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Abstract: Flow Direction Algorithm (FDA) has better searching performance than some traditional
optimization algorithms. To give the basic Flow Direction Algorithm more effective searching ability
and avoid multiple local minima under the searching space, and enable it to obtain better search
results, an improved FDA based on the Lévy flight strategy and the self-renewable method (LSRFDA)
was proposed in this paper. The Lévy flight strategy and the self-renewable approach were added to
the basic Flow Direction Algorithm. Random parameters generated by the Lévy flight strategy can
increase the algorithm’s diversity of feasible solutions in a short calculation time and greatly enhance
the operational efficiency of the algorithm. The self-renewable method lets the algorithm quickly
obtain a better possible solution and jump to the local solution space. Then, this paper tested different
mathematical testing functions, including low-dimensional and high-dimensional functions, and the
test results were compared with those of different algorithms. This paper includes iterative figures,
box plots, and search paths to show the different performances of the LSRFDA. Finally, this paper
calculated different engineering optimization problems. The test results show that the proposed
algorithm in this paper has better searching ability and quicker searching speed than the basic Flow
Direction Algorithm.
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1. Introduction

Optimization refers to the design of existing schemes and parameters under given
conditions so that a problem can obtain a more satisfactory answer. Optimization prob-
lems are often encountered in scientific research and production practice [1]. For a long
time, scholars have conducted a lot of research on optimization problems and expanded
optimization problems, making this a critical discipline. In the 17th century, Newton
and Leibniz founded calculus and successfully solved a difficult problem, which can be
regarded as a milestone in optimization theory. Then, the Lagrange multiplier method,
the steepest descent method, the linear programming method, and the simplex method
were proposed. These mathematical theories have been widely used in various engineering
systems, economic systems, and social systems. However, these methods are aimed at
particular problems and have specific requirements for their searching spaces. The objective
function must be set as convex, continuously differentiable, and differentiable. With the
development of science and technology, there are a large number of optimization problems
to be solved in many practical application fields, such as the distribution center location
problem, the layout optimization of factory production, the optimal allocation of equipment
resources, the product scheduling problem, etc. [2–4].

These practical problems are generally large-scale, nonlinear, and multipolar, and
many industrial optimization problems should be solved under complex variable con-
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ditions and over large search ranges. The traditional optimization method cannot carry
out mathematical modeling. Therefore, exploring intelligent optimization methods for
large-scale computing has become an important research direction in related disciplines.
Therefore, industry and mathematics need strong computing power and high-precision
optimization strategies to solve complex optimization problems, including nonlinear, mul-
tivariable, multi-constraint, and multi-dimensional problems. As an important branch of
artificial intelligence fields, the intelligent optimization algorithm is a new evolutionary
computing technology that has attracted more and more attention from scholars. The main
idea of the intelligent optimization algorithm is to construct a searching algorithm accord-
ing to natural characteristics. To create an intelligent optimization algorithm, metaheuristic
optimization algorithms have been applied to mathematical methods to search for feasi-
ble solutions to linear and nonlinear function problems [5–7]. In recent years, intelligent
optimization algorithms have been widely applied in different fields [8–10]. Many optimiza-
tion algorithms have been designed by scholars to solve complex optimization problems,
such as, Poor and Rich Optimization (PRO) [11], Beluga Whale Optimization (BWO) [12],
Monarch Butterfly Optimization (MBO) [13], Student Psychology-Based Optimization
(SPBO) [14], Jellyfish Search (JS) [15], etc. [16–20].

These algorithms can obtain acceptable solutions in a limited computing time and
can obtain empirical information in the searching process. Additionally, optimization
algorithms rely on optimization rules, which makes them less demanding in terms of
mathematical properties. At the same time, due to the algorithms’ searching ability, they
can significantly reduce searching times for large-scale problems. The Flow Direction
Algorithm (FDA), which was proposed by Hojat Karami in 2021, is physics-based. FDA is
inspired by the movement of water into the outflow in a catchment area. The FDA shows
the flow direction to the outlet point with the lowest height in a drainage basin. The flow
moves to the neighbor with the best objective function [21,22]. To further improve the
searching ability, iteration speed, and jumping out power of the optimal local solution in
the basic FDA, this paper proposed an improved FDA based on the Lévy flight strategy
and the self-renewable method (LSRFDA). New coefficient factors based on the Lévy flight
strategy and the self-renewable method were added to the basic FDA. These two methods
enabled the LSFDA to find better feasible solutions and achieve a faster speed. To weaken
the disadvantages of the standard FDA, this paper proposed an improved FDA based on
the Lévy flight strategy and the self-renewable method (LSRFDA)., which could effectively
improve its solving accuracy and the convergence performance of complex functions in
spaces with different dimensions. Secondly, we introduced the LSRFDA to engineering
optimization problems, and compared it with other algorithms to show that the model
proposed in this paper has good robustness and generalization ability. The LSRFDA uses the
Lévy flight strategy and the self-renewable method to strengthen its searching ability and
iteration speed, and can jump out of the optimal local solution. In this paper, an improved
FDA algorithm is proposed to solve engineering optimization problems. The LSRFDA
focuses on improving upon some disadvantages of basic FDA in the searching process,
and on solving engineering optimization problems; thus, it could provide new methods of
solving engineering optimization problems. For function experiments, this paper applied
different functions to test the proposed algorithm. Iteration curves, box plot charts, and
search path figures were created, and the Wilcoxon rank sum test conducted. The rest of
this paper is organized as follows: In Section 2, this paper introduces the basic FDA. In
Section 3, this paper presents the proposed LSRFDA. In Section 4, the function experimental
parameters, function experimental environments, numerical calculation results analysis,
algorithm sub-sequence calculation results analysis, Wilcoxon rank sum test results analysis,
iteration results analysis, box plot results analysis, and searching path results analysis are
shown. In Section 5, the engineering optimization problems are given. In Section 6, the
discussion is presented. In Section 7, the conclusion is given.
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2. Flow Direction Algorithm

Concerning the FDA, the position of the initial flow is determined based on the
following relationship:

Flow_X(i)= lb + rand×(ub− lb) (1)

where Flow_X(i) means the position of the i-th flow, lb and ub mean the lower and upper
limits of the decision variables, and the parameter rand is in the range of [0, 1]. There are
neighborhoods around each flow, and the neighbor flow position is created based on the
following relationship:

Neighbor_X(j) = Flow_X(i) + randn× ∆ (2)

where Neighbor_X(i) represents the j-th neighbor position, and randn is a random value
with a normal distribution in the range of [0, 1].

∆ = (rand×Xrand− rand× Flow_X(i))× ‖Best_X− Flow_X(i)‖ ×W (3)

where the parameter rand is in the range of [0, 1], Best_X is the global optimal solution, and
Xrand is a random position that is created based on the following relationship:

rd =
M

∑
m=1

(Rm − f ∆t) (4)

where the parameters rd, Rm, ∆t, and M mean the amount of direct runoff, rainfall, time
interval, and the number of time steps, respectively.

W =

((
1− iter

Max_Iter

)(2×randn)
)
×
(

rand× iter
Max_Iter

)
× rand (5)

where rand is a random vector with uniform distribution, iter means the current iteration,
and Max_iter means the global iteration.

The following relationship is applied to complete the new position of the flow:

Flow_newX(i) = Flow_X(i) + V
Flow_X(i)− Neighbor_X(j)
‖Flow_x(i)− Neighbor_X(j)‖ (6)

where Flow_newX(i) shows the i-th new flow position.

V = randn× So (7)

S0(i, j, d) =
Flow_ f itness(i)− Neighbor_ f itness(j)
‖Flow_x(i, d)− Neighbor_ f itness(j, d)‖ (8)

where Flow_fitness(i) and Neighbor_fitness(j) represent different values of the i-th flow and
the j-th neighbor, respectively. The parameter d represents the problem dimension. Then,
we generate a random integer number r.

The flow will move to the r-th flow if the fitness of the r-th flow is less than the fitness
of the current flow. The following relationship shows how to mimic the flow direction in
these conditions:

if Flow_fitness(r) < Flow_fitness(i)

Flow_newX(i) = SL × Best_X

else

Flow_newX(i) = Flow_X(i) + SL × (Best_X− Flow_X(i))

end

(9)
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The FDA’s iterative process is as follows:
Step 1. In the initialization phase, the algorithm randomly generates an initial pop-

ulation of flows, defines the objective function and its solution space, and finds the best
objective function and the best solution. Set the maximum iterations Max_Iter. Set iter = 1.

Step 2. Create the neighbor flow position in Formula (2) and ∆ in Formula (3) for each
individual of the population or flows.

Step 3. Calculate each objective function value. Record the best neighbor solution
value, and the best global optimal solution value in the current generation. If the best
neighbor has a better objective function than the current flow, proceed to step 5. Otherwise,
go to step 6.

Step 5. Find the new flow position according to Formula (6).
Step 6. Update the flow position according to Formula (9).
Step 7. Find the best objective function value and the best solution in the current

generation. Replace the global solution and the global value if there is a better solution.
Step 8. Calculate iter = iter + 1. Judge whether iter equals Max_Iter. If not, return to

step 2 and continue. Otherwise, stop the iteration.

3. The Proposed Algorithm

To obtain a better search result in the FDA, this paper introduces an improved FDA
based on the Lévy flight strategy and the self-renewable method (LSRFDA). The Lévy flight
strategy and the self-renewable method are added the original algorithm. In the proposed
algorithm, iteration is optimized through mutual cooperation and a global information
sharing mechanism. Global searching enables the algorithm to quickly find the optimal
solution, while local searching enables the algorithm to thoroughly use the information
around the optimal solution to find a better solution. The Lévy flight strategy was proposed
by French mathematician Lévy according to non-Gaussian random moving in 1925. Lévy
flight defines a scale-invariant walking model, which can be redefined by connecting
the long gait with the small gait since the Lévy distribution is a non-Gaussian random
process [23,24]. The probability density distribution of the Lévy flight strategy can be
calculated based on the following relationship:

L(sL) = |sL|−β (10)

where sL is the Lévy flight length and β is the power law index, where 1 < β ≤ 3. The Lévy
flight strategy step is determined according to a random probability, showing a dynamic
motion process. The parameters can be calculated as follows:

sL =
u

|v|1/β
(11)

where u~N (0,σ2
u), v~N (0,σ2

v ), and σv = 1.

σu =

{
Γ(1 + β) sin(πβ/2)
Γ[(1 + β)/2]β2β−1/2

}1/β

(12)

In this paper, the Lévy flight strategy is the most important stage of the methodology.
So, this paper shows a two-dimensional Lévy flight path and a three-dimensional Lévy
flight path in Figure 1.
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Thus, the ∆ direction based on the Lévy flight strategy in this paper can be updated
as follows:

∆new = (rand× Xrand− rand× Flow_X(i))× ‖Best_X− Flow_X(i)‖ × sL (13)

This new V based on the Lévy flight strategy can be updated using (14).

Vnew = sL × S0 (14)

Flow_newX(i) = Flow_X(i) + Vnew
Flow_X(i)− Neighbor_X(j)
‖Flow_x(i)− Neighbor_X(j)‖ (15)

The self-renewable method can enable the algorithm to quickly obtain a better feasible
solution, and can conduct a more detailed search for a feasible solution. The relationship
that illustrates how to simulate the flow direction can be updated as follows:

i f Flow_ f itness(r) < Flow_ f itness(i)

Flow_newX(i) = sL × Best_X
else

Flow_newX(i) = Flow_X(i) + sL × (Best_X− Flow_X(i))
end

(16)

The LSRFDA steps are summarized in the pseudo-code shown in Algorithm 1.
The LSRFDA iterative process can be presented as follows:
Step 1. In the initialization phase, the algorithm randomly generates an initial pop-

ulation of flows, defines the objective function and its solution space, and finds the best
objective function and best solution. Set the maximum number of iterations Max_Iter. Set
iter = 1.

Step 2. Create the neighbor flow position, and the new ∆ can be updated using
Formula (13).

Step 3. Calculate each function value. Record the best neighbor solution value and the
best global optimal solution value. If the best neighbor has a better objective function than
that of the current flow, proceed to step 5, otherwise, jump to step 6.

Step 5. Calculate Formula (14) and find the new flow position according to Formula (15).
Step 6. Update the flow position according to Formula (16).
Step 7. Find the best objective function value and the best solution in the current gener-

ation. Replace the global solution and the global function value if there is a better solution.
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Step 8. Calculate iter = iter + 1. Judge whether iter equals Max_Iter. If not, return to
step 2 and continue. Otherwise, stop the iteration.

Algorithm 1: LSRFDA

1: Input: Function f (.). Searching range. Max_Iter. Set iter = 1. Flows N, Neighbors M.
2: Initial optimum solution Best_X. lb, ub, β = 1.5.
3: Output: Best_X.
4: While (iter < Max_Iter)
5: For 1 i = 1:N
6: For 2 j = 1:M
7: sL = u/(|v|1/β)
8: Flow_X(j) = lb + rand × (ub − lb)
9: ∆new = (rand × Xrand − rand × Flow_X(j)) × ||Best_X − Flow_X(j)|| × sL
10: Determining the best neighbor.
11: End For 2
12: If 1 the best neighbor has a better objective function than that of the current flow
13: Vnew = sL × So
14: Else
15: Generate random integer number r
16: If 2 Flow_fitness(r) < Flow_fitness(i)
17: Flow_newX(i) = sL × Best_X
18: Else
19: Flow_newX(i) = Flow_X(i) + sL × (Best_X − Flow_X(i))
20: End If 2
21: End If 1
22: Update Best_X if there is a better solution
23: End For 1
24: iter = iter + 1
25: End While

The main SRLFDA flow chart is shown in Figure 2.
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4. Function Experiments
4.1. Testing Environments

To verify the searching ability of the proposed algorithm for solving complex functions
with different dimensions, this paper carried out mathematical benchmark function experi-
ments. Table 1 shows the low-dimensional and variable-dimensional benchmark functions,
where f 1 to f 10 are low-dimensional functions and f 11 to f 16 are variable-dimensional
functions.

Table 1. Basic information on benchmark functions.

Name Function D Range f min

Beale
f 1(x) = (1.5 − x1 + x1x2)2 + (2.25 − x1 + x1x2

2)2

+ (2.625 − x1+ x1x3
2)2 2 [−100, 100] 0

Booth f 2(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 2 [−100, 100] 0

Cube f 3(x) = 100(x2 − x3
1)2 + (1 − x1)2 2 [−100, 100] 0

Egg Crate f 4(x) = x2
1 + x2

2 + 25(sin2(x1) + sin2(x2)) 2 [−100, 100] 0

Himmelblau f 5(x) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2 2 [−100, 100] 0

Leon f 6(x) = 100(x2 − x2
1)2 + (1 − x1)2 2 [−100, 100] 0

Matyas f 7(x) = 0.26(x2
1 + x2

2) −0.48x1x2 2 [−100, 100] 0

RotatedEllipse02 f 8(x) = x2
1 − x1x2 + x2

2 2 [−100, 100] 0

Three-Hump Camel f 9(x) = 2x2
1 − 1.05x4

1 + x6
1/6 + x1x2 + x2

2 2 [−100, 100] 0

Wayburn Seader01 f 10(x) = (x6
1 + x4

2 − 17)2 + (2x1 + x2 − 4)2 2 [−100, 100] 0

Griewank f11(x) =
D
∑

i=1

(
x2

i /4000
)
−

D
∏
i=1

cos
(

xi/
√

i
)
+ 1 2/30/60/150 [−10, 10] 0

Rotated Hyper-Ellipsoid f12(x) =
D
∑

i=1

i
∑

j=1
x2

j
2/30/60/150 [−10, 10] 0

Sphere f13(x) =
D
∑

i=1
x2

i
2/30/60/150 [−10, 10] 0

Sum Squares f14(x) =
D
∑

i=1
ix2

i
2/30/60/150 [−10, 10] 0

Sum of Different Powers f15(x) =
D
∑

i=1
|xi|

i+1
2/30/60/150 [−10, 10] 0

Zakharov f16(x) =
D
∑

i=1
x2

i +

(
D
∑

i=1
0.5ixi

)2

+

(
D
∑

i=1
0.5ixi

)4
2/30/60/150 [−10, 10] 0

In Table 1, D represents the dimension, f min is the ideal optimal value, and Range
is the searching scope. The original FDA literature already compared some intelligence
algorithms, so this paper selects other algorithms for comparative experiments to avoid
repeated and unnecessary experiments. The compared algorithms include Moth–Flame
Optimization (MFO) [25], a Multi-Verse Optimizer (MVO) [26], Simulated Annealing
(SA) [27], and basic FDA. MFO, which was proposed in 2015 by Seyedali Mirjalili, is based
on the moth navigation method in nature called transverse orientation. The inspirations
for MVO are based on three concepts, including the white hole, the black hole, and the
wormhole. In MVO, r2, r3, and r4 are in the range of [0, 1]. SA is a probability algorithm
derived from the solid annealing principle. SA includes two initial parameters, including
initial temperature t0 and attenuation factor k. In this paper, t0 is set at 100, and k is set at
0.95. All the iterative processes and details of the compared algorithms can be found in the
original algorithm literature. All the initial parameters of the compared algorithms were
selected based on the original algorithm literature. This paper sets the population size of
all the algorithms to 50 and sets the maximum iteration number of all the algorithms to 200.
To obtain a fair result and remove randomness, all the algorithms were run independently
10 times. All the programs, data, and figures were accomplished in MATLAB (R2014b).
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The key feature parameters of all the algorithms used in this comparative study are shown
in Table 2. Max_Iter is the maximum iteration number. N means the population size.

Table 2. Basic information on benchmark functions.

Algorithm Key Feature Parameter Max_Iter N

LSRFDA Lévy flight length: Sl. Power law index: β.

200 50
FDA Random vector: rand. Random position: Xrand. Random

number: rand.
MFO Random number: t. Constant: b.

MVO
Random number: r1, r2, r3, r4. Coefficient number: TDR,
WEP. Exploitation accuracy: p. Minimum and maximum

numbers: min, max.
SA Initial temperature: t0. Attenuation factor: k.

4.2. Numerical Calculation Results Analysis

To verify the effectiveness of the improved algorithm in this paper, this chapter selects
the four indicators to comprehensively evaluate the competitiveness of the different algo-
rithms. The three indicators include the highest searching value (Min), the lowest searching
value (Max), and the average searching value (Ave). Table 3 shows the two-dimensional
function results. Table 4 shows the high-dimensional function results (30/60/150). It can
be seen from Tables 3 and 4, that most of the calculated optimal values of the proposed
algorithms in this paper are very close to the ideal optimal values in Table 1. For the Min
indicator, the LSRFDA has all the best searching values of all the comparison algorithms.
For the Max indicator and the Ave indicator, the LSRFDA has the best searching values
across all the benchmark function results, except f 10. In f 10, the FDA has the best Max
indicator and the best Ave indicator. From Tables 3 and 4, it can be seen that except for f 10,
the LSRFDA proposed in this article is significantly superior to the other four comparison
algorithms. For the f 10 function, the search result is not the best value, and the maximum
value and the average value are slightly worse than the FDA but are better than MFO,
MVO, and SA. Although the searching accuracy of the proposed algorithm will decrease
with an increase in the test function dimension, the optimization efficiency and calculation
power of the proposed algorithm are always better than those of the other comparison
algorithms. The search results show that the LSRFDA can not only obtain the best target,
but also has strong searchability. The optimization accuracy of the original FDA is low in
the searching process, and the individual population in the FDA quickly falls into the local
optimal solution area in the searching space. Although the basic FDA can obtain better
results in some benchmark functions, when the benchmark function dimension is increased,
the solution accuracy of the feasible solution in the FDA is significantly reduced. The
numerical results of benchmark functions of different dimensions show that the proposed
algorithms in this paper can efficiently find the optimal value of the benchmark function
in a multi-dimensional searching space. The improved algorithm has high searchability,
strong detection accuracy, and a fast iteration speed.

Table 3. Comparison of results for two-dimensional functions.

Function Metric LSRFDA FDA MFO MVO SA

f 1

Min 0 0 0 2.6946 × 10−5 0.0096
Max 0 7.3704 × 10−7 1.4092 × 10−16 0.4792 0.4769
Ave 0 7.3704 × 10−8 1.4092 × 10−17 0.1294 0.3301

f 2

Min 0 0 0 2.2357 × 10−6 0.0017
Max 0 0 0 0.0005 0.0174
Ave 0 0 0 0.0002 0.0069
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Table 3. Cont.

Function Metric LSRFDA FDA MFO MVO SA

f 3

Min 0 0 9.5342 × 10−5 0.0003 0.0132
Max 1.1093 × 10−31 1.6575 × 10−16 0.3662 8.4851 4.4566
Ave 1.6024 × 10−32 1.6575 × 10−17 0.0538 1.8117 1.3225

f 4

Min 0 1.4725 × 10−43 6.9502 × 10−45 1.8314 × 10−5 0.3767
Max 0 1.9320 × 10−34 4.0349 × 10−38 0.0066 85.3771
Ave 0 3.6561 × 10−35 4.0399 × 10−39 0.0023 33.2411

f 5

Min 0 0 0 0.0005 0.0108
Max 3.1554 × 10−30 8.8920 × 10−26 9.3983 × 10−26 0.0039 0.3501
Ave 7.0998 × 10−31 8.8922 × 10−27 1.3632 × 10−26 0.0021 0.0934

f 6

Min 0 2.7794 × 10−45 1.4127 × 10−9 0.0006 0.0185
Max 0 1.3670 × 10−42 2.6005 38.6167 0.3772
Ave 0 2.6631 × 10−43 0.2607 7.7896 0.1339

f 7

Min 0 1.2152 × 10−47 1.9600 × 10−39 4.9588 × 10−7 2.4612 × 10−5

Max 0 1.7254 × 10−40 1.8402 × 10−18 3.2146 × 10−5 0.0011
Ave 0 1.7603 × 10−41 2.3675 × 10−19 1.2289 × 10−5 0.0005

f 8

Min 0 8.3261 × 10−45 4.0001 × 10−47 7.4928 × 10−6 0.0002
Max 0 6.6272 × 10−37 2.2733 × 10−39 0.0001 0.0054
Ave 0 6.8364 × 10−38 2.3244 × 10−40 6.6311 × 10−5 0.002970385

f 9

Min 0 7.3650 × 10−46 4.5065 × 10−47 5.4736 × 10−5 0.0004
Max 0 1.6197 × 10−38 4.4818 × 10−42 0.0003 0.3006
Ave 0 1.9097 × 10−39 8.7414 × 10−43 0.0001 0.0416

f 10

Min 0 0 0 0.0009 0.0408
Max 1.3411 × 10−29 7.8886 × 10−31 2.6225 × 10−21 0.0202 4.5708
Ave 1.9722 × 10−30 3.1554 × 10−31 3.5098 × 10−22 0.0086 0.7425

f 11(D=2)

Min 0 0 0 7.2263 × 10−7 0.0006
Max 0 3.6366 × 10−11 0.0099 0.0296 0.0050
Ave 0 5.5746 × 10−12 0.0064 0.0150 0.0019

f 12(D=2)

Min 0 2.4682 × 10−41 2.1456 × 10−49 8.3964 × 10−8 4.3981 × 10−5

Max 0 6.8949 × 10−35 3.3578 × 10−44 3.8819 × 10−6 0.0011
Ave 0 6.9221 × 10−36 3.4030 × 10−45 1.3765 × 10−6 0.0005

f 13(D=2)

Min 0 1.3668 × 10−39 2.1177 × 10−49 2.0121 × 10−7 2.5717 × 10−5

Max 0 4.4792 × 10−36 1.2284 × 10−44 2.0760 × 10−6 0.0005
Ave 0 9.0174 × 10−37 2.8524 × 10−45 1.3137 × 10−6 0.0002

f 14(D=2)

Min 0 3.3512 × 10−41 4.8850 × 10−53 4.4806 × 10−8 2.2747 × 10−7

Max 0 3.6176 × 10−35 2.8707 × 10−45 4.4295 × 10−6 0.0008
Ave 0 6.0365 × 10−36 3.0331 × 10−46 1.1654 × 10−6 0.0003

f 15(D=2)

Min 0 9.3840 × 10−61 4.2891 × 10−58 7.1028 × 10−10 1.4138 × 10−6

Max 0 2.2466 × 10−49 1.2316 × 10−52 1.4890 × 10−7 0.0001
Ave 0 2.2469 × 10−50 1.3073 × 10−53 2.7849 × 10−8 2.8356 × 10−5

f 16(D=2)

Min 0 0 1.5809 × 10−49 1.3379 × 10−8 1.5844 × 10−5

Max 0 1.0366 × 10−29 8.0164 × 10−45 4.5850 × 10−6 0.0004
Ave 0 1.0366 × 10−30 1.9613 × 10−45 1.4956 × 10−6 0.0002

Table 4. Comparison of results for 30-, 60-, and 150-dimensional functions.

Function Metric LSRFDA FDA MFO MVO SA

f 11(D=30)

Min 0 0.0090 0.1578 0.0031 1.0736
Max 0 0.0407 0.5812 0.0283 1.1207
Ave 0 0.0215 0.3867 0.0142 1.1042

f 12(D=30)

Min 0 0.0664 94.4089 0.9747 3.3371 × 102

Max 0 0.5313 3.2261 × 103 6.0745 6.1136 × 102

Ave 0 0.2051 7.9935 × 102 2.4544 4.8891 × 102

f 13(D=30)

Min 0 0.0090 6.24125 0.0323 23.3850
Max 0 0.0617 1.1021 × 102 0.0653 45.6998
Ave 0 0.0321 37.2880 0.0459 35.8305
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Table 4. Cont.

Function Metric LSRFDA FDA MFO MVO SA

f 14(D=30)

Min 0 0.0225 88.5232 1.4932 3.2128 × 102

Max 0 0.2746 7.0043 × 102 21.2344 5.6142 × 102

Ave 0 0.1501 3.5094 × 102 5.5779 4.7041 × 102

f 15(D=30)

Min 0 0.0002 1.6312 × 1010 8.3515 × 10−6 5.3366 × 105

Max 0 0.0143 1.0000 × 1019 0.0004 1.0801 × 109

Ave 0 0.0030 1.0021 × 1018 9.7982 × 10−5 2.2005 × 108

f 16(D=30)

Min 0 1.9756 4.2004 × 102 2.0136 4.3655 × 102

Max 0 21.7968 1.0012 × 103 7.4879 5.8471 × 102

Ave 0 6.3128 6.0961 × 102 5.1488 5.2551 × 102

f 11(D=60)

Min 0 0.1052 1.0575 0.0465 1.2566
Max 0 0.3525 1.1369 0.1060 1.3302
Ave 0 0.2363 1.0920 0.0798 1.2894

f 12(D=60)

Min 0 14.2737 4.3071 × 103 45.4171 6.3446 × 103

Max 0 34.1611 1.2711 × 104 1.4704 × 102 8.0107 × 103

Ave 0 24.7841 7.6325 × 103 1.0367 × 102 7.2494 × 103

f 13(D=60)

Min 0 0.8442 1.7026 × 102 0.6110 2.3061 × 102

Max 0 2.4553 4.5365 × 102 0.9425 3.4922 × 102

Ave 0 1.4675 3.5684 × 102 0.7346 2.9886 × 102

f 14(D=60)

Min 0 17.5099 6.6668 × 103 63.1508 4.9899 × 103

Max 0 43.0130 1.3593 × 104 1.5904 × 102 7.8820 × 103

Ave 0 30.8744 9.2256 × 103 1.1490 × 102 6.5872 × 103

f 15(D=60)

Min 0 1.7966 × 102 1.1223 × 1031 7.3723 × 107 3.4568 × 1024

Max 0 9.7602 × 108 1.0011 × 1045 1.1733 × 1012 1.5364 × 1028

Ave 0 9.7971 × 107 1.1012 × 1044 2.5344 × 1011 2.4717 × 1027

f 16(D=60)

Min 0 43.9151 1.4475 × 103 4.5691 × 102 1.3422 × 103

Max 0 1.4094 × 102 2.5997 × 103 7.3221 × 102 1.5686 × 103

Ave 0 75.8951 2.0931 × 103 6.1012 × 102 1.4595 × 103

f 11(D=150)

Min 0 0.5745 1.6283 0.4738 1.8267
Max 0 0.8067 1.6862 0.5651 1.9380
Ave 0 0.6626 1.6565 0.5266 1.8827

f 12(D=150)

Min 0 1.1559 × 103 1.3637 × 105 45.9185 1.1103 × 105

Max 0 2.8335 × 103 1.9966 × 105 1.8621 × 102 1.3772 × 105

Ave 0 1.9815 × 103 1.7309 × 105 97.3272 1.2739 × 106

f 13(D=150)

Min 0 26.1026 2.3455 × 103 33.6426 1.8881 × 103

Max 0 66.3179 2.9093 × 103 40.1903 2.1316 × 103

Ave 0 39.6319 2.6249 × 105 36.4699 2.0106 × 103

f 14(D=150)

Min 0 1.2931 × 103 1.4680 × 105 4.4758 × 103 1.1027 × 105

Max 0 2.4220 × 103 2.0119 × 105 6.8221 × 103 1.3683 × 105

Ave 0 1.7784 × 103 1.7194 × 105 5.3490 × 103 1.2501 × 105

f 15(D=150)

Min 0 9.7063 × 1028 1.0102 × 10111 1.5854 × 1065 4.0170 × 1085

Max 0 1.1564 × 1045 1.0000 × 10126 2.1031 × 1076 2.1882 × 1094

Ave 0 1.1564 × 1044 1.2000 × 10125 2.2457 × 1075 2.9493 × 1093

f 16(D=150)

Min 0 3.5503 × 102 3.9665 × 103 3.0960 × 103 4.1307 × 103

Max 0 8.3240 × 102 7.3505 × 103 4.7742 × 103 4.5396 × 103

Ave 0 6.3080 × 102 5.8527 × 103 3.9971 × 103 4.3493 × 103

4.3. Sub-Sequence Run Results Analysis

We conducted a basic statistical assessment of the results obtained in the sub-sequence
runs of the algorithm. Radar charts of the algorithm’s 10 sub-sequence runs are shown
in Figures 3–7. A radar chart is a graphical method used to display multivariable data in
the form of a two-dimensional chart on an axis from the same point. The relative position
and the angle of an axis are usually uninform. A radar chart is also called a network
map, a spider map, a star map, a polar coordinate map, and a Kiviat map. The method
involves draw corresponding function value ratio lines in a radial form, starting from the
center of a circle, in different regions. Then, by connecting the corresponding function
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value ratio lines with lines, an irregular closed-loop graph is formed. In this paper, the
radar chart clearly shows the running results of the algorithm sub-sequences and shows
differences in the algorithm sub-sequences. If the edge of the radar chart is wider, the
accuracy of the algorithm operation is lower. For two-dimensional functions, SA sub-
sequences have large radar charts, except for f 3, f 6, and f 11(D=2). For high-dimensional
functions (D = 30/60/150), MFO and SA sub-sequences have large radar charts. LSRFDA
sub-sequences have the smallest radar charts of all the functions. The radar charts show
that LSRFDA can improve the searching ability of the basic FDA for in terms of its global
searching and local exploration capabilities, can avoid the algorithm getting stuck in the
local optimal solution, and can jump out of the local optimal region, which can improve
the performance and solution accuracy of the basic FDA.
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Figure 7. Sub-sequence run radar charts for variable−dimensional functions (D = 150). (a) f11(D=150); 
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Figure 7. Sub-sequence run radar charts for variable–dimensional functions (D = 150). (a) f 11(D=150);
(b) f 12(D=150); (c) f 13(D=150); (d) f 14(D=150); (e) f 15(D=150); (f) f 16(D=150).
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4.4. Wilcoxon Rank Sum Test Results Analysis

In the case of arbitrary distribution, the mathematical analysis method often uses
symbol testing methods to verify whether there is a significant difference in the distribution
positions of the paired experimental data. However, the symbol testing method only consid-
ers positive and negative signs of differences, without considering absolute differences in
differences, which can result in the partial loss of experimental information and inaccurate
results. To avoid this flaw in the symbol testing method, this paper uses the Wilcoxon rank
sum test. This method considers both the direction and magnitude of differences, making
it more effective than symbol testing. Similar methods can also be used to test whether
there are differences in the distribution positions of the group of experimental data. The
Wilcoxon rank sum test is based on the rank sum of sample data. First, two samples are
regarded as a single sample. Then, observations are ranked from small to large. If it is
true to assume that the two independent samples are from the same population, the rank
will be approximately distributed from the two samples. If it is true to assume that the
two independent samples come from different populations, one will have smaller rank
values. The other sample will have larger rank values, so a large rank sum will be obtained.
The Wilcoxon rank sum test can give p values; if the p value is less than 0.05, there is a
significant difference at a level of 0.05. To further compare the proposed algorithm with the
other algorithms, the Wilcoxon rank sum test was used in this paper. All of the algorithm’s
p values are given in Table 5, and NO means that the calculation results are not a number.
For the FDA, the p values of f 3, f 5, f 10, f 11(D=2), and f 16(D=2) are larger than 0.05. The other
algorithms’ p values are less than 0.05. The Wilcoxon rank sum test shows that the LSRFDA
has a large searching ability, which further shows that the LSRFDA has good searching
performance. The LSRFDA performs significantly better than other comparison algorithms
in solving different function problems. The Wilcoxon rank sum test results show that the
range of optimal value fluctuation is very small, and the LSRFDA’s stability is strong. It
can be seen that the proposed algorithm in this paper has good optimization performance
for various typical functions, and has broad adaptability and strong robustness.

Table 5. Comparison of the Wilcoxon rank sum test results.

Function FDA MFO MVO SA

f 1 0.0002 0.0022 6.39 × 10−5 6.39 × 10−5

f 2 NO NO 6.39 × 10−5 6.39 × 10−5

f 3 0.2838 0.0001 0.0001 0.0001
f 4 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 5 0.2885 0.0416 0.0002 0.0002
f 6 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 7 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 8 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 9 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 10 0.2577 0.0447 0.0002 0.0002
f 11(D=2) 0.0779 0.0007 6.39 × 10−5 6.39 × 10−5

f 12(D=2) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 13(D=2) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 14(D=2) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 15(D=2) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 16(D=2) 0.3681 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 11(D=30) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 12(D=30) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 13(D=30) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 14(D=30) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 15(D=30) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 16(D=30) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5
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Table 5. Cont.

Function FDA MFO MVO SA

f 11(D=60) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 12(D=60) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 13(D=60) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 14(D=60) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 15(D=60) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 16(D=60) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 11(D=150) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 12(D=150) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 13(D=150) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 14(D=150) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 15(D=150) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

f 16(D=150) 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

4.5. Iteration Results Analysis

Figures 8–12 show the iterative results of different algorithms in benchmark functions
of different dimensions. For all the functions, the iteration speed of the proposed algorithm
is significantly faster than that of the basic algorithm. The LSRFDA can search on the left
and right sides of the optimal value through the initial large searching step, and can skip a
certain range of obstacles in the process. The convergence speed of the basic FDA algorithm
is fast in the initial stage of iteration. Still, the individual population in the FDA will fall
into the local optimal solution region and cannot jump out with the optimization iteration.
The LSRFDA significantly improves the population diversity, meaning it can quickly locate
the global optimal solution region and jump out of the local optimal area. It can be seen
that the improved algorithm always quickly approaches the optimal value in the process of
search optimization, and then, the LSRFDA skillfully avoids the local optimal region in the
later optimization process. For the LSRFDA, the Lévy flight mechanism forces the search
path to change continuously in the testing function. Additionally, the LSRFDA also uses
the disturbance weight mechanism to find the global optimal value of the solution space
with greater probability, and applies the multidirectional cross-search strategy to make the
population drift randomly.
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4.6. Box Plot Results Analysis

The box plot is a statistical figure used to show data dispersion information. It is mainly
applied to show the distribution characteristics of original data and can also compare their
distribution characteristics. In the plot, the box includes the highest value, the lowest value,
the median value, the upper and lower quartiles, and the discrete value. Figures 13–17
are all box plots of different algorithms after 10 independent runs. For most benchmark
functions, the LSRFDA has the narrowest box plot, the fewest outliers, the lowest median,
and the closest upper and lower quartiles. If the box plot is a straight line, the algorithm
has achieved the theoretical optimal value after 10 independent runs. From the above
analysis results, it can be seen that the detection step size of individuals in the population
affects the final solution accuracy of the algorithm. When the algorithm is in an unknown
environment, the population must have a large detection step in the early detection stage
to expand the initial searching range. The algorithm should have a small detection step in
the late iteration stage for a more accurate and detailed local searching phase. Differently-
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colored bars represent box plot charts of different algorithms, and red dots represents
discrete outlier data in Figures 13–17.
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Mathematics 2023, 11, 2217 22 of 31

4.7. Search Path Results Analysis

To test the searching speed, the searching efficiency, and the searching accuracy
of the LSRFDA, the LSRFDA search path and the original FDA search path are given.
Figures 18 and 19 show three-dimensional graphs of the benchmark functions and com-
parison figures of the search path between the LSRFDA and FDA in two-dimensional
benchmark functions. The comparison figures are a search path refracted to the two-
dimensional plane and a contour map in the two-dimensional plane. The red straight line
is the LSRFDA search path. The green dashed line is the FDA search path. The blue origin
in the figure is the theoretical optimal position. As can be seen from Figure 1, the FDA
search path is larger than the LSRFDA search path in most search paths. The LSRFDA
search path is larger than that of the FDA in f 16. The LSRFDA search path is similar to that
of the FDA in f 3, f 11, and f 15. When using the LSRFDA and FDA for search path analysis,
there is a significant difference in searching effectiveness. The LSRFDA has significant path
advantages, and its planned path length is significantly reduced, indicating significant
improvement compared to the basic FDA. After adopting the LSRFDA, during the initial
search path, the LSRFDA uses a smaller field of view and fragmented step size to find paths,
and can refine and adjust paths to improve their smoothness, which helps to reduce the
search path’s length. This is due to the high random jumping characteristic of the LSRFDA,
which makes it easy to jump from one region to another region. It can be seen from the
figure that the LSRFDA search path cannot easily fall into the local optimal region in the
searching process, and its solution accuracy is high, which shows that the LSRFDA can
guide and restrict its performance through self-growth strategies to achieve the expected
target effect. The search path experiment shows that the proposed algorithm has better
solution accuracy and strong searching stability, and its solution quality is higher than that
of the basic FDA algorithm. The proposed algorithm can find the optimal solution for the
testing function under fewer search paths. Secondly, the proposed algorithm has a high
initial global searching ability at the beginning of the search action. At the same time, it can
have high solution accuracy and iteration speed.
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Figure 18. Three−dimensional graphs of benchmark functions. (a) f 1.; (b) f 2; (c) f 3; (d) f 4; (e) f 5; (f) f 6;
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5. Engineering Optimization Problems
5.1. The Three-Bar Truss Problem

The aim of the three-bar truss problem is to find the optimal value under different
constraints including stress, bending, and buckling. This problem has two different decision
variables, including the area of the three bars. Figure 20 shows the structure of the truss
and the loads applied to the truss, arrows represent the direction of the force extension. In
this figure, x1 = x3.
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The three-bar truss problem can be formulated as follows:

Minimize f (x) =
(

2
√

2x1 + x2

)
× l

Subject to :


g1(x) =

√
2x1+x2√

2x2
1+2x1x2

P− σ ≤ 0

g2(x) = x2√
2x2

1+2x1x2
P− σ ≤ 0

g3(x) = 1√
2x2+x1

P− σ ≤ 0

l = 100 cm, P = 2 KN/cm2, σ = 2 KN/cm2

(17)
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To solve the three-bar truss problem, the population size, number of neighbors, and
number of iterations selected via sensitivity analysis are equal to 25, 3, and 200 in the basic
FDA literature. In this paper, all the algorithm parameters were selected based on the
basic FDA literature. The LSFDA search results were compared with different algorithms
by considering 10 random runs [28–33]. The results of the highest and lowest values, the
means, and the standard deviation are given in Table 6. The LSRFDA search result is better
than that of the basic FDA. In comparison to this algorithm, the LSRFDA can find the same
optimal solution.

Table 6. Results of three-bar truss problem.

Algorithm Highest Lowest Mean Std

SC 263.895846 263.969756 263.903356 1.3 × 10−2

PSO–DE 263.895843 263.895843 263.895843 4.5 × 10−10

DSS-MDE 263.895843 263.895849 263.895843 9.7 × 10−7

HEA-ACT 263.895843 263.896099 263.895865 4.9 × 10−5

WCA 263.895843 263.896201 263.895903 8.71 × 10−5

MBA 263.895852 263.915983 263.897996 3.93 × 10−3

FDA 263.895843 263.906102 263.896416 0.019
LSRFDA 263.89584341 263.89588457 263.89585579 1.521133 × 10−5

5.2. The Tensile/Compression Spring Problem

The tensile/compression spring problem aims is to find the minimum spring weight
under different constraints, including pressure, surge frequency, and deflection. In this
problem, arrows represent the stretching direction, the three decision variables are the wire
diameter (d), the mean spring coil diameter (D), and the number of active spring coils (P),
which are denoted by x1, x2, x3. Figure 21 means the structure of the tensile/compression
spring.
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The tensile/compression spring problem can be formulated as follows:

Minimize f (x) = x2x2
1(x3 + 2)

Subject to :


g1(x) = 1−

(
x3

2x3/71785x4
1
)
≤ 0

g2(x) =
(
4x2

2 − x1x2/12566
(
x3

1x2 − x4
1
))

+
(
1/5108x2

1
)
− 1 ≤ 0

g3(x) = 1−
(
140.45x1/x2

2x3
)
≤ 0

g4(x) = (x2 + x1)/1.5− 1 ≤ 0

0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.00

(18)

To solve the tensile/compression spring problem, the population size, number of
neighbors, and number of iterations determined via sensitivity analysis are equal to 50, 1,
and 200 in the basic FDA literature. In this paper, all the algorithm parameters were selected
based on the basic FDA literature [28–45]. The LSRFDA search results were compared
with different algorithms by considering 10 random runs. In Table 7, NO means that the
literature does give the value of the algorithm. The LSRFDA search’s highest value, mean
value, and standard deviation are higher than those of the FDA’s search result, but the
lowest value is lower than that of the FDA search result.
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Table 7. Results of the tensile/compression spring problem.

Algorithm Highest Lowest Mean Std

GA3 0.0127048 0.0128220 0.0127690 3.94 × 10−5

GA4 0.0126810 0.0129730 0.0127420 5.90 × 10−5

HPSO 0.0126652 0.0127190 0.0127072 1.58 × 10−5

NM-PSO 0.0126302 0.0126330 0.0126314 8.47 × 10−7

G-QPSO 0.012665 0.017759 0.013524 0.001268
QPSO 0.012669 0.018127 0.013854 0.001341
PSO 0.012857 0.071802 0.019555 0.011662

DELC 0.012665233 0.012665575 0.012665267 1.3 × 10−7

DSS-MDE 0.012665233 0.012738262 0.012669366 1.3 × 10−5

HEA-ACT 0.012665233 0.012665240 0.012665234 1.4 × 10−9

PSO-DE 0.012665233 0.012665304 0.012665244 1.2 × 10−8

SC 0.012669249 0.016717272 0.012922669 5.9 × 10−4

UPSO 0.01312 0.0503651 0.02294 7.20 × 10−3

CDE 0.01267 NO 0.012703 NO
(λ + µ)-ES 0.012689 NO 0.013165 3.9 × 10−4

ABC 0.012665 NO 0.012709 0.012813
TLBO 0.012665 NO 0.01266576 NO
MBA 0.012665 0.012900 0.012713 6.30 × 10−5

WCA 0.012665 0.012665 0.012665 8.06 × 10−5

CSA 0.0126652328 0.0126701816 0.0126659984 1.357079 × 10−6

FDA 0.0126652761 0.0177770845 0.0127895914 2.0881 × 10−4

LSRFDA 0.012665351461 0.013588874352 0.012834281713 2.873818 × 10−4

5.3. The Speed Reducer Design Problem

The aim of the speed reducer design problem is to find the minimum cost under
different constraints. The objective function can be presented as follows:

Minimize

f (x) = 0.7854x1x2
2
(
3.3333x2

3 + 14.9334x3 − 43.0934
)

−1.508x1
(
x2

6 + x2
7
)
+ 7.4777

(
x3

6 + x3
7
)

+0.7854
(
x4x2

6 + x5x2
7
)

Subject to :



g1(x) = 27
x1x2

2x3
− 1 ≤ 0

g2(x) = 397.5
x1x2

2x2
3
− 1 ≤ 0

g3(x) = 1.93x3
4

x2x4
6x3
− 1 ≤ 0

g4(x) = 1.93x3
5

x2x4
7x3
− 1 ≤ 0

g5(x) = [(745(x4/x2x3))
2+16.9×106]

0.5

110x3
6

− 1 ≤ 0

g6(x) = [(745(x5/x2x3))
2+157.5×106]

0.5

85x3
7

− 1 ≤ 0

g7(x) = x2x3
40 − 1 ≤ 0

g8(x) = 5x2
x1
− 1 ≤ 0

g9(x) = x1
12x2
− 1 ≤ 0

g10(x) = 1.5x6+1.9
x4

− 1 ≤ 0

g11(x) = 1.1x7+1.9
x5

− 1 ≤ 0

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8 , 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

(19)
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To solve the tensile/compression spring problem, the population size, number of
neighbors, and number of iterations determined via sensitivity analysis are equal to 50,
1, and 200 in the basic FDA literature. In this paper, all the algorithm parameters were
selected based on the basic FDA literature, and the different results are shown in Table 8.
In Table 8, NO means that the literature does give the value of the algorithm [28–46].

Table 8. Results of the speed reducer design problem.

Algorithm Highest Lowest Mean Std

SC 2994.744241 3009.964736 3001.758264 4.0000
PSO-DE 2996.348167 2996.348204 2996.348174 6.4 × 10−6

DELC 2994.471066 2994.471066 2994.471066 1.9 × 10−12

DSS-MDE 2994.471066 2994.471066 2994.471066 3.6 × 10−12

HEA-ACT 2994.499107 2994.752311 2994.613368 7.0 × 10−2

(λ + µ)-ES 2996.348 NO 2996.348 0
ABC 2997.058 NO 2997.058 0

TLBO 2996.34817 NO 2996.34817 0
MBA 2994.482453 2999.652444 2996.769019 1.56

MRFO 2994.4800 2994.5248 2994.4928 0.0146
FDA 2749.5830 2749.5830 2749.5830 5.6753 × 10−6

LSRFDA 2996.05139942 3014.17940440 3005.20935624 5.821036

The LSRFDA search’s highest value, lowest value, mean value, and standard deviation
are higher than those of the FDA search result. Although the test results of the FDA are
better than those of the LSRFDA, there is no one algorithm that can solve all engineer-
ing problems. Different algorithms have different advantages, and are fit for different
object functions.

5.4. The Gear Train Problem

The aim of the gear train design problem is to minimize the cost of the gear ratio in
the gear train. Figure 22 shows the structure of the gear train design problem. The decision
variables of the problem are nA, nB, nD, and nF which are denoted as x1, x2, x3, and x4,
respectively. A, B, D, and F mean centre points. In order to address the discrete variables,
all the solutions are rounded to the nearest integer.
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The objective function can be presented as follows:

Minimize f (x) = ((1/6.931)− (x3x2/x1x4))
2

12 ≤ xi(i=1,2,3,4) ≤ 60
(20)

To solve the gear train design problem, the population size, number of neighbors, and
number of iterations determined via sensitivity analysis are equal to 50, 1, and 200 in the
basic FDA literature. In this paper, all the algorithm parameters were selected based on the
basic FDA literature, and the different results are shown in Table 9. In Table 9, NO means
that the literature does give the value of the algorithm [33–48].



Mathematics 2023, 11, 2217 28 of 31

Table 9. Results of the gear train design problem.

Algorithm Highest Lowest Mean Std

UPSO 2.700857 × 10−12 NO 3.80562 × 10−8 1.09 × 10−7

ABC 2.700857 × 10−12 NO 3.641339 × 10−10 5.52 × 10−10

MBA 2.700857 × 10−12 2.062904 × 10−8 2.471635 × 10−9 3.94 × 10−9

CSA 2.70 × 10−12 3.18 × 10−8 2.06 × 10−9 5.06 × 10−9

CS 2.7009 × 10−12 2.3576 × 10−9 1.9841 × 10−9 3.5546 × 10−9

ALO 2.7009 × 10−12 NO NO NO
FDA 2.700857 × 10−12 3.2999 × 10−9 7.5614 × 10−10 8.0465 × 10−10

LSRFDA 2.70085715 × 10−12 6.19334585 × 10−9 1.20815960 × 10−9 2.052122 × 10−9

The LSRFDA search’s highest value is the same as that of the FDA search result, but
the other three values are higher than those of the basic FDA.

6. Discussion

The original FDA literature compared some intelligence algorithms with regard to
their functions and engineering optimization problems. The research objective of this
paper was to enhance the searching ability, iteration speed, and jumping out power of the
optimal local solution in the basic FDA. To discuss this research objective, this paper first
tests 16 different functions, and performs numerical calculation results analysis, algorithm
sub-sequence calculation results analysis, Wilcoxon rank sum test results analysis, iteration
results analysis, box plot results analysis, and searching path results analysis. Then, this
paper computes engineering optimization problems, including the three-bar truss problem,
the tensile/compression spring problem, the speed reducer design problem, and the gear
train problem. To better discuss and analyze the algorithms’ performance, exploratory
discussion radar charts are depicted in Figure 23 to show the ranking of algorithms for each
function. If the point of the algorithm in the radar chart is close to the center of the circle,
the algorithm has a higher search accuracy. If an algorithm forms a smaller polygon shape
in the radar chart, the algorithm has better performance. It can be seen that the LSRFDA
surrounds the radar chart center in functions of all dimensions. Additionally, it can be
seen that the proposed algorithm ranks first among the other compared algorithms for all
the test functions. Regarding the LSRFDA’s limitations and disadvantages, the LSRFDA’s
computational complexity is higher than that of the original algorithm, because of the Lévy
flight strategy. Because Lévy flight defines the scale-invariant walking model connecting
the long gait with the small gait, some engineering optimization problems that require
less computationally complex results may generate restrictions. In some search paths, the
LSRFDA search path is larger than that of the FDA. In some engineering optimization
problems, some testing results of other algorithms are better than those of the proposed
method. However, there is no single algorithm that can solve all problems. The LSRFDA
has its advantages and disadvantages.
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7. Conclusions

In this paper, an LSRFDA algorithm was proposed to solve the optimization prob-
lem, which has strong exploitation ability. This proposed algorithm mixed the Lévy flight
strategy with the self-renewable method, which can enhance the searching ability, iteration
speed, and jumping out power of the optimal local solution of the basic FDA. The combi-
nation of the two strategies enables the LSRFDA to effectively follow the correct direction
based on the given information, and can increase the robustness and the adaptability of
the algorithm. It can generate a uniform distribution in the searching space in the form
of a random distribution at the beginning of the algorithm. This paper focused on some
difficulties encountered by the FDA in the iterative optimization process and applied the
improved FDA to engineering optimization problems. We provide some new methods and
ideas for use in the field of engineering optimization problems.

The mathematical testing function experiment results show that the proposed algo-
rithm has better searching ability than the basic FDA algorithm in different benchmark
functions, including low-dimensional functions and high-dimensional functions, which
shows that the proposed algorithm can enhance the searching ability and iteration speed.
Then, this paper selected four engineering optimization problems to further test the perfor-
mance of the proposed algorithm. For the mathematical testing function experiment, we
drew iterative figures, box plots, and search paths to show different performances of the
LSRFDA, and the different results show that LSRFDA can jump out of the local optimal
solution area and explore a larger solution area in the searching space. In general, the
LSFDA has better searchability than the basic FDA algorithm. In the future, the LSRFDA
will be used in practical industrial problems. Additionally, we will develop more LSRFDA
functions. For future work, we will establish a fusion model based on the FDA and pattern
recognition technology, and will deeply integrate the intelligent optimization technology
of the hybrid FDA with pattern recognition technology; this could not only achieve the
adaptive configuration of model parameters but could also use its superior global con-
vergence performance to further improve the standard training and learning algorithms
in pattern recognition models, enhancing their computational accuracy and convergence
speed. Then, we will research methods of fault diagnosis based on the FDA, integrate
new fault diagnosis methods, and carry out engineering application research based on
these FDA fault diagnosis methods, especially for the engineering application of large and
complex mechanical systems, expanding the scope for new applications of fault diagnosis.
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