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Abstract: LIDAR is central to the perception systems of autonomous vehicles, but its performance
is sensitive to adverse weather. An object detector trained by deep learning with the LIDAR point
clouds in clear weather is not able to achieve satisfactory accuracy in adverse weather. Considering
the fact that collecting LIDAR data in adverse weather like dusty storms is a formidable task, we
propose a novel data augmentation framework based on physical simulation. Our model takes into
account finite laser pulse width and beam divergence. The discrete dusty particles are distributed
randomly in the surrounding of LIDAR sensors. The attenuation effects of scatters are represented
implicitly with extinction coefficients. The coincidentally returned echoes from multiple particles are
evaluated by explicitly superimposing their power reflected from each particle. Based on the above
model, the position and intensity of real point clouds collected from dusty weather can be modified.
Numerical experiments are provided to demonstrate the effectiveness of the method.

Keywords: LIDAR; 3D point cloud; physics simulation; adverse weather; object detection
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1. Introduction

Light Detection and Ranging (LIDAR) is an active remote sensing system that uses
electromagnetic waves in the optical range to measure distance and generate point clouds
of objects. As a leading technology of environment perception, LIDAR is widely used
in geography, geomatics, atmospheric physics, urban planning, agriculture, military and
defense [1], etc. With the rapid emergence of autonomous driving, LIDAR has become
an indispensable tool for surveying and mapping [2,3], localization [4], and 3D object
detection [5,6].

LIDAR performance is vulnerable to the influence of adverse weather, such as rain,
snow, fog, and dust storms [7], as shown in Figure 1. The small particles including
raindrops, snowflakes, and ice particles can absorb and scatter the laser beam [8], which has
a two-fold effect on LIDAR data (Figure 2): (a) It attenuates laser beam’s energy and reduces
detection range; and (b) the echo reflected from scatters may introduce false positive points,
which is particularly manifested in snowflakes and dust particles. As a consequence,
when a deep learning-based object detection model trained with data collected from
clear weather are used under adverse weather conditions, the accuracy and reliability is
degraded significantly [9]. For instance, in the DARPA Urban Challenge, the winning
vehicle Boss erroneously identified dust as objects during the competition [10]. According
to the research conducted by [11], the incidence of traffic accidents significantly increases
in adverse weather conditions, posing a substantial threat to public safety.
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(a) Ideal conditions

(b) Scattering media exists in the air

Figure 1. LIDAR perception. (a) Under ideal conditions, LIDAR pulse do not experience scattering
and intensity attenuation upon reaching the target. (b) When there are scattering media in the air,
the LIDAR pulse is scattered, resulting in a attenuation in the target’s reflection intensity. It may even
incorrectly identify scattering particles as targets.

Figure 2. In the presence of scattering particles in the air, a fraction of the emitted pulse will be
scattered, with some of the scattered pulses diverging away from the detector, some converging
towards the detector, and a fraction of the emitted pulse penetrating through the scattering particles.

The data collection procedure of LIDAR point clouds under adverse weather condi-
tions is time-consuming, labor-intensive, and highly risky, although some progress has
been made along this line, including LIBRE [12], Seeing Through Fog [13], CADC [14],
WADS [15], ACDC [16], Boreas [17], and so on. The lack of a large amount of high-quality
training data in adverse weather impairs the reliability of deep learning-based object detec-
tors. Physical simulation provides an effective tool of data augmentation for transforming
and expanding original dataset in clear weather to adverse weather [18]. The breakthrough
in this field can be seen in the contributions of [7,19–21], which create synthetic LIDAR
point cloud datasets in fog, snowfall, and rain with physical simulations (Figure 3).

In this study, we attempt to propose a novel physical-based framework for the data
enhancement of LIDAR point clouds in adverse weather and apply it to dusty weather.
The algorithm is inspired by and extended from the pioneering work of [7,19–21]. We
consider finite pulse width, and use extinction coefficients to implicitly represent the
attenuation effects of the scattering media. The coincidentally returned power from the
particles are evaluated by explicitly summing up the reflections by multiple particles at
different locations. The algorithm will be detailed in the third section, and its difference
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with the work of [19–21] will be commented at the end of Section 3. The numerical examples
will be given in Section 4, followed by the conclusion in Section 5.

Figure 3. The RGB image above represents the scene from the perspective of the camera. The lower
left corner shows the original point cloud for this scene, while the lower right corner displays the
simulated snowfall point cloud for the same scene.

2. Related Work
2.1. LIDAR Model in Adverse Weather

Ref. [22] proposed a mathematical model for predicting the influence of rain on LIDAR.
In their work, a Dirac-shaped pulse with infinitely small width is assumed. The inten-
sity attenuation effect is characterized by the extinction coefficient, but range errors are
modeled by a normal distribution with errors less than 2%. The model is integrated into
the Mississippi State University (MSU) Autonomous Vehicle Simulator and validated for
different rain rates. Ref. [23] introduces a general framework for modeling LIDAR systems
influenced by rain, fog and snow. They considered a finite pulse width by approximating
the pulse with a sin2 function. The received signal power is calculated as a convolution
between the transmit signal and the spatial impulse response function. The solid objects
are regarded as hard targets, with their spatial response being characterized by differential
reflectivity. On the other hand, the scatters are regarded as soft targets, which generates
distributed scattering described by the backscattering coefficient of each range bin. In [24],
a statistical model is adopted for generating noise filters. Each beam consists of multiple
rays that are offset to each other for mimicking the divergence. The number of intersections
between the rays and raindrops is counted, and its ratio to the total number of rays per
beam determines the likelihood of the beam hitting a raindrop. A threshold of hit ratio is
set beyond which a point is moved.

2.2. LIDAR Point Cloud Data Augmentation

The influence of adverse weather can be simulated on LIDAR point clouds in clear
weather, without cumbersome data collection procedures in realistic scenarios. Such a
data augmentation technique is able to generate a significant amount of synthetic data
for enhancing the training of object detection model. Ref. [25] uses a ray tracing method
based on the model of [24] to simulate rain and snow phenomenon. For fog weather,
they employed a probability method to delete or move a point. The intensity of the
moved points varies in the range of 0–32% of the maximum intensity, and the intensity of
the unaltered points was computed according to Beer–Lambert law. Ref. [26] combines
physical simulation [25] with geometric data augmentation techniques, including random
translation, random scaling, local scaling, random flip, and filter labels. Additionally,
the Optuna hyperparameter optimization framework is used to optimize the augmentation
parameters. LISA [21] is a versatile approach for simulating a variety of adverse weather
conditions, including snow, rain and fog. However, LISA is based on the hypothesis
of an infinitely small pulse width, so the signal can only hit the particles at the same
distance simultaneously. Based on the physical model of [23], Ref. [20] introduces a
data enhancement method for fog weather. The beam divergence, finite pulse width,
and crossover function are incorporated in the simulation. Furthermore, the authors [19]
proposed a snowfall simulation algorithm and meanwhile considered the influence of
wetting the ground. Ref. [19] models snowflakes as non-overlapping opaque spheres and
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samples them explicitly. The occlusion effects of particles to the targets are characterized by
the ratio of its occlusion angle to the beam divergence.

3. Dust Simulation on Real Point Cloud

LIDAR measures the distance to a solid object by using either a pulsed laser or a
Frequency Modulated Continuous Wave. The present work only considers pulse LIDAR,
which takes time-of-flight (ToF) measurement for ranging process. The principle of ToF is
calculating distance by

R = c(t = t′)/2 (1)

where c represents the speed of light, t′ is the time of pulse emission, t is the time the
reflected wave is received, and R is the maximum distance the pulse ever reaches before
time t.

The pulse wave has a finite pulse width in practice, and can be modeled using
sin2 function:

PT(t′) =

P0 sin2
(

π

2τH
t′
)

, if 0 ≤ t′ ≤ 2τH

0, otherwise.
(2)

where PT is the power of emitted pulse which varies with emission time t′, P0 is the
magnitude, and τH is full width at half maximum. For the function of sin2(x), τH is equal
to the half of the total duration of the pulse.

In clear weather, the power of the pulse reflected from solid object at distance Rtar is
expressed by

P(Rtar) =
CAP0βtarξ(Rtar)

R2
tar

PT(τH) (3)

where P is the power received by the LIDAR sensor; CA is the system constant, which is
related to light speed, the laser detector’s optical aperture area, and the overall system
efficiency; and βtar is reflectivity of the object. It is noteworthy that the time origin is set to
t′ = 0 and the peak value is attained at t′ = τH . ξ in (3) is a crossover function, standing for
the ratio of the area illuminated by the LIDAR transmitter (AT) to the area observed by the
receiver (AR) (Figure 4),

ξ(R) =

{ AR(R)∩AT(R)
AT(R) if AR(R) ∩ AT(R) < AT(R)

1 else.
(4)

The overlap function can be approximated by a linear model [19,20], as shown in
Figure 4.

Figure 4. LIDAR sensor schematic with dual-beam configuration.
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In dusty weather, the energy of the pulse is attenuated as it propagates through the
scattering media (dust particles), and thus the signal reflected from the target object is
rewritten as

P(Rtar) =
CAP0βtarξ(Rtar)

R2
tar

PT(τH)T2(Rtar) (5)

in which T is one-way transmittance at distance R,

T(R) = exp(
∫ R

0
−α(r)dr) (6)

where α is the extinction coefficient, which is the sum of the scattering coefficient and the
absorption coefficient. For homogeneous medium, α is a constant and independent of
distance R, so the transmittance reduces to

T(R) = exp(−αR) (7)

In addition to reducing the pulse energy, dust particles can reflect signal and introduce
noisy points. Due to the finite pulse width, a portion of media in the beam segment
is illuminated by the LIDAR, and multiple particles can reflect the wave simultaneously.
Therefore, the power the pulse returned to LIDAR at any instant time is the superimposition
of multiple echos, as expressed by:

Pscatter(R) = ∑
d∈S

CAP0βdξ(Rd)

R2
d

PT

(
2(R− Rd)

c
+ τH

)
T2(Rd)

θd
Θ

, S = {d|R− cτH ≤ Rd ≤ R} (8)

where d is the index of the discrete particles, and βd is the reflectance of the dth discrete
particle at distance Rd. The fraction of the beam cross sections occupied by dth particle
is θd/Θ, in which θd is the angle occluded by the particle, and Θ is the divergence angle
of the beam. S is the set associated with distance R, in which the particles can return the
signal coincidentally.

To complete the LIDAR equation, the extinction coefficient needs to be evaluated,
which is expressed by

α =
∫ ∞

r=0
σext(r)N(r)dr (9)

where σext is the extinction cross section and N(r) is the particle size distribution function.
σext can be expressed by

σext = πr2Qext(D) (10)

where Qext is the extinction efficiency, which is calculated with Mie scattering theory:

Qext (α, n) =
2
α2

∞

∑
n=1

(2n + 1)Re(an + bn) (11)

in which an and bn are Mie coefficients. In practice, the extinction coefficient α is often
determined directly from experiments.

The particle size distribution function in Equation (9) is given by

N(r) = N0 p(r) (12)

where N0 is the total number of particles per unit volume (particle concentration), and p(r)
is the probability function. The log-normal distribution is commonly used for modeling
particle size distributions [27],

p(r) =
1

r ln(σg)
√

2π
exp

[
− (ln(r)− ln(rm))2

2 ln(σg)2

]
(13)
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where r is particle radius, σg is the standard deviation, and rm is the mean radius of particles,
respectively. p(r) satisfies the following property,∫ ∞

0
p(r)dr = 1 (14)

We add that our model is based on the following assumptions:

1. Single scattering. i.e., a signal is reflected only once before it returns to the LIDAR receiver.
2. The discretely distributed particles are hard spheres and impenetrable.
3. The sizes of dust particles are smaller than the wave length.

Based on the aforementioned model, our data augmentation algorithm can be summa-
rized as follows:

• Sample dust particles in the surrounding of LIDAR according to the log-normal
distribution of dusty particles for each layer (Equation (13)).

• Divide the range of Rtar into different distance intervals.
• Reduce the original intensity of the signal reflected from the solid object by introducing

attenuation coefficients of dust particles to LIDAR equation (Equation (5)).
• The total power reflected from scattering particles are evaluated at each distances,

by explicitly superimposing the echoes from multiple particles at the beam segment
(R− cτH , R).

• By comparing the power reflected from the extended solid object and that from dust parti-
cles at different distances, the original point can be removed or relocated correspondingly.

The pseudo code of the algorithm is given in Algorithm 1.
Since our work is based on the algorithms proposed by [19–21], it is worth highlighting

the main differences from them:

1. Compared to LISA [21], our approach considers finite pulse width by approximating
Dirac Delta function with sin2 function like the work [19,20]. This implies that a
pulse wave can illuminate a collection of particles at different instances simultane-
ously and the received power is a superposition of multiple echoes returned to the
receiver coincidentally.

2. Unlike [20], which representing backscattering effects using a backscattering coeffi-
cient associated with each range bin, our simulation takes an explicit way to calculate
the echoes by superimposing the coincident reflections from different particles.

3. In the work of [19], each particle reflects only a fraction of the beam divergence
angle and let the remaining portion of the beam reach the target, whereby modeling
the occlusions between particles and the target. Such an operation implies that the
geometric cross section is equal to extinction cross section and neglects the diffraction.
In our work, the attenuation effect is implicitly represented by extinction coefficient at
each range bin.

The aforementioned differences are summarized in Table 1.

Table 1. Algorithm comparison. “Implicit” means the (attenuation or backscattering) effects of the
particles are represented collectively by a parameter associated with a beam segment (with extinction
or backscattering coefficients), whereas “Explicit” means that the effects are considered particle
by particle.

Properties LISA [21] [20] [19] Ours

Pulse width 0 finite finite finite
Attenuation implicit implicit explicit implicit

Backscattering explicit implicit explicit explicit



Mathematics 2024, 12, 141 7 of 14

Algorithm 1 Dusty hybrid Monte-Carlo approach

1: Input: Lidar point clouds in clear weather(pc)
2: Output: Noisy point clouds in dusty weather
3: for l in nl layers do
4: Randomly sample N0 many scatters conforming to log-normal distribution with

Equation (13)
5: for x, y, z in pc do
6: Range Rtar←

√
x2 + y2 + z2

7: Retrieve signal intensity Pini at Rtar from datasets
8: Infer system constant C by solving Equation (3)
9: Evaluate beam divergence and crossover function

10: Evaluate extinction coefficient α from the size distribution and particle density
according to Equation (9)

11: for R in (0, 1, 2, · · · , Rtar) do
12: if R == Rtar then
13: Evaluate back reflected power from the solid objec using Equation (5)
14: else
15: Detect the collection of particles in the range of (R− cτH , R).
16: Evaluate the echo of scatters using Equation (8)
17: end if
18: end for
19: P∗ ← max P(R)
20: R∗ ← argmax[P(R)]
21: if P∗ < Ptol then
22: The point is removed
23: end if
24: if P∗ ≤ P(Rtar) then
25: return x, y, z, P(Rtar)
26: else
27: (x∗, y∗, z∗)← R∗

Rtar
(x, y, z)

28: return x∗, y∗, z∗, P(R∗)
29: end if
30: end for
31: end for

4. Experiments and Results

The Seeing Through Fog (STF) dataset is a multimodal dataset encompassing various
weather conditions [13]. We will conduct dusty simulation experiments on the clear
day subset of this dataset. Before running the simulation algorithm, it is necessary to
precompute the distribution of 64 sand dust particles in a 2D plane (a circle with a radius
of 80 m), corresponding to the 64 channels of the Velodyne HDL-S3D sensor used in
the STF dataset [19]. In our experiments, weather conditions with airborne sand dust
particles are classified into three categories: floating dust, blowing sand, and dust storm [28].
The particle size distribution of airborne sand dust particles varies under different weather
conditions. We use the mean particle radius of sand dust particles as a variable to simulate
LIDAR point cloud data under different weather conditions. In addition, we also discuss
and analyze the impact of beam divergence angle and half-power pulse width on simulation
results of LIDAR point clouds. We further compared our simulation algorithm with the
preceding LIDAR simulation algorithms under adverse weather conditions. Finally, we
trained various mainstream 3D object detection models and compared them with a clear-
sky baseline to validate the effectiveness of our simulation algorithm. The computer
specifications used in this study are as follows:

• CPU: Intel Core i9-10900K @ 3.70 GHz;
• RAM: 64 GB DDR4 RAM;
• GPU: NVIDIA GeForce RTX 3090;
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• Hard-disk drive: 1 TB SSD + 2 TB HDD.

4.1. Qualitative Results

According to the research of [29,30], the average radius of lognormal distribution of
sampled sand dust particles in floating dust, blowing sand, and dust storms are taken as 15,
20, and 25 microns, respectively. Ref. [31] measured the particle concentration of airborne
sand dust in Yinchuan, China, under three weather conditions: floating dust, blowing sand,
and dust storm. We represent this parameter by the proportion of the sampled particle area
to the total plane area. In our simulation, we set the sampling area ratios for these three
weather conditions to 1:2:4.

In Figure 5, we conducted a comparative analysis between the simulated data under
different dusty weather conditions (floating dust, blowing sand, and dust storm) and
the original data captured on clear weather. Compared to the original point cloud data,
in our simulated data, the points in the distance become sparser, and a growing number
of “clutter points” appear in the area close to sensors; overall, the point cloud color tends
to shift towards red. These changes suggest that an increasing number of original target
points are being mistakenly identified by LIDAR, primarily manifested in forward shifts
in position and the attenuation of reflection intensity. As shown in Figure 5, the outlines
of pedestrians slightly farther away become increasingly unclear; the cyclist towards the
rear virtually disappears in the dust storm scene; and there is a noticeable decline in the
reflected signal intensity of the cars, making it impossible to discern their contours in the
dust storm weather. The occurrence of this phenomenon is attributed to the increase in the
quantity and size of sand dust particles in the air, which leads to a higher level of occlusion
to the targets. The larger the extinction coefficient, the more significant the attenuation
impact on the pulse intensity of the LIDAR. This ultimately leads to a reduction in the
measurement range of the LIDAR.

Figure 5. Comparison of LIDAR simulations under different dusty weather conditions. For all dusty
weather conditions, the half-power pulse width and beam divergence angle are set to 10 ns and
0.003 radians, respectively. All point cloud colors are encoded according to the Jet colormap rule,
where blue represents high values and red represents low values. In the point cloud under clear
weather conditions, we provide 3D bounding boxes of real objects as a reference.

The half-power pulse width is a crucial system parameter, whose value is determined
by specific applications and design requirements. In scenarios such as medium-range
applications (like autonomous driving and traffic monitoring), where a balance between
distance resolution and energy propagation should be struck, the half-power pulse width
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may vary from a few nanoseconds to several hundred nanoseconds. Consequently, we have
examined the impact of different half-power pulse width within this range on simulation
algorithms, with the characteristics of the simulation algorithms depicted in Figure 6. When
the half-power pulse width is set to 5 ns and 10 ns, no significant difference is observed in
the simulation results. When the half-power pulse width is set to 100 ns, there is a visible
increase in the number of “clutter points”, but there is no evident change in the overall
reflected power intensity of the point cloud. This indicates that when the half-power pulse
width is sufficiently large, more dust particles are illuminated by the laser beam, leading to
an increased misidentification of these particles by the LIDAR. On the other hand, a larger
pulse width implies that the laser pulse lasts for a longer duration, and the carried energy
is distributed over a broader spatial range. In such a scenario, the intensity attenuation of
the laser beam during propagation may be relatively slow, so the overall reflected power
intensity does not change greatly.

Figure 6. Comparison of different half-power pulse widths based on our blowing sand simulation
with α set to 0.01. The beam divergence angle is kept constant at 0.003 radians. All point cloud colors
are still encoded according to the Jet colormap rules, and we provide 3D bounding boxes of real
objects under clear weather conditions.

The beam divergence angle can influence the resolution and measurement accu-
racy of LIDAR. We conducted tests on three beam divergence angles: 0.003 radians [19],
0.006 radians [32], and 0.01 radians [33]. The simulation results are illustrated in the
Figure 7. From the provided examples, it is evident that with an increase in the beam
divergence angle, the number of clutter points also increases. Additionally, the emission
intensity of targets decreases, and the color transitions from blue to red. This phenomenon
is attributed to the smaller beam divergence angle, where the laser beam is more focused,
exhibiting higher penetration capability and resulting in higher pulse intensity upon reach-
ing the object point. Furthermore, a larger divergence angle includes more dust particles in
the laser beam, leading to increased occlusion levels at the object points.

Finally, we conducted a comparative analysis between our simulation algorithm and
two other LIDAR simulators, LISA [21] and the algorithm in [19] (Figure 8). LISA produces
the smallest number of “clutter points”, and our simulation algorithm generates the most.
Regarding the overall point cloud reflectance, LISA’s generated simulation data had the
lowest intensity, followed by our algorithm, while Martin’s algorithm exhibited the highest
reflected power intensity. In comparison, our algorithm excelled in simulating the occlusion
effects of scattered particles on object points, while offering a more rational calculation
of reflectance intensity. This not only enables our algorithm to more accurately capture
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occlusion effects on object points, but also ensures the credibility of simulation results when
reflecting laser reflectance intensity in real-world scenarios.

Figure 7. Comparison of different beam divergence angles based on our blowing sand simulation
with α set to 0.01. The half-power pulse width is kept constant at 10ns. All point cloud colors are
still encoded according to the Jet colormap rules, and we provide 3D bounding boxes of real objects
under clear weather conditions.

Figure 8. Comparison of different simulation methods. LISA [21] adheres to all its default parameters,
while Hahner’s simulation [19] substitutes particle distribution with our blowing sand distribution,
maintaining the rest according to the default parameters. Our results were based on blowing
sand simulation with α, half-power pulse width, and beam divergence angle set to 0.01, 10 ns and
0.003 radians, respectively. All point cloud colors are still encoded according to the Jet colormap
rules, and we provide 3D bounding boxes of real objects under clear weather conditions.

4.2. Quantitative Results

In 300 samples, we conducted a statistical analysis of simulated data under conditions
of floating dust, blowing sand, and dust storm. We meticulously recorded the time required
for each execution of the simulation algorithm (time), the number of points removed
due to low reflectance below the threshold (removed point), the number of points with
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changed positions (scattered point), and the number of points with only intensity changes
(attenuated point). We then calculated the mean values for each parameter. We summarized
statistical results in Table 2, providing a visual representation of the performance of our
simulation algorithm under various dust weather conditions.

Table 2. Performance analysis of our simulation algorithm under different dusty weather conditions.

Weather Conditions Time(s) Remove Point Scattered Point Attenuated Point

floating dust 6.8 1845 145 1412
blowing sand 8.2 1920 332 2012

dust storm 12.4 2063 724 2562

This outcome indicates a gradual increase in the execution time of our simulation algo-
rithm from floating dust weather to dust storm conditions. Simultaneously, the number of
affected target points also rises. This further confirms the reliability and effectiveness of our
simulation algorithm in simulating LIDAR perception under various dusty weather condi-
tions. Specifically, as the quantity of sampled sand dust particles increases, the attenuation
effect on LIDAR pulse intensity and the extent of target impact become more pronounced.

The selection of training set and test set is very important for training a high-performance
detection model [34]. Due to the absence of publicly available extensive dusty point
cloud datasets, according to [19], our training and testing were conducted on two subsets
of the STF dataset in clear weather [13], which includes 4396 samples and 1816 sam-
ples, respectively. We apply our blowing sand simulation to all the samples in the train-
ing set and test set. We focus on relaxed intersection over union (IoU) thresholds, and
present results using the official KITTI evaluation framework, and report average preci-
sion (AP) at 40 recall positions, as suggested in [35]. For the 3D object detection meth-
ods, we choose PV-RCNN [36] and PointRCNN [37] to validate the effectiveness of our
simulation algorithm.

The hyperparameters, such as learning rate and regularization strategies, play a key
role in model training [38]. We utilized the OpenPCDet framework [39] with default
configurations to train these models. Taking PV-RCNN as an example, in OpenPCDet
framework, the initial learning rate is set to 0.01 and adjusted over time. The optimizer is
Adam-onecycle, and corner loss regularization is applied to avoid overfitting problems [38].
Each model was trained from scratch for 80 epochs. For the OpenPCDet framework [39],
each epoch will generate a model during the training process. We have tested all the
models and recorded the best comprehensive performance model results. We presented
our detection results in Table 3.

We listed these models in descending order based on their performance. Each model
predicts three classes of objects (car, pedestrian, cyclist). Our simulation algorithm exhibited
improvements across all models and all three classes of objects. Particularly noteworthy
is the significant enhancement for PV-RCNN [36], which showed an increase of 10.23% in
mean average precision (mAP) over those three classes compared to the clear-sky baseline.
In comparison, PointRCNN [37] also demonstrated some performance improvement, albeit
with a small growth rate of only 1.72%. The performance improvement observed in PV-
RCNN may stem from its higher sensitivity to our simulated data, allowing it to better
learn the features of the objects and improve the model’s generalization capability.

The model trained with clear weather data lacks information on dusty environments.
Our simulation allows object detection trained with a synthetic dusty environment and
injects more information to the model, so object detection can achieve a higher accuracy
in adverse weather. It is commented that the object detection based on simulated LIDAR
point clouds is an inverse problem like tomography. To improve the performance of the
detection in few data measurements, some prior physical knowledge like Partial Differential
Equations (PDE) can be incorporated to the detector.
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Table 3. Comparison of our simulation methods with clear-sky baseline for 3D object detection results
on the test set. We report 3D average precision (AP) of moderate for three classes.

Method Simulation Car AP@.5IoU Pedestrian
AP@.25IoU Cyclist AP@.25IoU mAP over Classes

PV-RCNN [36] None 51.89 22.30 24.47 32.89
Ours-dust 63.21 34.00 32.14 43.12

PointRCNN [37] None 49.06 16.29 22.78 29.38
Ours-dust 50.73 22.42 20.13 31.10

5. Conclusions

In this study, we introduce a novel framework for augmenting LIDAR point clouds
in dusty weather based on physical simulation. With the presented approach, the dusty
particles are distributed discretely in the surrounding of LIDAR, and the finite laser pulse
width and beam divergence is considered in the model. The attenuation effects of dusty
particles on the target object and other particles are represented implicitly by extinction
coefficients. The coincidentally returned power is evaluated explicitly by superimposing the
echoes from multiple particles. Based on the above simulation, the position and intensity
of the original real point clouds are modified.

Through analyzing physically simulated point clouds in different dusty weather, such
as floating dust, blowing sand and dust storm, we verify the reliability and effectiveness
of our algorithm. The synthetic data generated by our simulator can be used as training
data to enhance the accuracy and robustness of an object detector in dusty weather, thus
alleviating the difficulty of collecting real dusty point clouds. Although our method is
applied to dusty weather, it can also be used in other adverse weather conditions (snowfall,
rain, etc.) with trivial modification. Our work holds promise in practical applications of
autonomous driving and robotics. We expect that this work could advance further research
on intelligent perception systems in adverse weather conditions.

In the future, the following directions are worth pursuing:

• We will combine our algorithm with numerical simulation in electromagnetic analysis,
for example, boundary element methods [40,41], and extend it to to simulate sonar
image in complex underwater environment [42,43].

• Adaptivity and generalization errors of the algorithm will be studied. In addition, we
will introduce physical knowledge represented by partial differential equations (PDE)
to object detector for improving its performance with few sparse measurements.

• The algorithm will be extensively tested and applied for downstream tasks such as
classification [44], tracing, segmentation [45], recognition an detection [46,47].
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