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Abstract: We introduce De Morgan Heyting logic for Heyting algebras with De Morgan negation
(DH-algebras). The variety DH of all DH-algebras is congruence distributive. The lattice of all
subvarieties of DH is distributive. We show the discrete dualities between De Morgan frames and
DH-algebras. The Kripke completeness and finite approximability of some DH-logics are proven.
Some conservativity of DH expansion of a Kripke complete superintuitionistic logic is shown by the
construction of frame expansion. Finally, a cut-free terminating Gentzen sequent calculus for the
DH-logic of De Morgan Boolean algebras is developed.
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1. Introduction

Intuitionistic logic provides a basis for the study of foundations of constructive sciences.
When the constructive reasoning is concerned in many scenarios, merging intuitionistic
logic and other logical operators becomes useful. An interesting direction is the study
of intuitionistic modal logic (cf., e.g., [1–4]). From the algebraic perspective, algebras for
an intuitionistic modal logic are Heyting algebras with modal operators. This approach
emphasizes the interaction between intuitionistic and modal operators. Thus, it differs
from various ways of combining logics like fibring, fusion or product (cf., e.g., [5–7]).

The aim of the present work is merging the intuitionistic and De Morgan logics.
Sankappanavar [8] proposed Heyting algebras with a dual homomorphism, and the va-
riety of De Morgan Heyting algebras (DH-algebras) was investigated. A DH-algebra is
a Heyting algebra (A,∧,∨,→, 0) with a De Morgan negation ∼. It is well known that
quasi-Boolean algebras (or De Morgan algebras) are bounded distributive lattices with De
Morgan negation (cf., e.g., [9]). The logic of De Morgan algebras is just the Belnap–Dunn
four-valued logic (cf., e.g., [10–13]). In this paper, we study the logic of DH-algebras which
is the combination of intuitionistic and De Morgan logics.

In the present article, we show some results on the variety DH of all DH-algebras. First,
we show that DH is congruence distributive and hence it has the congruence extension
property. Then, we show that the lattice Λ(DH) of all subvarieties of DH is distributive.
This lattice Λ(DH) is dually isomorphic to the lattice of all DH-logics. Then, we present
discrete dualities between DH-algebras and De Morgan frames. A De Morgan frame
(cf., e.g., [14,15]) is an intuitionistic frame with an antitone involution. We note that an
involution on a nonempty set W is function g : W → W such that g(g(w)) = w for all
w ∈ W. The involution was used for the representation of quasi-Boolean algebras in [16].

Using De Morgan frames, we offer relational semantics for syntactically defined De
Morgan Heyting logics. The method of canonical model is applied to prove Kripke com-
pleteness. We modify the Lemmon filtration method to show the finite approximability
which yields the decidability of some DH-logics. Furthermore, the conservativity of the
DH expansion of a Kripke complete superintuitionistic logic which preserves expansion is
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proven by the construction of expanding rooted intuitionistic frames. Using this construc-
tion and the conservativity result, we show that the unique Post-complete DH-logic C is
embedded into the minimal DH-logic J via an extended Glivenko-style translation.

Finally, in the last part of this article, the proof-theoretic aspect of the DH-logic B for
De Morgan Boolean algebras is investigated. We introduce a structural rule-free Gentzen
sequent calculus GB and show that the cut rule is admissible. Then, we show the sequent
calculus GB is sound and complete with respect to the class of all De Morgan frames for B.
Moreover, GB is terminating in the sense that the proof search of a given sequent terminates.
It follows that the derivability of a sequent in GB is decidable.

2. De Morgan Heyting Algebras

A Heyting algebra is algebra (A,∧,∨,→, 0) such that (A,∧,∨, 0) is a lattice with zero
and for all x, y, z ∈ A the following law of residuation holds:

(Res) x ∧ y ≤ z if and only if y ≤ x → z.

Here, ≤ is the lattice order. We use abbreviations ¬x := x → 0 (intuitionistic negation),
1 := ¬0 and x ↔ y := (x → y) ∧ (y → x). We let HA be the variety of all Heyting algebras.
It is well known that the lattice reduct of a Heyting algebra is bounded distributive.

Definition 1. Algebra A = (A,∧,∨,→,∼, 0) is called a De Morgan Heyting algebra (‘DH-
algebra’ for short) if (A,∧,∨,→, 0) is a Heyting algebra and ∼ is a De Morgan negation, i.e., for
all x, y ∈ A, the following conditions hold:

(D1) ∼0 = 1.
(D2) ∼∼x = x.
(D3) ∼(x ∧ y) = ∼x ∨∼y.
(D4) ∼(x ∨ y) = ∼x ∧∼y.

We write (A,∼) for a DH-algebra where A is supposed to be a Heyting algebra. We let DH
be the variety of all DH-algebras.

Lemma 1. We let A = (A,∼) be a DH-algebra. The following hold for all x, y ∈ A:

(1) x ≤ y if and only if ∼y ≤ ∼x.
(2) x ≤ y if and only if x → y = 1.
(3) x ∧ (x → y) = x ∧ y.
(4) y ∧ (x → y) = y.
(5) ∼(x → y) ≤ x → ∼y.

Proof. For (1), we assume x ≤ y. Then, ∼y ∧∼x = ∼(y ∨ x) = ∼y and so ∼y ≤ ∼x. We
assume ∼y ≤ ∼x. Then, x = ∼∼x ≤ ∼∼y = y. Items (2) – (4) hold in Heyting algebras.
For (5), clearly, y ≤ x → y. Then, y ≤ ∼x ∨ (x → y). By (1), ∼(∼x ∨ (x → y)) ≤ ∼y. By
(D4), ∼∼x ∧ ∼(x → y) ≤ ∼y. By (D2), x ∧ ∼(x → y) ≤ ∼y. By (Res), ∼(x → y) ≤ x →
∼y.

We let A = (A,∼) be a DH-algebra. For every x ∈ A, we define ⊞x = ¬∼x. For every
n ≥ 0 and unary operator ⊙ on A, we let ⊙nx be defined inductively by ⊙0x = x and
⊙n+1 = ⊙⊙n x. For every x ∈ A and n ≥ 0, we let tn(x) =

∧
k≤n ⊞

kx.
Filter F in a DH-algebra A = (A,∼) is regular if ⊞x ∈ F for every x ∈ F. We let F ◦(A)

be the set of all regular filters in A. Clearly, ∆F = {1} is a regular filter which is called the
trivial one. The regular filter generated by subset X ⊆ A is denoted by [X)◦A. The set F ◦(A)
is closed under arbitrary intersection and hence ⟨F ◦(A),⊆⟩ forms a complete lattice where∧

S =
⋂

S and
∨

S = [
⋃

S)◦A for every S ⊆ F ◦(A). If X = {x}, we write [x)◦A for [{x})◦A.
For every X ⊆ A and x ∈ A, elements in regular filters [X)◦A and [x)◦A are characterized
in [8] as follows:

(1) y ∈ [X)◦A if and only if
∧

1≤i≤k tni (xi) ≤ y for some n1, . . . , nk ∈ ω and x1, . . . , xk ∈ X.
(2) y ∈ [x)◦A if and only if tn(x) ≤ y for some n ∈ ω.
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These characterizing conditions are used in our following proofs.

Fact 1. We let (A,∼) be a DH-algebra. For all G ∈ F ◦(A) and n ≥ 0, if x ∈ G, then tn(x) ∈ G.

Lemma 2. For every DH-algebra A, ⟨F ◦(A),⊆⟩ is a distributive lattice.

Proof. We let F, G and H ∈ F ◦(A). We assume x ∈ F∩ (G∨ H). Then, x ∈ [G∪ H)◦A. Then,
there are y1, . . . , yk ∈ G ∪ H and n1, . . . , nk ∈ ω such that tn1(y1) ∧ . . . ∧ tnk (yk) ≤ x. Since
G, H ∈ F ◦(A), we have tni (yi) ∈ G∪ H for 1 ≤ i ≤ k. Then, x∨ tni (yi) ∈ (F∩G)∪ (F∩ H).
Hence, x = x ∨ ∧

1≤i≤k tni (yi) =
∧

1≤i≤k(x ∨ tni (yi)) ∈ [(F ∩ G) ∪ (F ∩ H))◦A = (F ∩ G) ∨
(F ∩ H). Therefore, ⟨F ◦(A),⊆⟩ is distributive.

We let Con(A) be the set of all congruence relations in a DH-algebra A = (A,∼).
The least and largest members of Con(A) are denoted by ∆A (identity) and ∇A (totality),
respectively. For every θ ∈ Con(A) and x ∈ A, we let [x]θ be the equivalence class of x. We
let A/θ be the quotient algebra of A modulo θ. For every F ∈ F ◦(A), we let θF ⊆ A × A be
defined by

⟨x, y⟩ ∈ θF if and only if x ∧ z = y ∧ z for some z ∈ F.

Clearly, θF is an equivalence relation on A. Conversely, for each θ ∈ Con(A), we let
Fθ = [1]θ . The following lemma is derived from Lemma 3.2 [8], and here we offer details of
proof.

Lemma 3. For every DH-algebra A = (A,∼) and F ∈ F ◦(A), θF ∈ Con(A) and [1]θF = F.

Proof. It suffices to show that θF is compatible with respect to operators in A. The intu-
itionistic cases are shown regularly. We assume ⟨x, y⟩ ∈ θF. Then, x ∧ z = y ∧ z for some
z ∈ F. Clearly, ¬∼z ∈ F. We have ∼x ≤ ∼x ∨ ∼z = ∼(x ∧ z) = ∼(y ∧ z) = ∼y ∨ ∼z.
Obviously, ∼y ≤ ¬∼z → ∼y and ∼z ≤ ¬∼z → ∼y. Hence, ∼x ≤ ¬∼z → ∼y, and
so ∼x ∧ ¬∼z ≤ ∼y. Similarly, ∼y ∧ ¬∼z ≤ ∼x. Then, ∼x ∧ ¬∼z = ∼y ∧ ¬∼z. Hence,
⟨∼x,∼y⟩ ∈ θF. We assume x ∈ F. Then, ⟨x, 1⟩ ∈ θF and so x ∈ [1]θF . We assume x ∈ [1]θF .
Then, ⟨x, 1⟩ ∈ θF and so x ∧ z = 1 ∧ z = z for some z ∈ F. Then, z ≤ x and so x ∈ F. Hence,
[1]θF = F.

Lemma 4. For every DH-algebra A = (A,∼) and θ ∈ Con(A), Fθ ∈ F ◦(A).

Proof. We let x, y ∈ Fθ . Then, ⟨x, 1⟩ ∈ θ and ⟨y, 1⟩ ∈ θ. Then, ⟨x ∧ y, 1⟩ ∈ θ and so
x ∧ y ∈ Fθ . We let x ∈ Fθ and x ≤ y. Then, ⟨x, 1⟩ ∈ θ and x = x ∧ y. Then, ⟨x ∧ y, y⟩ ∈ θ
and so ⟨x, y⟩ ∈ θ. Hence, ⟨y, 1⟩ ∈ θ and so y ∈ Fθ . We let x ∈ Fθ . Then, ⟨x, 1⟩ ∈ θ and so
⟨⊞x,⊞1⟩ ∈ θ. Clearly, ⊞1 = 1 and so ⊞x ∈ Fθ . Then, Fθ ∈ F ◦(A).

Theorem 1. For every DH-algebra A, ⟨Con(A),⊆⟩ is lattice-isomorphic to ⟨F ◦(A),⊆⟩.

Proof. Function f : F ◦(A) → Con(A) is defined by setting f (F) = θF for each F ∈ F ◦(A).
By Lemma 3 (1), θF ∈ Con(A). Function g : Con(A) → F ◦(A) is defined by setting
g(θ) = Fθ for each θ ∈ Con(A). By Lemma 4, Fθ ∈ F ◦(A). We assume F ∈ F ◦(A). By
Lemma 3 (2), F = [1]θF and so F = FθF . Hence, g ◦ f is the identity on F ◦(A). We assume
θ ∈ Con(A). We suppose ⟨x, y⟩ ∈ θ. Then, x ↔ y ∈ Fθ . Clearly, x ∧ (x ↔ y) = y ∧ (x ↔ y)
and so ⟨x, y⟩ ∈ θFθ

. We suppose ⟨x, y⟩ ∈ θFθ
. Then, there exists z ∈ Fθ = [1]θ such that

x ∧ z = y ∧ z. By ⟨z, 1⟩ ∈ θ, we have ⟨x ∧ z, x⟩ ∈ θ and ⟨y ∧ z, y⟩ ∈ θ. Then, ⟨x, y⟩ ∈ θ.
Hence, f ◦ g is the identity on Con(A). Clearly, f and g are order preserving. Hence, f is a
lattice isomorphism.

Corollary 1. DH is congruence distributive.
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Proof. By Theorem 1 and Lemma 2.

Algebra A is a subdirect product of family {Ai : i ∈ I} if there exists an injective
homomorphism f : A → ∏i∈I Ai such that πi ◦ f : A → Ai is surjective for every i ∈ I and
projection πi : ∏i∈I Ai → Ai. Algebra A is subdirectly irreducible if for every subdirect
embedding f : A → ∏i∈I Ai there exists i ∈ I such that πi ◦ f is an isomorphism.

Theorem 2. A DH-algebra A = (A,∼) is subdirectly irreducible if and only if the set of all
nontrivial regular filters F ◦(A) \ {∆F} has a least member.

Proof. By the characterization of subdirectly irreducibles in universal algebra (cf., e.g., [17]),
A is subdirectly irreducible if and only if Con(A) \ {∆A} has a least member. Then, the
characterization follows from Lemma 1.

For a class of DH-algebras K, we let H(K), S(K) and P(K) denote the classes of
homomorphic images, subalgebras and direct products of members of K, respectively. The
variety generated by K is exactly V(K) = HSP(K). If K is a variety, we let Λ(K) be the
lattice of all subvarieties of K with respect to the meet ∩ and join ⊕. The bottom T in
Λ(K) is the variety of trivial algebras, which consists of algebraic structures with only one
element. We note that K1 ⊕K2 is the smallest variety containing K1 ∪K2. The lattice of all
subvarieties of DH corresponds to the set of all intuitionistic De Morgan logics.

Now, we offer more observations on lattice Λ(DH) using the above results. Similar
results for modal algebras are given by Blok [18]. We let S = {Ai : i ∈ I} be a nonempty
family of DH-algebras and U an ultrafilter on I. Then, F = {a ∈ ∏i∈I Ai : {i ∈ I |
a(i) = 1} ∈ U} is a regular filter in the direct product ∏i∈I Ai. Aalgebra ∏i∈I Ai/θF is
called an ultraproduct of S . For a class of DH-algebras K, we let PU(K) be the class of
all ultraproducts of nonempty families of algebras in K. We let KSI be the class of all
subdirectly irreducibles in K.

Lemma 5. We let K be a class of DH-algebras. Then, the following hold:

(1) V(K)SI ⊆ HSPU(K).
(2) if K is a finite set of finite DH-algebras; then, V(K)SI ⊆ HS(K).
(3) if A and B are subdirectly irreducible; then, V(A) = V(B) if and only if A is isomorphic to B.
(4) for all J ,K ∈ Λ(DH), (J ⊕K)SI = JSI ∪KSI.

Proof. By Corollary 1, V(K) is congruence distributive. By Jónsson Corollary 3.2 [19],
V(K)SI ⊆ HSPU(K). By Corollary 3.4 [19], for a finite set of finite DH-algebras K, V(K)SI ⊆
HS(K). By Corollary 3.5 [19], we obtain (3). By the definition of ⊕ and (3), subdirectly
irreducible algebras in J ⊕K are exactly those in J or K. Thus, (4) holds (cf., e.g., Corollary
3.5 [18]).

Every variety is generated by its subdirectly irreducible members. We let SDH be the
set of all finitely generated subdirectly irreducible DH-algebras up to isomorphism. As
in [18], we define the preorder ⪯ on SDH as follows:

A ⪯ B if and only if A ∈ HSPU(B).

Subset K ⊆ SDH is a downset in ⟨SDH,⪯⟩ if A ⪯ B and B ∈ K implies A ∈ K. We let
O(SDH) be the set of all downsets. Clearly, ⟨O(SDH),∩,∪⟩ is a distributive lattice.

Theorem 3. Lattice Λ(DH) is embedded into O(SDH).

Proof. Map f : Λ(DH) → O(SDH) is defined by setting f (K) = K ∩ SDH for every
K ∈ DH. We assume J ̸= K ∈ Λ(DH). Then, J = V(J ∩ SDH) and K = V(K ∩ SDH).
Then, f (J ) ̸= f (K). Hence, f is injective. Clearly, f (J ∩K) = f (J ) ∩ f (K). By Lemma 5
(4), f (J ⊕K) = (J ⊕K)∩SDH = (J ⊕K)SI ∩SDH = (JSI ∪KSI)∩SDH = (JSI ∩SDH)∪
(KSI ∩ SDH) = f (J ) ∪ f (K). Hence, f is a lattice embedding.
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Corollary 2. Lattice Λ(DH) is distributive.

We note that Λ(DH) is a complete distributive lattice. Next, we can start the investi-
gation of logics. In what follows, we first make some observations on the discrete dualities
between De Morgan frames and DH-algebras.

3. De Morgan Frame and Discrete Duality

An intuitionistic frame (“I-frame” for short) is a pair F = (W,≤) where W ̸= ∅ and ≤
is a partial order on W. For interpreting ∼, an involution is added into I-frames and so De
Morgan frames (cf., e.g., [14,15]) are available.

Definition 2. A De Morgan frame (“DM-frame” for short) is a triple F = (W,≤, g) where ≤ is a
partial order on W and g : W → W is a function such that the following conditions hold:

(G1) g is an involution, i.e., g(g(w)) = w for all w ∈ W.
(G2) for all w, u ∈ W, if w ≤ u, then g(u) ≤ g(w).

We write w < u if w ≤ u and w ̸= u. For every w ∈ W and X ⊆ W, we let w↑ = {u ∈ W :
w ≤ u} and X↑ =

⋃
w∈X w↑. A subset X ⊆ W is an upset in F if X = X↑. We let Up(W) be the

sets of all upsets in F. Operations ∼g and →R on the powerset P(W) are defined by setting

∼gX = g(X) and X →R Y = {w ∈ W : w↑ ∩ X ⊆ Y}.

We use the set operations ∩, ∪ and (.) (complementation) on P(W).

We let F = (W,≤, g) be a DM-frame. By (G1), map g is bijective. Condition (G2)
means that g is antitone. Some I-frames can be expanded to a DM-frame by adding an
antitone involution but this does not hold in general.

Example 1. We consider the following posets and try to expand them with an antitone involution:

•

•

w0

w1

g1

P1

•

•

•

u0

u1

u2

g2

P2

•

•

•
v1

v0

v2

P3

Here, thick arrows stand for the order and dotted arrows for the involution. There is a unique
antitone involution on P1, i.e., g1(w0) = w1 and g1(w1) = w0. We suppose g1(w0) = w0. Then,
g1(w1) = w1, which contradicts w0 ≤ w1. The unique antitone involution on P2 is map g2 where
g2(u0) = u2, g2(u1) = u1 and g2(u2) = u0. There is no antitone involution on P3.

Lemma 6. We let F = (W,≤, g) be a DM-frame. For all w ∈ W and X, Y ⊆ W, the following
hold:

(1) w ≤ u if and only if g(u) ≤ g(w).
(2) w ∈ g(X) if and only if g(w) ∈ X.
(3) g(g(X)) = X, g(X) = ∼gX and g(∼gX) = X.
(4) g(X ∪ Y) = g(X) ∪ g(Y) and g(X ∩ Y) = g(X) ∩ g(Y).
(5) g(g(w)↑) = w↓.
(6) X ⊆ Y if and only if g(X) ⊆ g(Y).
(7) w ∈ g(X →R Y) if and only if w↓ ∩ g(X) ⊆ g(Y).

Proof. By (G1) and (G2), we obain (1). For (2), we assume w ∈ g(X). Then, w = g(u) for
some u ∈ X. Then, g(w) = g(g(u)) = u ∈ X. If g(w) ∈ X, then w = g(g(w)) ∈ g(X).
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Clearly, (3) and (4) follow from (2). For (5), we assume u ∈ g(g(w)↑). By (2), g(w) ≤ g(u).
By (1), u ∈ w↓. The other direction is similar. For (6), we assume X ⊆ Y and w ∈ g(X). By
(2), g(w) ∈ X and so w ∈ g(Y). We assume g(X) ⊆ g(Y) and w ∈ X. Then, g(w) ∈ g(X)
and so g(w) ∈ g(Y). Then, g(w) = g(u) for some u ∈ Y. Then, w = g(g(w)) = g(g(u)) =
u ∈ Y. For (7), we assume w ∈ g(X →R Y). By (2), g(w) ∈ X →R Y. Then, g(w)↑ ∩ X ⊆ Y.
By (4) and (6), g(g(w)↑) ∩ g(X) ⊆ g(Y). By (5), w↓ ∩ g(X) ⊆ g(Y). The other direction is
similar.

Lemma 7. We let F = (W,≤, g) and X, Y ∈ Up(W). Then, X →R Y,∼gX ∈ Up(W).

Proof. We assume X, Y ∈ Up(W). Clearly, X →R Y ∈ Up(W) (cf., e.g., [20]). We let
w ∈ ∼gX and w ≤ u. Then, w ̸∈ g(X) and g(u) ≤ g(w). By w ≤ u and (G2), g(u) ≤ g(w).
Since X ∈ Up(W), we have g(u) ̸∈ X. By Lemma 6 (2), u ∈ g(X) = ∼gX. Hence,
∼gX ∈ Up(W).

Clearly, ∅, W ∈ Up(W). We note that Up(W) is closed under ∩ and ∪. By Lemma 7,
Up(W) is closed under ∼g and →R. The dual of a DM-frame F = (W,≤, g) is defined as
F+ = (Up(W),∩,∪,∼g,→R,∅, W).

Proposition 1. For every DM-frame F = (W,≤, g), the dual F+ is a DH-algebra.

Proof. Clearly, ∼g∅ = g(∅) = W and ∼gW = g(W) = ∅. Obviously, (Up(W),∩,∪,→R
,∅) is a Heyting algebra. Moreover, for all X, Y ∈ Up(W), the following hold:

∼g∼g(X) = g(∼g(X)) = X = X (using Lemma 6 (3)),

∼g(X ∩ Y) = g(X ∩ Y) = g(X) ∩ g(Y) = g(X) ∪ g(Y) = ∼gX ∪∼gY,

∼g(X ∪ Y) = g(X ∪ Y) = g(X) ∪ g(Y) = g(X) ∩ g(Y) = ∼gX ∩∼gY.

Hence, F+ is a DH-algebra.

We let A = (A,∼) be a DH-algebra. The sets of all filters and ideals in A are denoted
by F (A) and I(A), respectively. A filter (or ideal) K ⊆ A is proper in A if K ̸= A. A proper
filter F ⊆ A is prime if x ∨ y ∈ F implies x ∈ A or y ∈ A. A proper ideal F ⊆ A is prime if
x ∧ y ∈ F implies x ∈ A or y ∈ A. We let Fp(A) and Ip(A) be sets of all prime filters and
prime ideals in A, respectively. A nonempty subset K ⊆ A has the finite meet property if
x1 ∧ . . . ∧ xn ̸= 0 for all x1, . . . , xn ∈ K. The filter (resp. ideal) in A generated by a subset
K ⊆ A is denoted by [K) (resp. (K]). If K = {x}, we write [x) for [{x}), and (x] for ({x}].

Lemma 8. We let A = (A,∼) be a DH-algebra, F ∈ F (A) and I ∈ I(A). Then, the following
hold:

(1) if x ̸≤ y, then there exists G ∈ Fp(A) such that x ∈ G and y ̸∈ G.
(2) F ∈ Fp(A) if and only if F ∈ Ip(A).
(3) F ∈ Fp(A) if and only if ∼F ∈ Ip(A).
(4) if F ∈ Fp(A) and x → y ̸∈ F, there exists G ∈ Fp(A) such that F ⊆ G, x ∈ G and y ̸∈ G.

Proof. For (1), we assume x ̸≤ y. Then, y ̸∈ [x). We let Z = {H ∈ F (A) : x ∈ H & y ̸∈ H}.
By Zorn’s lemma, there exists a ⊆-maximal element G ∈ Z . Then, G ∈ Fp(A), x ∈ G
and y ̸∈ G. Item (2) is obtained by definition. For (3), assume F ∈ Fp(A). We suppose
x, y ∈ F. Then, x ∧ y ∈ F and so ∼x ∨ ∼y = ∼(x ∧ y) ∈ ∼F. We suppose x ∈ F and
y ≤ ∼x where y ∈ A. Then, x = ∼∼x ≤ ∼y. Then, ∼y ∈ F and so y = ∼∼y ∈ ∼F.
We suppose ∼x ∧ ∼y ∈ ∼F. Then, x ∨ y = ∼(∼x ∧ ∼y) ∈ F and so x ∈ F or y ∈ F.
Then, ∼x ∈ ∼F or ∼y ∈ ∼F. Hence, ∼F ∈ Ip(A). We assume ∼F ∈ Ip(A). We
suppose x, y ∈ F. Then, ∼(x ∧ y) = ∼x ∨ ∼y ∈ ∼F and so x ∧ y ∈ F. We suppose
x ∈ F and x ≤ y. Then, ∼y ≤ ∼x ∈ ∼F and so ∼y ∈ ∼F. Then, y ∈ F. We suppose
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x ∨ y ∈ F. Then, ∼x ∧ ∼y = ∼(x ∨ y) ∈ ∼F and so ∼x ∈ ∼F or ∼y ∈ ∼F. Then, x ∈ F
or y ∈ F. Hence, F ∈ Fp(A). For (4), we assume x → y ̸∈ F. We let K = F ∪ {x} and
X = {G ∈ F (A) : K ⊆ G & y ̸∈ G}. We suppose y ∈ [K). Then, there exists z ∈ F such
that x ∧ z ≤ y. By (Res), z ≤ x → y. Then, x → y ∈ F which contradicts the assumption.
Hence, y ̸∈ [K) and so [K) ∈ X . By Zorn’s lemma, we let G ∈ X be a ⊆-maximal element
in X. Then, G is prime. Clearly, F ⊆ G, x ∈ G and y ̸∈ G.

Definition 3. We let A = (A,∼) be a DH-algebra. The dual of A is defined as algebra A+ =
(Fp(A),⊆, gA) where gA : Fp(A) → Fp(A) is map F 7→ ∼F for every F ∈ Fp(A).

Lemma 9. For every F ∈ Fp(A), x ∈ gA(F) if and only if ∼x ̸∈ F.

Proof. We assume x ∈ gA(F). Then, x ̸∈ ∼F. Since x = ∼∼x, we obtain ∼x ̸∈ F.
Conversely, we assume ∼x ̸∈ F. Then, x = ∼∼x ̸∈ ∼F and so x ∈ gA(F).

Proposition 2. For every DH-algebra A = (A,∼), the dual A+ is a DM-frame.

Proof. By Lemma 8, gA(F) ∈ Fp(A) for all F ∈ Fp(A). We let F ∈ Fp(A). By Lemma 9,
x ∈ gA(gA(F)) if and only if ∼x ̸∈ gA(F) if and only if x ∈ F. Hence, gA(gA(F)) = F and so
gA is an involution. We assume F ⊆ G ∈ Fp(A) and x ∈ gA(G). By Lemma 9, ∼x ̸∈ G and
so ∼x ̸∈ F. By Lemma 9, x ∈ gA(F). Then, gA(G) ⊆ gA(F). Hence, A+ = (Fp(A),⊆, gA)
is a DM-frame.

We let F = (W,≤, g) and G = (T,≤, h) be DM-frames. Map π : W → T is an
embedding from F to G if (i) π is injective; (ii) π(g(w)) = h(π(w)); (iii) w ≤ u if and only
if π(w) ≤ π(u). We say F is embedded into G if there is an embedding from F to G. A
DH-algebra A is embedded into B if there is an injective DH-homomorphism from A to B.

Theorem 4. We let F = (W,≤, g) be a DM-frame and A = (A,∼) be a DH-algebra. Then, (1) F
is embedded into (F+)+; and (2) A is embedded into (A+)+.

Proof. (1) Map π : W → Fp(F+) is defined by π(w) = {X ∈ Up(W) : w ∈ X} for every
w ∈ W. Clearly, π(w) ∈ Fp(F+). We assume w ̸≤ u. Then, w ∈ w↑ and u ̸∈ w↑. Then,
π(w) ̸= π(u). Hence, π is injective. For every F ∈ Fp(F+), gF+(F) = ∼gF = g(F). We
assume X ∈ π(g(w)). Then, g(w) ∈ X and so w ∈ g(X). Then, g(X) ∈ π(w) and so
X ∈ g(π(w)) = gF+(π(w)). We assume X ∈ gF+(π(w)). Then, X ∈ g(π(w)) and so
g(X) ∈ π(w). Then, w ∈ g(X) and so X ∈ π(g(w)). Hence, π(g(w)) = gF+(π(w)). We
assume w ≤ u. If X ∈ π(w), then w ∈ X and so u ∈ X, i.e., X ∈ π(u). Hence, π(w) ⊆ π(u).
We assume π(w) ⊆ π(u). Clearly, w↑ ∈ π(w) and so w↑ ∈ π(u). Then, u ∈ w↑ and so
w ≤ u. Hence, π is an embedding.

(2) Map ρ : A → Up(Fp(A)) is defined by setting ρ(x) = {F ∈ Fp(A) : x ∈ F} for
every x ∈ A. Clearly, ρ(x) ∈ Up(Fp(A)) for each x ∈ A. We assume x ̸≤ y. By Lemma 18
(1), there exists F ∈ Fp(A) such that x ∈ F and y ̸∈ F. Then, F ∈ ρ(x) and F ̸∈ ρ(y).
Then, ρ(x) ̸= ρ(y). Hence, ρ is injective. Clearly, ρ(0) = ∅ and ρ(x ∧ y) = ρ(x) ∩ ρ(y)
and ρ(x ∨ y) = ρ(x) ∪ ρ(y). We assume F ∈ ρ(x → y). We suppose G ∈ F↑ ∩ ρ(x). Then,
x → y ∈ F ⊆ G and x ∈ G. By x ∧ (x → y) ≤ y and x ∧ (x → y) ∈ G, we obtain y ∈ G.
Then, G ∈ ρ(y). Then, F ∈ ρ(x) →R ρ(y). Conversely, we assume F ̸∈ ρ(x → y). Then,
x → y ̸∈ F. By Lemma 18 (4), there exists G ∈ Fp(A) such that F ⊆ G, x ∈ G and y ̸∈ G.
Then, F↑ ∩ ρ(x) ̸⊆ ρ(y) and so F ̸∈ ρ(x) →R ρ(y). Hence, ρ(x → y) = ρ(x) →R ρ(y).
We assume F ∈ ρ(∼x). Then, ∼x ∈ F. By Lemma 9, x ̸∈ gA(F). Then, gA(F) ̸∈ ρ(x)
and so F ̸∈ gA(ρ(x)). Then, ρ(∼x) ⊆ ∼gA(ρ(x)). Similarly, ∼gA(ρ(x)) ⊆ ρ(∼x). Hence,
ρ(∼x) = ∼gA(ρ(x)). Therefore, ρ is an injective DH-homomorphism.
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4. De Morgan Heyting Logics

We let Var = {pi : i < ω} be a denumerable set of variables. The language of
De Morgan Heyting logic is the intuitionistic propositional language with De Morgan
negation ∼.

Definition 4. The DH-formula algebra LDH is defined inductively as follows:

LDH ∋ φ ::= p | ⊥ | ∼φ | (φ1 ∧ φ2) | (φ1 ∨ φ2) | (φ1 → φ2), where p ∈ Var.

Formulas in Var ∪ {⊥} are called atomic. We let ¬φ := φ → ⊥ (intuitionistic negation),
⊤ := ¬⊥ and φ ↔ ψ := (φ → ψ) ∧ (ψ → φ) (equivalence).

The complexity of a DH-formula φ, denoted by c(φ), is defined as the number of
occurrences of unary or binary operators in φ. We let Sf(φ) be the set of all subformulas of φ.
For a set of formulas Σ, we let Sf(Σ) =

⋃
φ∈Σ Sf(φ). We let var(φ) be the set of all variables

appearing in φ. We let φ(p1, . . . , pn) be the DH-formula φ such that var(φ) ⊆ {p1, . . . , pn}.
A substitution is a homomorphism s : LDH → LDH on the DH-formula algebra. We let φs

be the DH-formula by applying the substitution s to φ. We let φ(ψ1/p1, . . . , ψn/pn) be the
DH-formula obtained from φ by substituting ψi for pi (with 1 ≤ i ≤ n) in φ. We let φ(ψ/χ)
be the DH-formula obtained by replacing one or more occurrences of χ ∈ Sf(φ) with ψ.

Definition 5. A De Morgan Heyting logic (“DH-logic” for short) is a set of DH-formulas L
satisfying the following conditions:

(Int) every instance of intuitionistic propositional logic belongs to L.
(M1) ∼⊥ ↔ ⊤ ∈ L.
(M2) ∼∼p ↔ p ∈ L.
(M3) ∼(p ∧ q) ↔ ∼p ∨∼q ∈ L.
(M4) ∼(p ∨ q) ↔ ∼p ∧∼q ∈ L.
(MP) if φ ∈ L and φ → ψ ∈ L, then ψ ∈ L.
(CP) if φ → ψ ∈ L, then ∼ψ → ∼φ ∈ L.
(Sub) if φ ∈ L, then φs ∈ L for every substitution s.

A DH formula φ is a theorem of a DH-logic L (notation: ⊢L φ) if φ ∈ L. A DH formula φ is
L-derivable from a set of DH formulas Γ (notation: Γ ⊢L φ) if there exists a finite subset ∆ ⊆ Γ
with ⊢L

∧
∆ → φ. We note that

∧
∆ is the conjunction of all DH formulas in ∆. In particular, we

let
∧
∅ = ⊤. A set of DH formulas Γ is L-consistent if Γ ̸⊢L ⊥. A DH logic L1 is a sublogic of L2

(or L2 is an extension of L1) if L1 ⊆ L2.

Lemma 10. For every DH-logic L, the following hold:

(1) φ, Γ ⊢L ψ if and only if Γ ⊢L φ → ψ.
(2) ⊢L φ → ψ if and only if ⊢L ∼ψ → ∼φ.
(3) if ⊢L ψ ↔ χ, then ⊢L φ ↔ φ(ψ/χ).
(4) ⊢L ∼(φ → ψ) → (φ → ∼ψ).
(5) ⊢L φ → (ψ → χ) if and only if ⊢L φ ∧ ψ → χ.

Proof. Clearly, (1) holds by the definition. By (CP) and (M2), we obtain (2). For (3),
we assume ⊢L ψ ↔ χ. The case φ = ψ is trivial. We suppose ψ ∈ Sf(φ) \ {φ}. The
proof proceeds by induction on c(φ). We suppose φ = ∼δ. By induction hypothesis,
⊢L δ ↔ δ(ψ/χ). By (CP), ⊢L ∼δ ↔ ∼δ(ψ/χ). We suppose φ = φ1 ⊙ φ2 for ⊙ ∈
{∧,∨,→}. We obtain ⊢L φ ↔ φ(ψ/χ) by induction hypothesis and (Int). For (4), by
(Int), ⊢L ψ → ∼φ ∨ (φ → ψ). By (CP), ⊢L ∼(∼φ ∨ (φ → ψ)) → ∼ψ. By (M4), (M2) and
(3), ⊢L φ ∧ ∼(φ → ψ) → ∼ψ. By (Int), ⊢L ∼(φ → ψ) → (φ → ∼ψ). Item (5) holds by
(Int).
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We let {Li : i ∈ I} be a family of DH-logics. Intersection
⋂

i∈I Li is a DH-logic. We
let Γ be a set of DH formulas and L a DH-logic. The DH-logic generated by Γ over L is
defined as L ⊕ Γ =

⋂{L′ : L′ is a DH-logic and L ∪ Γ ⊆ L′}. If Γ = {φ1, . . . , φn}, we write
L ⊕ φ1 ⊕ . . . ⊕ φn for L ⊕ Γ. The minimal DH-logic is denoted by J. We note that J is
axiomatized by axioms (Int), (M1), all instances of (M2)– M4) and rules (MP) and (CP)
in Definition 5. For every DH-logic L, the set of all extensions of L is denoted by Ext(L).
Clearly, ⟨Ext(L),∩,⊕⟩ forms a complete lattice.

Definition 6. We let A = (A,∼) be a DH-algebra. A valuation in A is a homomorphism
σ : F → A. A DH formula φ is valid in A (notation: A |= φ) if σ(φ) = 1 for every valuation σ in
A. We let K be a class of DH-algebras. A DH formula φ is valid in K (notation: K |= φ) if A |= φ
for every A ∈ K. The logic of K is defined as the set of DH formulas Log(K) = {φ ∈ F : K |= φ}.
For a set of DH formulas Σ, we let Alg(Σ) be the variety of DH-algebras validating all DH formulas
in Σ.

For every DH-logic L, relation θL = {⟨φ, ψ⟩ : ⊢L φ ↔ ψ} is a congruence on DH
formula algebra F . Quotient algebra AL = (F /θL,∧,∨,→,∼, 0) is called the Tarski–
Lindenbaum algebra for L. Clearly, AL ∈ Alg(L). We let [φ]L be the equivalence class of φ
module θL. Clearly, [φ]L ≤ [ψ]L if and only if ⊢L φ → ψ.

Lemma 11. For every DH-logic L, ⊢L φ if and only if Alg(L) |= φ.

Proof. All axioms of J are valid and all rules of J preserve validity in DH. Then, L ⊆
Log(Alg(L)). We assume ̸⊢L φ. Then, [φ]L ̸= [⊤]L. We let σ be the valuation in AL such that
σ(p) = [p]L for all p ∈ Var. Then, σ(χ) = [χ]L for all χ ∈ F . Then, σ(φ) ̸= [⊤]L. Hence,
AL ̸|= φ. By AL ∈ Alg(L), we have Alg(L) ̸|= φ.

A model is a tuple M = (F, V) where F is a DM frame and V is a valuation in F+.
A DH formula φ is true at w in a model M (notation: M, w |= φ) if w ∈ V(φ). We write
w |= φ if no confusion arises from the context. A DH formula φ is true in M (notation:
M |= φ) if V(φ) = W. A DH formula φ is valid in a DM frame F (notation: F |= φ) if
F+ |= φ. For a set of DH-formulas Γ, we let F |= Γ denote that F |= φ for all φ ∈ Γ. We
let Fr(Γ) = {F : F |= Γ}. We note that Fr(J) is the class of all DM-frames. For a class of
DM-frames C, we let C+ = {F+ : F ∈ C}. DH formula φ is valid in C (notation: C |= φ) if
C+ |= φ. We let Th(C) = {φ ∈ F : C |= φ} be the DH theory of C. DH-logic L is Kripke
complete if L = Th(Fr(L)).

Theorem 5. For every DH formula φ, ⊢J φ if and only if Fr(J) |= φ. Hence, J = Log(DH).

Proof. Clearly, F |= φ for all φ ∈ Int and DM frame F. We assume ̸⊢J φ. By Lemma 11,
A ̸|= φ for some DH-algebra A. By Theorem 4 (2), (A+)+ ̸|= φ. Hence, Fr(J) |= φ.

For proving the Kripke completeness of some DH-logics, it is useful to define the
canonical model for a DH-logic. We let L be a DH-logic. A set of DHcformulas Γ is an
L theory if Γ is closed under ⊢L, i.e., if Γ ⊢L φ, then φ ∈ Γ. We let T (L) be the set of all
L-theories. A consistent L-theory Γ is prime if φ ∨ ψ ∈ Γ implies φ ∈ Γ or ψ ∈ Γ. We let
Tp(L) be the set of all prime L theories. A set of DH formulas Σ is a counter L theory if
φ ⊢L ψ1 ∨ . . . ∨ ψn for some ψ1, . . . , ψn ∈ Σ implies φ ∈ Σ. We let T c(L) be the set of all
counter-L theories. A consistent counter-L theory Σ is prime if φ ∧ ψ ∈ Σ implies φ ∈ Σ or
ψ ∈ Σ. We let T c

p (L) be the set of all prime counter L-theories. For a set of DH-formulas
Θ, the L theory and the counter-L theory generated by Θ are denoted by [Θ)L and (Θ]L,
respectively. If Θ = {φ}, we write [φ)L and (φ]L for [{φ})L and ({φ}]L, respectively.

Fact 2. We let Γ ∈ Tp(L) and Σ ∈ T c
p (L). The following hold for all φ, ψ ∈ F :

(1) φ ∧ ψ ∈ Γ if and only if φ ∈ Γ and ψ ∈ Γ.
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(2) φ ∨ ψ ∈ Γ if and only if φ ∈ Γ or ψ ∈ Γ.
(3) φ ∧ ψ ∈ Σ if and only if φ ∈ Σ or ψ ∈ Σ.
(4) φ ∨ ψ ∈ Σ if and only if φ ∈ Σ and ψ ∈ Σ.
(5) ∼∼φ ∈ Γ if and only if φ ∈ Γ.
(6) ∼∼φ ∈ ∆ if and only if φ ∈ ∆.

Proof. These biconditions are obtained by the definition of prime L theory and counter-L
theory. Details of proof are omitted.

Lemma 12. We let Γ ∈ T (L) and Σ ∈ T c(L). Then, the following hold:

(1) if Ξ ̸⊢L ψ, then there exists ∆ ∈ Tp(L) such that Ξ ⊆ ∆ and ψ ̸∈ ∆.
(2) Σ ∈ T c

p (L) if and only if Σ ∈ Tp(L).
(3) φ ∈ (∼Γ]L if and only if ∼φ ∈ Γ.
(4) Γ ∈ Tp(L) if and only if (∼Γ]L ∈ T c

p (L).

Proof. For (1), we assume Ξ ̸⊢L ψ. Then, [Ξ)L is a consistent L theory and ψ ̸∈ [Ξ)L. We let
X = {Θ ∈ T (L) : Ξ ⊆ Θ & ψ ̸∈ Θ}. Then, [Ξ)L ∈ X . By Zorn’s lemma, there exists a ⊆-
maximal element ∆ ∈ X . Clearly, ∆ is prime. For (2), we assume Σ ∈ T c

p (L). Then, ⊥ ∈ Σ
and so ⊥ ̸∈ Σ. We suppose φ1 ∧ . . . ∧ φn ⊢L ψ and φ1, . . . , φn ∈ Σ. Then, φ1 ∧ . . . ∧ φn ̸∈ Σ
and so ψ ∈ Σ. We suppose φ ∨ ψ ∈ Σ. Then, φ ∈ Σ or ψ ∈ Σ. Hence, Σ ∈ Tp(L). The other
direction is shown similarly. For (3), we assume φ ∈ (∼Γ]L. Then, there exist ψ1, . . . , ψn ∈ Γ
such that φ ⊢L ∼ψ1 ∨ . . . ∨∼ψn. Then, ψ1 ∧ . . . ∧ ψn ⊢L ∼φ. Hence, ∼φ ∈ Γ. We assume
∼φ ∈ Γ. Then, ∼∼φ ∈ ∼Γ. By φ ⊢L ∼∼φ, we have φ ∈ (∼Γ]L. For (4), we assume
Γ ∈ Tp(L). We suppose ∼⊥ ∈ (∼Γ]L. Then, ∼∼⊥ ∈ Γ and so ⊥ ∈ Γ which contradicts
the assumption. Hence, ∼⊥ ̸∈ (∼Γ]L. We suppose φ ⊢L ψ1 ∨ ψn and ψ1, . . . , ψn ∈ (∼Γ]L.
By (3), ∼ψ1, . . . ,∼ψn ∈ Γ and so ∼(ψ1 ∨ . . . ∨ ψn) = ∼ψ1 ∧ . . . ∧ ∼ψn ∈ Γ. Clearly,
∼(ψ1 ∨ . . . ∨ ψn) ⊢L ∼φ. Then, ∼φ ∈ Γ. By (3), φ ∈ (∼Γ]L. We suppose χ1 ∧ χ2 ∈ (∼Γ]L.
By (3), ∼χ1 ∨ ∼χ2 = ∼(χ1 ∧ χ2) ∈ Γ. Then, ∼χ1 ∈ Γ or ∼χ2 ∈ Γ. By (3), χ1 ∈ (∼Γ]L or
χ2 ∈ (∼Γ]L. Hence, (∼Γ]L ∈ T c

p (L). We assume (∼Γ]L ∈ T c
p (L). We suppose χ1 ∨ χ2 ∈ Γ.

Then ∼(χ1 ∨ χ2) ∈ ∼Γ. By ∼χ1 ∧∼χ2 ⊢L ∼(χ1 ∨ χ2), we have ∼χ1 ∧∼χ2 ∈ (∼Γ]L. Then,
∼χ1 ∈ (∼Γ]L or ∼χ2 ∈ (∼Γ]L. By (3), ∼∼χ1 ∈ Γ or ∼∼χ2 ∈ Γ. Since Γ ∈ T (L), we have
χ1 ∈ Γ or χ2 ∈ Γ. Hence, Γ ∈ Tp(L).

Definition 7. We let L be a DH-logic. The canonical frame for L is defined as FL = (Tp(L),⊆, gL),
where gL is the map given by setting gL(Γ) = (∼Γ]L for every Γ ∈ Tp(L). We let VL be
the valuation in FL such that VL(p) = {Γ ∈ Tp(L) : p ∈ Γ} for each p ∈ Var. We call
ML = (FL, VL) the canonical model for L. A DH-logic L is called canonical if FL |= L.

We let L be a DH-logic. By Lemma 12 (2) and (4), gL(Γ) ∈ Tp(L) for every Γ ∈ Tp(L). It
follows that gL is a function. The following lemma proves that gL is an antitone involution.

Lemma 13. For all Γ, ∆ ∈ Tp(L), the following hold:

(1) φ ∈ gL(Γ) if and only if ∼φ ̸∈ Γ.
(2) gL(gL(Γ)) = Γ.
(3) if Γ ⊆ ∆, then gL(∆) ⊆ gL(Γ).

Proof. Clearly, (1) follows from Lemma 12 (3). For (2), by (1), φ ∈ gL(gL(Γ)) if and only if
∼φ ̸∈ gL(Γ) if and only if φ ∈ Γ. For (3), we assume Γ ⊆ ∆. Then, (∼Γ]L ⊆ (∼∆]L and so
gL(∆) ⊆ gL(Γ).

Lemma 14. For every DH-logic L, ML, Γ |= φ if and only if φ ∈ Γ.

Proof. The proof proceeds by induction on c(φ). Case φ ∈ Var ∪ {⊥} is trivial. We assume
φ = ∼ψ. We suppose ML, Γ |= ∼ψ. Then, ML, gL(Γ) ̸|= ψ. By induction hypothesis,
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ψ ̸∈ gL(Γ). By Lemma 13 (1), ∼ψ ∈ Γ. We suppose ∼ψ ∈ Γ. By Lemma 13 (1), ψ ̸∈ gL(Γ).
By induction hypothesis, ML, gL(Γ) ̸|= ψ. Hence, ML, Γ |= ∼ψ. Cases φ = φ1 ∧ φ2 and
φ = φ1 ∨ φ2 are shown easily by induction hypothesis. We assume φ = φ1 → φ2. We
suppose φ1 → φ2 ∈ Γ, Γ ⊆ ∆ and ML, ∆ |= φ1. By induction hypothesis, φ1 ∈ ∆. By
φ1, φ1 → φ2 ⊢L φ2, we obtain φ2 ∈ ∆. By induction hypothesis, ML, ∆ |= φ2. Hence,
ML, Γ |= φ1 → φ2. We suppose φ1 → φ2 ̸∈ Γ. Then, Γ ̸⊢L φ1 → φ2 and so φ1, Γ ̸⊢L φ2. By
Lemma 12 (1), there exists ∆ ∈ Tp(L) such that φ1 ∈ ∆, Γ ⊆ ∆ and φ2 ̸∈ ∆. By induction
hypothesis, ML, ∆ |= φ1 and ML, ∆ ̸|= φ2. Hence, ML, Γ ̸|= φ1 → φ2.

Theorem 6. Every canonical DH-logic is Kripke complete.

Proof. We let L be a DH-logic and FL |= L. We assume ̸⊢L φ. Then, ⊤ ̸⊢L φ. By Lemma 12
(1), there exists Γ ∈ Tp(L) with φ ̸∈ Γ. By Lemma 14, ML, Γ ̸|= φ. Then, FL ̸|= φ.

We consider the following DH-logics: B = J⊕ p ∨ ¬p, D = J⊕ ¬p → ∼p and C =
J⊕ p ∨∼p. These characteristic DH-formulas have their corresponding frame conditions.

Lemma 15. For every DM-frame F = (W,≤, g), the following hold:

(1) F |= p ∨ ¬p if and only if w↑ = {w} for all w ∈ W.
(2) F |= p ∨∼p if and only if g(w) = w for all w ∈ W.
(3) F |= ¬p → ∼p if and only if w↑ ∩ g(w)↑ ̸= ∅ for all w ∈ W.

Proof. Item (1) holds in intuitionistic logic (cf., e.g., [20]). For (2), we assume g(w) = w for
all w ∈ W. We let V be a valuation in F and w ∈ W. We suppose w ̸|= p. Then, g(w) |= ∼p.
Hence, F |= p ∨∼p. We assume g(w) ̸= w for some w ∈ W. We suppose g(w) ̸≤ w. We let
V1 be a valuation in F with V1(p) = g(w)↑. Then, w ̸|= p, g(w) |= p and so w ̸|= ∼p. Hence,
w ̸|= p ∨∼p. We suppose w ̸≤ g(w). We let V2 be a valuation in F with V2(p) = w↑. Then,
w |= p and g(w) ̸|= p. Then, g(w) ̸|= ∼p and so g(w) ̸|= p ∨∼p. Hence, F ̸|= p ∨∼p. For
(3), we assume w↑ ∩ g(w)↑ ̸= ∅ for all w ∈ W. We let V be a valuation in F and w ∈ W. We
suppose w |= ¬p. By assumption, we let w ≤ u and g(w) ≤ u. Then, u ̸|= p. By g(w) ≤ u,
we obtain g(w) ̸|= p and so w |= ∼p. Hence, w |= ¬p → ∼p. Conversely, we assume
F |= ¬p → ∼p. We let w ∈ W and U be a valuation in F such that U(p) = g(w)↑. Then,
g(w) |= p and so w ̸|= ∼p. Then, w ̸|= ¬p and so w ≤ u and u |= p. Clearly, g(w) ≤ u.
Hence, w↑ ∩ g(w)↑ ̸= ∅.

Example 2. We consider DM frames F1, F2 and G where the domain of points, partial order and
involution are given in the following diagrams:

•

•

w0

w1

g1

F1

•

•

• •

u0

u1 u2

u3

g2

F2

•

•

v0

v1

h

G

By Lemma 15, F1 ∈ Fr(B) \ Fr(C) and G ∈ Fr(C). Clearly, F1 ̸∈ Fr(D) and F2 ̸∈ Fr(B).
We show F2 ∈ Fr(D) \ Fr(C). Clearly, F2 ̸∈ Fr(C). We have u3 ∈ u0↑ ∩ g2(u0)↑ and u3 ∈
u3↑ ∩ g2(u3)↑. By u1 ≤ u3 and g(u1) = u2 ≤ u3, we obtain u3 ∈ u1↑ ∩ g2(u1)↑. Similarly,
u3 ∈ u2↑ ∩ g2(u2)↑. Thus, F2 ∈ Fr(D).

A DH-logic L1 is a proper sublogic of L2 (or L2 is a proper extension of L1) (notation:
L1 ⊂ L2) if L1 ⊆ L2 and L1 ̸= L2. We say that L1 is incomparable with L2 (notation:
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L1 ∥ L2) if L1 ̸⊆ L2 and L2 ̸⊆ L1. We use the interval [L1, L2] for the set of DH-logics
{L : L1 ⊆ L ⊆ L2}. Similarly, we let (L1, L2) = {L : L1 ⊂ L ⊂ L2}.

Lemma 16. C = J⊕∼p ↔ ¬p.

Proof. We let L = J⊕∼p ↔ ¬p. Clearly, ⊢C ⊤ → p ∨ ∼p. By (CP), ⊢C ∼(p ∨ ∼p) →
∼∼⊥. By (M2) and (M4), ⊢C ∼p∧ p → ⊥. Then, ⊢C ∼p → ¬p. Combined with ⊢C p∨∼p,
we obtain ⊢C p ∨¬p. By (Int), we obtain ⊢C φ ∨ ψ ↔ (¬φ → ψ) since the excluded middle
law p ∨ ¬p holds in C. By ⊢C p ∨ ∼p, we obtain ⊢C ¬p → ∼p. Hence, ⊢C ∼p ↔ ¬p.
Now, by ⊢J ¬(p ∧ ¬p) and Lemma 10 (3) and (Sub), ⊢L ∼(p ∧ ∼p). By (M2) and (M3),
⊢L p ∨∼p.

Proposition 3. The DH-logics B,D ∈ (J,C) and B ∥ D (Figure 1).

Proof. By the proof of Lemma 16, B,D ∈ [J,C]. Clearly, Fr(J) ⊂ Fr(B) and Fr(J) ⊂ Fr(D).
Hence, J ⊂ B and J ⊂ D. By DM frames in Example 2, we have B ⊂ C and D ⊂ C. Hence,
B,D ∈ (J,C). Moreover, F1 ̸∈ Fr(D) and F2 ̸∈ Fr(B). Hence, B ∥ D.

J

B D

C

Figure 1. The relation between some DH-logics.

Theorem 7. The DH-logics B,D and C are Kripke complete.

Proof. By Theorem 6, it suffices to show that canonical frames for these DH-logics belong
to their DM frames, respectively. For B, by Lemma 15 (1), it suffices to show Γ↑ = {Γ}
for every Γ in FB. We assume Γ ⊆ ∆. We suppose φ ∈ ∆ \ Γ. By ⊢B φ ∨ ¬φ, we have
φ ∨ ¬φ ∈ Γ. Then, ¬φ ∈ Γ and so ¬φ ∈ ∆. Then, φ ∧ ¬φ ∈ ∆ and so ⊥ ∈ ∆, which
contradicts the consistency of ∆. Hence, ∆ ⊆ Γ and so ∆ = Γ. For D, by Lemma 15
(1), it suffices to show Γ↑ ∩ gD(Γ)↑ ̸= ∅ for every Γ in FD. We consider the D theory
Σ = [Γ ∪ gD(Γ))D. We note that Γ and gD(Γ) are closed under taking ∧. We suppose ⊥ ∈ Σ.
Then, there exist φ ∈ Γ and ψ ∈ gD(Γ) such that ⊢D φ ∧ ψ → ⊥. Then, ⊢D φ → ¬ψ. By
⊢D ¬ψ → ∼ψ, we have ⊢D φ → ∼ψ. By ψ ∈ gD(Γ) and Lemma 13 (1), ∼ψ ̸∈ Γ. Then,
φ ̸∈ Γ, which contradicts φ ∈ Γ. Hence, ⊥ ̸∈ Σ. Then, there exists G ∈ Tp(D) with Σ ⊆ G.
Then, G ∈ Γ↑ ∩ gD(Γ)↑. For C, by Lemma 15 (2), it suffices to show gC(Γ) = Γ for every Γ
in FC. Clearly, gC(Γ) = (∼Γ]C. We assume φ ∈ gC(Γ). By Lemma 13 (1), ∼φ ̸∈ Γ. Since
φ ∨ ∼φ ∈ Γ, we have φ ∈ Γ. We assume φ ̸∈ gC(Γ). Then, φ ∈ (∼Γ]C. By Lemma 12
(3), ∼φ ∈ Γ. By Lemma 16, ¬φ ∈ Γ. We suppose φ ∈ Γ. Then, φ ∧ ¬φ ∈ Γ. Clearly,
φ ∧ ¬φ ⊢C ⊥. Then, ⊥ ∈ Γ which contradicts Γ ∈ Tp(C). Hence, φ ̸∈ Γ. It follows that
gC(Γ) = Γ.

A DH-logic L is finitely approximable if for every φ ̸∈ L there exists a finite DM frame
F such that F |= L and F ̸|= φ. Thus, a DH-logic L is finitely approximable if and only if
L = Th(Fr<ω(L)) where Fr<ω(L) is the set of all finite members in Fr(L). Now, we extend
the Lemmon-filtration method to show the finite approximability of some DH-logics.
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A set of DH formulas Σ is DH-closed if Σ = {∼n φ : φ ∈ Sf(Σ) & n ≥ 0}. For every set
of DH-formulas Θ, we let Θc be the minimal DH-closed set of formulas containing Θ. We
note that Θc is obtained from Θ by taking subformulas and operation ∼.

Definition 8. We let Σ be a DH-closed set of DH formulas and M = (W,≤, g, V) a DM model.
The equivalence relation ≈Σ on W is defined as follows:

w ≈Σ u if and only if ∀φ ∈ Σ(w ∈ V(φ) ⇔ u ∈ V(φ)).

We let [w]Σ = {u ∈ W : w ≈Σ u} for each w ∈ W. We let WΣ = {[w]Σ : w ∈ W}. The
filtration of M through Σ is defined as structure MΣ = (WΣ,≤Σ, gΣ, VΣ) where

(C1) gΣ([w]Σ) = [g(w)]Σ for each w ∈ W.
(C2) [w]Σ ≤Σ [u]Σ if and only if ∀φ ∈ Σ(w ∈ V(φ) ⇒ u ∈ V(φ)).
(C3)VΣ(p) = {[w]Σ ∈ WΣ : w ∈ V(p)} for each p ∈ Var.

We let FΣ = (WΣ,≤Σ, gΣ) which is the underlying frame of MΣ.

We note that gΣ is a function on WΣ. We assume u ∈ [w]Σ, i.e., w ≈Σ u. We suppose
φ ∈ Σ and g(w) ∈ V(φ). Then, w ̸∈ V(∼φ). Since Σ is closed under ∼, we have ∼φ ∈ Σ. By
assumption, u ̸∈ V(∼φ). Then, g(u) ∈ V(φ). Similarly, g(u) ∈ V(φ) implies g(w) ∈ V(φ).
Then, g(w) ≈Σ g(u) and so [g(w)]Σ = [g(u)]Σ. Hence, gΣ is a function. Moreover, if w ≤ u,
then clearly [w]Σ ≤Σ [u]Σ.

Lemma 17. Filtration MΣ = (WΣ,≤Σ, gΣ, VΣ) is a DM model.

Proof. Clearly, ≤Σ is a partial order on WΣ. For every w ∈ W, gΣ(gΣ([w]Σ)) = [g(g(w))]Σ =
[w]Σ. Hence, gΣ is an involution. We assume [w]Σ ≤Σ [u]Σ. We suppose φ ∈ Σ and
g(u) ∈ V(φ). Then, u ̸∈ V(∼φ). Clearly, ∼φ ∈ Σ. By assumption, w ̸∈ V(∼φ) and so
g(w) ∈ V(φ). Then, [g(u)]Σ ≤Σ [g(w)]Σ. Hence, gΣ is antitone. We assume [w]Σ ∈ VΣ(p)
and [w]Σ ≤Σ [u]Σ. Then, w ∈ V(p). By (C2), u ∈ V(p), and so [u]Σ ∈ VΣ(p). Hence, VΣ is a
valuation in FΣ.

We say that Σ is finitely based in M if there exists a finite subset ∆ ⊆ Σ such that for
every φ ∈ Σ there exists ψ ∈ ∆ with V(φ) = V(ψ). Such subset ∆ is called a finite base for
Σ in M. We note that, in this case, |WΣ| ≤ 2|∆|, and so MΣ is finite.

Lemma 18. We let Σ be a DH-closed set of DH formulas and M = (W,≤, g, V) a DM model. For
every φ ∈ Σ and w ∈ W, w ∈ V(φ) if and only if [w]Σ ∈ VΣ(φ).

Proof. The proof proceeds by induction on c(φ). The case of atomic formulas is trivial.
We assume φ = ∼ψ. We suppose w ∈ V(∼ψ). Then, g(w) ̸∈ V(ψ). By induction
hypothesis, [g(w)]Σ ̸∈ VΣ(ψ) and so gΣ([w]Σ) ̸∈ VΣ(ψ). Then, [w]Σ ∈ VΣ(∼ψ). The
other direction is shown similarly. We let φ = φ1 → φ2. We assume w ∈ V(φ1 → φ2).
We suppose [w]Σ ≤ [u]Σ and [u]Σ ∈ VΣ(φ1). By induction hypothesis, u ∈ V(φ1). By
[w]Σ ≤ [u]Σ, w ∈ V(φ1 → φ2) and (C2), we obtain u ∈ V(φ1 → φ2). Then, u ∈ V(φ2).
By induction hypothesis, [u]Σ ∈ VΣ(φ2). Hence, [w]Σ ∈ VΣ(φ1 → φ2). We assume
[w]Σ ∈ VΣ(φ1 → φ2). We suppose w ≤ u and u ∈ V(φ1). Then, [w]Σ ≤Σ [u]Σ. By
induction hypothesis, [u]Σ ∈ VΣ(φ1). Then, [u]Σ ∈ VΣ(φ2). By induction hypothesis,
u ∈ V(φ2). Hence, w ∈ V(φ1 → φ2). The case φ = φ1 ∧ φ2 or φ1 ∨ φ2 is shown easily by
induction hypothesis.

Theorem 8. The DH-logics J, B and C are finitely approximable.

Proof. (1) We sssume φ ̸∈ J. Since J is Kripke complete, there is a DM model M = (W,≤
, g, V) such that w ̸∈ V(φ) for some w ∈ W. We let Σ = {∼nψ : ψ ∈ Sf(φ) & n ≥ 0}. By
Lemma 18, [w]Σ ̸∈ VΣ(φ). Hence, FΣ ̸|= φ. Clearly, ∆ = Sf(φ) ∪ {∼ψ : ψ ∈ Sf(φ)} is a
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finite base for Σ in M. Then, FΣ is a finite DM-frame. Clearly, FΣ |= J. Hence, J is finitely
approximable.

(2) We assume φ ̸∈ B. Since B is Kripke complete, there exists a DM frame F = (W,≤
, g) such that F |= B and F ̸|= φ. We let M = (F, V) be a DM model and w ̸∈ V(φ). We
consider Θ = Sf(φ) ∪ {¬ψ : ψ ∈ Sf(φ)} and Σ = Θc. Then, Θ ∪ {∼χ : χ ∈ Θ} is a finite
base for Σ in M. By Lemma 18, [w]Σ ̸∈ VΣ(φ). Hence, FΣ ̸|= φ. Now, we show FΣ |= B.
By Lemma 15, it suffices to show [u]Σ↑ = {[u]Σ}. We suppose [u]Σ ≤Σ [v]Σ. We suppose
ξ ∈ Σ and u ̸∈ V(ξ). By F |= B, we obtain F |= ξ ∨ ¬ξ. Then, u ∈ V(¬ξ). Since ¬ξ ∈ Σ, by
[u]Σ ≤Σ [v]Σ, we obtain v ∈ V(¬ξ). By v ≤ v, we obtain v ̸∈ V(ξ). Hence, [v]Σ ≤Σ [u]. It
follows that [u]Σ = [v]Σ. Then, FΣ |= B. Hence, B is finitely approximable.

(3) We assume φ ̸∈ C. Since C is Kripke complete, there is a DM frame F = (W,≤, g)
such that F |= C and F ̸|= φ. We let M = (F, V) be a DM model and w ̸∈ V(φ). We let
Σ = {∼nψ : ψ ∈ Sf(φ) & n ≥ 0}. By Lemma 18, [w]Σ ̸∈ VΣ(φ). Hence, FΣ ̸|= φ. We
let ψ ∈ Σ and w ̸∈ V(ψ). Clearly, ψ ∨ ∼ψ ∈ C. Then, w ∈ V(∼ψ). Then, g(w) ̸∈ V(ψ).
Then, [g(w)]Σ ≤Σ [w]Σ. We suppose g(w) ̸∈ V(ψ). Then, g(w) ∈ V(∼ψ) and so w ̸∈ V(ψ).
Then, [w]Σ ≤Σ [g(w)]Σ. Hence, [g(w)]Σ = [w]Σ. Then, FΣ |= C and so C is finitely
approximable.

Corollary 3. The DH-logics J, B and C are decidable.

5. Conservativity and the Lattice Ext(J)

We let LI be the set of intuitionistic formulas (‘’I-formulas” for short) built from Var
by using ⊥,∧,∨ and →. We let F = (W,≤) be an I-frame. We say that (i) a point w ∈ W is
a root of F if w↑ = W; and (ii) F is rooted if F has a root. An intuitionistic model (‘’I-model”
for short) is a triple M = (W,≤, V) where (W,≤) is an I-frame and V : Var → Up(W).
We write M, w |= φ if w ∈ V(φ). An I-formula φ is valid at w in F (notation: F, w |= φ) if
F, V, w |= φ for every valuation V in F. An I-formula φ is valid in F (notation: F |= φ) if
F, w |= φ for every w ∈ W. We let IF(Σ) be the class of all I-frames validating all formulas
in Σ. We let IFρ(Σ) be the set of all rooted members in IF(Σ). The I-theory Th(K) of a class
of I-frames K is the set of all I-formulas valid in every I-frame in K. The intuitionistic logic
is defined as Int = {φ ∈ LI : F |= φ for every I-frame F}.

Definition 9. A superintuitionistic logic is a set of I-formulas S such that Int ⊆ S and S is
closed under (MP) and (Sub). We let S be a superintuitionistic logic and Σ a set of formulas. The
superintuitionistic logic generated by Σ over S is denoted by S ⊕ Σ. We write Ext(S) for the lattice
of s.i. logics extending S. We say that S is Kripke complete if S = Th(IF(S)). The DH expansion of
S, denoted by Sδ, is defined as the smallest DH-logic containing S.

We let F = (W,≤) be an I-frame and ∅ ̸= X ⊆ W. The subframe of F generated by
X is defined as FX = (X↑,≤X) where ≤X = ≤ ∩ X2. We let M = (F, V) be an I-model.
The submodel of M generated by X is MX = (FX , VX), where VX(p) = V(p) ∩ X for each
p ∈ Var. If X = {w}, we write Fw for F{w}, and Mw for M{w}. For every u ∈ X, the
following hold:

M, u |= φ ⇔ MX , u |= φ. (1)

F, u |= φ ⇔ FX , u |= φ. (2)

F |= φ ⇒ FX |= φ. (3)

These preservation results (1)–(3) can be found in, e.g., [20].

Lemma 19. A superintuitionistic logic S is Kripke complete if and only if S = Th(IFρ(S)).

Proof. The right-to-left direction holds, obviously. We assume S is Kripke complete. Clearly,
S ⊆ Th(IFρ(S)). We suppose φ ̸∈ S. Then, F ̸|= φ for some I-frame F = (W,≤).
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Then, F, w ̸|= φ for some w ∈ W. Then, Fw ̸|= φ. Clearly, Fw ∈ IFρ(S). Hence,
φ ̸∈ Th(IFρ(S)).

DH-logic L is a conservative extension of a superintuitionistic logic S (or S is the
I-fragment of L) if S = L ∩ LI. Next, we prove DH-expansion Sδ of a Kripke complete
superintuitionistic logic S which preserves expansion is a conservative extension of S.

Definition 10. We let W = {wi : i < λ} (λ > 0) and F = (W,≤) be an I-frame with root
w0 ∈ W. The expansion of F is defined as the structure F∗ = (W ∪ W∗,≤∗, g) where

(1) W∗ = {w∗
i : 0 < i < λ};

(2) ≤∗ = ≤ ∪{⟨w∗
i , w∗

j ⟩ : wi ≤ wj & 0 < j ≤ i < λ} ∪ {⟨w∗
i , wj⟩ : 0 < i < λ & j < λ};

(3) function g : W ∪ W∗ → W ∪ W∗ is defined as follows:

g(wi) =

{
w0, if i = 0.
w∗

i , if i > 0.

g(w∗
i ) = wi.

For an I-model M = (F, V), we let M∗ = (F∗, V) be the expansion of M.

Expansion F∗ is obtained from the rooted I-frame F by putting it over the order dual
of F such that the root of F coincides the top of its order dual. The resulting involution g
links each point in F with its mirror point in the order dual.

Lemma 20. If F is a rooted I-frame, then the expansion F∗ is a DM-frame.

Proof. We let W = {wi : i < κ} and F = (W,≤) be an I-frame with root w0. Clearly, ≤∗ is a
partial order. If i < κ, then g(g(wi)) = wi. If 0 < i < κ, then g(g(w∗

i )) = w∗
i . Hence, g is an

involution on W ∪ W∗. If wi ≤ wj, then g(wj) ≤∗ g(wi). If w∗
i ≤∗ w∗

j , then wj ≤ wi and so
g(w∗

i ) ≤∗ g(w∗
j ). We suppose w∗

i ≤∗ wj. Then, g(w∗
j ) = wj. If j = 0, then g(w0) = w0 and

so w0 ≤∗ wj. If j > 0, then g(wj) = w∗
j and so w∗

j ≤∗ w0 ≤∗ wj. Hence, g is antitone.

Example 3. We let W = {wi : i < 7} and F = (W,≤) be the I-frame where ≤ = {⟨wi, wi⟩,
⟨wi, wj⟩ : i ≤ j < 7}. The expansion of F is the DM frame given in Figure 2.

•

•

••

•

• •

w0

w1

w4w3

w2

w5 w6

•

••

•

• •

w∗
1

w∗
4w∗

3

w∗
2

w∗
5 w∗

6

Figure 2. Expansion of the I-frame F.

Lemma 21. We let F = (W,≤) be a rooted I-frame and M = (F, V) an I-model. For every
I-formula φ ∈ LI and w ∈ W, the following hold:

(1) M, w |= φ if and only if M∗, w |= φ.
(2) F, w |= φ if and only if F∗, w |= φ.
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Proof. Item (1) is shown regularly by induction on c(φ). We note that the truth of an
I-formula at w in M and M∗ is determined only by w↑. Moreover, (2) follows from (1).

A superintuitionistic logic S preserves expansion if for every roooted I-frame F, F |= S
implies F∗ |= Sδ. Then, we obtain the following theorem:

Theorem 9. We let S be a Kripke complete superintuitionistic logic. If S preserves expansion, then
DH expansion Sδ is a conservative extension of S.

Proof. We assume S preserves expansion. By Lemma 19, S = Th(Frρ(S)). Clearly, S ⊆
Sδ ∩ LI. We suppose φ ∈ LI \ S. Then, there exists a rooted I-frame F = (W,≤) such that
F |= S and F ̸|= φ. By Lemma 21, F∗ ̸|= φ. By F |= S and assumpton, F∗ |= Sδ. Then,
φ ̸∈ Sδ. Hence, Sδ is a conservative extension of S.

Corollary 4. J is a conservative extension of Int.

Proof. By Lemma 20, the intuitionistic propositional logic Int preserves expansion. By
Theorem 9, J is a conservative extension of Int.

Let us consider DH-logic C = J⊕ p ∨∼p = J⊕∼p ↔ ¬p. The classical propositional
logic is defined as K = Int⊕ p ∨ ¬p.

Lemma 22. For every I-formula φ ∈ LI, φ ∈ C if and only if φ ∈ K.

Proof. We assume φ ∈ K. Clearly, Kδ = B and so K ⊆ B ⊆ C. Hence, φ ∈ C. We assume
φ ̸∈ K. Then, there exists substitution s : Var → LI such that φs ↔ ⊥ ∈ K and so ¬φs ∈ K.
Then, ¬φs ∈ C. We suppose φ ∈ C. By (Sub), φs ∈ C which contradicts ¬φs ∈ C. Hence,
φ ̸∈ C.

Lemma 23. For every DH-formula φ, there exists a unique I-formula φ♯ such that ⊢C φ ↔ φ♯.

Proof. We let φ be a DH formula. By Lemma 10 (3), we replace each subformula ∼ψ ∈ Sf(φ)
with ¬ψ, and so obtain a unique I-formula φ♯ such that ⊢C φ ↔ φ♯.

DH-logic L is consistent if ⊥ ̸∈ L. We note that LDH is the only inconsistent DH-logic.
Next, we show that every consistent DH-logic belongs to [J,C] and hence C is the second
largest DH-logic in the lattice Ext(J).

Theorem 10. If L is a consistent DH-logic, then L ∈ [J,C].

Proof. We let L be consistent DH-logics. We suppose C ⊊ L. Then, there exists ψ such that
φ ∈ L and φ ̸∈ C. By Lemma 23, we have φ♯ ̸∈ C. By Lemma 22, we obtain φ♯ ̸∈ K. Then,
there exists substitution s : Var → LI such that (φ♯)s ↔ ⊥ ∈ K. Then, ¬(φ♯)s ∈ K. Then,
¬(φ♯)s ∈ C. By Lemma 23, ¬φs ∈ C. Then, ¬φs ∈ L, which contradicts φ ∈ L.

An immediate consequence of Theorem 10 is that C is the unique DH-logic which is
post complete, i.e., ⊆-maximal consistent. Let us continue the study on the link between C
and J. It is well known ( Glivenko’s theorem [20]) that K is embedded into intuitionistic
logic Int via the double negation translation:

(GT) for every φ ∈ LI, φ ∈ K if and only if ¬¬φ ∈ Int.

Now, we can extend Glivenko’s theorem to DH-logics C and J. By Lemma 23, there
exists a function G♯ : LDH → LI where G♯(φ) = ¬¬φ♯ for each φ ∈ LDH.

Theorem 11 (Embedding). For every φ ∈ LDH, φ ∈ C if and only if G♯(φ) ∈ J.
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Proof. We asume ¬¬φ♯ ∈ J. Then ¬¬φ♯ ∈ C. Clearly, ¬¬ψ ↔ ψ ∈ C for every ψ ∈ LDH.
Hence, φ♯ ∈ C. By Lemma 23, φ ∈ C. We assume φ ∈ C. By Lemma 23, φ♯ ∈ C. Since
φ♯ ∈ LI, by Lemma 22, φ♯ ∈ K. By (GT), ¬¬φ♯ ∈ Int. By Corollary 4, ¬¬φ♯ ∈ J.

6. A Gentzen Sequent Calculus for B

In this section, we study the proof theory of the DH-logic B = J⊕ p ∨ ¬p. This logic
can be viewed as a logic merging classical and De Morgan logics. It is Kripke complete
but not post complete. We note that DH-algebra (B,∼) is an algebra for B if and only if
x ∨ ¬x = 1. Such a DH-algebra is clearly a Boolean algebra with a De Morgan negation,
and we call it a De Morgan Boolean algebra (‘’DB-algebra” for short).

Lemma 24. We let B = (B,∼) be a DB-algebra. Then, ∼¬x = ¬∼x for all x ∈ B.

Proof. We let x ∈ B. Then, ∼(x ∨ ¬x) = ∼1 = 0. Then, ∼x ∧ ∼¬x = 0. By (Res),
∼¬x ≤ ¬∼x. We assume y ≤ ¬∼x. By (Res), y∧∼x = 0. Then, ∼(y∧∼x) = ∼y∨∼∼x =
∼y ∨ x = 1. Then, ¬x = ¬x ∧ (∼y ∨ x) = (¬x ∧∼y) ∨ (¬x ∧ x) = ¬x ∧∼y ≤ ∼y. Then,
y = ∼∼y ≤ ∼¬x. Hence, ¬∼x ≤ ∼¬x. It follows that ∼¬x = ¬∼x.

Corollary 5. ⊢B ∼¬φ ↔ ¬∼φ.

Now, we establish a Gentzen sequent calculus for DH-logic B. The basics of Gentzen
sequent calculus for classical and intuitionistic logics can be found in, e.g., [21]. For the
simplicity of formulation, we consider the set of DH formulas built from variables in Var
using the connectives ⊥,¬,∧,∨ and ∼. Thus, we use abbreviation φ → ψ := ¬φ ∨ ψ.
A sequent is expression Γ ⇒ ∆ where Γ and ∆ are a finite (possibly empty) multiset of
formulas. We use s, t, etc., for sequents. Sequent rule (R) is expression

s1 . . . sn

s0
(R),

where s1, . . . , sn are the premisses and s0 is the conclusion of (R).

Definition 11. Sequent calculus GB consists of the following initial sequents and rules:

(1) Initial sequents:

(Id1) p, Γ ⇒ ∆, p (Id2) ∼p, Γ ⇒ ∆,∼p (⊥) ⊥, Γ ⇒ ∆ (∼⊥) Γ ⇒ ∆,∼⊥

.
(2) Logical rules:

Γ ⇒ ∆, φ

¬φ, Γ ⇒ ∆
(¬⇒)

φ, Γ ⇒ ∆
Γ ⇒ ∆,¬φ

(⇒¬)

Γ ⇒ ∆,∼φ

∼¬φ, Γ ⇒ ∆
(∼¬⇒)

∼φ, Γ ⇒ ∆
Γ ⇒ ∆,∼¬φ

(⇒∼¬)

φ, ψ, Γ ⇒ ∆
φ ∧ ψ, Γ ⇒ ∆

(∧⇒)
Γ ⇒ ∆, φ Γ ⇒ ∆, ψ

Γ ⇒ ∆, φ ∧ ψ
(⇒∧)

∼φ, Γ ⇒ ∆ ∼ψ, Γ ⇒ ∆
∼(φ ∧ ψ), Γ ⇒ ∆

(∼∧⇒)
Γ ⇒ ∆,∼φ,∼ψ

Γ ⇒ ∆,∼(φ ∧ ψ)
(⇒∼∧)

φ, Γ ⇒ ∆ ψ, Γ ⇒ ∆
φ ∨ ψ, Γ ⇒ ∆

(∨⇒)
Γ ⇒ ∆, φ, ψ

Γ ⇒ ∆, φ ∨ ψ
(⇒∨)

∼φ,∼ψ, Γ ⇒ ∆
∼(φ ∨ ψ), Γ ⇒ ∆

(∼∨⇒)
Γ ⇒ ∆,∼φ Γ ⇒ ∆,∼ψ

Γ ⇒ ∆,∼(φ ∨ ψ)
(⇒∼∨)

φ, Γ ⇒ ∆
∼∼φ, Γ ⇒ ∆

(∼∼⇒)
Γ ⇒ ∆, φ

Γ ⇒ ∆,∼∼φ
(⇒∼∼)
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The formula with connectives in the below sequent of a logical rule is called principal. A
derivation in GB is a finite tree of sequents in which each node is either an initial sequent or derived
from child node(s) by a rule. We use D, E , etc., for derivations. The height of derivation D, denoted
by |D|, is the maximal length of branches in D. A single node derivation has height 0. Sequent s is
derivable in GB (notation: GB ⊢ s) if there exists a derivation in GB with root node s. For every
n ≥ 0, we use GB ⊢n s for s that has a derivation in GB with a height of at most n. Sequent rule (R)
with premisses s1, . . . , sn and conclusion s0 is admissible in GB if GB ⊢ s0 whenever GB ⊢ si for
each 1 ≤ i ≤ n. Sequent rule (R) with premisses s1, . . . , sn and conclusion s0 is height-preserving
admissible in GB if for every k ≥ 0, GB ⊢k s0 whenever GB ⊢k si for each 1 ≤ i ≤ n. Prefix GB is
omitted if no confusion arises from the context.

Lemma 25. For every formula φ, GB ⊢ φ, Γ ⇒ ∆, φ.

Proof. The proof proceeds by induction on c(φ). Case φ ∈ Var ∪ {⊥} is trivial. Cases
φ = φ1 ⊙ φ2 for ⊙ ∈ {∧,∨} are easily shown by induction hypothesis. We suppose
φ = ¬ψ. We obtain ⊢ ¬ψ, Γ ⇒ ∆,¬ψ by induction hypothesis and rules (¬⇒) and (⇒¬).
We let φ = ∼ψ. The proof proceeds by subinduction on c(ψ). Case ψ ∈ Var ∪ {⊥} is trivial.
We suppose ψ = ¬χ. By induction hypothesis, ⊢ ∼χ, Γ ⇒ ∆,∼χ. By (∼¬⇒) and (⇒∼¬),
⊢ ∼¬χ, Γ ⇒ ∆,∼¬χ. We suppose ψ = ∼χ. By induction hypothesis, ⊢ χ, Γ ⇒ ∆, χ.
By (∼∼⇒) and (⇒∼∼), ⊢ ∼∼χ, Γ ⇒ ∆,∼∼χ. We suppose ψ = ψ1 ∧ ψ2. By induction
hypothesis, ⊢ ∼ψi, Γ ⇒ ∆,∼ψi for i = 1, 2. By (∼∧⇒) and (⇒∼∧), ⊢ ∼(ψ1 ∧ ψ2), Γ ⇒
∆,∼(ψ1 ∧ ψ2). Case ψ = ψ1 ∨ ψ2 is shown similarly.

Lemma 26. The following rules of weakening are height-preserving admissible in GB:

Γ ⇒ ∆
φ, Γ ⇒ ∆

(Wk⇒)
Γ ⇒ ∆

Γ ⇒ ∆, φ
(⇒Wk)

Proof. We assume ⊢k Γ ⇒ ∆. We show ⊢k φ, Γ ⇒ ∆ and ⊢k Γ ⇒ ∆, φ simultaneously by
induction on k ≥ 0. We suppose k = 0. Then, Γ ⇒ ∆ is an initial sequent and so both
φ, Γ ⇒ ∆ and Γ ⇒ ∆, φ are initial sequents. We let k > 0 and Γ ⇒ ∆ be derived by a
rule (R). We obtain ⊢k φ, Γ ⇒ ∆ and ⊢k Γ ⇒ ∆, φ by induction hypothesis and the rule
(R). For example, we let (R) be (∼¬⇒). We let the premise and conclusion of (R) be
⊢k−1 Γ′ ⇒ ∆,∼χ and ⊢k ∼¬χ, Γ′ ⇒ ∆. By induction hypothesis, ⊢k−1 φ, Γ′ ⇒ ∆,∼χ and
⊢k−1 Γ′ ⇒ ∆,∼χ, φ. By (∼¬⇒), ⊢k φ,∼¬χ, Γ′ ⇒ ∆ and ⊢k ∼¬χ, Γ′ ⇒ ∆, φ.

Lemma 27. For every k ≥ 0, the following hold in GB:

(1) if ⊢k ¬φ, Γ ⇒ ∆, then ⊢k Γ ⇒ ∆, φ.
(2) if ⊢k Γ ⇒ ∆,¬φ, then ⊢k φ, Γ ⇒ ∆.
(3) if ⊢k ∼¬φ, Γ ⇒ ∆, then ⊢k Γ ⇒ ∆,∼φ.
(4) if ⊢k Γ ⇒ ∆,∼¬φ, then ⊢k ∼φ, Γ ⇒ ∆.
(5) if ⊢k φ ∧ ψ, Γ ⇒ ∆, then ⊢k φ, ψ, Γ ⇒ ∆.
(6) if ⊢k Γ ⇒ ∆, φ ∧ ψ, then ⊢k Γ ⇒ ∆, φ and ⊢k Γ ⇒ ∆, ψ.
(7) if ⊢k ∼(φ ∧ ψ), Γ ⇒ ∆, then ⊢k ∼φ, Γ ⇒ ∆ and ⊢k ∼ψ, Γ ⇒ ∆.
(8) if ⊢k Γ ⇒ ∆,∼(φ ∧ ψ), then ⊢k Γ ⇒ ∆,∼φ,∼ψ.
(9) if ⊢k φ ∨ ψ, Γ ⇒ ∆, then ⊢k φ, Γ ⇒ ∆ and ⊢k ψ, Γ ⇒ ∆.
(10) if ⊢k Γ ⇒ ∆, φ ∨ ψ, then ⊢k Γ ⇒ ∆, φ, ψ.
(11) if ⊢k ∼(φ ∨ ψ), Γ ⇒ ∆, then ⊢k ∼φ,∼ψ, Γ ⇒ ∆.
(12) if ⊢k Γ ⇒ ∆,∼(φ ∨ ψ), then ⊢k Γ ⇒ ∆,∼φ and ⊢k Γ ⇒ ∆,∼ψ.
(13) if ⊢k ∼∼φ, Γ ⇒ ∆, then ⊢k φ, Γ ⇒ ∆.
(14) if ⊢k Γ ⇒ ∆,∼∼φ, then ⊢k Γ ⇒ ∆, φ.

Proof. The proof proceeds by induction on k ≥ 0. Here, we prove only (3), and other items
are shown similarly. Case k = 0 is trivial. We let k > 0 and ∼¬φ, Γ ⇒ ∆ be derived by rule
(R). If ∼¬φ is principal in (R), then ⊢k−1 Γ ⇒ ∆,∼φ and so ⊢k Γ ⇒ ∆,∼φ. We suppose
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∼¬φ is not principal in (R). We obtain ⊢k Γ ⇒ ∆,∼φ by induction hypothesis and rule
(R). For example, we let (R) be (∼∧⇒) with premisses ⊢k−1 ∼ψ1,∼¬φ, Γ′ ⇒ ∆ and ⊢k−1
∼ψ2,∼¬φ, Γ′ ⇒ ∆, and conclusion ⊢k ∼(ψ1 ∧ ψ2),∼¬φ, Γ′ ⇒ ∆. By induction hypothesis,
⊢k−1 ∼ψ1, Γ′ ⇒ ∆,∼φ and ⊢k−1 ∼ψ2, Γ′ ⇒ ∆,∼φ. By (∼∧⇒), ⊢k ∼(ψ1 ∧ ψ2), Γ′ ⇒ ∆,∼φ.
Other cases are shown similarly.

Lemma 28. The following rules of contraction are height-preserving admissible in GB:

φ, φ, Γ ⇒ ∆
φ, Γ ⇒ ∆

(Ctr⇒)
Γ ⇒ ∆, φ, φ

Γ ⇒ ∆, φ
(⇒Ctr)

Proof. We assume ⊢k φ, φ, Γ ⇒ ∆ and ⊢k Γ ⇒ ∆, φ, φ. We show ⊢k φ, Γ ⇒ ∆ and
⊢k Γ ⇒ ∆, φ simultaneously by induction on k ≥ 0. Case k = 0 is trivial. We let k > 0 and
the premisses be obtained by rule (R). If φ is not principal in (R), we obtain ⊢k φ, Γ ⇒ ∆
and ⊢k Γ ⇒ ∆, φ by induction hypothesis and rule (R). We suppose φ is principal in (R).
The proof proceeds by induction on c(φ). We have the following cases:

(1) φ = ¬ψ. Then, ⊢k−1 ¬ψ, Γ ⇒ ∆, ψ and ⊢k−1 ψ, Γ ⇒ ∆,¬ψ. By Lemma 27 (1) and
(2), ⊢k−1 Γ ⇒ ∆, ψ, ψ and ⊢k−1 ψ, ψ, Γ ⇒ ∆. By induction hypothesis, ⊢k Γ ⇒ ∆, ψ and
⊢k ψ, Γ ⇒ ∆. By (¬⇒) and (⇒¬), ⊢k ¬ψ, Γ ⇒ ∆ and ⊢k Γ ⇒ ∆,¬ψ.

(2) φ = φ1 ∧ φ2. Then, (i) ⊢k−1 φ1, φ2, φ1 ∧ φ2, Γ ⇒ ∆; (ii) ⊢k−1 Γ ⇒ ∆, φ1 ∧ φ2, φ1;
and (iii) ⊢k−1 Γ ⇒ ∆, φ1 ∧ φ2, φ2. By (i) and Lemma 27 (5), ⊢k−1 φ1, φ2, φ1, φ2, Γ ⇒ ∆.
By induction hypothesis, ⊢k−1 φ1, φ2, Γ ⇒ ∆. By (∧⇒), ⊢k φ1 ∧ φ2, Γ ⇒ ∆. By (ii), (iii)
and Lemma 27 (6), ⊢k−1 Γ ⇒ ∆, φ1, φ1 and ⊢k−1 Γ ⇒ ∆, φ2, φ2. By induction hypothesis,
⊢k−1 Γ ⇒ ∆, φ1 and ⊢k−1 Γ ⇒ ∆, φ2. By (⇒∧), ⊢k Γ ⇒ ∆, φ1 ∧ φ2.

(3) φ = φ1 ∨ φ2. Then, (i) ⊢k−1 φ1, φ1 ∨ φ2, Γ ⇒ ∆; (ii) ⊢k−1 φ2, φ1 ∨ φ2, Γ ⇒ ∆; and
(iii) ⊢k−1 Γ ⇒ ∆, φ1 ∨ φ2, φ1, φ2. By (i), (ii) and Lemma 27 (9), ⊢k−1 φ1, φ1, Γ ⇒ ∆ and
⊢k−1 φ2, φ2, Γ ⇒ ∆. By induction hypothesis, ⊢k−1 φ1, Γ ⇒ ∆ and ⊢k−1 φ2, Γ ⇒ ∆. By
(∨⇒), ⊢k φ1 ∨ φ2, Γ ⇒ ∆. By (iii) and Lemma 27 (10), ⊢k−1 Γ ⇒ ∆, φ1, φ2, φ1, φ2. By
induction hypothesis, ⊢k−1 Γ ⇒ ∆, φ1, φ2. By (⇒∨), ⊢k Γ ⇒ ∆, φ1 ∨ φ2.

(4) φ = ∼ψ. The proof proceeds by subinduction on c(ψ). We suppose ψ = ¬χ.
Then, ⊢k−1 ∼¬χ, Γ ⇒ ∆,∼χ and ⊢k−1 ∼χ, Γ ⇒ ∆,∼¬χ. By Lemma 27 (3) and (4),
⊢k−1 Γ ⇒ ∆,∼χ,∼χ and ⊢k−1 ∼χ,∼χ, Γ ⇒ ∆. By induction hypothesis, ⊢k−1 Γ ⇒ ∆,∼χ
and ⊢k−1 ∼χ, Γ ⇒ ∆. By (∼¬⇒) and (⇒∼¬), ⊢k ∼¬χ, Γ ⇒ ∆ and ⊢k Γ ⇒ ∆,∼¬χ.
We suppose ψ = ψ1 ∧ ψ2. Then (i) ⊢k−1 ∼ψ1,∼(ψ1 ∧ ψ2), Γ ⇒ ∆; (ii) ⊢k−1 ∼ψ2,∼(ψ1 ∧
ψ2), Γ ⇒ ∆; and (iii) ⊢k−1 Γ ⇒ ∆,∼(ψ1 ∧ ψ2),∼ψ1,∼ψ2. By (i), (ii) and Lemma 27 (3)
and (4), ⊢k−1 ∼ψ1,∼ψ1, Γ ⇒ ∆ and ⊢k−1 ∼ψ2,∼ψ2, Γ ⇒ ∆. By induction hypothesis,
⊢k−1 ∼ψ1, Γ ⇒ ∆ and ⊢k−1 ∼ψ2, Γ ⇒ ∆. By (∼∧⇒), ⊢k ∼(ψ1 ∧ ψ2), Γ ⇒ ∆. By (iii) and
Lemma 27 (8), ⊢k−1 Γ ⇒ ∆,∼ψ1,∼ψ2,∼ψ1,∼ψ2. By induction hypothesis, ⊢k−1 Γ ⇒
∆,∼ψ1,∼ψ2. By (⇒∼∧), ⊢k Γ ⇒ ∆,∼(ψ1 ∧ ψ2). Case ψ = ψ1 ∨ ψ2 is shown similarly. We
suppose ψ = ∼χ. Then, ⊢k−1 χ,∼∼χ, Γ ⇒ ∆ and ⊢k−1 Γ ⇒ ∆,∼∼χ, χ. By Lemma 27 (13)
and (14), ⊢k−1 χ, χ, Γ ⇒ ∆ and ⊢k−1 Γ ⇒ ∆, χ, χ. By induction hypothesis, ⊢k−1 χ, Γ ⇒ ∆
and ⊢k−1 Γ ⇒ ∆, χ. By (∼∼⇒) and (⇒∼∼), ⊢k ∼∼χ, Γ ⇒ ∆ and ⊢k Γ ⇒ ∆,∼∼χ.

Lemma 29. The following hold in GB:

(1) if ⊢ Γ ⇒ ∆,⊥, then ⊢ Γ ⇒ ∆, Σ.
(2) if ⊢ ∼⊥, Γ ⇒ ∆, then ⊢ Σ, Γ ⇒ ∆.

Proof. For (1), we assume ⊢k Γ ⇒ ∆,⊥. We prove ⊢ Γ ⇒ ∆, Σ by induction on k ≥ 0.
Case k = 0 is trivial. We let k > 0 and Γ ⇒ ∆,⊥ be derived by rule (R). We obtain
⊢ Γ ⇒ ∆, Σ by induction hypothesis and rule (R). For example, we let (R) be (∼¬⇒) with
premise ⊢k−1 Γ′ ⇒ ∆,⊥,∼φ and conclusion ⊢k ∼¬φ, Γ′ ⇒ ∆,⊥. By induction hypothesis,
⊢k−1 Γ′ ⇒ ∆, Σ,∼φ. By (∼¬⇒), ⊢ ∼¬φ, Γ′ ⇒ ∆, Σ. Other cases are shown similarly. We
note that the proof of (2) is similar.
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Theorem 12. The following rule (Cut) is admissible in GB:

Γ ⇒ ∆, α α, Σ ⇒ Θ
Γ, Σ ⇒ ∆, Θ

(Cut)

Proof. We assume ⊢m Γ ⇒ ∆, α and ⊢n α, Σ ⇒ Θ. We prove ⊢ Γ, Σ ⇒ ∆, Θ by induction
on the cut height m + n and subinduction on c(α).

We assume m = 0 or n = 0. We suppose m = 0. Then, Γ ⇒ ∆, α is an initial sequent.
If Γ ⇒ ∆ is an initial sequent, so is the conclusion of (Cut). We suppose α ∈ Γ. Then, we
obtain ⊢ Γ, Σ ⇒ ∆, Θ from the right premiss of (Cut) by (Wk⇒). We suppose α = ∼⊥. By
the right premiss of (Cut) and Lemma 29 (2), we obtain ⊢ Γ, Σ ⇒ ∆, Θ. We suppose n = 0.
Then, α, Σ ⇒ Θ is an initial sequent. If Σ ⇒ Θ is an initial sequent, so is the conclusion of
(Cut). If α ∈ Θ, then we obtain ⊢ Γ, Σ ⇒ ∆, Θ from the left premiss of (Cut) by (⇒Wk). We
suppose α = ⊥. By the left premiss of (Cut) and Lemma 29 (1), we obtain ⊢ Γ, Σ ⇒ ∆, Θ.

We assume m > 0 and n > 0. We let the left and right premisses of (Cut) be obtained
by rules (R1) and (R2), respectively. We have the following cases:

1. α is not principal in (R1). We apply (Cut) to the premiss(es) of (R1) and ⊢n α, Σ ⇒ Θ,
and then apply (R1). For example, we let (R1) be (∼∧⇒) and the derivation ends with

∼φ, Γ′ ⇒ ∆, α ∼ψ, Γ′ ⇒ ∆, α

∼(φ ∧ ψ), Γ′ ⇒ ∆, α
(∼∧⇒)

By induction hypothesis, we have the following derivation:

∼φ, Γ′ ⇒ ∆, α α, Σ ⇒ Θ
(Cut)

∼φ, Γ′, Σ ⇒ ∆, Θ
∼ψ, Γ′ ⇒ ∆, α α, Σ ⇒ Θ

(Cut)
∼ψ, Γ′, Σ ⇒ ∆, Θ

(∼∧⇒)
∼(φ ∧ ψ), Γ′, Σ ⇒ ∆, Θ

Other cases are shown similarly.
2. α is principal only in (R1). We apply (Cut) to ⊢m Γ ⇒ ∆, α and the premis(es) of

(R2), and then apply (R2). For example, we let (R2) be (∼∧⇒) and the derivation
ends with

∼φ, α, Σ′ ⇒ Θ ∼ψ, α, Σ′ ⇒ Θ
∼(φ ∧ ψ), α, Σ′ ⇒ Θ

(∼∧⇒)

By induction hypothesis, we have the following derivation:

Γ ⇒ ∆, α ∼φ, α, Σ′ ⇒ Θ
(Cut)

∼φ, Γ, Σ′ ⇒ ∆, Θ
Γ ⇒ ∆, α ∼ψ, α, Σ′ ⇒ Θ

(Cut)
∼ψ, Γ, Σ′ ⇒ ∆, Θ

(∼∧⇒)
∼(φ ∧ ψ), Γ, Σ′ ⇒ ∆, Θ

Other cases are shown similarly.
3. α is principal in both (R1) and (R2). The proof proceeds by induction on c(α). We

have the following cases:

(a) α = α1 ∧ α2 and the derivations end with

Γ ⇒ ∆, α1 Γ ⇒ ∆, α2

Γ ⇒ ∆, α1 ∧ α2
(⇒∧) α1, α2, Σ ⇒ Θ

α1 ∧ α2, Σ ⇒ Θ
(∧⇒)

By induction hypothesis, we have the following derivation:

Γ ⇒ ∆, α2

Γ ⇒ ∆, α1 α1, α2, Σ ⇒ Θ
(Cut)

α2, Γ, Σ ⇒ ∆, Θ
(Cut)

Γ, Γ, Σ ⇒ ∆, ∆, Θ
(⇒Ctr)

Γ, Σ ⇒ ∆, ∆, Θ
(Ctr⇒)

Γ, Σ ⇒ ∆, Θ
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(b) α = α1 ∨ α2 and the derivations end with

Γ ⇒ ∆, α1, α2

Γ ⇒ ∆, α1 ∨ α2
(⇒∨) α1, Σ ⇒ Θ α2, Σ ⇒ Θ

α1 ∨ α2, Σ ⇒ Θ
(∨⇒)

By induction hypothesis, we have the following derivation:

Γ ⇒ ∆, α1, α2 α1, Σ ⇒ Θ
(Cut)

Γ, Σ ⇒ ∆, Θ, α2 α2, Σ ⇒ Θ
(Cut)

Γ, Σ, Σ ⇒ ∆, Θ, Θ
(⇒Ctr)

Γ, Σ ⇒ ∆, Θ, Θ
(Ctr⇒)

Γ, Σ ⇒ ∆, Θ

(c) α = ¬β and the derivations end with

β, Γ ⇒ ∆
Γ ⇒ ∆,¬β

(⇒¬) Σ ⇒ Θ, β

¬β, Σ ⇒ Θ
(¬⇒)

By induction hypothesis, we have the following derivation:

Σ ⇒ Θ, β β, Γ ⇒ ∆
(Cut)

Γ, Σ ⇒ ∆, Θ

(d) α = ∼¬β and the derivations end with

∼β, Γ ⇒ ∆
Γ ⇒ ∆,∼¬β

(⇒∼¬) Σ ⇒ Θ,∼β

∼¬β, Σ ⇒ Θ
(∼¬⇒)

By induction hypothesis, we have the following derivation:

Σ ⇒ Θ,∼β ∼β, Γ ⇒ ∆
(Cut)

Γ, Σ ⇒ ∆, Θ

(e) α = ∼(α1 ∧ α2) and the derivations end with

Γ ⇒ ∆,∼α1,∼α2

Γ ⇒ ∆,∼(α1 ∧ α2)
(⇒∼∧) ∼α1, Σ ⇒ Θ ∼α2, Σ ⇒ Θ

∼(α1 ∧ α2), Σ ⇒ Θ
(∼∧⇒)

By induction hypothesis, we have the following derivation:

Γ ⇒ ∆,∼α1,∼α2 ∼α1, Σ ⇒ Θ
(Cut)

Γ, Σ ⇒ ∆, Θ,∼α2 ∼α2, Σ ⇒ Θ
(Cut)

Γ, Σ, Σ ⇒ ∆, Θ, Θ
(⇒Ctr)

Γ, Σ ⇒ ∆, Θ, Θ
(Ctr⇒)

Γ, Σ ⇒ ∆, Θ

(f) α = ∼(α1 ∨ α2) and the derivations end with

Γ ⇒ ∆,∼α1 Γ ⇒ ∆,∼α2

Γ ⇒ ∆,∼(α1 ∨ α2)
(⇒∼∨) ∼α1,∼α2, Σ ⇒ Θ

∼(α1 ∨ α2), Σ ⇒ Θ
(∼∨⇒)

By induction hypothesis, we have the following derivation:

Γ ⇒ ∆,∼α2

Γ ⇒ ∆,∼α1 ∼α1,∼α2, Σ ⇒ Θ
(Cut)∼α2, Γ, Σ ⇒ ∆, Θ

(Cut)
Γ, Γ, Σ ⇒ ∆, ∆, Θ

(⇒Ctr)
Γ, Σ ⇒ ∆, ∆, Θ

(Ctr⇒)
Γ, Σ ⇒ ∆, Θ
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(g) α = ∼∼β and the derivations end with

Γ ⇒ ∆, β

Γ ⇒ ∆,∼∼β
(⇒∼∼)

β, Σ ⇒ Θ
∼∼β, Σ ⇒ Θ

(∼∼⇒)

By induction hypothesis, we have the following derivation:

Σ ⇒ Θ, β β, Γ ⇒ ∆
(Cut)

Γ, Σ ⇒ ∆, Θ

This completes the proof.

For every finite multiset Γ = φ1, . . . , φn, we let ∼Γ = ∼φ1, . . . ,∼φn. Then, we have
the following result on the admissibility of the contraposition rule.

Lemma 30. The following rule of contraposition is admissible in GB:

Γ ⇒ ∆
∼∆ ⇒ ∼Γ

(CPs)

Proof. We assume ⊢k Γ ⇒ ∆. We prove ⊢ ∼∆ ⇒ ∼Γ by induction on k ≥ 0. We assume
k = 0. If Γ ⇒ ∆ is an instance of (Id1), then ∼∆ ⇒ ∼Γ is an instance of (Id2). We suppose
Γ = ∼p, Γ′ and ∆ = ∆′,∼p. Clearly, ⊢ p,∼∆′ ⇒ ∼Γ′, p. By (∼∼⇒) and (⇒∼∼), we
obtain ⊢ ∼∼p,∼∆′ ⇒ ∼Γ′,∼∼p. If ⊥ ∈ Γ, then ∼∆ ⇒ ∼Γ is an instance of (∼⊥). We
suppose ∼⊥ ∈ ∆. Then, ∼∼⊥ ∈ ∼∆. By (⊥) and (∼∼⇒), we obtain ⊢ ∼∆ ⇒ ∼Γ. Now,
we assume k > 0 and Γ ⇒ ∆ is derived by rule (R).

1. (R) is (¬⇒). We let the premise and conclusion of (R) be ⊢k−1 Γ′ ⇒ ∆, φ and
⊢k ¬φ, Γ′ ⇒ ∆, respectively. By induction hypothesis, ⊢ ∼φ,∼∆ ⇒ ∼Γ′. By (⇒∼¬),
⊢ ∼∆ ⇒ ∼Γ′,∼¬φ.

2. (R) is (⇒¬). We let the premiss and conclusion of (R) be ⊢k−1 φ, Γ ⇒ ∆′ and
⊢k Γ ⇒ ∆′,¬φ, respectively. By induction hypothesis, ⊢ ∼∆′ ⇒ ∼Γ,∼φ. By (∼¬⇒),
⊢ ∼¬φ,∼∆′ ⇒ ∼Γ.

3. (R) is (∼¬⇒). We let the premise and conclusion of (R) be ⊢k−1 Γ′ ⇒ ∆,∼φ and
⊢k ∼¬φ, Γ′ ⇒ ∆, respectively. By induction hypothesis, ⊢ ∼∆,∼∼φ ⇒ ∼Γ′. Clearly,
⊢ φ ⇒ ∼∼φ. By (Cut), ⊢ ∼∆, φ ⇒ ∼Γ′. By (⇒¬), ⊢ ∼∆ ⇒ ∼Γ′,¬φ. By (⇒∼∼),
⊢ ∼∆ ⇒ ∼Γ′,∼∼¬φ.

4. (R) is (⇒∼¬). We let the premise and conclusion of (R) be ⊢k−1 ∼φ, Γ ⇒ ∆′ and
⊢k Γ ⇒ ∆′,∼¬φ, respectively. By induction hypothesis, ⊢ ∼∆′ ⇒ ∼Γ,∼∼φ. Clearly,
⊢ ∼∼φ ⇒ φ. By (Cut), ⊢ ∼∆′ ⇒ ∼Γ, φ. By (¬⇒), ⊢ ¬φ,∼∆′ ⇒ ∼Γ. By (∼∼⇒),
⊢ ∼∼¬φ,∼∆′ ⇒ ∼Γ.

5. (R) is (∧⇒). We let the premise and conclusion of (R) be ⊢k−1 φ, ψ, Γ′ ⇒ ∆ and
⊢k φ ∧ ψ, Γ′ ⇒ ∆, respectively. By induction hypothesis, ⊢ ∼∆ ⇒ ∼Γ′,∼φ,∼ψ. By
(⇒∼∧), we obtain ⊢ ∼∆ ⇒ ∼Γ′,∼(φ ∧ ψ).

6. (R) is (⇒∧). We let the premises of (R) be ⊢k−1 Γ ⇒ ∆′, φ and ⊢k−1 Γ ⇒ ∆′, ψ, and
the conclusion of (R) be ⊢k Γ ⇒ ∆′, φ∧ψ. By induction hypothesis, ⊢ ∼φ,∼∆′ ⇒ ∼Γ
and ⊢ ∼ψ,∼∆′ ⇒ ∼Γ. By (∼∧⇒), ⊢ ∼(φ ∧ ψ),∼∆′ ⇒ ∼Γ.

7. (R) is (∼∧⇒). We let the premises of (R) be ⊢k−1 ∼φ, Γ′ ⇒ ∆ and ⊢k−1 ∼ψ, Γ′ ⇒
∆, and the conclusion of (R) be ⊢k ∼(φ ∧ ψ), Γ′ ⇒ ∆, respectively. By induction
hypothesis, ⊢ ∼∆ ⇒ ∼Γ′,∼∼φ and ⊢ ∼∆ ⇒ ∼Γ′,∼∼ψ. By ⊢ ∼∼φ ⇒ φ and
⊢ ∼∼ψ ⇒ ψ and (Cut), ⊢ ∼∆ ⇒ ∼Γ′, φ and ⊢ ∼∆ ⇒ ∼Γ′, ψ. By (⇒∧), ⊢ ∼∆ ⇒
∼Γ′, φ ∧ ψ. By (⇒∼∼), ⊢ ∼∆ ⇒ ∼Γ′,∼∼(φ ∧ ψ).

8. (R) is (⇒∼∧). We let the premise and conclusion of (R) be ⊢k−1 Γ ⇒ ∆′,∼φ,∼ψ and
⊢k Γ ⇒ ∆′,∼(φ ∧ ψ), respectively. By induction hypothesis, ⊢ ∼∼φ,∼∼ψ,∼∆′ ⇒
∼Γ. By ⊢ φ ⇒ ∼∼φ and ⊢ ψ ⇒ ∼∼ψ and (Cut), ⊢ φ, ψ,∼∆′ ⇒ ∼Γ. By (∧⇒),
⊢ φ ∧ ψ,∼∆′ ⇒ ∼Γ. By (∼∼⇒), ⊢ ∼∼(φ ∧ ψ),∼∆′ ⇒ ∼Γ.
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9. (R) is (∨⇒). We let the premises of (R) be ⊢k−1 φ, Γ′ ⇒ ∆ and ⊢k−1 ψ, Γ′ ⇒ ∆, and
the conclusion of (R) be ⊢k φ ∨ ψ, Γ′ ⇒ ∆, respectively. By induction hypothesis,
⊢ ∼∆ ⇒ ∼Γ′,∼φ and ⊢ ∼∆ ⇒ ∼Γ′,∼ψ. By (⇒∼∨), ⊢ ∼∆ ⇒ ∼Γ′,∼(φ ∨ ψ).

10. (R) is (⇒∨). We let the premises and conclusion of (R) be ⊢k−1 Γ ⇒ ∆′, φ, ψ and
⊢k Γ ⇒ ∆′, φ ∨ ψ. By induction hypothesis, ⊢ ∼φ,∼ψ,∼∆′ ⇒ ∼Γ. By (∼∨⇒),
⊢ ∼(φ ∨ ψ),∼∆′ ⇒ ∼Γ.

11. (R) is (∼∨⇒). We let the premise and conclusion of (R) be ⊢k−1 ∼φ,∼ψ, Γ′ ⇒
∆ and ⊢k ∼(φ ∨ ψ), Γ′ ⇒ ∆, respectively. By induction hypothesis, ⊢ ∼∆ ⇒
∼Γ′,∼∼φ,∼∼ψ. By ⊢ ∼∼φ ⇒ φ and ⊢ ∼∼ψ ⇒ ψ and (Cut), ⊢ ∼∆ ⇒ ∼Γ′, φ, ψ. By
(⇒∨), we obtain ⊢ ∼∆ ⇒ ∼Γ′, φ ∨ ψ. By (⇒∼∼), we obtain ⊢ ∼∆ ⇒ ∼Γ′,∼∼(φ ∨
ψ).

12. (R) is (⇒∼∨). We let the premises of (R) be ⊢k−1 Γ ⇒ ∆′,∼φ and ⊢k−1 Γ ⇒ ∆′,∼ψ,
and the conclusion of (R) be ⊢k Γ ⇒ ∆′,∼(φ ∨ ψ). By induction hypothesis, ⊢
∼∼φ,∼∆′ ⇒ ∼Γ and ⊢ ∼∼ψ,∼∆′ ⇒ ∼Γ. By ⊢ φ ⇒ ∼∼φ and ⊢ ψ ⇒ ∼∼ψ and
(Cut), ⊢ φ,∼∆′ ⇒ ∼Γ and ⊢ ψ,∼∆′ ⇒ ∼Γ. By (∨⇒), ⊢ φ ∨ ψ,∼∆′ ⇒ ∼Γ. By
(∼∼⇒), ⊢ ∼∼(φ ∨ ψ),∼∆′ ⇒ ∼Γ.

13. (R) is (∼∼⇒). We let the premise and conclusion of (R) be ⊢k−1 φ, Γ′ ⇒ ∆ and
⊢k ∼∼φ, Γ′ ⇒ ∆, respectively. By induction hypothesis, ⊢ ∼∆ ⇒ ∼Γ′,∼φ. By
(⇒∼∼), ⊢ ∼∆ ⇒ ∼Γ′,∼∼∼φ.

14. (R) is (⇒∼∼). We let the premise and conclusion of (R) be ⊢k−1 Γ ⇒ ∆′, φ and
⊢k Γ ⇒ ∆′,∼∼φ, respectively. By induction hypothesis, ⊢ ∼φ,∼∆′ ⇒ ∼Γ. By
(∼∼⇒), ⊢ ∼∼∼φ,∼∆′ ⇒ ∼Γ.

This completes the proof.

A DM frame F = (W,≤, g) is called a DB frame if w↑ = {w} for every w ∈ W. Sequent
Γ ⇒ ∆ is valid in a DB frame F (notation: F |= Γ ⇒ ∆) if F |= ∧

Γ → ∨
∆. Here,

∧
Γ is the

conjunction of formulas in Γ, and
∨

∆ is the disjunction of formulas in ∆. In particular, we
let

∧
∅ = ⊤ and

∨
∅ = ⊥. We write Fr(B) |= Γ ⇒ ∆ if F |= Γ ⇒ ∆ for all DB-frames F.

Lemma 31. GB ⊢ ⇒ φ → ψ if and only if GB ⊢ φ ⇒ ψ.

Proof. We assume ⊢ ⇒ φ → ψ. We have the following derivation:

⇒ ¬φ ∨ ψ

¬φ ⇒ ¬φ, ψ ψ ⇒ ¬φ, ψ
(∨⇒)¬φ ∨ ψ ⇒ ¬φ, ψ

(Cut)⇒ ¬φ, ψ
φ ⇒ φ

(¬⇒)¬φ, φ ⇒
(Cut)

φ ⇒ ψ

We assume ⊢ φ ⇒ ψ. By (⇒¬), ⊢ ⇒ ¬φ, ψ. By (⇒∨), ⊢ ⇒ ¬φ ∨ ψ.

Lemma 32. If ⊢B φ, then GB ⊢ ⇒ φ.

Proof. We assume ⊢B φ. We note that, if φ is an axiom of B, then GB ⊢ ⇒ φ. For example,
we have the following derivation of the sequent ⇒ ∼(ψ ∧ χ) → ∼ψ ∨∼χ:

∼ψ ⇒ ∼ψ,∼χ ∼χ ⇒ ∼ψ,∼χ
(∼∧⇒)

∼(ψ ∧ χ) ⇒ ∼ψ,∼χ
(⇒¬)

⇒ ¬∼(ψ ∧ χ),∼ψ,∼χ
(⇒∨)

⇒ ¬∼(ψ ∧ χ),∼ψ ∨∼χ
(⇒∨)

⇒ ¬∼(ψ ∧ χ) ∨ (∼ψ ∨∼χ)

We suppose φ is obtained from ψ → φ and ψ by (MP). By induction hypothesis, we
have GB ⊢ ⇒ ψ → φ and GB ⊢ ⇒ ψ. By Lemma 31, GB ⊢ ψ ⇒ φ. By (Cut), GB ⊢ ⇒ φ.
We suppose φ = ∼ψ → ∼χ is obtained from χ → ψ by (CP). By induction hypothesis,
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GB ⊢ ⇒ χ → ψ. By Lemma 31, GB ⊢ χ ⇒ ψ. By (CPs), GB ⊢ ∼ψ ⇒ ∼χ. By Lemma 31,
GB ⊢ ⇒ ∼ψ → ∼χ. It follows that GB ⊢ ⇒ φ.

Lemma 33. GB ⊢ Γ ⇒ ∆ if and only if GB ⊢ ⇒ ∧
Γ → ∨

∆.

Theorem 13. For every sequent Γ ⇒ ∆, GB ⊢ Γ ⇒ ∆ if and only if Fr(B) |= Γ ⇒ ∆.

Proof. We assume GB ⊢k Γ ⇒ ∆. We prove Fr(B) |= Γ ⇒ ∆ by induction on k ≥ 0. Case
k = 0 is trivial. All rules in GB preserve validity in Fr(B). We note that, by Corollary 5,
Fr(B) |= ∼¬φ ↔ ¬∼φ, and so the rules (∼¬⇒) and (⇒∼¬) preserve validity in Fr(B). We
assume Fr(B) |= Γ ⇒ ∆. Then, Fr(B) |= ∧

Γ → ∨
∆. By the Kripke completeness of B, we

have ⊢B
∧

Γ → ∨
∆. By Lemma 32, GB ⊢ ⇒ ∧

Γ → ∨
∆. By Lemma 33, GB ⊢ Γ ⇒ ∆.

Finally, we return to sequent calculus GB. It is a structural rule-free and cut-free
system for DH-logic B. We let s be sequent Γ ⇒ ∆. The weight of s is defined as the sum
wt(s) = ∑{c(φ) : φ ∈ Γ∪∆}. Clearly, in each logical rule in GB, the weight of each premise
is strictly less than that of the conclusion. The proof search space of a given sequent in GB
must be finite. This means that GB is terminating. It yields a proof search procedure and
thus the decidability of derivability in GB.

Fact 3. The derivability of a sequent in GB is decidable.

7. Concluding Remarks

De Morgan Heyting logics as combinations of intuitionistic and De Morgan logics
are developed in this paper. We show some properties of variety DH. DM frames are
introduced and dualities between DM frames and DH-algebras are developed. The Kripke
completeness, finite approximability and the conservativity in lattice Ext(J) are investigated.
A cut-free terminating Gentzen sequent calculus is given for the logic of De Morgan Boolean
algebras. A glimpse on these results offers hints at some interesting problems for further
study.

• First, the finite approximability and finite model property under the Kripke semantics
should be analyzed deeply. It is still unknown whether DH-logic C = J⊕¬p → ∼p
is finite approximable or not. Moreover, the finite approximability in lattice Ext(J)
needs further explanation. For example, it is not known whether all extensions of the
Gödelian DH-logic J⊕ (p → q) ∨ (q → p) are finitely approximable or not.

• Second, the modal companions of DH-logics have not yet been studied. The intuition-
istic part of J should have, e.g., the standard modal logic S4 as its counterpart (cf.,
e.g., [22]), and the De Morgan negation should be translated into a (negative) modal
logic. Thus, the basic modal companion of DH-logics should be the product of S4 and
a modal logic which represents the De Morgan part.

• Third, if we enrich the cut-free Gentzen sequent calculus for classical propositional
logic with rules corresponding to axiom ¬p ↔ ∼p, we obtain a cut-free and terminat-
ing sequent calculus for DH-logic C = J⊕ p ∨∼p. However, cut-free Gentzen sequent
calculi for J and other DH-logics are not known yet.

Furthermore, the properties like disjunction property, tabularity, pretabularity, inter-
polation in sublattices of Ext(J) are interesting problems.
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