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Abstract: The study of differential equation theory has come a long way, with applications in various
fields. In 1961, Zygmund and Calderón introduced the notion of derivatives to metric Lr, which
proved to be better in applications than approximate derivatives. However, most of the studies
available are on Fuzzy Set Theory. In view of this, intuitionistic fuzzy Lr-norm-based derivatives
deserve study. In this study, the Lr-norm-based derivative for intuitionistic fuzzy number valued
functions is introduced. Some of its basic properties are also discussed, along with numerical
examples. The results obtained show that the proposed derivative is not dependent on the existence
of the Hukuhara difference. Lastly, the Cauchy problem for the intuitionistic fuzzy differential
equation is discussed.

Keywords: fuzzy set; intuitionistic fuzzy number; Hukuhara differentiable; generalized Hukuhara
differentiable
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1. Introduction

The fuzzy set theory introduced by L A Zadeh in 1965 [1] paved the way for deal-
ing with vagueness or uncertainty in mathematical models where each element u ∈ U
(universal set) is defined in terms of A( u) [membership function] {A : U → [0, 1] }. Sub-
sequently, many researchers expanded the theory [2–5], one of which is Atanassov, who
introduced the intuitionistic fuzzy set (IFS), in which each element is defined in terms
of A(u), membership, and B(u), non-membership, functions such that A + B ≤ 1 and
1 − (A + B) is the degree of hesitation [2]; this is a generalization of Zadeh’s [1] fuzzy set
theory. Atanassov later conducted additional research to improve intuitionistic fuzzy set
theory (IFST) [2,6–8]. In recent years IFST has been increasingly used in applications of
decision-making problems [9,10], medical diagnosis [11–13], software selection [14], en-
vironmental management [15], transport problems [16], predator prey [17], etc. Susanto
et al. [18] generated fuzzy interval data from crisp data using the Cheng et al. [19] correla-
tion method to determine the relationship between students’ anxiety and mathematical
self-efficacy, based on the concept of α-cut from a fuzzy set. In [20], an extensive study of
IFST was presented, from its introduction and along its evolution, including applications
in real-life scenarios. One of the extensions of IFST is the Pythagorean fuzzy set (PFS); this
concept was put forward by Yager [21], satisfying the condition 0 ≤ A2 + B2 ≤ 1. Later,
Zhang et al. [22] gave the mathematical form and presented the concept of Pythagorean
fuzzy number. Since then, the theory has been studied extensively [23–25]. In [26], the
authors presented a bibliometric analysis of PFS for 2013–2020.

The fuzzy differential equation (FDE) is one of the many extensions of fuzzy set theory
to classical mathematics. Many researchers have studied FDE with different approaches,
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such as differential inclusions [27], Hukuhara derivatives [28], and Zadeh’s extension
principle [29,30]. In 1967 [28], Hukuhara put forth the idea of the Hukuhara difference to
eliminate the problem of the inverse element of Minkowski’s sum [31]. With α-cut being a
compact and convex set, Madan et al. [32] proposed an approach to solve fuzzy differential
equations using the concept of the Hukuhara derivative [28]. But this approach has a
weak point which is that the solution becomes fuzzier, and so the length of the support
of the fuzzy solution increases [33]. So, in order to overcome the disadvantages, Bede
et al. [34] introduced the concept of generalized Hukuhara derivatives. Later, Stefanini [35]
proposed a generalized Hukuhara difference, which was applied to Bede’s generalized
Hukuhara derivative [36]. This yielded a better result, as it made problem solving less
complicated; since then, the study of the GH derivative has been expanded further by the
authors [37–39]. Akin et al. [40] proposed solving the second-order initial value problem
with intuitionistic fuzzy initial values under the intuitionistic Zadeh extension principle.
In [30], Akin et al. extended the GH difference to the intuitionistic fuzzy set by using the
properties of α and β cuts and proposed the concept of strongly generalized Hukuhara
derivatives for the intuitionistic fuzzy environment. They further extended the concept to
solve differential equations in the intuitionistic fuzzy environment with the use of (i) GH
and (ii) GH differentiability [41].

Differential equations in metric spaces, presented by [42], resulted in the introduction
of a new concept called the metric derivative. This concept was further developed to solve
the Cauchy problem for fuzzy as well as intuitionistic fuzzy differential equations [42,43]
and set valued functions [44]. Khastan et al. [45] introduced new metric-based deriva-
tives and compared these with other existing metric-based derivatives. Lr-norm-based
derivatives were introduced by Caldern and Zygmund in 1961 [46] in order to solve el-
liptic partial differential equations. This was further extended to integral theory, such as
Perron’s integral for derivatives in Lr [47], the Lr-Henstock-Kurzweil integral [48], and the
fuzzy Henstock integral [49]. Accordingly, Shao et al. [50] introduced fuzzy Lr-derivatives
and the fuzzy Lr-Henstock–Kurzweil integral based on the derivative. In [51–53], convex
inequalities are studied using Hermite–Hadamard-type inequalities for fuzzy number
valued mappings.

After the review of literature, it was found that numerous studies have been conducted
on fuzzy derivatives using various techniques, but the same cannot be said for IFST. There
are very few studies available on intuitionistic metric-based derivatives, with most done
using GH differentiability. But, the existence of GH difference is not true for all intuitionistic
fuzzy number valued functions; this paper can help to address this limitation. Firstly,
the objective of this paper is to extend the derivative to intuitionistic fuzzy set valued
functions based on Lr-norm, which was proposed in [50]. Secondly, we propose to study
its properties, such as continuity, uniqueness, and many more. Thirdly, we study the
idea that GH differentiability implies IFLr-differentiable, but the converse is not always
true. Finally, it is proposed to solve the intuitionistic fuzzy differential equation using the
extended derivative.

In this paper, Section 2 includes fundamental definitions and theorems of intuitionistic
fuzzy sets and definitions of Lr-norm-based derivatives for fuzzy sets. Section 3 contains
definitions and theorems related to Lr-norm-based derivatives, which are extended from
the fuzzy case to the intuitionistic fuzzy case by using the definitions and theorems in
Section 2 along with numerical examples. In Section 4, the initial value problem is solved
for the intuitionistic differential equation. And lastly, Section 5 includes a summary and
results, with limitations and lines for future work.

2. Preliminaries

Definition 1. [2] Let P = {(u, AP (u), BP (u)) | u ∈ U} be an intuitionistic fuzzy set (IFS)

where AP, BP: U → [0, 1],
AP (u) is the membership function of u,
BP (u) is the non-membership function of u,
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and the condition 0 ≤ AP (u) + BP (u) ≤ 1 holds true.
Atanassov’s intuitionistic fuzzy set is the generalization of Zadeh’s fuzzy set. Then, Zadeh’s fuzzy
set can be written as P = {(u, AP (u), 0) | u ∈ U}, where the non-membership function BP (u) = 0.
IF(U) will be used to denote the set of all intuitionistic fuzzy sets in U.

Definition 2. [2] The α-cut of P ∈ IF (Rn) is defined as
P(α) = {u: u ∈ Rn, AP (u) ≥ α}, for 0 < α ≤ 1, and
P(0) = cl

(⋃
α ∈ (0, 1] P(α)

)
, for α = 0.

Definition 3. [2] The β-cut of P ∈ IF (Rn) is defined as
P∗(β) = {u: u ∈ Rn, BP (u) ≤ β}, for 0 < β < 1, and
P∗(1) = cl

(⋃
β∈ [0, 1) P∗(β)

)
, for β = 1.

Definition 4. [30] If P ∈ IF (Rn) satisfies the following conditions, then it is called an intuitionistic
fuzzy number in Rn:

1. P is a normal set, i.e., ∃ u0 ∈ Rn, such that AP (u0) = 1 (hence, BP (u0) = 0).
2. P (0) and P∗(1) are bounded sets in Rn.
3. AP: Rn → [0, 1] is upper semi-continuous: ∀ k ∈ [0, 1], the set {u: u ∈ Rn, AP (u) < k}

is open.
4. BP: Rn → [0, 1] is lower semi-continuous: ∀ k ∈ [0, 1], the set {u: u ∈ Rn, BP (u) > k}

is open.
5. The membership function AP is quasi-concave:

AP (πu + (1 − π) v) ≥ min {AP (u), AP (v)}, ∀ u, v ∈ Rn, π ∈ [0, 1].
6. The non-membership function BP is quasi-convex:

BP (πu + (1 − π) v) ≤ max {BP (u), BP (v)}, ∀ u, v ∈ Rn, π ∈ [0, 1].

We will denote the set of intuitionistic fuzzy numbers of Rn by IFN (Rn).

Theorem 1. [31] The family of all compact and convex subsets of Rn is closed under Minkowski’s
addition and scalar multiplication.

Definition 5. [30] Let P, Q ∈ IFN (Rn) and c ∈ R− {0}. Then, the addition and scalar multiplica-
tion of fuzzy numbers in IFN (Rn) are defined as follows:

(i) P+ Q = D ⇔ D(α) = P(α) + Q(α) and D*(β) = P*(β) + Q*(β).
(ii) c(P) = D ⇔ D(α) = cP(α) and D*(β) = cP*(β).

Theorem 2. [30] Let P, Q ∈ IFN (Rn). Let us define the following distance functions as

D1(P, Q) = sup{dH(P(α), Q(α)): α ∈ [0, 1]}
D2(P, Q) = sup{dH(P*(β) + Q*(β)): β ∈ [0, 1]},

where dH is the Hausdorff metric. The function
D(P, Q) = max {D1(P, Q), D2(P, Q)}

defines a metric on IFN (Rn). Hence, (IFN (Rn), D) is a metric space.

Definition 6. [30] Let P, Q ∈ IFN (Rn), then

• The Hukuhara difference of P and Q, if it exists, is given by

P ⊖H Q = R ⇔ P = Q + R.

• The generalized Hukuhara difference of P and Q, if it exists, is given by

P ⊖GH Q = R ⇔ P = Q + RorQ = P + ( − 1) R.
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Definition 7. [30] Let F: (m, n) → IFN(R) be an intuitionistic fuzzy number valued function and
u, u + h ∈ (m, n). F is called the Hukuhara differentiable at u if there exists an element F’

H(u) ∈
IFN (R) such that for all h > 0 the following is satisfied:

lim
h→0+

F(u + h)⊖H F(u)
h

= lim
h→0+

F(u)⊖H F(u − h)
h

= F’
H(u).

Definition 8. [30] The intuitionistic fuzzy number valued function F is called the generalized
Hukuhara differentiable at u if there exists an element F’

GH (u) ∈ IFN (R) such that for all h > 0 at
least one of the following conditions is satisfied:

i)

lim
h→0+

F(u )⊖H F(u + h)
−h

= lim
h→0+

F(u − h)⊖H F(x )

−h
= F’

GH(u).

ii)

lim
h→0+

F(u + h)⊖H F(u)
h

= lim
h→0+

F(u − h)⊖H F(u )

−h
= F’

GH(u).

iii)

lim
h→0+

F(u + h)⊖H F(u)
h

= lim
h→0+

F(u)⊖H F(u − h)
h

= F’
GH(u).

iv)

lim
h→0+

F(u)⊖H F(u + h)
−h

= lim
h→0+

F(u)⊖H F(u − h)
h

= F’
GH(u).

Definition 9. [50] Let FN(R) be a set of fuzzy subsets, X ∈ FN(R) is said to be a fuzzy number if
X is normal, convex, upper semi-continuous and

Xα = {u: u ∈ R, AX (u) ≥ α}, for 0 < α ≤ 1, and X0 = cl
(⋃

α ∈ (0, 1] X(α)
)

, for α = 0 is bounded.

The distance dH(X, Y) is defined as

dH(X, Y) = supα ∈ [0,1]
{∣∣Xα

− − Yα
−∣∣, ∣∣Xα

+ − Yα
+
∣∣}.

Obviously, (FN(R); dH) is a complete metric space.

Definition 10. [50] F is fuzzy Lr-differentiable (FLr-differentiable) at u ∈ [m, n] if there exists F’

∈ FN (R) such that the following four situations hold:

i)

lim
l→0+

{
1
l

∫ l
0

[
dH

(
F(u + h),F(u) + F’(u)h

)]rdh
} 1

r

= lim
l→0−

{
1
l

∫ 0
l
[
dH

(
F(u),F(u − h) + F’(u)h

)]rdh
} 1

r
= 0.

ii)

lim
l→0+

{
1
l

∫ l
0

[
dH

(
F(u),F(u − h) + F’(u)h

)]rdh
} 1

r

= lim
l→0−

{
1
l

∫ 0
l
[
dH

(
F(u + h),F(u) + F’(u)h

)]rdh
} 1

r
= 0.

iii)

lim
l→0+

{
1
l

∫ l
0

[
dH

(
F(u + h),F(u) + F’(u)h

)]rdh
} 1

r

= lim
l→0−

{
1
l

∫ 0
l
[
dH

(
F(u + h),F(u) + F’(u)h

)]rdh
} 1

r
= 0.
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iv)

lim
l→0+

{
1
l

∫ l
0

[
dH

(
F(u),F(u − h) + F’(u)h

)]rdh
} 1

r

= lim
l→0−

{
1
l

∫ 0
l
[
dH

(
F(u),F(u − h) + F’(u)h

)]rdh
} 1

r
= 0.

If F satisfies case (i), then F is (i)-FLr-differentiable. Similarly, it is same for the other cases
as well.

3. Proposed Definitions

Definition 11. The distance of intuitionistic fuzzy numbers P, Q ∈ IFN (Rn) with respect to their
α-cut and β-cut is denoted by D(P, Q) and is defined as

D1(P, Q) = supα ∈ [0,1]max
{∣∣∣P(α)− − Q(α)−

∣∣∣, ∣∣∣P(α)+ − Q(α)+
∣∣∣}.

D2(P, Q) = supβ ∈ [0,1] max
{∣∣∣P∗(β)− − Q∗(β)−

∣∣∣, ∣∣∣P∗(β)+ − Q∗(β)+
∣∣∣}.

D(P, Q) = max {D1(P, Q), D2(P, Q)}.

Lemma 1. For P, Q, R, S ∈ IFN(Rn)

(i) D(P + R, Q + R) = D(P, Q).
(ii) D(c · P, c · Q) = |c|D(P, Q), c ∈ R.
(iii) D(P + Q, R + S ) ≤ D(P, R) +D(Q, S).
(iv) D( τ·P, ω · P) = |τ − ω|D(P, 0), for τω > 0.
(v) P ≤ Q iff P(α) ≤ Q(α), α ∈ [0, 1] iff P(α)+ ≤ Q(α)+; P(α)− ≤ Q(α)− and

P∗(β)+ ≥ Q∗(β)+; P∗(β)− ≥ Q∗(β)−; α, β ∈ [0, 1].

Definition 12. For 1 ≤ r ≤ ∞

(1) F is right-hand upper Intuitionistic fuzzy Lr-differentiable (IFLr-differentiable) if there exists
F’ ∈ IFN (Rn) such that

lim
l→0+

{
1
l

∫ l

0
[D(F(u + h), F(u) + F’(u)h)]rdh

} 1
r

= 0.

Similarly, F is left-hand upper Intuitionistic fuzzy Lr-differentiable (IFLr-differentiable) if there
exists F’ ∈ IFN (Rn) such that

lim
l→0+

{
1
l

∫ l

0
[D(F(u), F(u − h) + F’(u)h)]rdh

} 1
r

= 0.

(2) F is right-hand lower Intuitionistic fuzzy Lr-differentiable (IFLr-differentiable) if there exists
F’ ∈ IFN (Rn) such that

lim
l→0−

{
1
l

∫ 0

l
[D(F(u), F(u − h) + F’(u)h)]rdh

} 1
r
= 0.

Similarly, F is left-hand lower Intuitionistic fuzzy Lr-differentiable (IFLr-differentiable) if there
exists F’ ∈ IFN (Rn) such that

lim
l→0−

{
1
l

∫ 0

l
[D(F(u + h), F(u) + F’(u)h)]rdh

} 1
r
= 0.

F is upper IFLr-differentiable if two Intuitionistic fuzzy Lr-derivatives in (1) exist and are equal.
Similarly, F is lower IFLr-differentiable if two Intuitionistic fuzzy Lr-derivatives in (2) exist and
are equal.
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Definition 13. Let F be an Intuitionistic fuzzy Lr-differentiable (IFLr-differentiable) at u ∈ [m, n],
then there exists F’ ∈ IFN (Rn) such that the following four situations hold:

i)

lim
l→0+

{
1
l

∫ l
0 [D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r

= lim
l→0−

{
1
l

∫ 0
l [D(F(u),F(u − h) + F’(u)h)]rdh

} 1
r
= 0.

ii)

lim
l→0+

{
1
l

∫ l
0 [D(F(u),F(u − h) + F’(u)h)]rdh

} 1
r

= lim
l→0−

{
1
l

∫ 0
l [D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r
= 0.

iii)

lim
l→0+

{
1
l

∫ l
0 [D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r

= lim
l→0−

{
1
l

∫ 0
l [D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r
= 0.

iv)

lim
l→0+

{
1
l

∫ l
0 [D(F(u),F(u − h) + F(u)h)]rdh

} 1
r

= lim
l→0−

{
1
l

∫ 0
l [D(F(u),F(u − h) + F’(u)h)]rdh

} 1
r
= 0.

If F satisfies case (i), then F is (i)-IFLr-differentiable. Similarly, it is same for the other cases
as well.

Theorem 3. If F is IFLr-differentiable, then the derivative is unique.

Proof. Without loss of generality, let us assume F is (ii) IFLr-differentiable at u ∈ [m, n].
Let D1 and D2 be the derivatives of F. Then, ∀ϵ > 0 ∃ δ > 0, such that

{
1
l

∫ l

0
[D(F(u), F(u − h) +D1h)]rdh

} 1
r

<
ϵ

2
(1)

and

{
1
l

∫ l

0
[D(F(u), F(u − h) +D2h)]rdh

} 1
r

<
ϵ

2
(2)

Then, by Lemma 1 and Minkowski’s inequality, we obtain{
1
l

∫ l
0 [D(D1h, D2h)]rdh

} 1
r
=

{
1
l

∫ l
0 [D(F(u − h) +D1h, F(u − h) +D2h)]rdh

} 1
r

≤
{

1
l

∫ l
0 [D(F(u − h) +D1h,F(u)) +D(F(u), F(u − h) +D2h)]rdh

} 1
r

≤
{

1
l

∫ l
0 [D(F(u − h) +D1h,F(u))]rdh

} 1
r
+

{
1
l

∫ l
0 [D(F(u), F(u − h) +D2h)]rdh

} 1
r

≤ ϵ
2 + ϵ

2 = ϵ.

(3)

Therefore, the derivatives D1 and D2 are equal and hence unique.
Similar results follow for cases (i), (iii) and (iv). □
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Theorem 4. If F is IFLr-differentiable, then it is continuous.

Proof. Assume that F is (i) IFLr-differentiable. Then, ∀ϵ > 0 ∃ δ > 0, for |l| < δ

lim
l→0+

{
1
l

∫ l

0
[D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r

<
ϵ

2
(4)

Then, by Lemma 1 and Minkowski’s inequality, we obtain

{
1
l

∫ l
0 [D(F(u + h),F(u))]rdh

} 1
r
=

{
1
l

∫ l
0 [D(F(u + h) + F’(u)h,F(u) + F’(u)h)]rdh

} 1
r

≤
{

1
l

∫ l
0 [D(F(u + h) + F(u)h,F(u)) +D(F(u), F(u) + F’(u)h))]rdh

} 1
r

≤
{

1
l

∫ l
0 [D(F(u + h) + F’(u)h,F(u))]r

} 1
r
+

{
1
l

∫ l
0 [D(F(u),F(u) + F’(u)h)]r

} 1
r

≤ ϵ +
{

1
l

∫ l
0 [D(F’(u)h, 0)]r

} 1
r

≤ ϵ +
{

lr

r+1

∥∥∥F’(u)
∥∥∥r} 1

r
.

(5)

⇒ lim
l→0+

{
1
l

∫ l

0
[D(F(u + h),F(u))]rdh

} 1
r

= 0. (6)

Similarly,

lim
l→0+

{
1
l

∫ l

0
[D(F(u),F(u − h))]rdh

} 1
r

= 0. (7)

Therefore, f is continuous.
Similar results follow for cases (ii), (iii) and (iv). □

Example 1. Suppose T(u) = T0 is a constant function, then T(u) is IFLr-differentiable and
T′(u) = 0.

Solution. From the case (i) of Definition 13.

lim
l→0+

{
1
l

∫ l
0 [D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r
= lim

l→0+

{
1
l

∫ l
0 [D(T(u + h), T(u) + 0h)]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0 [D(T0, T0 + 0)]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0 [D(T0, T0)]

rdh
} 1

r
= 0.

(8)
and

lim
l→0−

{
1
l
∫ 0

l [D(F(u),F(u − h) + F’(u)h)]rdh
} 1

r
= lim

l→0−

{
1
l
∫ 0

l [D(T(u), T(u − h) + 0h)]rdh
} 1

r

= lim
l→0−

{
1
l
∫ 0

l [D(T0, T0 + 0)]rdh
} 1

r
= 0.

(9)

Therefore, the fuzzy constant function is (i) IFLr-differentiable.
Similar results follow for cases (ii), (iii) and (iv). □

Example 2. For λ > 0, consider a function T(u) = eλuT0 satisfying T′(u) = λeλuT0, where T0 is a
constant function.

Solution. From case (i) of Definition 13.
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lim
l→0+

{
1
l

∫ l
0

[
D
(
F(u + h),F(u) + F’(u)h

)]r
dh

} 1
r

= lim
l→0+

{
1
l

∫ l
0 [D(T(u + h), T(u) + T′(u)h)]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0

[
D
(

eλ(u+h)T0, eλuT0 + λeλuhT0

)]r
dh

} 1
r

= lim
l→0+

{
1
l

∫ l
0

[
D
(

eλueλhT0, eλuT0(1 + λh)
)]r

dh
} 1

r

[From Lemma 1]

= lim
l→0+

{
1
l

∫ l
0

[
D
(

eλhT0, T0(1 + λh)
)]r

dh
} 1

r

= lim
l→0+

{
1
l

∫ l
0

[
D
(

eλhT0, T0(1 + λh)
)]r

dh
} 1

r

[From Lemma 1]

= lim
l→0+

{
1
l

∫ l
0

[∣∣∣eλh − (1 + λh)
∣∣∣D(T0, T0)

]r
dh

} 1
r
= 0.

(10)

Similarly for left end limit,

lim
l→0+

{
1
l

∫ l
0

[
D
(
F(u),F(u − h) + F’(u)h

)]r
dh

} 1
r

= lim
l→0+

{
1
l

∫ l
0 [D(T(u), T(u − h) + T′(u)h)]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0

[
D
(

eλuT0, eλ(u−h)T0 + λeλuhT0

)]r
dh

} 1
r
= 0.

(11)

Therefore, T(u) = eλuT0 is (i) IFLr-differentiable.
Similar results follow for (ii), (iii) and (iv). □

Theorem 5. Let F, G : [m, n] → IFN (Rn) , 1 ≤ r < ∞ . Suppose F and G are upper IFLr-
differentiable, then

(i) F+G is upper IFLr-differentiable and (F+G)’ = F’ +G’.
(ii) (ωF)′(u) = ωF’(u), for all ω ∈ R.

Proof. (i) Let F and G be upper IFLr-differentiable.

Then, ∀ϵ > 0, ∃ δ > 0 s. t. for |l| < δ

{
1
l

∫ l

0
[D(F(u),F(u − h) + F’(u)h)]rdh

} 1
r

<
ϵ

2
(12)

and {
1
l

∫ l

0

[
D
(
G(u),G(u − h) +G’(u)h

)]r
dh

} 1
r

<
ϵ

2
. (13)

Then, by Lemma 1 and Minkowski’s inequality, we obtain

{
1
l
∫ l

0
[
D
(
G(u) + F(u),G(u − h) + F(u − h) +G’(u)h F’(u)h

)]rdh
} 1

r

≤
{

1
l
∫ l

0 [D(G(u),G(u − h) +G′(u)h) +D(F(u),F(u − h) + F’(u)h)]rdh
} 1

r

≤
{

1
l
∫ l

0
[
D
(
G(u),G(u − h) +G’(u)h

)]rdh
} 1

r
+

{
1
l
∫ l

0 [D(F(u),F(u − h) + F’(u)h)]rdh
} 1

r

≤ ϵ
2 + ϵ

2 = ϵ.

(14)
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Similarly, ∀ϵ > 0, ∃ δ > 0 s. t. for |l| < δ

{
1
l

∫ l

0
[D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r

<
ϵ

2
(15)

and {
1
l

∫ l

0

[
D
(
G(u + h),G(u) +G’(u)h

)]r
dh

} 1
r

<
ϵ

2
(16)

Then, by Lemma 1 and Minkowski’s inequality, we obtain

{
1
l
∫ l

0
[
D
(
G(u + h) + F(u + h),G(u) + F(u) +G’(u)h F’(u)h

)]rdh
} 1

r

≤
{

1
l
∫ l

0 [D(G(u + h),G(u) +G′(u)h) +D(F(u + h),F(u) + F’(u)h)]rdh
} 1

r

≤
{

1
l
∫ l

0
[
D
(
G(u + h),G(u) +G’(u)h

)]rdh
} 1

r
+

{
1
l
∫ l

0 [D(F(u + h),F(u) + F’(u)h)]rdh
} 1

r

≤ ϵ
2 + ϵ

2 = ϵ.

(17)

Thus, F+G is upper IFLr-differentiable at u and (F+G)′ = F’ +G’.

(ii) Let F be upper IFLr-differentiable.
Then, ∀ϵ > 0, ∃ δ > 0 s. t. for |l| < δ.{

1
l

∫ l

0
[D(F(u),F(u − h) + F’(u)h)]rdh

} 1
r

<
ϵ

2
. (18)

Then, by Lemma 1 and Minkowski’s inequality, we obtain

{
1
l

∫ l
0 [D((ωF)(u), (ωF)(u − h) + (ωF)’(u)h)]rdh

} 1
r , ω ∈ R

=
{

1
l

∫ l
0 ω[D(F(u),F(u − h) + F’(u)h)]rdh

} 1
r

= ω
{

1
l

∫ l
0

[
D
(
F(u),F(u − h) + F’(u)h

)]r
dh

} 1
r
< ϵ

2 < ϵ.

(19)

Similarly,

{
1
l

∫ l
0 [D((ωF)(u + h), (ωF)(u) + (ωF)’(u)h)]rdh

} 1
r

=
{

1
l

∫ l
0 ω[D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r

= ω
{

1
l

∫ l
0 [D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r
< ϵ

2 < ϵ.

(20)

Thus, (ωF)′= ωF’, at u for all ω ∈ R. □

Remark 1.

(i) If F and G are lower IFLr-differentiable, then Theorem 5 holds.
(ii) Also, if F is upper IFLr-differentiable and G is lower IFLr-differentiable, then F and G are

IFLr-differentiable, and Theorem 5 still holds.

Theorem 6. Let G : [m, n] → Rn be differentiable (G∗ be its derivative), F : [m, n] → IFN(Rn)
be GH-differentiable. If H : [m, n] → IFN(Rn) s. t. H( u) = G(u) F(u), then H(u) is IFLr-
differentiable and H′(u) = G∗ (u)·F(u) +G(u)·F’

GH(u).

Proof. Let us assume that H′(u) ∈ IFN(Rn) exists; we shall prove that H(u) is
IFLr-differentiable
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lim
l→0+

{
1
l

∫ l
0 [D(H(u + h), H(u) + H′(u)h)]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0 [D( G(u + h)F(u + h), G(u)F(u) + H′(u)h)]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0 [D( G(u + h)F(u + h)−G(u)F(u + h) +G(u)F(u + h), G(u)F(u) + H′(u)h)]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0 [D( G(u + h)F(u + h)−G(u)F(u + h) +G(u)F(u + h)⊖H G(u)F(u), H′(u )h)]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0 [D(( G(u + h)−G(u))F(u + h) +G(u)(F(u + h)⊖H F(u)), H′(u))]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0

[
D
(
G∗ (u)F(u + h) +G(u)F’

GH(u), H′(u)
)]rdh

} 1
r .

As when h → 0+ , H′(u) = G*(u)F(u) +G(u)F’
GH(u).

(21)

Therefore,

lim
l→0+

{
1
l

∫ l
0 [D(H(u + h), H(u) + H′(u)h)]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0

[
D
(
G(u)F(u + h) +G(u)F’

GH(u), H′(u)
)]rdh

} 1
r

= lim
l→0+

{
1
l

∫ l
0 [D(H′(u), H′(u))]rdh

} 1
r
= 0.

(22)

Similarly,

lim
l→0−

{
1
l

∫ 0

l
[D(H(u), H(u − h) + H′(u)h)]rdh

} 1
r
= 0. (23)

Thus, H( u) is (i)-IFLr-differentiable at u and H(u) = G∗ (u)·F(u) +G(u)·F’
GH(u).

Similar results follow for cases (ii), (iii) and (iv). □

Theorem 7. IF F is GH-differentiable, then it is IFLr-differentiable.

Proof. Without loss of generality, let us assume that F is (iii)-GH-differentiable, then for l > 0,
we have

lim
h→0+

F(u + h)⊖H F(u)
h

= lim
h→0+

F(u)⊖H F(u − h)
h

= F’
GH(u). (24)

Thus,
lim

h→0+
1
hD

(
F(u + h)⊖H F(u),F’

GH(u)h
)

= lim
h→0+

1
hD

(
F(u)⊖H F(u − h),F’

GH(u)h
)

= 0.

Then,
lim

h→0+
1
hD

(
F(u)⊖H F(u − h),F’

GH(u)
)

= lim
h→0+

1
−hD

(
F(u − h)⊖H F(u),−F’

GH(u)h
)

= lim
h′→0−

1
h′D

(
F(u + h′)⊖H F(u),F’

GH(u)h′
)

(putting h′ = −h)

= lim
h→0+

1
h
D
(
F(u + h)⊖H F(u),F’

GH(u)h
)

.

Therefore, ∀ϵ > 0, ∃ T1 > 0 s.t.0 < h < T1,

D
(
F(u + h)⊖H F(u),F’

GH(u)h
)
< ϵ
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i.e.,
D
(
F(u + h), F(u) + F’

GH(u)h
)
< ϵ. (25)

Furthermore, ∀ϵ > 0, ∃ T1 > 0, we restrict 0 < l < T1, then{
1
l

∫ l

0

[
D
(
F(u + h),F(u) + F’

GH(u)h
)]r

dh
} 1

r

<

{
1
l

∫ l

0
ϵrdh

} 1
r

= ϵ. (26)

Similarly, ∀ϵ > 0, ∃ T2 < 0, s. t. T2 <l < 0, then

{
1
l

∫ 0

l

[
D
(
F(u + h),F(u) + F’

GH(u)h
)]r

dh
} 1

r
< ϵ. (27)

This implies that

lim
l→0+

{
1
l

∫ l
0

[
D
(
F(u + h),F(u) + F’

GH(u)h
)]rdh

} 1
r

= lim
l→0−

{
1
l

∫ l
0

[
D
(
F(u + h),F(u) + F’

GH(u)h
)]rdh

} 1
r
= 0.

(28)

Therefore, F is IFLr—differentiable at u.
Similar results follow for cases (i), (ii) and (iv). □

Remark 2. The converse of the above theorem does not hold true. We shall prove this using
an example.

Example 3. Let F: [−2, 2] → IFN(R)

[F(u)]α =
[
2α − 2 +

(
1
2 − 3

4 α
)
|u|, 2 − 2α +

(
3
4 α − 1

2

)
|u|

]
.

[F(u)]β =
[
−2β +

(
3
4 β − 1

3

)
|u|, 2β +

(
1
3 − 3

4 β
)
|u|

]
.

0 ≤ α + β ≤ 1

In the case of α, F(0) = (−2, 0, 2) which is a triangular fuzzy number.
In particular, F(u) =

(
−1,− 1

2 , 1
2 , 1

)
, when u = ±2.

Since [F(0)]α = [2α − 2, 2 − 2α] and [F(2)]α =
[

1
2 α − 1, 1 − 1

2 α
]
, it is easy to see that

for δ > 0, ∀ h ∈ B(0, δ), F(0)⊖H F(h), F(0)⊖H F(−h), F(h)⊖H F(0) and F(−h)⊖H F(0)
do not exist. Thus, F is not GH-differentiable.

For u = 0,

D1(F(0 + h),F(0) + F’(0)h)

= D1

([
2α − 2 +

(
1
2 − 3

4 α
)
|h|, 2 − 2α +

(
3
4 α − 1

2

)
|h|

]
, [2α − 2, 2 − 2α]

)
= supα ∈ [0,1]max

{∣∣∣( 1
2 − 3

4 α
)

h
∣∣∣, ∣∣∣( 3

4 α − 1
2

)
h
∣∣∣}

= 1
2 |h|.

(29)

In the case of β, F(0) = {0}.
In particular, F(u) =

(
− 7

6 ,− 2
3 , 2

3 , 7
6
)
, when u = ±2.

Since [F(0)]β = [−2β, 2β] and [F(2)]β =
[
− 1

2 β − 2
3 , 1

2 β − 2
3

]
, it is easy to see that for

δ > 0, ∀ h ∈ B(0, δ), F(0)⊖H F(h), F(0)⊖H F(−h), F(h)⊖H F(0) and F(−h)⊖H F(0) do
not exist. Thus, F is not GH-differentiable.
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For u = 0,

D2(F(0 + h),F(0) + F’(0)h)

= D2

([
−2β +

(
3
4 β − 1

3

)
|h|, 2β +

(
1
3 − 3

4 β
)
|h|

]
, [−2β, 2β]

)
= supα ∈ [0,1]max

{∣∣∣( 3
4 β − 1

3

)
h
∣∣∣, ∣∣∣( 1

3 − 3
4 β

)
h
∣∣∣}

= 5
12 |h|.

(30)

Next, we can find that F is (i)-IFLr- differentiable and F’(0) = 0.
For u = 0,

lim
h→0

D(F(0 + h),F(0) + F’(0)h)

= lim
h→0

max{D1(F(0 + h),F(0) + F’(0)h), D2(F(0 + h),F(0) + F’(0)h)}

= lim
h→0

max
{

1
2 |h|,

5
12 |h|

}
= lim

h→0
1
2 |h| = 0.

Therefore,

∀ ϵ > 0, ∃ T1 > 0 s.t. 0 < h < T1,
D(F(u + h),F(u) + F’(u)h) < ϵ.

(31)

Furthermore, ∀ ϵ > 0, ∃ T1 > 0, we restrict 0 < l < T1, then{
1
l

∫ l

0
[D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r

<

{
1
l

∫ l

0
ϵrdh

} 1
r

= ϵ. (32)

Similarly, ∀ ϵ > 0, ∃ T2 < 0, s. t. T2 <l < 0, then

{
1
l

∫ 0

l
[D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r
< ϵ. (33)

This implies that

lim
l→0+

{
1
l

∫ l
0 [D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r

= lim
l→0−

{
1
l

∫ l
0 [D(F(u + h),F(u) + F’(u)h)]rdh

} 1
r
= 0.

(34)

Therefore, F is IFLr-differentiable at u = 0 with F’(0) = 0 but not GH-differentiable.
Similar results follow for cases (ii), (iii) and (iv).

4. Intuitionistic Fuzzy Cauchy Problem

Lemma 2 Let F1, F2: [m, n] → IFN(Rn) be differentiable and assume that its derivatives G1, G2:
[m, n] → IFN(Rn) are integrable over [m, n], then

D(F1(u), F2(u)) ≤ D(F1 (u0), F2 (u0)) +
∫ u

u0

D(G1(s),G2(s))ds for all s ∈ [m, n]. (35)

Proof.
∀ϵ > 0, ∃ T > 0 s.t. 0 < h < T1, D(F (u+h), F(u ) +G(u )h) < ϵ. (36)

Define
ζ(u ) = D(F 1(u ), F2(u))
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Then

ζ(u + h)− ζ(u) = D(F1(u + h), F2(u + h))−D(F1(u), F2(u))

= D(F1(u + h), F1(u) + h G1(u)) +D(F1(u) + h G1(u), F2(u) + h G1(u)) +

D(F2(u) + h G1(u), F2(u)) + h G2(u)) +D(F2(u) + h G2(u), F2(u + h))−D(F1(u), F2(u))

= D(F1(u + h), F1(u) + h G1(u)) +D(F1(u), F2(u)) + h D(G1(u), G2(u)) +

D(F2(u) + h G2(u), F2(u + h))−D(F1(u), F2(u))

ζ(u + h)− ζ(u) = D(F1(u + h), F1(u) + h G1(u)) + h D(G1(u), G2(u)) +D(F2(u) + h G2(u),F2(u + h)).

ζ(u + h)− ζ(u)
h

=
D(F1(u + h),F1(u) + hG1(u))

h
+D(G1(u),G2(u)) +

D(F2(u) + hG2(u),F2(u + h))
h

. (37)

Now, ϵ > 0, ∃ T1 > 0, we restrict 0 < l < T1,

ζ(u+h)−ζ(u)
h

≤
{

1
l

∫ l
0 [D(F1(u + h),F1(u) +G(u)h)]rdh

} 1
r
+D(G1(u),G2(u))

+
{

1
l

∫ l
0 [D(F2(u + h),F2(u) +G(u)h)]rdh

} 1
r .

and as lim tends to 0+, ζ’(u) ≤ D(G1(u),G2(u)).

⇒ ζ(u) ≤
∫ u

u0

D(G1(s),G2(s))ds. (38)

D(F1(u),F2(u)) ≤ D(F1(u0),F2(u0)) +
∫ u

u0

D(G1(s),G2(s))ds.

Similar results follow for the left end limit. □

Consider an initial value problem for the intuitionistic fuzzy differential equation:

F’(u) = G(u, F(u)).
F(u0) = (A(u0), B(u0)), I = [m, n] and G : I × IFN(Rn) → IFN(Rn).

(39)

Let C(I × IFN(Rn), IFN(Rn)) be the set of all continuous mappings from I × IFN(Rn)
to IFN(Rn).

Definition 14. In [54] F: I → IFN(Rn) is a solution of the initial value problem if it is continuous
and satisfies the integral solution:

F(u) = F(u0)⊕
∫ u

u0

G(s,F(s))ds. (40)

Theorem 8. Let G ∈ C(I× IFN(Rn), IFN(Rn)), such that there exists a constant k ≥ 0 satisfying

D(G(u,F1),G(u,F)) ≤ k D(F1,F2) ; (u ,F1) u,F2) ∈ I×IFN(Rn). (41)

Then, the initial intuitionistic fuzzy problem (4.5) has a unique solution.

Proof. For F ∈ C(I, IFN(Rn)), let us consider a mapping G: X0 → X0, where

X0 = C(I, IFN(Rn))

is defined by

GF1(u) = F(u0)⊕
∫ u

u0

G(s, F(s))ds. (42)
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Let
φ(u) = GF1(u + h), ψ(u) = GF1(u).

Then

D(φ(u), ψ(u)) = D(GF1(u + h), GF1(u))

= D(GF1(u + h), GF1(u))

= D
(
F(u0)⊕

∫ u+h
u0

G(s, F1(s))ds, F(u0)⊕
∫ u

u0
G(s, F1(s))ds

)
= D

(∫ u+h
u0

G(s, F(s))ds,
∫ u

u0
G(s, F(s))ds

)
= D

(∫ u+h
u0

G(s, F1(s))ds,
∫ u

u0
G(s, F1(s))ds

)
= max

(
D1

(∫ u+h
u0

G(s, F(s))ds,
∫ u

u0
G(s, F1(s))ds

)
,D2

(∫ u+h
u0

G(s, F1(s))ds,
∫ u

u0
G(s, F1(s))ds

))
= max

(
supα ∈ [0,1]max

{∣∣∣∫ u+h
u0

G(s, F1(s))(α)
−ds−

∫ u
u0

G(s, F1(s))(α)
−ds

∣∣∣, ∣∣∣∫ u+h
u0

G(s, F1(s))(α)
+ds

−
∫ u

u0
G(s, F1(s))(α)

+ds
∣∣∣}, supα ∈ [0,1]max

{∣∣∣∫ u+h
u0

G∗(s, F1(s))(β)−ds

−
∫ u

u0
G∗(s, F1(s))(β)−ds

∣∣∣, ∣∣∣∫ u+h
u0

G∗(s, F(s))(β)+ds−
∫ u

u0
G∗(s, F1(s))(β)+ds

∣∣∣})
= max

(
supα ∈ [0,1]max

{∣∣∣∫ u+h
u G(s, F1(s))(α)

−ds
∣∣∣, ∣∣∣∫ u+h

u G(s, F1(s))(α)
+ds

∣∣∣}, supα ∈ [0,1]max
{∣∣∣∫ u+h

u G∗(s, F1(s))(β)−ds
∣∣∣, ∣∣∣∫ u+h

u G∗(s, F1(s))(β)+ds
∣∣∣}).

(43)

when h → 0+, D(φ(u), ψ(u))→ 0+. Therefore,

GF1 ∈ CI (Rn)

Now, let F1, F2∈ C(I, IFN(Rn)) and by Lemma 2.

D(GF1(u), GF2(u)) ≤ D
(∫ u

u0
(G(s, F1(s),G(s, F2(s) )ds

)
≤

(
D
∫ u

u0
(G(s, F1(s),G(s, F(s))ds

)
≤ k(u − u0)D(F1,F2)[Lipschitz condition].

(44)

∴ G is a contraction.

and hence the initial value problem (39) has a unique solution. □

5. Conclusions

In this paper, we extended the fuzzy Lr-norm-based derivative (FLr-derivative) to the
intuitionistic fuzzy number valued function. We proposed a definition for the intuitionistic
fuzzy Lr-norm-based derivative (IFLr-derivative) using the Hausdorff distance of α-cuts
and β-cuts. Next, we proved some properties, such as uniqueness of the IFLr-derivative,
and its continuity. Next, we showed that the IFLr-derivative can be written as a product of
the derivative and GH derivative. Furthermore, showed that GH differentiability implies
the IFLr-differentiable, but the converse is not always true, which allows us to determine
the derivative for functions without the existence of the GH derivative. Lastly, we solved
the Cauchy problem for the intuitionistic fuzzy differential equation with the proposed
extended IFLr-derivative by contraction mapping. In view of the above results we can
conclude that the IFLr-derivative is a generalization of the GH derivative. The solutions of
the intuitionistic fuzzy differential equation (IFDE) are determined by the lower and upper
α-cuts and β-cuts of intuitionistic functions; solving it may seem feasible in the linear case,
but the task becomes complicated in non-linear intuitionistic fuzzy differential equations.
So, we may conclude the above method cannot be applied to solve non-linear intuitionistic
fuzzy differential equations.

Future directions of work may be as follows:

• In future, we plan a device method to solve non-linear intuitionistic fuzzy differential
equations.

• In future, we plan to find numerical method for the proposed derivative, applying it
to intuitionistic integral theory and the fuzzy partial differential equation based on
IFLr-derivative.
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