual by definition, synthetic transformer could be connected directly between
the base and collector of modeled bipolar transistor. Accordingly, to a given schematic, this
active device can be described by the following port equations(

ip
is

)
=

( d
dt ·C1

d
dt ·C2·Rb·gb·α2

d
dt ·C1·Ra·ga·α1

d
dt ·C2

)
·
(

vp
vs

)
, (14)

where α1,2 are the current tracking errors of second-generation current conveyors (CCII–),
ga and gb are trans-conductance of first and second OTA, respectively.

Although a synthetic ideal transformer with arbitrary mutual inductances can be
designed as mentioned above, the necessity of four active devices appears to be an overly
complicated circuit solution. For both Z and Y cases of analyzed dynamical system, a
more promising way to model associated dynamics using lumped electronic circuits is the
so-called analog computer concept [23,24]. This universal method is based on the complete
knowledge of differential equations, i.e., including numerical values of the internal param-
eters. Only three basic building blocks are required for design: lossless inverting integrator,
inverting summation amplifier and two-port with prescribed nonlinear transfer function:
polynomial, piecewise-linear, or digitally synthesized [25]. For curious readers and design
engineers, the latter publication source can be recommended; the cookbook is supported
by complete documentation toward hybrid analog computer. Moreover, the time constant
of the final circuit can be easily rescaled via simultaneous change of all capacitors.
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A mathematical model (3) with numerical values (8) can be represented by a circuit
provided in Figure 5a. The behavior of this oscillator is uniquely determined by the
following set of ordinary differential equations

d
dt v1 = − v1

R1·C1
+ R11

R10·R3·C1
· v2 − K

R7·C1
· v3 ·

(
Vb − K · v2

3
)
,

d
dt v2 = − v1

R2·C2
− v3

R5·C2
+ K

R8·C2
· v3 ·

(
Vb − K · v2

3
)
,

d
dt v3 = − v1

R4·C3
− v3

R6·C3
− K

R9·C3
· v3 ·

(
Vb − K · v2

3
)
.

(15)

where K = 1/10 is internally trimmed transfer constant of the analog multiplier. State vector
is composed by voltages measured at the outputs of inverting integrators. By comparing
system (15) with model (3), together with parameters (11) and considering time constant
τ = 100 µs, we can establish numerical values of passive circuit components as

C1 = C2 = C3 = 10 nF, R1 = 14.3 kΩ, R2 = 3.9 kΩ, R3 = 10 kΩ, R4 = 4.6 kΩ,
R5 = 18 kΩ, R6 = 13.2 kΩ, R7 = 143 Ω, R8 = 278 Ω, R9 = 208 Ω,

R10 = R11 = 10 kΩ, R12 = 1 kΩ, R13 = 9 kΩ, Vb = 430 mV.
(16)

Note that resistors R12 and R13 do not appear in differential equations since their purpose is
compensation of transfer constant of first analog multiplier in cascade. When choosing time
constant, the frequency limitations described in [26] associated with used active elements
need to be considered.

Similarly, case Y dynamical system can be modeled by electronic network given in
Figure 5b, and the corresponding system of ordinary differential equations is

d
dt v1 = − v2

R1·C1
− v3

R2·C1
+ K2

R9·C1
· v3

3, d
dt v2 = − R5

R6·C2
·
(

v1
R3

+ v2
R2

+ v3
R4

)
d
dt v3 = − v1

R7·C3
− v3

R8·C3

(17)

Numerical values of circuit elements can be calculated using direct comparison between
system (17), with its mathematical model (8) having parameters (13) and considering the
time scale τ = 100 µs as follows

C1 = C2 = C3 = 10 nF, R1 = R2 = 1 kΩ, R3 = 15.5 kΩ, R4 = 25 kΩ, R5 = 2.2 kΩ,
R6 = 7.6 kΩ, R7 = 51 kΩ, R8 = 360 Ω, R9 = 10 kΩ.

(18)
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Note that both oscillators are quite simple, with only three integrated circuits fed by the
symmetrical ±15 V supply voltage. A few examples coming from laboratory experiments
can be found in Figure 6, including breadboard photo (Figure 6g) and waveforms captured
in time domain (Figure 6o,p). Designed chaotic oscillators proves useful for finding strange
attractors that were unnoticed during numerical analysis (Figure 6i–n).

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 6. Selected results coming from detailed experimental verification through measurement. 
Dynamical system case Y: (a) numerical integration of the typical strange attractor, (b) correspond-
ing measurement in the same plane projection. Dynamical system case Z: (c,d) numerical integration 
of typical chaotic attractor visualized using different plane projections, (e,f) corresponding captured 
oscilloscope screenshots using the same state space planes, (g) breadboard realization showing great 
simplicity of final chaotic oscillator, (h) state trajectories zoomed near the unstable fixed point lo-
cated at origin, (i–n) observed robust chaotic attractors that were unnoticed during numerical anal-
ysis, (o,p) chaotic waveform in time domain captured in different time intervals. 

5. Discussion 
The importance of this paper is to show that the circuitry realization of tuned collec-

tor sinusoidal oscillator could be the subject of robust chaotic dynamics. Chaos can be 
observed both numerically and experimentally for an oscillator that has transistor mod-
eled by impedance or admittance two-port parameters. For chaotic regimes, system pa-
rameters have physically reasonable numerical values that are not far away from some 

Figure 6. Selected results coming from detailed experimental verification through measurement.
Dynamical system case Y: (a) numerical integration of the typical strange attractor, (b) corresponding
measurement in the same plane projection. Dynamical system case Z: (c,d) numerical integration of
typical chaotic attractor visualized using different plane projections, (e,f) corresponding captured
oscilloscope screenshots using the same state space planes, (g) breadboard realization showing great
simplicity of final chaotic oscillator, (h) state trajectories zoomed near the unstable fixed point located
at origin, (i–n) observed robust chaotic attractors that were unnoticed during numerical analysis,
(o,p) chaotic waveform in time domain captured in different time intervals.
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5. Discussion

The importance of this paper is to show that the circuitry realization of tuned collector
sinusoidal oscillator could be the subject of robust chaotic dynamics. Chaos can be observed
both numerically and experimentally for an oscillator that has transistor modeled by
impedance or admittance two-port parameters. For chaotic regimes, system parameters
have physically reasonable numerical values that are not far away from some application-
specific operational states. However, specific biasing of bipolar transistor (and utilization
of transistor itself) is avoided by the circuit synthesis method based on an integrator block
schematic associated with the mathematical model. Several interestingly-shaped strange
attractors were discovered and captured using an oscilloscope.

6. Conclusions

Modern personal computers provide high computational power allow chaos (and
hyperchaos) localization within the lower-dimensional dynamical system. However, when
investigating real signal processing functional blocks, the number of “unknown parameters”
needs to be reduced to maintain solvability of this problem. Search routine optimization
with respect to parallel processing is a good idea when working toward significant reduction
of time demands. When “chaotic parameters” are found, detailed numerical analysis is still
needed to confirm robust chaos and recognize its properties.

This paper contributes to this issue with another successive chaos localization—inside
tuned collector transistor-based oscillator. The list of chaotic oscillators that originate in
the mathematical model of simplified electronic systems will undoubtedly grow in the
near future. Considering the fractional-order nature of some accumulation elements (with
transformer being a nice challenge) represents an area for further research.
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