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Abstract: This paper establishes a study for an accurate parameter modeling method for lithium-ion
batteries. A precise state space model generated from an equivalent electric circuit is used to carry
out the proposed identification process, where parameter identification is a nonlinear optimization
process problem. The African vultures optimization algorithm (AVOA) is utilized to solve this
problem by simulating African vultures’ foraging and navigating habits. The AVOA is used to
implement this strategy and improve the quality of the solutions. Four scenarios are considered
to take the effect of loading, fading, and dynamic analyses. The fitness function is selected as the
integral square error between the estimated and measured voltage in these scenarios. Numerical
simulations were executed on a 2600 mAhr Panasonic Li-ion battery to demonstrate the effectiveness
of the suggested parameter identification technique. The proposed AVOA was fulfilled with high
accuracy, the least error, and high closeness with the experimental data compared with different
optimization algorithms, such as the Nelder–Mead simplex algorithm, the quasi-Newton algorithm,
the Runge Kutta optimizer, the genetic algorithm, the grey wolf optimizer, and the gorilla troops
optimizer. The proposed AVOA achieves the lowest fitness function level of the scenarios studied
compared with relative optimization algorithms.

Keywords: lithium-ion battery; battery management system; integral square error; state of charge;
battery modeling; parameter estimation; African vultures optimizer

MSC: 49K10

1. Introduction

Due to the growing demand for transportation, the fossil fuel reserves for crude
oil, ethanol, petrol, and diesel are being depleted daily [1]. As a result, their prices are
rising, which is a driving force behind the transition to alternative-fuel vehicles, such as
electric vehicles. These alternative-fuel vehicles need energy storage systems (ESSs) to store
energy [2], and several types of ESSs, including supercapacitors, flywheels, and batteries,
are implemented [3]. ESSs are highly demanded to reduce the carbon footprint and reliance
on fossil fuels in transportation [4]. Supercapacitors are large-capacity capacitors with
energy storage capacities ten to one hundred times greater than conventional capacitors [5].

However, because of their rapid charge and discharge rates, they are not suitable for
long-term compact applications such as electric vehicles. Flywheels are mechanical storage
devices that store energy as kinetic energy; however, because of mechanical issues, they are
not ideal [6]. The battery is an energy storage system for electric vehicles because all these
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other systems have drawbacks [7]. The battery has many benefits, including the ability to
store energy for an exceptionally long time, serve as a clean energy source, and be the most
economical storage device [7].

Batteries for electric vehicles can be made of nickel metal hydride, lead acid, nickel
cadmium, or lithium-ion [8,9], due to their promised qualities as a new clean energy source,
particularly in the sectors of electric-propelled train vehicles. Lithium-ion batteries have
received much attention for their use in electric cars [10]. While lithium-ion batteries have
several benefits, including great energy, power density, a long lifespan, reduced weight,
and quick charging [11], they also have some drawbacks, including thermal runaway, age
degradation at low temperatures, and overcharging and over-discharging performance [12].
The main difficulties of a lithium-ion battery are that the lithium metal is extremely reactive
due to its electron configuration. It has a long charging time. The main form of lithium
corrosion is caused by dendrites, which are branched lithium structures that grow from
the electrode and can pierce through the separator. While lithium-ion batteries are seen
as sufficiently efficient, they still lack the range that would make EVs a viable alternative
to the internal combustion engine. One of the most significant difficulties of lithium-ion
batteries is the highly nonlinear and complex electrochemical nature that makes an accurate
parameter estimation a difficult task that may lead to inaccurate SOC estimation that causes
overcharging and over-discharging that can damage the battery. Battery statuses, including
state of charge (SOC), state of health (SOH), state of life (SOL), and state of power (SOP) [13],
are tracked using the battery management system (BMS) to repair this harm [14,15]. The
battery management system (BMS) is an electronic device with several features, including
managing and monitoring the battery’s critical status, fault diagnosis, thermal management,
preventing the battery from running outside of its safe operating range, keeping an eye on
its states (SOC, SOH, SOL, and SOP), computing and reporting the data, and controlling
the environment [16].

1.1. Problem under Study

Battery model parameter estimation has emerged as a significant obstacle to correctly
modeling these components’ effects on the entire system’s operation. Finding the most
appropriate prediction to simulate the battery is still an active area of research. Since
the battery is presented in a nonlinear problem, the state of charge is a factor in this
problem, which is a critical requirement for achieving the proper supervision and control of
battery charging and discharging. The battery parameters are determined for the different
modeling forms using experimental approaches. In addition, accurate prediction of the
battery’s properties and SOC is essential for several reasons, including extending battery
life, controlling the battery’s state of charge, improving battery performance, improving
energy management, and monitoring and reporting on battery safety.

Lithium-ion battery modeling is carried out by estimating the parameters of the
battery’s equivalent circuit: the battery’s internal resistance, the polarization branches
consisting of resistances and capacitances, and the battery’s open-circuit voltage at different
states of charge. The parameters of lithium-ion batteries need to be adequately estimated
to extend the battery’s lifespan and to ensure the safe and dependable operation of lithium-
ion batteries [17]. To guarantee the safety, longevity, and optimum performance of the
battery, the Li-ion battery needs precise parameter estimation of the battery since accurate
parameter estimation for the battery results in minimizing the error between the real data
and the experimental data, which results in accurate modeling for the battery which helps
in the stage of studying the dynamic analysis of the battery [18]. The main goal is to acquire
an accurate parameter model for lithium-ion batteries by using a precise state space model
produced from an equivalent electric circuit where the parameter identification process is
nonlinear because of the high complexity of the electrochemical process inside the lithium-
ion battery. The African vultures optimization algorithm (AVOA) was used to solve this
problem by simulating African vultures’ foraging and navigating habits. The AVOA was
used to implement this strategy and improve the quality of the solutions. Four scenarios
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varied between considering the loading and fading effect of a lithium-ion battery, and its
dynamics were considered. The ISE is the fitness function. Numerical simulations were
executed on Li-ion batteries to demonstrate the effectiveness of the suggested parameter
identification technique. The proposed AVOA was compared with different algorithms
such as the Nelder–Mead simplex algorithm, the quasi-Newton algorithm, the Runge Kutta
optimizer, the genetic algorithm, the grey wolf optimizer, and the gorilla troops optimizer.

1.2. Literature Review

Accurate parameter estimation for SOC estimation is a challenging problem due to
lithium-ion batteries’ very nonlinear and complicated electrochemical nature [19]. Several
techniques have been used for the parameter and SOC estimates, including the data-
driven approach, non-model-based techniques, and model-based techniques [20]. Despite
the computational efficiency of these approaches, they have the drawbacks of gathering
sensor errors and taking a long time to process precise parameter and SOC estimates.
Technologies based on artificial intelligence that are inspired by biology, including genetic
algorithms [21], bacterial foraging algorithms [22], particle swarm optimization [23], and
firefly algorithms [24], are mainly used.

Lai et al. [25] performed a comparative analysis to identify the most effective global
optimization techniques for identifying the parameters of several lithium-ion battery types.
They demonstrated that exact algorithms are the best option for first-order resistance–
capacitance (RC) models. At the same time, the particle swarm optimization method is
the best identification approach for second-order RC models. The firefly algorithm has the
maximum accuracy for third- and fourth-order RC models. The computational complexity
of genetic and bacterial foraging methods is high, whereas parameter tuning for particle
swarm requires a significant effort. The approaches based on computer intelligence give
advantages, including noise cancellation, high accuracy, and quick convergence rate, by
utilizing adaptive strategies for SOC estimation.

Single- and double-RC-branch circuit models are widely used in model-based methods
to simulate the lithium-ion battery [26]. The battery model’s parameters are determined
either offline or online. When determined offline [27,28], a hybrid pulse power characteristic
approach is utilized to calculate the battery model parameters, which are then used to
estimate the parameters. Using the fixed experiments as a reference, these parameters are
calculated. However, in real time, these factors alter due to aging, temperature, dynamic
working circumstances, etc., which directly impacts SOC estimates [29,30]. Consequently,
for proper SOC estimation, these parameters should be evaluated online. Data-driven
strategies have been presented to address the shortcomings of the two prior approaches [31].
Through artificial intelligence techniques [32], neural networks [33], machine learning [34],
support vector machines [35], and fuzzy logic [36], this method determines the most
exact correlation between the battery’s state of charge and its measurable data, such
as current, voltage, and temperature [37]. Because of their excellent learning capacity,
these approaches could comprehend the battery’s internal dynamics via several charging
and discharging cycles. The emergence of the latest deep-learning algorithms has led to
a gradual improvement in learning accuracy thanks to the accumulation of previously
learned data that enable precise SOC estimates [38]. These methods do, however, have
significant drawbacks. They first require a large amount of data to train and evaluate the
model [39]. The complicated topology of such a neural network makes it challenging to
adjust the deep-learning parameters [40]. These methods also use up a large amount of
memory space and take longer to calculate. There are more parameters and SOC estimating
techniques in the literature. The internal electrochemical reactions of the battery have
frequently used electrochemical impedance spectroscopy [41]. The internal resistance
technique uses rapid voltage and current readings to measure the battery’s capacity. It is
used to evaluate the battery’s state of charge [42]. A detailed battery model is required
for model-based SOC estimation. This model can improve the simulation efficiency in
addition to the SOC estimation [43]. The literature might separate equivalent circuit and
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electrochemical models [44]. Due to its simplicity, the first category is frequently used for
state-of-charge estimation and electric vehicle simulation.

Nonetheless, the number of RC branches employed determines how accurate this
model is; however, the model becomes increasingly difficult for users when the number
of RC branches is increased to attain accuracy, affecting parameter identification and SOC
estimation [45]. Parameter identification interests many academics due to its significance
for various model-based SOC estimations [46,47], such as the neural network, genetic
algorithm [48], optimization algorithm, and least square identification [49]. Optimization
algorithms are better suited for parameter identification than neural network algorithms
due to their simplicity and ease of setting. The study that goes along with it illustrates
the significant efforts made to accurately and methodically assess the features of energy
storage devices powered by Li-ion batteries. Although these methods have produced
acceptable results, they lack precision and consistency. This paper suggests the involve-
ment of loading and fading in identifying lithium-ion battery parameters by minimizing
the error between the measured and experimental voltage using the integral square error
method (ISE). Identifying the battery model parameters ensures the best battery per-
formance and a long lifetime. The design parameters are identified using old and new
optimization techniques under different loading, fading, and temperature conditions. The
design parameters identified are the open-circuit voltages under different SOC, internal
resistance, and polarization branches, which were identified by establishing the African
vultures optimization algorithm (AVOA) [50,51], a metaheuristic algorithm with natural
inspiration. The African vultures optimizer simulates the foraging and navigational habits
of African vultures. According to experimental findings, the AVOA performs better than
any other algorithm on 30 of 36 benchmark functions and most engineering case studies.
The AVOA was created to validate the integrated square error (ISE) of the objective function
of the dynamic lithium-ion battery model. These specific skills provide the AVOA with
an exceptional ability to find the best solutions. Despite its advantages, it has not yet been
applied to engineering optimization problems.

1.3. Main Contributions

The following are this paper’s main contributions:

• This study considers different loading, fading, and temperature conditions.
• This study uses the AVOA to uncover the Li-ion battery model’s unknown parameters.
• A robust nonlinear link shows the relationship between the open-circuit voltage and

the SOC by evaluating the first-order resistive–capacitive version of the Li-ion battery
dynamic model.

• Investigations using simulations and Li-ion battery experiments are coupled.
• The AVOA findings are compared with several algorithms, such as the Nelder–Mead

simplex algorithm [52], the quasi-Newton method [53], and the Runge Kutta optimizer
(RK) [54], and metaheuristic algorithms such as the genetic algorithm (GA) [55], the
grey wolf optimizer (GWO) [56], and the gorilla troops optimizer (GTO) [57].

• This study covers the gap of not including loading, battery aging, and temperature
conditions in previous research.

1.4. Paper Organization

The remainder of this paper is presented as follows: Section 2 describes a dynamic
representation of the Li-ion battery issue using optimization. Section 3 introduces the
AVOA methodology. Section 4 reveals the results of the AVOA’s simulation when used to
address the problem with Li-ion batteries. Section 5 explains the study’s key conclusions.

2. Problem Identification

Several factors are considered for modeling the battery parameters’ identification and
SOC estimate, and the literature’s earlier research did not consider nonlinear modeling’s
effects. In addition, a complex state space model is the foundation for many models
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reported in the literature. The linear model does not require much calculation time for
parameter identification. Nevertheless, because the Li-ion battery model is a nonlinear
system, nonlinear models can provide excellent parameter estimate accuracy but take more
time to compute. Compared with traditional nonlinear models, the suggested technique
has resulted in the development of a simplified nonlinear model with high identification
accuracy and less computing time. Then, the solution approach has a significant impact on
parameter estimates. A simplified model with sufficient accuracy for parameter estimates
must be proposed to solve this issue. The previously identified research gaps in the
literature are the subject of the current study. In this regard, a nonlinear representation of
the relationship between open-circuit voltage and the state of charge is considered due to
the instability of the internal chemical processes within the battery.

2.1. Modeling of Lithium-Ion Batteries

To comprehend the dynamic behavior of lithium-ion batteries, a thorough battery
model must be chosen [58]. Various lithium-ion battery models were displayed and
compared in terms of their complexity and accuracy; the more advantageous choice was a
network-based battery model with single and double RC branches and lumped parameters.
The single-order RC model, the one-time constant model of the lithium-ion battery, is the
most frequently used and was chosen for this paper, as shown in Figure 1 [59].
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Figure 1. Lithium-ion battery model [59].

This model mainly consists of three parts, which are as follows: a battery voltage
source, which is called battery open-circuit voltage (Vocv), internal ohmic resistance (Ro),
and a resistance and capacitance branch, which describes the battery’s transient behavior
while being charged and discharged (Rtr, Ctr) and is called the charge dynamics of the
battery. (Vtr) and (ICtr) are the voltage across and the current of the transient capacitance
(Ctr) and (Ibatt) is the battery’s terminal current.

The one-time constant model’s electrical behavior may be described by Equations (1)
and (2):

Vtr =
−1

Rtr × Ctr
Vtr +

1
Ctr

Ibatt (1)

Vt = Vocv −Vtr − Ro × Ibatt (2)

The discrete-time description is shown in Equations (3) and (4) as follows:

Vtr, k + 1 = Vtr, ke
−τs
τtr + Rtr

(
1− e

−τs
τtr

)
Ibatt, k (3)
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Vt, k = Vocv(SOC, k)−Vtr, k− Ro × Ibatt, k (4)

where τs is the sampling time and τtr is the transient branch time constant.
Equation (5) describes how the battery’s open-circuit voltage depends on its charge

level (SOC).

Vocv = Vnom

(
SOC

1− β(1− SOC)

)
(5)

where (Vocv) is the open-circuit voltage of the battery, which is equal to (Vnom), which is
the open-circuit voltage when the battery is fully charged (SOC = 1), which is the voltage
which is called nominal voltage, and it is equal to (Vdis), which is the open-circuit voltage
when the battery begins to discharge (SOC < 1) at constant battery discharge capacity
(Qdis), and (β) is the battery fade coefficient.

To calculate the state of charge of the battery, Equation (6) is used as follows:

SOC = SOC◦ − 1
Q

∫ t

0
Ibattdt (6)

where (Q) is the battery capacity in ampere-hours. By using Equation (6), SOC is calculated
to calculate Vocv in Equation (5) and then calculate the value of terminal voltage (Vt) in
Equation (4).

Battery Fade Calculation

The term “battery fade” refers to the degradation of battery performance over several
charge and discharge cycles, which is modeled as follows:

According to Equation (7), the open-circuit voltage across the basic battery model
decreases proportionately to the number of discharge cycles n.

Vnom, f ade = Vnom

(
1 +

δvnom × n
100× N

)
(7)

where δvnom is the percent change in open-circuit voltage after N discharge cycles.
According to Equation (8), the nominal charge, from which the state of charge is

determined, decreases with the square root of the number of discharge cycles:

Q f ade = Q
(

1 +
δQ

100

√
n
N

)
(8)

where δQ is the percent change in battery capacity after N discharge cycles.
All resistances in the battery model also fade with the square root of the number of

discharge cycles, as presented in Equation (9):

Ri, f ade = Ri

(
1 +

δRi
100

√
n
N

)
(9)

where Ri is the ith resistance, which is Ro (internal resistance of the battery) and Rtr (tran-
sient resistance of the battery), and δRi is the percent change in battery internal/transient
resistance after N discharge cycles.

This part shows how to estimate the model parameters using battery readings. The
battery’s experimental parameters were identified using the first method at a temperature
of 25 ◦C; the temperature, aging, and loading are considered as this work progresses. As
the battery is being charged and discharged, the output voltage and current characteristic
curves are shown in Figure 2, and different intervals of the curves are explained.
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• Interval i0(t < to ): In this interval, for a long enough period, the battery output current
can be taken to be zero, even though the output voltage might equal the open-circuit
voltage value (Vocv(SOC0)), and the ( SOC) value remains constant when the output
current is zero.

• Interval i1(to ≤ t ≤ t1): In this interval, constant current discharges the battery (Idischarge > 0);
due to the internal resistance (Ro), the battery output voltage first drops significantly,
then it keeps decreasing exponentially under the control of the OCV (during the
SOC decrease).

• Interval i2(t1 ≤ t ≤ t2): In this interval, the value of the battery output current is zero
(Ibatt = 0), hence (Ro) initially causes a sharp increase in the battery output voltage
and, after that, an exponential rise until it reaches (Vocv(SOC1)) can be observed.

• Interval i3(t2 ≤ t ≤ t3): In this interval, constant current charges the battery (Icharge < 0);
due to internal resistance (Ro), the battery output voltage gradually increases, and
then it continues to increase exponentially under the control of the OCV (during the
SOC increase).

• Interval i4(t ≥ t3): In this interval, the value of the battery output current is zero
(Ibatt = 0), hence (Ro) initially causes a sharp decrease in the battery output voltage
and, after that, an exponential fall until it reaches (Vocv(SOC2)) is observed.

For the internal ohmic resistance of the battery (Ro), the voltage drops across (Ro)
during the initial moment of charging (V2) and discharging (V0); this may be used to
compute (Ro) according to Equation (10):

Ro =


V0

Idischarge
, For discharging

−V2
Icharge

, For charging
(10)

Readings of the battery’s output voltage at periodic intervals i2 and i4 are used, as
OCV remains constant during these times, and the battery’s dynamic properties are the
only factors that affect the output voltage. The output voltage Vt during i2 and i4 can
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be computed according to the model by setting Ibatt to zero in Equations (3) and (4); the
differential equation is then resolved as indicated in Equation (11):{

i2 : Vt(t) = Vocv(SOC1)−Vtr(t1)e
−t
τtr

i4 : Vt(t) = Vocv(SOC2)−Vtr(t3)e
−t
τtr

(11)

where τtr = Rtr ∗ Ctr.

2.2. Objectives of Lithium-Ion Battery Parametrization Problem

Constraints

Applying the battery’s dynamic model covered in the previous part, the battery
parameters are recognized, and the state of charge is approximated. An objective function
must be developed to fit the predicted output voltages with the corresponding observed
voltage in the experimental testing to optimize the Li-ion battery model’s features. The
recommended objective function is founded on reducing the integrated square error (ISE)
between experimental data and the outcomes of model-based simulations. The proposed
optimization issue is represented as the following in Equation (12).

MinuFi(u), i = 1, 2, . . . n_ob f Umin ≤ U ≤ Umax (12)

Fi(u) is the objective function, and i and u represent the parameters that need to
be estimated in the battery. The control variable vector’s parameter boundaries, which
reflect the permitted research domain, are Umin and Umax, and nob f is the total number of
objective functions. The model’s input parameters are determined using the data from the
battery experiment.

The primary objective of the challenge at hand is to minimize the integral square error
between the experimental and estimated battery voltage Fi(u) using Equation (13).

Fi(u) = ∑
(

Vestimated–Vexperimental

)2
(13)

where Vestimated is the expected battery model voltage in volts and Vexperimental is the
recorded experimental battery voltage.

The model input parameters are represented as follows: Vnom: battery open-circuit
voltage at SOC = 1, which is called nominal voltage; Vdis: battery open-circuit voltage
when the battery begins to discharge (SOC < 1) at constant battery discharge capacity
(Qdis); Ro: internal ohmic resistance; Rtr: transient resistance of the battery; τtr: transient
time constant; Q: battery capacity in ampere-hours.

The objective function is solved under the following constraints:
Qmin ≤ Q ≤ Qmax

Romin ≤ Ro ≤ Romax at T1 = 25 ◦C and T2 = 45 ◦C
Rtrmin ≤ Rtr ≤ Rtrmax at T1 = 25 ◦C and T2 = 45 ◦C

τtrmin ≤ τtr ≤ τtrmax at T1 = 25 ◦C and T2 = 45 ◦C
where min and max are the minimum and maximum operators of the parameters, respectively.

3. African Vultures Optimizer Methodology

Abdollahzadeh et al. introduced the AVOA metaheuristic algorithm in 2021, and it
has since been used in numerous real-world engineering projects [60]. By replicating and
modeling the feeding activity and dwelling habits of African vultures, AVOA was first
proposed. African vultures’ daily routines and foraging behavior are replicated in AVOA.

The population of African vultures consists of N vultures, and the algorithm user
determines the size of N based on the current circumstances. Each vulture’s position space
has D dimensions, with the size of D varying according to the dimension of the problem
being handled. It is crucial to decide on a maximum number of iterations T in advance
proportional to the complexity of the issue that needs to be solved and represents the
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most activities the vulture can perform. As a result, each vulture’s position i(1 ≤ i ≤ N) at
various iterations t(1 ≤ t ≤ T) can be written as Equation (14) :

xt
i =

[
xt

i1 . . . xt
id . . . xt

iD
]

(14)

where xt
i is the vulture’s position, t is the number of iterations, and D is the dimension of

each vulture’s position. Vultures in the population can be split into three types based on
their lifestyles in Africa. The first flock is tasked with identifying the best viable solution
among all vultures if the fitness value of the feasible solution is being utilized to gauge
the quality position of the vultures. According to the second flock, the practical solution
is the second-best vulture overall. The remaining vultures are grouped into a third flock
in addition to the first two flocks mentioned, and they all forage together throughout
the population. As a result, different vulture species have different functions within the
population. If it is thought that the population’s fitness value can depict the benefits and
drawbacks of vultures; the worst vultures are the ones that are the most vulnerable and
voracious. The best vulture at this time, though, is the one that is strongest and most
prevalent. All vultures in AVOA attempt to approach the superior vulture and avoid the
poor vultures. To mimic various vulture actions during the foraging phase, AVOA can be
separated into five stages according to the four rules of behavior.

Stage 1: Population Grouping: The second rule states that the vultures must be
categorized according to their quality after startup or before beginning the subsequent
action. The vulture representing the ideal solution is put in the first flock, while the vulture
representing the runner-up is put in the second flock. The third flock has the remaining
vultures. Due to the directing effects of the best and second-best vultures, Equation (15)
aims to choose the vulture the current iteration should advance towards and move towards
the best solutions for the first and second groups. In each fitness iteration, the entire
population is recalculated.

Rt
i =

{
BestVulturet

1, pt
i = L1

BestVulturet
2, pt

i = L2
(15)

where BestVulturet
1 =

[
bt

11 . . . bt
1d . . . .bt

1D
]

means the best vulture, and BestVulturet
2 =[

bt
21 . . . bt

2d . . . .bt
2D
]

is the second-best vulture. In Equation (15), the likelihood of picking
the chosen vultures to steer the other vultures towards one of the best options in each group
is computed, in which L1 and L2 are variables that must be measured before the search
procedure. The probability of choosing the best solution is gained using the roulette wheel
to choose each of the best solutions for each group (pt

i ). pt
i is obtained using a random

strategy, and its calculation formula is stated in Equation (16). L1 and L2 are two random
values in the range [0, 1], and their sum is 1.

pt
i =

f t
i

∑m
i=1 f t

i
(16)

where m is the overall number of the first-flock and second-flock vultures, and the f t
i is

the fitness rating of the first-flock and second-flock vultures. The first flock of vultures is
symbolized by α, the second flock by β, and the third flock by γ. The target vulture is then
located using pertinent parameters.

Stage 2: The Vultures’ Hunger: The vulture can go further in search of food if it is
not overly hungry. On the other hand, if the vulture is currently very hungry, it lacks the
physical stamina to facilitate its regional travel. Therefore, vultures that are starving become
highly hostile. Thus, they remain close to the vultures carrying food rather than going
out searching for food on their own. Consequently, vultures’ exploration and exploitation
stages can be built based on their behavior. Hunger levels indicate when vultures are
moving from the exploration stage to the exploitation stage. Equation (17) can be used to
determine the degree of hunger Ft

i of the (t)th vulture at the (T)th iteration and it is also
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used to transfer from the exploration phase to the exploitation phase, which is inspired by
the hunger behavior of vultures if they are hungry or satisfied.

Ft
i = (2× randi1t + 1)× zt ×

(
1− t

T

)
+ gt (17)

where randt
i1 is a chance number in the range of [0, 1] and zt is a chance number in the

range of [−1, 1]. There is no assurance that when complex optimization issues are solved,
the final population after the exploration stage contains precise estimates for the global
optimum. Because of this, it results in an early convergence of the best local site. gt is
used to improve efficiency while addressing complex optimization issues, which raises the
likelihood that one will successfully escape from local optimum locations. gt is determined
using Equation (18).

gt = ht ×
(

sink
(

π

2
× t

T

)
+ cos

(
π

2
× t

T

)
− 1
)

(18)

where k is a predetermined parameter that determines the likelihood that the vulture
will carry out the exploitation stage, and ht is a random number in the [−2, 2] range. A
higher k value suggests that the exploration stage is more likely to be entered after the final
optimization step. A lower k, on the other hand, suggests that the exploitation stage is
more likely to be reached after the final optimization stage. The formula’s design principle
states that as the number of iterations increases, Ft

i gradually declines while the decreasing
range continues to grow. Vultures start the period of exploration and look for new food in
diverse places when

∣∣Ft
i

∣∣ is greater than 1. Vultures enter the stage of exploitation to pursue
better prey around their present position when |Ft

i | is lower than 1.
Stage 3: Exploration Stage: In the wild, vultures have superb vision, allowing them

to locate dead animals and food quickly. Hence, when searching for food, vultures take
a minute to survey their surroundings before starting a long trip to find the food. To
determine the vulture’s behavior at this time, the creator of AVOA creates two exploring
behaviors and employs a parameter called p1. The range of this parameter, p1, which is
initialized with the algorithm, is [0, 1]. A random value in the range of [0, 1] that is more
than or less than p1 is used by AVOA to define the vulture’s exploring strategy. To select
any of the strategies in the randp1 exploration phase, a random number between 0 and
1 is generated. If this number is greater than or equal to the p1 parameter, the first part
of Equation (19) is used, but if randp1 is smaller than the p1 parameter, the second part
of Equation (19) is used. Therefore, Equation (19) can be used to describe the vulture’s
exploratory phase.

Xt+1
i =

{
Rt

i − Dt
i × Ft

i , p1 ≥ randt
p1

Rt
i − Ft

i + randt
i2 ×

(
(ub− lb)× randt

i3 + lb
)
, p1 < randt

p1
(19)

Xt+1
i represents the location of the (i)th vulture at the (t + 1)th iteration, and the

random numbers randt
p1, randt

i2, and randt
i3 are uniformly distributed in the range of [0, 1].

Rt
i is acquired by Equation (15), and Ft is acquired by Equation (7). The problem’s solution’s

upper and lower limits are represented by ub and lb, respectively, and Dt
i is calculated by

Equation (20) to show the separation between the existing vulture and its ideal state.

Dt
i =

∣∣C× Rt
i–Xt

i
∣∣ (20)

In Equation (20), Rt
i is one of the best vultures, selected by using Equation (2) in the

current iteration. Moreover, C represents the vultures moving randomly to protect their
food from other vultures, where C is inside the range [0, 2] and is obtained by using the
formula C = 2× rand, where rand is a random number between 0 and 1 and Xt

i denotes
the location of the (i)th vulture at the (t)th iteration.
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Stage 4: Exploitation Stage (Medium): To avoid the imbalance between exploration
and exploitation abilities caused by a too-rapid transition of the algorithm in the medium
term, the vulture enters the medium-term exploitation stage when the value of

∣∣Ft
i

∣∣ is
between 0.5 and 1. In the medium-term exploitation stage, p2, a parameter with a [0, 1]
range, is still employed. This parameter decides whether the vulture engages in circular
flight or feeding competition. As a result, before the vulture’s act, a random number randt

p2
in the range [0, 1] is created at the beginning of the medium-term exploitation stage. The
vultures compete for food when randt

p2 is larger than or equal to parameter p2. In contrast,
the rotational flying behavior is used when randt

p2 is less than parameter p2.

(1) Food Competition

The vulture becomes full and active when the value of
∣∣Ft

i

∣∣ is between 0.5 and 1. As a
result, when vultures congregate, weak vultures seek to group up and attack the strong
vultures to gain food since they are unwilling to share their meal. The weaker vultures try
to tire and obtain food from the healthy vultures by gathering around healthy vultures and
causing small conflicts, calculated in Equation (21) to model this step.

Xt+1
i = Dt

i ×
(

Ft
i + randt

i4
)
–dt

i (21)

where Dt
i is calculated by Equation (20), Ft

i is calculated by Equation (7), and randt
i4 is an

evenly distributed random number in the range of [0, 1]; dt
i is calculated by Equation (22).

dt
i = Rt

i − Xt
i (22)

(2) Rotating Flight

In addition to engaging in food rivalry, stuffed and energized vultures also hover
above. AVOA uses a spiral model to simulate this behavior. As a result, Equation (23) can
represent the vultures’ location update formula in their circular flight behavior.

Xt+1
i = Rt

i–
(
St

i1 + St
i2
)

(23)

The spiral model is used to model rotational flight mathematically. A spiral equation is
created between all vultures and one of the two best vultures in this method. The rotational
flight is expressed using Equations (24) and (25), in which St

i1 and St
i2 are calculated.

St
i1 = Rt

i ×
(

randt
i5 × Xt

i
2π

)
× cos

(
Xt

i
)

(24)

St
i2 = Rt

i ×
(

randt
i6 × Xt

i
2π

)
× sin

(
Xt

i
)

(25)

In Equations (24) and (25), Rt
i represents the position vector of one of the best vultures

in the current iteration, which is obtained by using Equation (2); randt
i5 and randt

i6 are
evenly distributed random numbers in the range of [0, 1], and after obtaining St

i1 and St
i2,

the location of the vulture is updated.
Stage 5: Exploitation Stage: Nearly all vultures in the population are satisfied while

the value of
∣∣Ft

i

∣∣ is less than 0.5, but the best two vulture types grow weak and hungry after
prolonged exercise. During this time, vultures attack food and congregate around one food
source. As a result, there is also a parameter p3 inside the range [0, 1] at the subsequent
exploitation stage. With this characteristic, researchers can tell if vultures engage in attack
or aggregation behavior. Therefore, before the vulture acts during the latter exploitation
stage, a random value randt

p3 in the range of [0, 1] is generated at random. The vultures
display aggregation behavior when randt

p3 is higher than or equal to parameter p3. In
contrast, the vulture engages in attack behavior when randt

p3 is less than parameter p3.
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(1) Aggregation Behavior

When AVOA is in its advanced stages, vultures have already digested many items. If
there is food, vultures congregate in large numbers, and aggressive behavior develops. The
equation for updating the vultures’ location may now be expressed in Equation (26), where
all vultures are finally aggregated.

Xt+1
i =

At
i1 + At

i2
2

(26)

Xt+1
i is the vector of the vulture position in the next iteration. At

i1 and At
i2 are calculated

by Equations (27) and (28), respectively.

At
i1 = BestVulturet

1–
BestVulturet

1 × Xt
i

BestVulturet
1 −

(
Xt

i
)2 × Ft

i (27)

At
i2 = BestVulturet

21–
BestVulturet

2 × Xt
i

BestVulturet
2 −

(
Xt

i
)2 × Ft

i (28)

In Equation (26), BestVulturet
1 is the best vulture of the first group in the current

iteration, BestVulturet
2 is the best vulture of the second group in the current iteration, Ft

i is
the rate of satisfaction and is calculated using Equation (17), and Xt

i is the current vector
position of a vulture.

(2) Attack Behavior

When |F| < 0.5, the head vultures become starved and weak and do not have enough
energy to deal with the other vultures. On the other hand, other vultures also become
aggressive in their quest for food. They move in different directions towards the head
vulture, which is like how they move towards the best vulture when AVOA is nearing the
end to obtain what little food is still available. To model this motion, Equation (29) is used.

Xt+1
i = Rt

i −
∣∣dt

i
∣∣× Ft

i × Levy(dim) (29)

In Equation (29),
∣∣dt

i

∣∣ represents the distance of the best vulture in each group, whereas
dt

i is determined using Equation (21), the dimension of the problem solution is represented
by dim, and Levy(·) represents the Lévy flight, whose patterns are used to increase the
effectiveness of AVOA. Its calculation formula is shown in Equation (30):

Levy(dim) = 0.01× r1 × σ

|r2|
1
σ

(30)

where r1 and r2 are equally distributed random numbers in the range of [0, 1], and δ is a
constant, which is set to 1.5. The calculation’s formula for σ is shown in Equation (31).

σ =

 Γ(1 + δ)× sin
(

πδ
2

)
Γ(1 + δ)× δ× 2(

δ−1
2 )


1
δ

(31)

In Equations (30) and (31), dim represents the problem dimensions, r1, and r2 are ran-
dom numbers between 0 and 1, and δ is a fixed default number of 1.5, where Γ(x) = (x− 1)!

For a better understanding, the AVOA flowchart is shown in Figure 3.
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4. Simulation Results

In this section, a Panasonic UR18650ZY 3.7 V, 2600 mAh, Li-ion rechargeable battery
is presented as an industrial battery in this market that significantly improves driving
reliability and performance. Its specifications include the following qualities, shown in
Table 1.
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Table 1. Characteristics of Panasonic Li-ion battery.

Battery Panasonic UR18650ZY

Nominal voltage (V) 3.7
Minimum capacity (mAh) 2450
Typical capacity (mAh) 2600
Internal resistance (Ω) 0.05
Max. current charging/discharging (A) 2/2
Charging CC/CV (mA, V) 1750, 4.20
Charging time (h) 3

Ambient temperature (◦C)
Charge : (0 ∼ +45 ◦C)

Discharge : (−20 ∼ +60 ◦C)
Weight (g) 48

There are also constants considered while simulating the battery model, and their
values are presented in Table 2.

Table 2. Parameter constants of lithium-ion battery.

Parameter Value

Battery discharge capacity (Qdis)(Ahr) 1.4
Number of discharge cycles (N) 100
Battery capacity

(
Q f ade

)
after (N) discharge cycles (Ahr) 2

Internal resistance (Ro) after (N) discharge cycles (Ω) 0.15
Battery discharge voltage (Vdis) after (N) discharge cycles (V) 3
Population size 20
Number of iterations 500

The boundaries of the estimated battery parameters that are taken into consideration
for the calculated battery cell properties are shown in Table 3.

Table 3. Boundaries of a lithium-ion battery’s parameters.

Parameters Lower Bound Upper Bound Parameters Lower Bound Upper Bound

At T1 = 25 ◦C At T2 = 45 ◦C
Vnom (V) 3.7 3.8 Vnom (V) 3.7 3.8
Q (Ahr) 2.5 2.6 Q (Ahr) 2.5 2.6

Vdis|T1 (V) 3.5 3.6 Vdis|T2 (V) 3.8 3.9
Ro|T1 ( ) 0.05 0.06 Ro|T2 ( ) 0.08 0.09
Rtr|T1 ( ) 0.005 0.006 Rtr|T2 ( ) 0.008 0.009
τtr|T1 (s) 109 110 τtr|T2 (s) 160 161

Battery cells are put inside the climatic chamber to carry out the test at a specified
temperature. For four situations and their four cases, the proposed estimating method
is used:

• Scenario (1): No load or battery fading is considered.
• Scenario (2): Although battery fade is considered, no load is included.
• Scenario (3): Only the load is included; battery fading is not.
• Scenario (4): Load and battery fade are included.

The same cases are used in each of these scenarios, which are as follows:

• Case (1): No charge dynamics included at T1 = 25 ◦C.
• Case (2): Charge dynamics are included at T1 = 25 ◦C.
• Case (3): No charge dynamics included at T2 = 45 ◦C.
• Case (4): Charge dynamics are included at T2 = 45 ◦C.
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4.1. Simulation of Scenario (1)

The battery model is studied in this scenario, as neither loading nor battery aging are
included. Tables 4–7 represent all the results of the four cases, which include charge dynam-
ics or their absence at the temperatures 25 ◦C and 45 ◦C, for the Li-ion battery’s parameters
and the integral square error (ISE), and the results are implemented in convergence curves
between the compared algorithms in Figures 4–7.

Table 4. Scenario (1)—Case (1) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T1 3.7001 3.745 3.7 3.7 3.7001 3.7 3.7001
Ro|T1 0.05391 0.0545 0.0592 0.054 0.0539 0.0539 0.0542

Q 2.5962 2.555 2.5303 2.5892 2.5958 2.5935 2.5958
Vdis|T1 3.5281 3.545 3.5 3.5298 3.5282 3.5282 3.5282

ISE 0.0901 0.0928 0.169 0.0832 0.0895 0.0728 0.0800

Table 5. Scenario (1)—Case (2) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T1 3.7001 3.745 3.7 3.7 3.7001 3.7 3.7001
Ro|T1 0.06 0.0512 0.06 0.0524 0.054 0.0528 0.0539

Vdis|T1 3.5281 3.545 3.5 3.5298 3.5282 3.5282 3.5282
Rtr|T1 0.0053 0.00594 0.005 0.00549784 0.0053427 0.0056 0.0056
τtr|T1 109.28 109.72 109.34 109.78 109.29 109.71 110
ISE 0.00849 0.00852 0.0109 0.00804 0.00812 0.0069 0.0075

Table 6. Scenario (1)—Case (3) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T2 3.9261 3.9114 3.9342 3.9291 3.9131 3.9009 3.9009
Ro|T2 0.081294 0.080428 0.081429 0.082940 0.08391 0.080951 0.082

Vdis|T2 3.8102 3.8242 3.8529 3.8291 3.82 3.8 3.83
ISE 0.0712 0.0724 0.0924 0.0692 0.0702 0.0670 0.0678

Table 7. Scenario (1)—Case (4) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Variables Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T2 3.9261 3.9114 3.9342 3.9291 3.9131 3.9009 3.9009
Ro|T2 0.08197 0.08159 0.08041 0.08251 0.08261 0.08 0.083

Vdis|T2 3.8102 3.8242 3.8529 3.8291 3.82 3.8 3.83
Rtr|T2 0.00824 0.00831 0.00829 0.00810 0.00804 0.008 0.00862
τtr|T2 160.78 160.23 160.94 160.31 160.26 160 160.84
ISE 0.00282 0.00304 0.00629 0.00294 0.00391 0.002186 0.0024

Figure 4 shows the convergence curve between the number of iterations and the
integral square error (ISE) of this case, which does not include battery fade and loading,
with no charge dynamics included at T1 = 25 ◦C.

Figure 5 shows the convergence curve between the number of iterations and the
integral square error (ISE) of this case, which does not include battery fade and loading,
including charge dynamics at T1 = 25 ◦C.
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Figure 6 shows the convergence curve between the number of iterations and integral
square error (ISE) of this case, which does not include battery fade and loading, without
charge dynamics at T2 = 45 ◦C.

Figure 7 shows the convergence curve between the number of iterations and integral
square error (ISE) of this case, which does not include battery fade and loading, including
charge dynamics at T2 = 45 ◦C.

4.2. Simulation of Scenario (2)

In this scenario, the battery fade is included. Internal capacity and resistance are both
impacted by aging. In particular, the formation of solid electrolyte interfaces (SEI) at the
anode and cathode and the corrosion of the current collector are two factors contributing to
the rise in resistance. Battery fading results from these processes, which depend on storage
temperature, storage charge state, and time. Tables 8–11 present all the results of the four
cases, including charge dynamics or their absence at temperatures of 25 ◦C and 45 ◦C, for
the Li-ion battery’s parameters. The integral square error is implemented in convergence
curves between the compared algorithms in Figures 8–11.

Table 8. Scenario (2)—Case (1) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T1 3.7001 3.7001 3.7 3.7 3.7 3.724 3.7
Ro|T1 0.053914 0.053914 0.05001 0.0549 0.05 0.0529 0.05

Q 2.5962 2.5962 2.5915 2.5863 2.6 2.6 2.6
Vdis|T1 3.5281 3.5281 3.5321 3.5274 3.5298 3.5298 3.5298

ISE 0.1692 0.1744 0.2791 0.1824 0.1933 0.1031 0.1133

Table 9. Scenario (2)—Case (2) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T1 3.7001 3.7001 3.7 3.7 3.7 3.724 3.7
Ro|T1 0.05481 0.0521 0.0598 0.0531 0.05487 0.0555 0.0537

Vdis|T1 3.5281 3.5281 3.5321 3.5274 3.5298 3.5298 3.5298
Rtr|T1 0.0059 0.0057 0.00591 0.005281 0.005294 0.00542 0.0054
τtr|T1 109.7818 109.6921 109.544 109.261 109.197 109.2108 109.8858
ISE 0.0081 0.0087 0.00994 0.00821 0.00840 0.0073 0.0077
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Table 10. Scenario (2)—Case (3) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T2 3.9001 3.9241 3.9143 3.9014 3.9021 3.9210 3.9
Ro|T2 0.08245 0.08152 0.08314 0.08512 0.08212 0.08426 0.0855

Vdis|T2 3.8214 3.8261 3.8197 3.8159 3.8410 3.8138 3.8138
ISE 0.3717 0.3811 0.4105 0.3221 0.3514 0.3130 0.3190

Table 11. Scenario (2)—Case (4) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T2 3.9001 3.9241 3.9143 3.9014 3.9021 3.9210 3.9
Ro|T2 0.08214 0.08391 0.08652 0.0849 0.0854 0.0852 0.0849

Vdis|T2 3.8214 3.8261 3.8197 3.8159 3.8410 3.8138 3.8138
Rtr|T2 0.008297 0.008254 0.00872 0.00821 0.00811 0.00855 0.008
τtr|T2 160.6584 160.581 160.911 160.749 160.654 160.251 160.7331
ISE 0.03011 0.03141 0.0414 0.0244 0.0251 0.0237 0.0294
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4.3. Simulation of Scenario (3)

In this scenario, a resistive 1 kΩ load is considered while the battery fade is not
considered. Tables 12–15 represent all the results of the four cases, including charge
dynamics or their absence at temperatures of 25 ◦C and 45 ◦C, for the Li-ion battery’s
parameters and the integral square error, which are implemented in convergence curves
between the compared algorithms in Figures 12–15.
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Table 12. Scenario (3)—Case (1) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T1 3.7001 3.7001 3.7 3.7 3.7009 3.7115 3.7015
Ro|T1 0.0514 0.05093 0.05 0.0545 0.0542 0.05245 0.054495

Q 2.5798 2.5301 2.5 2.6 2.5648 2.6 2.6
Vdis|T1 3.5103 3.5214 3.5209 3.5325 3.5412 3.5322 3.5322

Table 13. Scenario (3)—Case (2) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T1 3.7001 3.7001 3.7 3.7 3.7009 3.7115 3.7015
Ro|T1 0.05235 0.05756 0.0536 0.05123 0.05698 0.05421 0.0538

Vdis|T1 3.5103 3.5214 3.5209 3.5325 3.5412 3.5322 3.5322
Rtr|T1 0.005125 0.005456 0.00574 0.005321 0.005785 0.00522 0.0056
τtr|T1 109.2354 109.9874 109.3214 109.0745 109.7452 109.1172 109.0782
ISE 0.00821 0.00841 0.0099 0.0070 0.0071 0.006553 0.007

Table 14. Scenario (3)—Case (3) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T2 3.9245 3.9547 3.9812 3.9072 3.9019 3.9113 3.9013
Ro|T2 0.08325 0.08456 0.08475 0.08545 0.08577 0.08452 0.08552

Vdis|T2 3.8248 3.8234 3.8752 3.8284 3.8236 3.8267 3.8167
ISE 0.3810 0.3911 0.7491 0.4075 0.4291 0.3623 0.3700

Table 15. Scenario (3)—Case (4) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T2 3.9245 3.9547 3.9812 3.9072 3.9019 3.9113 3.9013
Ro|T2 0.0854 0.08324 0.08754 0.08245 0.08421 0.0854 0.085

Vdis|T2 3.8248 3.8234 3.8752 3.8284 3.8236 3.8267 3.8167
Rtr|T2 0.00862 0.008234 0.008241 0.008845 0.008965 0.00871 0.0086
τtr|T2 160.4426 160.2142 160.6987 160.964 160.4532 160.8211 160.8426
ISE 0.0299 0.0301 0.0414 0.0294 0.0318 0.02381 0.0352
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Figure 12 shows the convergence curve between the number of iterations and integral
square error (ISE) of this case, which includes loading but does not include battery fade,
without charge dynamics at T1 = 25 ◦C.

Figure 13 shows the convergence curve between the number of iterations and integral
square error (ISE) of this case, which includes loading but does not include battery fade,
including charge dynamics at T1 = 25 ◦C.

Figure 14 shows the convergence curve between the number of iterations and integral
square error (ISE) of this case, which includes loading but does not include battery fade,
without charge dynamics at T2 = 45 ◦C.

Figure 15 shows the convergence curve between the number of iterations and integral
square error (ISE) of this case, which includes loading but does not include battery fade,
including charge dynamics at T2 = 45 ◦C.

4.4. Simulation of Scenario (4)

In this scenario, the resistive load and battery fade are considered. Tables 16–19
represent all the results of the four cases, which include charge dynamics or their absence
at temperatures of 25 ◦C and 45 ◦C, for the Li-ion battery’s parameters and the integral
square error, and the results are implemented in convergence curves between the compared
algorithms in Figures 16–19.

Table 16. Scenario (4)—Case (1) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T1 3.7 3.7 3.7001 3.7 3.7 3.711 3.7
Ro|T1 0.05 0.05 0.0539 0.05 0.05 0.0531 0.05

Q 2.6 2.6 2.5 2.6 2.6 2.6 2.6
Vdis|T1 3.5409 3.5409 3.5937 3.5320 3.5321 3.5218 3.5208

ISE 0.9791 0.9791 1.0954 0.8730 0.8728 0.8638 0.8720

Table 17. Scenario (4)—Case (2) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T1 3.7 3.7 3.7001 3.7 3.7 3.711 3.7
Ro|T1 0.05304 0.05841 0.05587 0.05741 0.05012 0.05211 0.05201

Vdis|T1 3.5409 3.5409 3.5937 3.5320 3.5321 3.5218 3.5208
Rtr|T1 0.005411 0.005785 0.005984 0.005881 0.005007 0.00521 0.00531
τtr|T1 109.2531 109.2631 109.5644 109.6711 109.9321 109.1131 109.1031
ISE 0.0087 0.0091 0.0099 0.0070 0.0079 0.0061 0.0072

Table 18. Scenario (4)—Case (3) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T2 3.9123 3.9412 3.9425 3.9654 3.9421 3.9001 3.9
Ro|T2 0.08451 0.0821 0.08632 0.08784 0.0863 0.0861 0.0851

Vdis|T2 3.8241 3.8385 3.8412 3.8002 3.8325 3.8141 3.8041
ISE 0.4005 0.4111 0.5101 0.3511 0.3822 0.3091 0.3214

Figure 16 shows the convergence curve between the number of iterations and integral
square error (ISE) of this case, which includes loading and battery fade, without charge
dynamics at T1 = 25 ◦C.
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Figure 17 shows the convergence curve between the number of iterations and integral
square error (ISE) of this case, which includes loading and battery fade, including charge
dynamics at T1 = 25 ◦C.

Figure 18 shows the convergence curve between the number of iterations and integral
square error (ISE) of this case, which includes loading and battery fade, without charge
dynamics at T2 = 45 ◦C.

Table 19. Scenario (4)—Case (4) Electrical parameters and error for lithium-ion battery adopting the
comparative algorithms.

Parameters Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Vnom|T2 3.9123 3.9412 3.9425 3.9654 3.9421 3.9001 3.9
Ro|T2 0.08481 0.08415 0.08652 0.08021 0.08321 0.0831 0.0821

Vdis|T2 3.8241 3.8385 3.8412 3.8002 3.8325 3.8141 3.8041
Rtr|T2 0.008572 0.008032 0.008196 0.008035 0.008470 0.008175 0.008170
τtr|T2 160.4125 160.3574 160.965 160.0954 160.7874 160.7111 160.7201
ISE 0.0233 0.0259 0.0451 0.02712 0.0295 0.0190 0.0212
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Figure 19 shows the convergence curve between the number of iterations and integral
square error ( ISE) of this case, which includes loading and battery fade, including charge
dynamics at T2 = 45 ◦C.

5. Discussion

This study demonstrates a correlation between the characteristics of lithium-ion bat-
teries under different loading conditions, temperature conditions, and aging effects. Based
on the findings of similar studies, the results met the expectations of minimizing the in-
tegral square error between measured and estimated voltage while using one of the best
optimization techniques. However, although the results of the cases, including different
temperature conditions, were within the findings of previous research and theory, the cases,
including different loading and aging conditions, have not been considered before. This
study provides new insight into the relationship between characteristics of the battery by
taking into consideration the aging effect and applying load to it as battery aging is an
essential factor that must be discussed in the case of batteries; however, every study has its
limitations. As this study was only applied to batteries with low ampere-hours which were
very sensitive to high temperatures, and as they were very fragile, the batteries required
a protection circuit to maintain their safe operation. Therefore, lithium-ion batteries with
large ampere-hours are recommended for future work to consider battery fading more.
As for the optimization technique used to minimize the integral square error, the AVOA
shows the best results based on the least integral square error and best convergence curve.
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However, in terms of the computational complexity of this technique and according to
its calculation time, the AVOA takes less computational time. It is much faster than the
compared algorithms. Therefore, the success rate is applied to brief the simulation section,
which involves several best-optimized parameters within the total parameters in each case
in each scenario. Tables 20–23 show the Li-ion battery’s achieved objective value based on
the compared methodologies.

Table 20. Objective values for Li-ion battery adopting the comparative algorithms for Scenario (1).

Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Case (1): No charge dynamics at
T1 = 25 ◦C 0.0901 0.0928 0.169 0.0832 0.0895 0.0728 0.0800

Rank 5 6 7 (Max.) 3 4 1 (Min.) 2
Case (2): Charge dynamics at
T1 = 25 ◦C 0.00849 0.00852 0.0109 0.00804 0.00812 0.0069 0.0075

Rank 5 6 7 (Max.) 3 4 1 (Min.) 2
Case (3): No charge dynamics at
T2 = 45 ◦C 0.0712 0.0724 0.0924 0.0692 0.0702 0.0670 0.0678

Rank 5 6 7 (Max.) 3 4 1 (Min.) 2
Case (4): Charge dynamics at
T2 = 45 ◦C 0.00282 0.00304 0.00629 0.00294 0.00391 0.002186 0.0024

Rank 3 6 7 (Max.) 4 5 1 (Min.) 2

Table 21. Objective values for Li-ion battery adopting the comparative algorithms for Scenario (2).

Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Case (1): No charge dynamics at
T1 = 25 ◦C 0.1692 0.1744 0.2791 0.1824 0.1933 0.1031 0.1133

Rank 3 4 7 (Max.) 5 6 1 (Min.) 2
Case (2): Charge dynamics at
T1 = 25 ◦C 0.0081 0.0087 0.00994 0.00821 0.00840 0.0073 0.0077

Rank 3 6 7 (Max.) 4 5 1 (Min.) 2
Case (3): No charge dynamics at
T2 = 45 ◦C 0.3717 0.3811 0.4105 0.3221 0.3514 0.3130 0.3190

Rank 5 6 7 (Max.) 3 4 1 (Min.) 2
Case (4): Charge dynamics at
T2 = 45 ◦C 0.03011 0.03141 0.0414 0.0244 0.0251 0.0237 0.0294

Rank 5 6 7 (Max.) 2 3 1 (Min.) 4

Table 22. Objective values for Li-ion battery adopting the comparative algorithms for Scenario (3).

Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Case (1): No charge dynamics at
T1 = 25 ◦C 0.1849 0.1852 0.3192 0.1799 0.1836 0.1600 0.1697

Rank 5 6 7 (Max.) 3 4 1 (Min.) 2
Case (2): Charge dynamics at
T1 = 25 ◦C 0.00821 0.00841 0.0099 0.0070 0.0071 0.006553 0.007

Rank 5 6 7 (Max.) 2,3 4 1 (Min.) 2,3
Case (3): No charge dynamics at
T2 = 45 ◦C 0.3810 0.3911 0.7491 0.4075 0.4291 0.3623 0.3700

Rank 3 4 7 (Max.) 5 6 1 (Min.) 2
Case (4): Charge dynamics at
T2 = 45 ◦C 0.0299 0.0301 0.0414 0.0294 0.0318 0.02381 0.0352

Rank 3 4 7 (Max.) 2 5 1 (Min.) 6
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Table 23. Objective values for Li-ion battery adopting the comparative algorithms for Scenario (4).

Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Case (1): No charge dynamics at
T1 = 25 ◦C 0.9791 0.9791 1.0954 0.8730 0.8728 0.8638 0.8720

Rank 5,6 5,6 7 (Max.) 4 3 1 (Min.) 2
Case (2): Charge dynamics at
T1 = 25 ◦C 0.0087 0.0091 0.0099 0.0070 0.0079 0.0061 0.0072

Rank 5 6 7 (Max.) 2 4 1 (Min.) 3
Case (3): No charge dynamics at
T2 = 45 ◦C 0.4005 0.4111 0.5101 0.3511 0.3822 0.3091 0.3214

Rank 5 6 7 (Max.) 3 4 1 (Min.) 2
Case (4): Charge dynamics at
T2 = 45 ◦C 0.0233 0.0259 0.0451 0.02712 0.0295 0.0190 0.0212

Rank 3 4 7 (Max.) 5 6 1 (Min.) 2

As shown in Tables 20–23, based on the integral square error (ISE) and convergence
curve, the AVOA gives the least (ISE) and best convergence curves in all scenarios.

In terms of computational time, the AVOA has the best computational time, as it is
much shorter than those of the other techniques, which are presented in Table 24.

Table 24. Average computational time in second per iteration for Scenario (4)—Case (4).

Nelder–Mead Quasi-Newton GA GWO RK AVOA GTO

Time 4.28 4.37 15.78 5.96 5.54 1.24 3.95

This computational time was calculated for Scenario (4)—Case (4), which is considered
the most time-consuming scenario, as it includes loading, fading, and charge dynamics,
which verify the effectiveness of the AVOA and its shorter computational time.

For more verification, the AVOA fits as the best optimization algorithm when compar-
ing the measured voltage and experimental voltage in the last-case scenario (load, battery
fade, and charge dynamics included) at different temperatures. Figures 20 and 21 show the
relation between measured and experimental voltage before and after optimization.
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6. Conclusions

By applying the integral square error approach to reduce the difference between the
measured and experimental voltage, this work proposes the participation of loading and
fading in identifying lithium-ion battery parameters. This study determines lithium-ion
battery model parameters by reducing the difference between measured and experimental
voltage using the integral square error method (ISE), and considers the loading and fading
effects. The African vultures optimization algorithm (AVOA), recently adopted, uses dy-
namic modeling of nonlinearity to investigate the unknown parameters of Li-ion batteries.
The recommended model verification exhibits promising results. Using the AVOA, the
dynamic model’s objective function and standard deviation error were effectively val-
idated. In addition, thorough comparisons were made between several contemporary
AVOA approaches, including the gorilla troops optimizer, the Runge Kutta optimizer,
the genetic optimizer, the grey wolf optimizer, and the Nelder–Mead and quasi-Newton
algorithms. For a 2600 mAh Li-ion rechargeable battery, simulation research was integrated
with practical applications. The computational complexity and running time of the AVOA
are much shorter than those of all the comparable algorithms. The AVOA still has some
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disadvantages, such as quickly falling into locally optimal solutions and having an imbal-
ance between its exploration and exploitation abilities. It must be tested with complicated
test functions to show the algorithm’s strengths and weaknesses. Therefore, an improved
version of the proposed algorithm can be used for multiobjective or discrete optimization
problems in future works. The proposed AVOA technique displays significant dynamic
validation analysis and excellent capability for all circumstances. The statistical results
demonstrate the significant potential of the proposed AVOA as an effective optimization
approach. When compared with other methods, the fitness function reaches the lowest
value. The AVOA produces the most reliable and effective solution. Moreover, the provided
AVOA results affirm high accuracy between predicted and experimental voltages.
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Nomenclature
List of symbols and nomenclature.
Symbol Description
SOC Battery state of charge
ESS Energy storage systems
SOH Battery state of health
SOL Battery state of life
SOP Battery state of power
BMS Battery management system
ISE Integral square error
Vocv Battery open-circuit voltage
Ro The internal resistance of the battery
Rtr Transient resistance of the battery
Ctr The transient capacitance of the battery
Vtr The voltage across the transient branch of the battery
ICtr Current flows in transient capacitance of the battery
Ibatt Battery terminal current
τs Sampling time
τtr Transient time constant
Vnom Battery nominal voltage
Vdis Battery discharge voltage
Q Battery nominal capacity
Qdis Battery discharge capacity
β Battery fade coefficient
Vt Battery terminal voltage
n Total number of discharge cycles
N Number of discharge cycles
Vnom, f ade Battery nominal voltage at the fade
δVnom % change in nominal battery voltage after (N) discharge cycles
Q f ade Battery capacity at the fade
δQ % change in battery capacity after (N) discharge cycles
Ri, f ade Internal/transient resistance at the fade
Idischarge Battery discharge current
Icharge Battery charge current
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Fi(U) Objective function
nob f Total number of objective functions
Umin, Umax Parameter bounds for the control variable factor
Vmeasured Expected battery model voltage
Vexperimental Recorded experimental battery voltage
Qmin, Qmax Maximum and minimum values of (Q)
Romin, Romax Maximum and minimum values of (Ro )
Rtrmin, Rtrmax Maximum and minimum values of (Rtr )
τtrmin, τtrmax Maximum and minimum values of (τtr )
Xt

i Position of vulture
BestVulturet

1 Best vulture
BestVulturet

2 Second-best vulture
m The overall number of first and second vulture group
f t
i Fitness rating of first and second vultures

α The first flock of vultures
β The second flock of vultures
γ The third flock of vultures
p1 Exploration stage parameter
p2 Exploitation stage (medium) parameter
p3 Exploitation stage parameter
Xt

i Location of the vulture
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