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Abstract: A distributed-power-generating source (DPGS) is intended to locally supply the increased
power demand at a load bus. When applied in small amounts, a DPGS offers many technical and
economic benefits. However, with large DPGS penetrations, the stability of the transmission system
becomes a significant issue. This paper investigates the stability of a transmission system equipped
with a DPGS at load centres supplying power to both a constant power (CP) and induction motor
(IM) load. The DPGSs considered in the present study are microturbine and diesel turbine power
generators (MTGS and DTGS), both interfaced with synchronous generators. The influence of an IM
load supplied by the DPGS on small-signal stability is studied by a critical damping ratio analysis.
On the other hand, time-domain indicators of the transient response following a short circuit are
employed in the analysis. Further, a variance analysis test (VAT) is performed to determine the
contribution of IM and CP loads on the system stability. The study revealed that large penetration
levels of IM loads significantly affect the stability and depend on the kind of DPGS technology used.

Keywords: distributed-power-generating source; induction motor; penetration level; small-signal
stability; transient response; time-domain indicators; variance test analysis

MSC: 62K25; 37N35

1. Introduction

Distributed-power-generating sources (DPGSs) have created a paradigm contrasting
the conventional power system. The sources have paved the way for a technology suitable
for electricity generation in a limited capacity that is located near the point of consump-
tion. The specific definition and implementation of DPGSs can vary significantly from
one country to another and even within regions of the same country [1]. This variation
is due to several factors, including differences in available renewable and other energy
resources, the grid infrastructure, government policies, and local energy demands. The
diversity in the definitions and approaches to DPGS reflects the adaptability of this concept
to the unique needs and circumstances of different countries and regions, making it a
flexible solution for addressing various energy challenges [2]. Generally, DPGS technolo-
gies can be categorized based on the devices and fuels utilized, broadly encompassing
generators and storage systems. The majority of these systems can produce both active and
reactive power, although their capabilities vary significantly from one another. A detailed
technical overview and analysis are presented for each DPGS technology in [1]. Many of
these technologies harness energy resources, characterized as sources typically resistant to
depletion. These encompass solar radiation, wind, biomass, hydropower, marine energy,
and geothermal sources [3]. Few other technologies, including small-scale hydroelectric
systems, photovoltaic arrays, diesel and wind generators, solar–thermal units, fuel cells,
and battery storage technologies, comprise numerous small modules assembled in factories.
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These technologies’ manufacturing and on-site construction need considerably less time
than the process for large centralized power stations [4].

As the popularity and integration of DPGSs continue to grow, it has become essential
to develop and implement standards that ensure interoperability, efficiency, and safety
across these distributed resources [5]. Several standard organizations [6] have emerged
to address this need and have developed various standards related to DPGSs. One of the
notable standard organizations in this field is the International Electrotechnical Commission
(IEC) [7]. The IEC has published several standards relevant to DPGSs, including IEC 61850,
a communication standard for intelligent electronic devices used in power substations.
This standard enables the exchange of information between different DPGSs and facilitates
their integration into the grid.

Similarly, the IEEE [8] has also developed several standards related to DPGSs. IEEE
1547 is a widely recognized standard that defines the interconnection requirements for
DPGSs with the electric power system. It specifies the technical and operational require-
ments for a reliable, secure grid integration interfaced with DPGSs. Moreover, the National
Electrical Manufacturers Association (NEMA) has developed the NEMA SG 4 standard,
providing guidelines for evaluating, selecting, and integrating storage energy systems into
electrical systems. There are also regional and national standards specific to certain coun-
tries or regions. For instance, in the United States, the Smart Grid Interoperability Panel
(SGIP) has developed standards and guidelines for energy resource integration, including
the Open Field Message Bus (OpenFMB) standard, which enables interoperability between
different DPGSs. When comparing these standards, it is imperative to consider factors such
as scope, applicability, and adoption. Some standards may have a broader scope, covering
multiple aspects of DPGS integration, while others may focus on specific technologies
or applications.

The adoption and implementation level of the above standards also varies across
different regions and countries. Overall, the analysis and comparison of these standards
help stakeholders in the energy sector understand the requirements and best practices
for integrating DPGSs into the grid [9]. These standards play a vital role in successfully
deploying distributed energy resources worldwide by promoting interoperability, efficiency,
and safety. An overview of varied distributed-power-generating source technologies has
been presented by authors in [10]. The study gave an insight into the environmental
impacts of DPGSs over conventional-power-generating sources. Studies on DPGSs, such
as wind turbines and PV panels, have revealed the positive and negative effects on power
systems in recent years. While DPGSs contribute to renewable energy integration and
reduce greenhouse gas emissions, their increased penetration levels can pose challenges to
the power grid’s reliability and stability [11]. Some adverse impacts associated with high
levels of distributed generation include frequency and voltage instability, the reduction of
the transient stability margin, protection co-ordination challenges, and grid imbalance [12].

In a distribution system, electricity is typically transmitted to substations through high-
voltage transmission lines, thereafter lowering the voltage and distributing it to homes,
businesses, and other consumers. Distributed-power-generating sources are connected
to the transmission system and can help meet the local load demand without requiring
extensive transmission and distribution infrastructure.

Integrating DPGSs into the transmission system offers the following technical and
operational advantages [13]:

• Decreased line losses and improved voltage profile: DPGS systems located closer to
the load reduce the distance electricity travels, minimize transmission losses, and help
maintain a stable voltage level in the transmission system. In addition, lower costs for
system operation and its maintenance, associated with reduced transmission losses,
contribute to cost savings for utilities.

• Enhanced stability and power quality: DPGS systems can provide local stability,
ensuring a consistent power supply and improving the overall quality of electricity.
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• Increased network efficiency and reliability: DPGS integration optimizes the utilization
of existing infrastructure, making the system more efficient. Moreover, by providing
backup power during grid outages, DPGS systems can enhance reliability.

• Security enhancement: Distributed generation can enhance the security of the elec-
tricity supply by reducing the dependence on centralized power plants, making the
system less vulnerable to large-scale failures or attacks.

• Reduced transmission and distribution (T&D) congestion: By generating power closer
to the point of consumption, the DPGS mitigates congestion issues by reducing the
strain on T&D lines.

• Delayed investments for upgrading facility: Integrating DPGSs can defer the necessity
for significant investments in new T&D infrastructure, saving costs for utility companies.

• Suppression of fuel costs for distributed energy resources: Renewable energy sources
used in DPGS (wind/solar) systems have no fuel costs, making them economically attrac-
tive and environmentally friendly alternatives to traditional fossil-fuel-based generation.

In addition to the above, integrating DPGSs into the transmission system offers eco-
nomic advantages by reducing costs, creating revenue streams, providing environmental
benefits, lowering emissions, and improving air quality. Further, the operational improve-
ments in grid reliability and stability contribute to long-term sustainability by diversifying
energy resources and promoting renewable energy adoption [14]. With the advent of
several technologies contributing to the advantages mentioned above, however, stability
is one of the major concerns when DPGSs are integrated into the transmission system.
Researchers and industry professionals are focusing on developing advanced monitoring,
control, and mitigation strategies to maintain the stability and resilience of transmission
systems in the face of these evolving demands and challenges [15].

The present work investigates the transmission system stability when power demand
increases in terms of induction motor load at the load centre interfaced with DPGSs. Hence,
the following section presents previous studies focusing on the impact and evaluation of
power system stability with DPGSs.

2. Literature Review

At various stages of research, researchers have investigated the impact of interfacing
DPGSs on the stability aspects by employing different types of DPGS technologies in
a power system that includes synchronous generator-based power-generating sources,
renewable- and non-renewable-power-generating technologies, and sources interfaced with
power converters (like a wind turbine, photovoltaics, fuel-cell, and gas- and microturbine-
power-generating sources).

In [16], the authors examined the influence of a synchronous generator interfaced
with a small hydropower-generating source of a Brazilian power grid by analyzing the
stability aspects of the system. The study unveiled an improved voltage stability margin
and transfer capacity due to increased power-generating source levels. A corresponding
investigation involving synchronous-generator-based-power-generating sources in the
distribution network is carried out in [17]. A technique based on projective integration
is applied for rapidly simulating transient stability, particularly in the presence of the
high penetration of distributed-power-generating sources and virtual synchronous gen-
erators [18]. Few other researchers [19] have emphasized the study of synchronous and
asynchronous generator-based distributed-power-generating source technology. The study
focuses on the distinct characteristics of these technologies and their impact on the stability
of the power grid. The authors in [20] simulated various fault conditions to demonstrate
the effect of DPGSs on transmission system transient stability. The study analyzed different
fault scenarios occurring in multiple branches of the system, considering N-1 security to
assess the system’s robustness.

A detailed survey was carried out to analyze the behavior of voltage variation in a
DPGS-interfaced distribution network [21,22]. In [23], the influence of system parameters
on voltage oscillations is examined with the aid of participation factors and eigenvalues.
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Several researchers have suggested a number of techniques to analyze the voltage stability
of the system. In [24], an extensive voltage profile study is carried out under the influence
of different power-generating sources. The study revealed that a power system under stress
undergoes voltage instability, frequently due to the increased load demand at a particular
bus. The authors [25] formulated an analytical approach to enhance the reliability and
voltage profile by strategically placing and sizing the renewable generating sources on
distribution systems. Subsequently, various intelligent methods have also been reported
due to the potential benefits of installing DPGSs on the distribution network [26].

In [27], the transient stability was analyzed by studying a hybrid system incorporating
various renewable power generation sources. The authors concluded that the influence
of power generation sources is contingent on both its location and type. Furthermore,
the authors reported that stability declined as the penetration level of power-generating
sources increased. In [28], authors have proposed an optimal algorithm to control the
frequency in a hybrid system and co-ordinate between various power-generating sources.

A comprehensive mathematical model and several simplified versions of the microtur-
bine power-generating sources that utilize liquid and gas fuel systems were detailed in [29].
Apart from the study in [30] focusing on the system’s transient response, a comprehen-
sive investigation on small-signal stability incorporated a microturbine power-generating
source. The analysis indicated that transient stability is enhanced with increasing DPGS
penetration levels, whereas the excitation control parameters of the power-generating
source influence the small-signal stability. In [31], authors investigated the small-signal and
transient stability in a transmission system with rotating types (such as micr-turbine, diesel
turbine, and wind turbine generators) of DPGSs interfaced at the load buses. The study
revealed that the system’s stability will be degraded when DPGS penetration exceeds a
certain optimum level. Moreover, the study in [32] showed that the stability performance
under the unequal load increase condition differs considerably compared to the equal load
increase condition even for the same DPGS penetration level.

An extensive study on dynamic voltage stability is carried out on a hybrid system
comprising conventional- and renewable-power-generating sources [33]. This study pre-
sented a comparative analysis involving various types of static VAR compensators, utilizing
minimum first swing and damping associated with subsequent oscillations as indicators.
Authors in [34] analyzed the small-signal stability of a distribution system interfaced with
renewable-power-generating sources. In this study, the authors employed supplemen-
tary controllers to improve the damping ratio of critical modes. Furthermore, the study
reported substantial involvement of both induction and synchronous generators in the
oscillating modes.

Apart from the integration of DPGSs, researchers have been investigating the influence
of dynamic loads on the distribution system [35]. These studies aim to understand and
address the challenges posed by dynamic loads separately from other types of loads [36].
The studies in [37,38] reported the influence of dynamic loads on short- and long-term
voltage stability.

In recent years, DPGS technologies have received significant interest in smart grids,
microgrids, and distribution network applications [39]. Although this technology focused
on improving efficiency, reliability, and sustainability, many investigations have reported
specific technological issues concerning DPGSs and their operation. Researchers in [40]
have analyzed the stability aspects considering the interaction between the dynamics of
DPGSs with constant power loads. A study based on techniques of synchronization [41]
to extract positive–negative sequence components under the influence of inverter-based
DPGSs is performed under varied grid conditions.

Some of the significant issues that have been identified based on the literature review
are summarized below:

• Most of the earlier findings reported the influence of DPGS penetration on system sta-
bility as applied to distribution networks. However, the latest articles have focused on



Mathematics 2024, 12, 148 5 of 29

installing DPGSs either at the load centres or distribution substations of transmission
networks to meet any growth in load demand in the near future;

• Most of the stability studies reported are in the area of microgrids, focusing on analyz-
ing the influence of constant power loads with interfaced DPGSs;

• In most articles, researchers have focused more on analyzing the effect of increased constant
power loads in a transmission/distribution network interfaced with DPGSs. Therefore, it
is essential to examine the dynamic load influence in a transmission/distribution network;

• Across a spectrum of research publications, the emphasis is on analyzing the influence
of DPGSs on transient or voltage stability. Conversely, the impact of DPGS penetration
subjected to small disturbance conditions needs to be explored.

Inspired by the aforementioned requirements, the paper’s key contributions include:

• Analyzing the transmission system stability when the DPGS supply increased power
demand, comprising both constant power and dynamic loads;

• Investigating the influence of constant power and dynamic loads on a system’s small-
signal stability with the aid of the critical damping ratio and electromechanical mode
eigenvalue analysis;

• To study the impact of both dynamic and constant power load changes on the transient
stability of the system and to further quantify the transient performance of DPGSs
using time-domain indicators;

• To employ the variance analysis test to determine the relative contribution of various
control factors on the variance of system response.

3. Transmission System Modelling
3.1. Model of DPGS-Interfaced Transmission System and Induction Motor Penetration Level

Figure 1 illustrates the DPGS-interfaced transmission system model employed in the
present study. In this model, the DPGS is interfaced at a load bus so that the increased load
demand at this bus is directly supplied by the interfaced DPGS. The central concept of this
model is to locally deliver the increased load demand at a load centre by a DPGS so that the
power generation of main generating stations and the line power flow in the transmission
system remain almost unaffected.
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In the model of Figure 1, PLk and QLk are the base real and reactive power demand
at load bus k. If ∆PLk is the increase in the load real power at bus k, then the real power
generation of the interfaced DPGS is set as PDG = ∆PLk.
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In the present study, the increased power demand ∆PLk at load bus k is assumed to
have the following two parts:

• A portion, (∆PCP)k, is the increased CP demand;
• The remaining portion, (∆PIM)k = ∆PLk − (∆PCP)k is due to the increased power

demand in the form of an induction motor.

The above load demand increase model will enable the study of the effect of induction
motor loads on the stability of the transmission system interfaced with a DPGS.

The constant power load change and the induction motor load are expressed as a
fraction of base real power load demand at bus k, and are defined as:

βk,1 =
(∆PCP)k

PLk
(1)

βk,2 =
(∆PIM)k

PLk
(2)

Hence, the net load power change at bus k is given as:

∆PLk = (∆PCP)k + (∆PIM)k = (βk,1 + βk,2)PLk (3)

The degree of the induction motor penetration level (IMPL) is the ratio of the net
induction motor load to the net real power demand of the system and is given by:

% IMPL =

∑
k
(∆PIM)k

PLoad + ∑
k

∆PLk
× 100 (4)

where PLoad is the net base real power demand of the transmission system.

3.2. Transmission System and Distributed Power Generation Models

The various assumptions made while modeling the entire system are as follows:

• The power system is modeled by employing all synchronous generators by fourth-
order model-1.1 (d-q axis model), operated by a static exciter (IEEE type-ST1 single
time-constant model, automatic voltage regulator with time-constant TE = 0.05 s and
gain KE = 50);

• A speed-based, two-stage lag-lead-type power system stabilizer (fixed structures PSS)
and a simplified model of a steam turbine for main synchronous generators [42]
are used;

• A constant impedance representation of all constant power loads is used during the
simulation process.

All the dynamic equations of the synchronous generator are provided in Appendix A.

3.2.1. Induction Generator Model

In the present study, a third order model of IM is employed [43]. This model assumes
that the rotor dynamics are slower than stator flux transients. The IM state equations are
given as:

dωm

dt
=

1
2Hm

[Te − Tm] (5)

dE′
q

dt
=

−1
T′

0
[E′

q + (Xs − X′
s) id] + Smωs E′

d (6)

dE′
d

dt
=

−1
T′

0
[E′

d − (Xs − X′
s) iq]− Smωs E′

q (7)
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The complex voltage behind transient reactance and the motor terminal voltage rela-
tionship is given by:

(E′
q + jE′

d) = (vq + jvd)− (iq + jid)(Rs + jX′
s) (8)

In Equations (6) and (7),
T′

0 = Xlr+Xm
ωsRr

is the transient open-circuit time constant;

X′
s =

XmXlr
Xm+Xlr

+ Xls is the transient reactance;
Xs = Xls + Xm is the rotor open-circuit reactance.

3.2.2. Distributed-Power-Generating Sources

The following synchronous-generator-interfaced DPGSs are employed in the investigation:

• Microturbine power generator source (MTGS);
• Diesel turbine power generator source (DTGS).

The microturbine is the prime mover for a synchronous generator for a MTGS and
Figure 2 shows the general model. The MTGS is primarily based on the gas turbine model
and was used in many past studies [44–46].
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Figure 2. General block–diagram of MTGS model.

The MTGS prime-mover consists of a compressor, combustor, and turbine, which
drives a synchronous generator; the transfer function model of the MTGS is depicted
in Figure 3. The speed controller associated with the microturbine is operated in the
isochronous mode. In the isochronous mode, the rate of change of the speed controller
output varies proportional to the speed error input of the connected PI controller so that
the generator maintains its speed even under load changes. The speed governor transfer
function has gain KW and governor time constants Tx and Ty.
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Figure 3. Transfer function model of MTGS.

The main dynamic component of the MTGS is the compressor turbine modeled by
a first-order transfer function with time constant Tcd. Due to the associated compressor
discharge volume, the compressor output cannot respond instantaneously to any changes
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in its input. The combustor time constant Tecr is a small value related to the combustion
reaction. The fuel system comprises a valve positioner and an actuator; the inertia of both
governs the dynamics of the entire fuel flow mechanism. In the MTGS model of Figure 3,
Wmin is the minimum fuel flow, whereas Kf and Ka are the fuel system feedback and gain of
valve positioner, respectively. The mechanical torque output of the turbine is expressed by
a function Tmt and is given by:

Tmt = 0.5(1 − we) + 1.3(WF − 0.23) (9)

where we = 1 + Sm is the electrical rotor speed.
A DTGS comprises a synchronous generator driven by a diesel turbine prime mover;

the general block diagram of the DTGS model is shown in Figure 4 and consists of an
electric control box, actuator, and IC engine.
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Figure 4. General block–diagram of DTGS model.

A diesel turbine uses liquid fuel or natural gas as the primary fuel and operates on air
compression and fuel. Initially, the air is blown into the engine until it is compressed and
then the fuel is injected to generate the heat, which triggers the fuel inflammation. Figure 5
depicts the simplified transfer function model of the DTGS, representing the essential
dynamics and is adapted from [44,47]. The main processes accounted for in this model are
the (i) fuelling actuation, (ii) combustion or torque production, and (iii) crankshaft torque
balance of the engine. The time delay between the fuel-flow actuation and subsequent
power stroke is represented by the time constant TDd.
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4. Problem Formulation and Solution Methodology

The influence of induction motor loads on the small-signal stability of the transmis-
sion system interfaced with a DPGS is studied using eigenvalue analysis and the critical
damping ratio (ζcr) of oscillating mode eigenvalues. The linearized state-space model of
the system at an initial operating point assuming constant inputs can be formulated as:

∆
•
X = A ∆X (10)

In Equation (10), ∆X is the vector of state variables, and A is the state matrix. The
state matrix A can be used to determine the system’s eigenvalues for specified system
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parameters and operating state. Considering a complex conjugate (oscillating mode)
eigenvalue λk = αk ± jωk, the associated damping ratio can be determined as:

ζk =
−αk√

α2
k + ω2

k

(11)

The critical damping ratio is the minimum of the damping ratio associated with
oscillating mode eigenvalues, given as:

ζcr = Minimum {ζ; ζ є oscillating modes} (12)

The transient performance of the transmission system with a DPGS and supplying IM
loads is analyzed by simulating self-clearing faults of duration tc seconds on the mid-point
of a transmission line. The following time-domain indicators are used to quantify the
transient performance:

1. Maximum slip deviation (MSD): the maximum slip deviation among relative slip
response generators. It indicates the worst value of peak responses;

2. Settling time (ST): the maximum settling time among the relative slip deviation
responses of generators, measured with a 2% tolerance band.

The present study performs all the simulations using Simulink/Matlab software
(version 7.1, R14) [48]. In the approach, the solution of the differential equations of all
system components is modeled in Simulink. Further, a non-iterative solution technique is
developed to update the non-state variables such as voltage, current, and power during the
simulation process.

The updated bus admittance matrix YBUS is obtained by representing all constant
power loads as equivalent shunt admittances, and, hence, load buses will have zero current
injections. The non-iterative voltage solution employing the reduced network (containing
only the machines) can be written as:

V = [T − ZMTYR]
−1 E (13)

In Equation (13), T is the transformation matrix; and YR consists of real and imaginary
part of reduced YBUS matrix terms. The dimensions of T and YR are (2n × 2n), where n is
the total number of machines.

For the jth synchronous generator, Tj =

[
cosδj sinδj

−sinδj cosδj

]
and δj = 0 for induction

motor. ZM consists of a block diagonal matrix of machine impedance, where

zm,j =

[
−Ra,j x′d,j
−x′q,j −Ra,j

]
for the jth synchronous generator;

zm,j =

[
−Rs,j X′

s,j
−X′

s,j −Rs,j

]
for the jth induction motor;

E = [Eq1′ Ed1′ , . . .. . . Eqn’ Edn’]t.
The network solution of Equation (13) is implemented using a Matlab function. The

Simulink model is embedded with a Matlab function that updates the system’s bus voltage.
The methodology of stability simulation in the Matlab/Simulink environment is depicted
in the flow diagram of Figure 6. The Matlab commands ‘linmod’ and ‘eig’ are employed to
obtain the linearized state model and eigenvalues, respectively, whereas the ‘sim’ command
is used to obtain the system dynamic response.
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5. Test System, Simulation Setup, and Variance Analysis

The influence of IM on system stability with an interfaced DPGS is investigated on
a 15-bus test system with a DPGS interfaced at three load centres [49]. Power demand at
load buses 7, 8, and 9 is (1.5 + j0.5) pu, whereas it is (0.5 + j0.3) pu at load buses 12 and 15.
Hence, it has been decided to install DPGSs at heavy power demand centres at buses 7, 8,
and 9 to supply increased power demand. Figure 7 depicts the test system with a DPGS
interfaced at three load centres at buses 7, 8, and 9.
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At the DPGS-interfaced load centres, the maximum increase in load demand is as-
sumed to be 50% of the base power demand. Accordingly, (βk,1 + βk,2) ≤ 0.5 for k = 7, 8, and
9. Hence, the maximum load change of CP and IM are set as βk,1 ≤ 0.25, and βk,2 ≤ 0.25 so
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that the net load change does not exceed 50% of the base load demand. All the DPGS and
IM parameters are provided in Appendix B.

Variance Analysis Test (VAT)

When several factors are influencing the system’s stability performance, it is important
to determine the relative contribution of individual factors. VAT is a tool primarily em-
ployed in the Taguchi robust designs [50] and is a useful technique to assess the contribution
of each factor on the variance of system response.

The first step in the VAT is to define certain discrete levels of various control factors
affecting the system response. In the present investigation, there are two control factors
at a load bus k (for k = 7, 8, and 9) interfaced with a DPGS, affecting the stability of the
transmission system. These are βk,1 and βk,2, the fractions of load changes by CP and IM,
respectively. Thus, the total number of control factors (F) is six in the selected transmission
system. In the present investigation, five discrete levels (L) are defined for βk,1 and βk,2
within the specified range [0, 0.25] as summarized in Table 1.

Table 1. Control factors and their levels.

Control Factors Level-1 Level-2 Level-3 Level-4 Level-5

β7,1, β7,2
β8,1, β8,2
β9,1, β9,2

0.0 0.0625 0.125 0.1875 0.25

To analyze the variance of system response (R) over the entire operating range of
control factors, it is necessary to obtain the response considering all possible combinations
of six control factors and their five levels as per the full factorial design (FFD) matrix.
Therefore, as per FFD, it requires LF = 56 = 15,625 system responses to be determined, which
is cumbersome and time-intense. However, obtaining the responses as per an orthogonal
array (OA) makes it possible to analyze the variance with only a few combinations of
control factors, thus avoiding time-consuming simulations. In a system consisting of F
number of control factors, each defined with L number of distinct levels, the selected OA
must have a minimum number of entries as per Equation (14):

Nmin = (L − 1)F + 1 (14)

In our study, L = 5 and F = 6 and, hence, Nmin = 25. Accordingly, L25 OA is selected
with 25 entries from the standard OA design matrix available [50,51]. The overall mean
response R over the entire operating region is given by:

mR =
1
25

25

∑
k=1

Rk (15)

In Equation (15), R represents the transmission system stability indicators (critical
damping ratio ζcr for small-signal stability and time-domain indicators, MSD and ST for
transient stability).

The average response R of a load-j (either CP or IM) due to level-i is the direct effect of
each level of a load [51] and is given by:

(m)i,j =
1
rl

rl

∑
i=1

(Ri)j (16)

For j = βk,1, βk,2; k = 7, 8, and 9.
In Equation (16), rl represents the repetition number of level-i of control factor j, and it

signifies the number of times each level of a control factor repeats in a column of L25 OA.
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The contribution of a control factor j on the total variance of the response [51] is
given as:

Cj =

rl
∑

i=1
5[(m)i,j − mR]

2

25
∑

k=1
[Rk − mR]2

(17)

For j = βk,1, βk,2; k = 7, 8, and 9.
VAT serves as a valuable technique for assessing the impact of individual control

factors on the variance of responses around the mean response of the system, thus indicating
the relative importance of each control factor. In the current study, we utilize the ‘anovan’
routine from the Matlab toolbox to conduct the VAT.

6. Simulation Results

The present investigation considers the following two DPGS interface scenarios:

• Case-I: Load buses 7, 8, and 9 are interfaced with a DTGS (All DTGS);
• Case-II: Load buses 7, 8, and 9 are interfaced with a MTGS (All MTGS).

As explained in Section 4, the influence of IM on small-signal stability of the test
system with interfaced DPGS is investigated through critical damping ratio and eigenvalue
analysis. On the other hand, the system’s response following a fault and its time-domain
indicators are used to study the influence of IM loads on transient performance.

6.1. Influence of IM on Small-Signal Stability
6.1.1. Effect of IMPL on Critical Damping Ratio and Small-Signal Response

In this analysis, the critical damping ratio of the linearized system is determined by
varying the fraction of the CP load (βk,1) from 0.0 to 0.25 by equal amounts at all load buses
with the fraction of IM load (βk,2) held constant at a pre-specified value. The following
settings at the DPGS-interfaced load buses are employed for these simulations:

β7,1 = β8,1 = β9,1 = β1 (CP load fraction)
β7,2 = β8,2 = β9,2 = β2 (IM load fraction)
Figure 8 compares the critical damping ratio variation for the two cases (all DTGS and

all MTGS) as a function β1 for different hold values of β2.
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In Case-I, when DTGS are interfaced at all load buses, the following observations are
made from Figure 8a:
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• For a specified IM load fraction β2 value, ζcr values initially show an increasing
tendency with an increase in β1, indicating improvement in the small-signal stability.
However, with a further increase of β1, ζcr values rapidly decrease. This decrease in
ζcr is more prominent when IM shares a larger portion of the net load demand increase
(higher β2 values). Hence, beyond particular loading, the local supply of increased
power demand by a DPGS degrades the system’s small-signal stability.

• It is seen that, when the CP shares a larger portion of the load increase (high β1), an
increase in IM load share reduces ζcr values. On the other hand, when the CP shares
a smaller portion of the load increase (small β1), the small-signal stability improves
with an increase in β2 and indicates the mutual dependency between β2 and β1.

• Figure 8a shows that the ζcr peak value point shifts towards the left with increased
β2 values. This shift indicates that, when IM shares a larger portion of the increased
load demand, the small-signal stability will be significantly affected at high load
increase values.

The following observations are made from Figure 8b when MTGSs are interfaced at
all load buses (Case-II):

• For a specified value of IM share with β2 ≤ 0.15, an increase in β1 reduces ζcr. However,
when β2 = 0.25, the resulting ζcr value is much smaller, although an increase in β1
marginally improves the small-signal stability.

• For any specified value of β1, an increase in β2 values reduces ζcr. Therefore, with
MTGSs, the small-signal stability will be affected whenever the IM shares a larger
portion of the increased load demand.

6.1.2. Small-Signal Response

The small-signal response of the system is obtained for both Case-I and Case-II for a
step increase in speed reference (wref) of 0.05pu at t = 0 under two different IMPL values, as
summarized in Table 2.

Table 2. Control factors values for small–signal response.

Case β1 β2 %IMPL

Case-I (All DTGS)
0.25 0.05 3.28
0.25 0.25 14.56

Case-II (All MTGS)
0.05 0.05 3.78
0.05 0.25 16.42

The β1 and β2 values for the two simulations in Case-I and Case-II are chosen to create
a large IMPL change and, hence, represent the worst-case scenario. The slip deviation
responses of main synchronous generators (MSGs), and synchronous generators associated
with DPGSs and IMs are illustrated in Figures 9 and 10, respectively, for Case-I and Case-II.

1. Case-I (All DTGS)

Figure 9 shows that all the synchronous generators exhibit growing slip deviation
oscillation responses with an increase in IMPL. The peak overshoots of MSG2 and MSG3
are slightly higher than those of MSG1, as seen from Figure 9a. Moreover, the MSG3
oscillates with a much higher frequency than MSG1 or MSG2. The oscillating frequency
of all synchronous generators interfaced with a DTGS is significantly higher than the
oscillating frequencies of MSGs. In addition, the slip deviation magnitude of DTGS1 is
relatively larger than that of all other synchronous generators. As expected, an increase in
IMPL results in increased oscillations of the IM with a higher peak and settling time. In
summary, it can be concluded that the effect of an increase in IMPL is quite different for
MSGs and synchronous generators interfaced with a DTGS.
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2. Case-II (All MTGS)

Figure 10 shows that the peak overshoot of slip deviation response of all synchronous
generators and induction motors increases with an increase in IMPL. The slip deviation
magnitude of MTGS1 is much larger than MTGS2 and MTGS3, as seen from Figure 10b.
However, MTGS2 and MTGS3 oscillate more than MTGS1, settling slowly to the new steady
state. Figure 10c shows that, although the slip deviation magnitude of IM1 is higher than
that of IM2 or IM3, it will settle quickly to a new steady state. As in Case-I, the influence of
IMPL on MSGs is different from MTGSs.
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6.1.3. Effect of IMPL on Electromechanical Modes of Oscillations

This analysis determines the electromechanical modes of oscillations (eigenvalues
corresponding to states ∆Sm and ∆δ) of MSG and synchronous generators interfaced to a
DPGS for different IMPL values using the participation matrix [52].

1. Case-I (All DTGS)

In this case, β1 is kept constant at 0.25 and β2 is varied as 0.05, 0.15, and 0.25. The
electromechanical modes of the MSG and DTGS determined are summarized in Table 3 for
three different IMPL values. The damping ratio and oscillating frequency (in Hz) related to
these modes are shown within the brackets.
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Table 3. Electromechanical eigenvalues of the system—Case-I (All DTGS).

β2 IMPL (%)
Electromechanical Modes

(ζ, f in Hz)

Main Synchronous Generator Synchronous Generator Associated with DTGS

0.05 3.28
−0.489 ± j 5.381 (0.0904, 0.8564) −1.501 ± j 16.458 (0.0908, 2.6194)
−0.928 ± j 8.934 (0.1033, 1.4219) −1.623 ± j 18.541 (0.0872, 2.9508)
−1.219 ± j 13.051 (0.0930, 2.0772) −1.685 ± j 19.274 (0.0871, 3.0675)

0.15 9.25
−0.499 ± j 5.374 (0.0924, 0.8553) −1.548 ± j 16.633 (0.0926, 2.6472)
−0.964 ± j 8.942 (0.1072, 1.4232) −1.626 ± j 18.875 (0.0858, 3.0040)
−1.223 ± j 13.099 (0.0930, 2.0847) −1.687 ± j 19.645 (0.0856, 3.1265)

0.25 14.52
−0.510 ± j 5.367 (0.0946, 0.8542) −1.597 ± j 16.838 (0.0944, 2.6798)
−1.002 ± j 8.952 (0.1112, 1.4247) −1.618 ± j 19.253 (0.0838, 3.0642)
−1.222 ± j 13.144 (0.0926, 2.0919) −1.677 ± j 20.076 (0.0832, 3.1951)

It is seen from Table 3 that, with an increase in IMPL, the damping of MSG1 and
MSG2 increases while it decreases for MSG3. Similarly, the damping ratio of oscillating
modes associated with DTGS2 and DTGS3 shows a decreasing tendency, while that of
DTGS1 exhibits an increasing tendency. Further, it is observed that the mode-oscillating
frequencies of the All DTGS case (in the range of 2.6–3.2 Hz) are much higher than the
mode oscillating frequencies of the All MSG case (in the range of 0.85–2.1 Hz). Notably,
the critical electromechanical mode is mode-3, associated with DTGS3 with the lowest
damping and highest oscillating frequency.

2. Case-II (All MTGS)

In Case-II, β1 is kept constant at 0.05, and β2 is varied as 0.05, 0.15, and, 0.25. The
electromechanical modes of the MSG and MTGS obtained are shown in Table 4 for three
different IMPL values. The damping ratio and oscillating frequency (in Hz) associated with
these modes are also shown.

Table 4. Electromechanical eigenvalues of the system—Case-II (All MTGS).

β2 IMPL (%)
Electromechanical Modes

(ζ, f in Hz)

Main Synchronous Generator Synchronous Generator Associated with MTGS

0.05 3.78
−0.435 ± j 5.257 (0.0824, 0.8366) −1.086 ± j 12.231 (0.0885, 1.9466)
−1.289 ± j 11.714 (0.1094, 1.8643) −1.289 ± j 11.714 (0.1094, 1.8643)
−1.049 ± j 15.179 (0.0690, 2.4160) −1.216 ± j 13.369 (0.0906, 2.1277)

0.15 10.55
−0.444 ± j 5.248 (0.0842, 0.8352) −1.138 ± j 12.303 (0.0921, 1.9581)
−1.325 ± j 11.774 (0.1118, 1.8739) −1.325 ± j 11.774 (0.1118, 1.8739)
−1.032 ± j 15.2039 (0.0677, 2.4197) −1.243 ± j 13.471 (0.0919, 2.1439)

0.25 16.42
−0.454 ± j 5.238 (0.0862, 0.8337) −1.205 ± j 12.41 (0.0966, 1.9766)
−1.344 ± j 11.854 (0.1126,1.8867) −1.344 ± j 11.854 (0.1126, 1.8867)
−1.025 ± j 15.258 (0.0670, 2.4284) −1.274 ± j 13.632 (0.0930, 2.1696)

As seen from Table 4, the damping of the electromechanical modes of MSG1 and
MSG2 increases, while it decreases for MSG3 for any increase in IMPL. On the other hand,
the damping of electromechanical modes associated with the All MTGS case shows an
increasing tendency with IMPL increase. The oscillating frequency of mode-1 of the MSG
is much lower (approximately 0.83 Hz) than that of other modes of main synchronous
generators. In contrast, the electromechanical modes of the All MTGS case lie in the range
of 1.86–2.16 Hz. In this case, the critical mode is mode-3, associated with MSG3 with
the lowest damping ratio (around 0.067–0.069) and highest oscillation frequency (around
2.41 Hz).
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6.1.4. Variance Analysis Test of Small-Signal Stability

In this analysis, the VAT is performed on the critical damping ratio (ζcr) measured as
per L25 OA using five levels of control factors (Table 1). Table 5 summarizes the L25 OA and
the ζcr measured for each combination of control factors for Case-I (All DTGS) and Case-II
(All MTGS).

Table 5. L25 Orthogonal Aaray and measured values of critical damping ratio.

Sl. No

Control Factors
%IMPL

ζcr

β7,1 β7,2 β8,1 β8,2 β9,1 β9,2
Case-I

(All DTGS)
Case-II

(All MTGS)

1 0 0 0 0 0 0 0 0.0833 0.0705
2 0 0.0625 0.0625 0.0625 0.0625 0.0625 4.7120 0.0850 0.0686
3 0 0.125 0.125 0.125 0.125 0.125 8.7379 0.0869 0.0676
4 0 0.1875 0.1875 0.1875 0.1875 0.1875 12.2172 0.0863 0.0674
5 0 0.25 0.25 0.25 0.25 0.25 15.2542 0.0843 0.0681
6 0.0625 0 0.0625 0.125 0.1875 0.25 8.6124 0.0870 0.0681
7 0.0625 0.0625 0.125 0.1875 0.25 0 5.7416 0.0868 0.0674
8 0.0625 0.125 0.1875 0.25 0 0.0625 10.0478 0.0868 0.0673
9 0.0625 0.1875 0.25 0 0.0625 0.125 7.1770 0.0878 0.0680
10 0.0625 0.25 0 0.0625 0.125 0.1875 11.4833 0.0869 0.0696
11 0.125 0 0.125 0.25 0.0625 0.1875 9.9057 0.0863 0.0671
12 0.125 0.0625 0.1875 0 0.125 0.25 7.0755 0.0872 0.0685
13 0.125 0.125 0.25 0.0625 0.1875 0 4.2453 0.0869 0.0678
14 0.125 0.1875 0 0.125 0.25 0.0625 8.4906 0.0865 0.0687
15 0.125 0.25 0.0625 0.1875 0 0.125 12.7358 0.0881 0.0673
16 0.1875 0 0.1875 0.0625 0.25 0.125 4.1860 0.0869 0.0680
17 0.1875 0.0625 0.25 0.125 0 0.1875 8.3721 0.0862 0.0675
18 0.1875 0.125 0 0.1875 0.0625 0.25 12.5581 0.0873 0.0678
19 0.1875 0.1875 0.0625 0.25 0.125 0 9.7674 0.0881 0.0671
20 0.1875 0.25 0.125 0 0.1875 0.0625 6.9767 0.0857 0.0692
21 0.25 0 0.25 0.1875 0.125 0.0625 5.5046 0.0854 0.0677
22 0.25 0.0625 0 0.25 0.1875 0.125 9.6330 0.0871 0.0674
23 0.25 0.125 0.0625 0 0.25 0.1875 6.8807 0.0840 0.0701
24 0.25 0.1875 0.125 0.0625 0 0.25 11.0092 0.0864 0.0682
25 0.25 0.25 0.1875 0.125 0.0625 0 8.2569 0.0873 0.0674

The balancing property of the columns of L25 OA is quite evident from Table 5; hence
the columns of OA are mutually orthogonal. In a mutually orthogonal pair of columns,
all combinations of control factor levels appear an equal number of times. Hence, OA
represents an experimental region of factors under study.

The VAT provides the contribution of the CP fraction (βk,1) and IM fraction (βk,2) of
increased load demand at load bus–k (k = 7, 8, and 9) interfaced with a DPGS causing
variations of mean critical damping ratio values around the overall mean. The VAT results
for the two cases are illustrated in Table 6 and the corresponding mean response plot is
depicted in Figure 11.

Table 6. Variance test results of critical damping ratio.

Load Bus No Load Fraction

% Contribution

Case-I
(All DTGS)

Case-II
(All MTGS)

7
β7,1 37.328 5.076
β7,2 10.609 4.451

8
β8,1 5.158 19.017
β8,2 13.115 57.777
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Table 6. Cont.

Load Bus No Load Fraction

% Contribution

Case-I
(All DTGS)

Case-II
(All MTGS)

9
β9,1 13.852 6.005
β9,2 19.939 7.674
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1. Case-I (All DTGS)

From the VAT results shown in Table 6, it is seen that the CP load fraction at load bus
7 (β7,1) and IM load fraction at load bus 9 (β9,2) have significant contributions (37.328%
and 19.939%, respectively), while the rest of the factors have low to medium contributions.
This is also evident from the mean response plot of Figure 11a. In Figure 11a, the overall
mean (mR) value of ζcr is 0.0864 and is shown in a dotted line. It can be seen that the
average response of β7,1 undergoes a large variation around the overall mean value when
the levels of β7,1 is varied from level 1 to level 5. A similar tendency is also seen from the
control factor β9,2. Therefore, it can be concluded that the CP fraction of load at bus 7 and
IM fraction of load at bus 9 are significant factors affecting the variations of the critical
damping ratio and, hence, the small–signal stability of the transmission system.

2. Case-II (All MTGS)

It is interesting to note from Table 6 that, in the case of All MTGS, load bus 8 is critical to
the small-signal stability of the system. At load bus 8, the IM load fraction (β8,2) contributes
around 57.7%, while the CP load fraction (β8,2) contributes moderately, around 19% on the
variance of ζcr around the overall mean (0.0686). The CP load and IM load fractions at load
buses 7 and 9 are negligible. These results can also be observed from the mean response
plot of Figure 11b. Figure 11b shows that the variations of average ζcr around the overall
mean due to level variations of both β7,1 and β7,2 are minimal. A similar observation can
also be made for β9,1 and β9,2.

6.2. Influence of IMPL on Transient Stability

In this investigation, the influence of IMPL on the transient stability of the transmission
system is analyzed by simulating the system’s response for a self-cleared fault of duration
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tc seconds at different IMPL values. Time-domain indicators (MSD and ST) were measured
and employed to quantify the system’s transient performance to perform the variance
analysis test.

6.2.1. Case-I (All DTGS)

A three-phase self-clearing fault of 200 ms is simulated at the middle of line 9–15,
and the transient response of MSG, DTGS, and IM is obtained for three IMPL values of
3.78%, 9.85%, and 14.51%. Figure 12 illustrates the comparison of transient responses for
increasing values of IMPL.
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Figure 12a shows that the peak overshoot of MSG1 and MSG2 increases with an
increase in IMPL while it decreases for MSG3. Moreover, the slip deviation response
of MSG1 is more oscillatory than that of MSG2 or MSG3. However, the slip deviation
magnitude of MSG1 is much smaller than other main synchronous generators. It can be
observed from Figure 12b that the effect of IMPL on the transient response of DTGS1 and
DTGS3 is more prominent as compared to DTGS2 although the slip deviation magnitude of
DTGS2 is much larger than DTGS1 and DTGS3. In general, it can be concluded that a more
oscillatory transient response results in the case of All DTGS. The peak overshoots of all
induction motors increase with an increase in IMPL, as observed in Figure 12c. Since IM3 is
located nearer to the fault location, it can be seen that the slip deviation magnitude and
peak overshoot of IM3 are much larger than those of other induction motors.

To quantify the effect of IMPL on the transient response of the transmission system,
time–domain indicators of MSG and DTGS are measured with 100 ms and 200 ms fault
durations (tc) as per L25 OA, as illustrated in Figure 13.
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It can be observed from Figure 13 that, for a specified IMPL value, both MSD and ST
increase with an increase in fault duration. Moreover, the ST values of DTGSs are much
smaller than that of MSGs for all clearing times and IMPL values. VAT is carried out using
the above time-domain indicator values to determine the relative importance of various
control factors. Tables 7 and 8 summarize the VAT results of MSGs and DTGSs, respectively.
Here, for comparison purposes, VAT is performed on both time-domain indicators, MSD
and ST, for 100 ms and 200 ms fault durations.

Table 7. Variance test results of MSG (Case-I).

Control Factor
%Contribution

tc = 100 ms tc = 200 ms
MSD ST MSD ST

β7,1 4.587 20.403 5.752 8.269
β7,2 9.232 15.977 9.178 18.742
β8,1 1.773 14.484 1.764 18.056
β8,2 4.166 14.728 3.786 18.307
β9,1 32.733 18.917 24.343 18.238
β9,2 47.509 15.491 55.179 18.387

Table 8. Variance test results of DTGS (Case-I).

Control Factor
%Contribution

tc = 100 ms tc = 200 ms
MSD ST MSD ST

β7,1 6.865 3.491 12.626 18.186
β7,2 2.733 7.613 2.990 6.351
β8,1 6.508 14.139 8.004 21.841
β8,2 3.868 10.607 5.519 32.297
β9,1 39.116 38.252 37.049 3.943
β9,2 40.911 25.899 33.811 17.383

The following observations are made from the VAT results of Tables 7 and 8:

• The IM fraction at load bus 9 (β9,2) is a significant control factor on MSD of MSG for
both fault clearing duration times (Table 7). β9,2 contributes around 47% and 55%,
respectively, for tc of 100 ms and 200 ms, respectively. On the other hand, the CP
fraction at bus 9 (β9,2) contributes moderately (32.7% and 24.3%). Thus, transient
stability is affected whenever the IM3 shares a larger load demand increase at bus 9,
and it may be because both CP and IM loads at bus 9 are nearer to the fault location.
It is worth noting here that the % contribution of β9,2 on MSD of main synchronous
generators increases from 47.5% to 55.17% as fault duration increases;

• As seen from Table 7, the contributions of all control factors (βk,1 and βk,2 for k = 7,
8, and 9) on the settling time of MSGs is more or less the same for both 100 ms and
200 ms fault durations;

• Table 8 shows that, when tc = 100 ms, both CP and IM fractions at load bus 9 (β9,1
and β9,2) contribute significantly to MSD and ST variations of the DTGS. On the other
hand, when tc = 200 ms, β9,1 and β9,2 contribute significantly only on MSD of the
DTGS. For a 200 ms fault duration, the contributions of β7,2 and β9,1 are much lower
than other control factors.

The VAT gives the relative significance of each control factor on the variance of a
response (MSD or ST) around the overall mean response.

6.2.2. Case-II (All MTGS)

Figure 14 illustrates the comparison of transient response values of IMPL for a three-
phase 200 ms self-clearing fault at the mid-point of line 9–15. As in Case-I (All DTGS),
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increased IMPL increases the oscillation peaks of all synchronous generators except the
MSG3. Moreover, as expected, all induction motor transient responses become more
oscillatory with increased IMPL. The slip deviation magnitude of MSG1 and MTGS1 is less
than that of other synchronous generators. As the IM3 location is nearer to the fault point,
IM3 exhibits higher peak overshoots, particularly at high IMPL values.
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Figure 15 depicts the time-domain indicators of MSGs and MTGSs, measured for fault
durations (tc) of 100 ms and 200 ms as per L25 OA. It is clear from Figure 15a,b that the
MSD of MTGSs is much smaller than MSGs. Moreover, for a specified IMPL value, MSD
and ST of MSGs and MTGSs increase with an increase in clearing time.



Mathematics 2024, 12, 148 23 of 29
Mathematics 2024, 12, x FOR PEER REVIEW 23 of 29 
 

 

 
(a) (b) 

 
(c) (d) 

Figure 15. Time response specifications as per L25 OA: (a) MSD of MSG; (b) MSD of MTGS; (c) ST of 
MSG; (d) ST of MTGS. 

The VAT results performed on time-domain indicators are summarized in Tables 9 
and 10 for MSG and MTGS, respectively. The following observations are made from VAT 
results: 
• The IM fraction at load bus 9 (β9,2) contributes significantly to MSDs of the MSG at 

both fault duration times (58.4% and 61.7%, respectively). Thus, it can be said that 
the peak overshoot of the MSG is mainly governed by the amount of load shared by 
the IM at bus 9 since, at this bus, the contributions from the CP fraction (β9,1) are 23.6% 
and 12.75, or 100 ms and 200 ms fault duration, respectively. 

• When the fault duration is 100 ms, all control factors contribute to the variance of the 
settling time of the MSG, although β9,1 contributes slightly higher (23.7%) than other 
factors. However, at 200 ms, the CP fraction (β7,1) is the dominant factor with 35% 
contribution. 

Figure 15. Time response specifications as per L25 OA: (a) MSD of MSG; (b) MSD of MTGS; (c) ST of
MSG; (d) ST of MTGS.

The VAT results performed on time-domain indicators are summarized in Tables 9 and 10
for MSG and MTGS, respectively. The following observations are made from VAT results:

• The IM fraction at load bus 9 (β9,2) contributes significantly to MSDs of the MSG at
both fault duration times (58.4% and 61.7%, respectively). Thus, it can be said that the
peak overshoot of the MSG is mainly governed by the amount of load shared by the
IM at bus 9 since, at this bus, the contributions from the CP fraction (β9,1) are 23.6%
and 12.75, or 100 ms and 200 ms fault duration, respectively.

• When the fault duration is 100 ms, all control factors contribute to the variance of
the settling time of the MSG, although β9,1 contributes slightly higher (23.7%) than
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other factors. However, at 200 ms, the CP fraction (β7,1) is the dominant factor with
35% contribution.

• The MSD of the MTGS is mainly controlled by the CP and IM fractions (β9,1 and β9,2)
at load bus 9. As seen from Table 10, the contribution from the IM fraction at bus 9
(β9,2) on MSD of the MTGS is 42.9% and 14.2%, respectively, for 100 ms and 200 ms,
while the CP fraction (β9,1) contributes 48% and 52.35%.

• Table 10 shows that, for the 100 ms fault, the CP fraction at bus 8 (β8,1) alone contributes
around 40.9% towards ST variations of the MTGS and, hence, is a dominant factor. On
the other hand, for the 200 ms fault, β8,1, β7,1, and β9,2 contribute moderately.

Table 9. Variance test results of MSG (Case-II).

Control Factor
%Contribution

100 ms 200 ms
MSD ST MSD ST

β7,1 1.579 11.530 1.537 35.161
β7,2 6.316 17.066 12.701 13.077
β8,1 1.053 16.409 1.720 12.768
β8,2 8.947 14.432 9.590 11.513
β9,1 23.684 23.738 12.701 14.316
β9,2 58.421 16.824 61.749 13.165

Table 10. Variance test results of MTGS (Case-II).

Control Factor
%Contribution

100 ms 200 ms
MSD ST MSD ST

β7,1 2.786 5.221 14.051 25.454
β7,2 2.179 17.681 9.682 12.601
β8,1 1.875 40.922 3.942 30.033
β8,2 2.217 4.745 5.719 1.516
β9,1 48.034 15.167 52.352 13.297
β9,2 42.909 16.263 14.254 17.099

7. Discussion

It is seen from the simulation results that the DPGS interfacing reduces the system
damping considerably, particularly at high IMPL. Even though the high gain and fast-acting
excitation system of synchronous generators improves the transient stability, it will affect
the small-signal stability by reducing the damping torque. One way to enhance the damping
of low-frequency oscillations is to add optimally tuned PSS in the excitation control of
synchronous generators interfaced with DTGSs and MTGSs. The authors in [22] reported
that small-signal stability would be poorer when the IM is located nearer a DPGS, resulting
in voltage oscillatory modes. The VAT results in our study also indicated significant
contributions of IM loads on variations of the critical damping ratio. The low damping
ratio of the system at higher IMPL might be due to IMs of low inertia (Hm = 0.5), as it was
reported in [53] that low-inertia systems are more susceptible to small-signal instability.

The fault was simulated at the mid-point of line 9–15 in the transmission system. Thus,
the fault location is nearer to MSG2, and DPGS3 and IM3 are connected to bus 9. Figure 16
shows the transient response during the fault duration of 200 ms in Case-II (All MTGS).
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Figure 16. Fault response of the system with all MTGS (a) Slip deviation of MSG2 and MTGS3 (b) Slip
deviation of IM3 (c) Terminal voltage at Bus 9 (d) Real power generated by MTGS3 and real power
drawn by IM3.

It is seen from Figure 16a that, soon after the fault application at t = 0, both MSG2 and
MTGS3 accelerate, increasing the stator frequency of IM3. Since the terminal voltage of
IM3 (bus 9) decreases significantly during the fault period, as observed from Figure 16c,
the real power drawn by IM3 and the real power generated by the synchronous generator
interfaced to MTGS3 decrease accordingly. This is shown in Figure 16d. This results
in increased synchronizing power and the action helps to slow down the accelerating
MTGS3-interfaced synchronous generator. It can be observed from Figure 16a that, at
around 0.1 s, the slip deviation of MTGS3 starts reducing. Hence, if the location of the IM
is nearer to the synchronous generators, it helps slow down the accelerating synchronous
generators due to the neutralizing effect. This observation agrees with the findings by
Davood Khani et al. [49]. However, at higher IMPL values, the induction motors affect the
performance of other synchronous generators as the IM draws heavy reactive power from
the system, causing voltage problems [21]. Therefore, it is necessary to employ reactive
power compensation at IM terminals. It is worth noting here that, in [21,22], the DPGS does
not directly supply the IM loads, whereas, in our study, the influence of the IM on stability
is investigated when the DPGS directly supplies power to both the IM and CP loads.

The development of state matrix A by an analytical approach is quite complex. In
addition, separate simulation programs to solve all state equations must be developed to
obtain the system’s time responses. On the other hand, the key feature of the proposed
approach is that a single Simulink model developed gives both the state matrix and time-
domain simulation results.

The system’s transient response is a function of several factors, such as fault location,
fault clearing time, system parameters, and the DPGS technology. Employing OA to study
the factor effects is advantageous when there are many affecting factors. OA permits us
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to perform the stability analysis with a few selected combinations of factor levels, thus
reducing the computational time. Therefore, the balancing property of OA helps arrive at
valid conclusions over the entire experimental region defined by control factors and their
level settings. Moreover, with many control factors affecting stability, it is challenging to
attribute the dominant factors that affect the system’s response and stability. In such cases,
VAT becomes very useful as it provides the relative importance of various factors. Even
though VAT results on time-domain indicators could not establish a general tendency, they
highlighted the influence of IMPL on transient stability.

8. Conclusions

This paper investigated the stability of the transmission system comprising distributed-
power-generating sources and induction motor loads. The main objective was to analyze
the stability when the DPGS supply increased power demand comprising both constant-
power- and induction-motor-type loads. The following are the observations made from the
present investigation:

• The influence of IMPL on both small-signal and transient stability of the transmission
system is also governed by the DPGS technology employed to locally supply the
increased load demand at a load bus;

• With a DTGS in the system, the critical damping ratio reduces when both the CP
and IM share large portions of increased load demand. The critical damping ratio
sharply reduces with increased load demand when the IM shares a larger fraction
of the increased load demand. On the other hand, in the case of MTGSs, the critical
damping ratio shows a decreasing tendency with increasing load demand when the
IM shares a larger portion of increased load demand;

• Eigenvalue analysis revealed that, with DTGS, the critical electromechanical mode
is associated with a synchronous generator interfaced with a DTGS with the lowest
damping and high oscillating frequency. On the other hand, with the MTGS, the
electromechanical mode of the main synchronous generator is critical, affecting the
small-signal stability. Variance test results indicated that the CP fraction is the domi-
nant contributor causing the variance of the critical damping ratio when the DTGS is
set to supply the increased load demand, whereas it was the IM fraction in the case of
the MTGS;

• The system’s transient response following a fault is affected by the IMPL and fault du-
ration. Although the IM located near a synchronous generator helps to slow down the
accelerating synchronous generator during the fault duration, its action will adversely
affect the performance of remote generators.

• A variance test was employed to identify the relative contribution of various control
factors on the variance of time-domain indicators. The VAT results revealed the
importance of the IM fraction on both maximum slip deviation and settling time of
transient response.

Further research is necessary to investigate the effects of IM parameters on stability in
a large power grid. In addition, the influence of IM loads, when supplied by different DPGS
technologies such as PV, wind, and fuel cells need to be explored. The effect of adding
PSS with DTGS and MTGS excitation controllers on damping needs further research. The
conclusions are drawn from a small system which represents a realistic power grid and,
hence, can be generalized to a large interconnected system. Moreover, the methodology
presented is general and applies to all systems.
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Appendix A

The dynamic equations governing the generator and excitation system (neglecting the
damping term) are as follows [43]:

dδ

dt
= ωbSm (A1)

dSm

dt
=

1
2H

[Tm − Te] (A2)

dE′
q

dt
=

1
T′

do
[−E′

q + (xd − x′d)id + E f d] (A3)

dE′
d

dt
=

1
T′

qo
[−E′

d − (xq − x′q)iq] (A4)

dE f d

dt
=

1
TE

[KE(Vre f − Vt + Vpss)− E f d] (A5)

where Te = E′
q iq − E′

d id − (x′d − x′q)id iq is the electrical torque; Efd is the field voltage; Vpss
is the PSS output; Vt is the generator terminal voltage; Vref is the AVR reference voltage; wb
is the base angular speed; and δ is the torque angle.

Appendix B

Test System Data: Representative parameter values of the generators, lines, transform-
ers, and bus loading are taken from [54].

(All gain values and impedance parameters are in per-unit)
Diesel turbine model:
Kds = 30.0; Td1 = 0.2 s; Td2 = 0.02 s; Td3 = 0.2 s; Td4 = 0.25 s; Td5 = 0.009 s; Td6 = 0.0384 s;

TDd = 0.02 s.
Microturbine model:
Tf = 0.4 s; Ty = 1.0 s; Tcd = 0.2 s; Tecr = 0.01 s;
Ts = 0.05 s; Tx = 0.6; Kf = 1.0; Kw = 16.7; Ka = 1.0.
Induction Motor:
Rs = 0.012; Xls = 0.1; Rr = 0.06; Xlr = 0.08; Xm = 3.0; Hm = 0.5.
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