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Abstract: Ill-posed problems arise in many areas of science and engineering. Tikhonov is a usual
regularization which replaces the original problem by a minimization problem with a fidelity term
and a regularization term. In this paper, a tensor t-production structure preserved Conjugate-Gradient
(tCG) method is presented to solve the regularization minimization problem. We provide a truncated
version of regularization parameters for the tCG method and a preprocessed version of the tCG
method. The discrepancy principle is used to automatically determine the regularization parameter.
Several examples on image and video recover are given to show the effectiveness of the proposed
methods by comparing them with some previous algorithms.
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1. Introduction

Tensors are high-dimensional arrays that have many applications in science and engi-
neering, including in image, video and signal processing, computer vision, and network anal-
ysis [1–8]. A new t-product based on third-order tensors was proposed by Kilmer et al. [9,10].
When using high-dimensional data, t-product shows a greater potential value than matri-
cization; see [1,2,10–16]. Compared to other products, the t-product preserves the inherent
natural order and higher correlation embedded in the data, avoiding the loss of intrin-
sic information during the flattening process of the tensor; see [10]. The t-product has
been found to have special value in many application fields, including image deblurring
problems [1,2,9,11], image and video compression [8], facial recognition problems [10], etc.

The t-product is widely used in image and video restoration problems; see, e.g., [1,2,9].
In this paper, we consider the solution of large minimization problems of the form

min
X⃗ ∈Rm×1×n

∥A ∗ X⃗ − B⃗∥F,A = [a]l,m,n
i,j,k=1 ∈ Rl×m×n, B⃗ ∈ Rl×1×n. (1)

Tensor A has a tubal rank that is difficult to determine, and many of its singular tubes
are non-zero and have tiny Frobenius norms of different orders of magnitude. As the
exponent increases, the Frobenius norms of these singular tubes rapidly decay to zero.
Then, Problems (1) are called the tensor discrete linear ill-posed problems.

We assume that B⃗ ∈ Rm×1×n is derived from an unknown and unavailable tensor
B⃗true polluted by noise E⃗ ∈ Rm×1×n,

B⃗ = B⃗true + E⃗ . (2)
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We have X⃗true represent a clear solution to Problem (1) to be found and obtain B⃗true
through A ∗ X⃗true = B⃗true. We assume that the upper bound of the Frobenius norm of E⃗
is known,

∥E⃗∥F ≤ δ. (3)

A straightforward solution of (1) is usually meanless to obtain an approximation
of B⃗true because of the illposeness of A = [a]l,m,n

i,j,k=1 and because error E⃗ is amplified
severely. The Tikhonov regularization method is a mathematical approach proposed
by Tikhonov [17] to address ill-posed problems. This method introduces a regularization
term into the objective function, modeling the properties of the solution based on prior
information. This serves to constrain the solution space, enhancing the stability of the
problem. Therefore, we consider the application of the Tikhonov regularization method to
address Problems (1) and subsequently proceed to solve the problems formulated in the
manner of

min
X⃗ ∈Rm×1×n

{
∥A ∗ X⃗ − B⃗∥2

F + µ∥X⃗ ∥2
F

}
, (4)

where µ is a regularization parameter. We refer to (4) as the tensor penalty least-squares
problems. We assume that

N (A) ∩N (I) = O⃗, (5)

where N (A) denotes the null space of A, I is the identity tensor and O⃗ ∈ Rm×1×n is a
lateral slice whose elements are all zero. The normal equation of (4) is represented by

(AT ∗ A+ µI) ∗ X⃗ = AT ∗ B⃗, (6)

and under the condition given in (5), it admits a unique solution

X⃗µ =
(
AT ∗ A+ µI

)−1
∗ AT ∗ B⃗. (7)

There are many techniques to determine regularization parameter µ, such as the L-
curve criterion, generalized cross-validation (GCV), and the discrepancy principle. We refer
to [18–22] for more details. In this paper, the discrepancy principle is extended to tensors
based on t-product and is employed to determine a suitable µ in (4). The solution X⃗µ of
(4) satisfies

∥A ∗ X⃗µ − B⃗∥F ≤ ηδ, (8)

where η > 1 is usually a user-specified constant and is independent of δ in (3). When ∥E⃗∥F
is small enough, and δ approaches 0, it results in X⃗µ → X⃗true. For more details regarding
the discrepancy principle, please refer to [23].

In this paper, we additionally explore the extension of the minimization problems
represented by (1), where the formulation takes the form

min
X∈Rm×p×n

{
∥A ∗ X − B∥2

F + µ∥X ∥2
F

}
, (9)

where B ∈ Rm×p×n, p > 1.
In recent literature addressing discrete ill-posed Problems (1), the prevailing method-

ologies predominantly feature the application of Tikhonov regularization and truncated
singular value methods. Reichel et al. confronted Problems (4) through the application of a
subspace construction technique, thereby mitigating the inherent challenges of large-scale
regularization problems by effecting a transformation into a more tractable smaller-scale
formulation. As a result, they introduced the tensor Arnoldi–Tikhonov (tAT), GMRES-type
methods (tGMRES) [2] and the tensor Golub–Kahan–Tikhonov method (tGKT) [1]. The
truncated tensor singular value decomposition (T-tSVD) was introduced by Kilmer et al.
and colleagues in [9]. Zhang et al. introduced the method of randomized tensor singular
value decomposition (rt-SVD) in their work [24]. This method exhibits notable advantages
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in handling large-scale datasets and holds significant potential for applications in image
data compression and analysis. Ugwu and Reichel [25] proposed a new random tensor
singular value decomposition (R-tSVD), which improves T-tSVD.

The conjugate gradient method (CG), initially proposed in [26], is well-suited for
addressing large-scale problems, particularly in scenarios requiring multiple iterations.
Compared to alternative methods, it demonstrates a relatively faster convergence rate.
The method’s favorable characteristic of low memory requirements renders it suitable for
efficiently handling extensive datasets or high-dimensional problems. Detailed discussions
on this approach can be found in the literature, as referenced in [26–30]. Song et al. [31]
proposed a tensor conjugate gradient method for automatic parameterization in the Fourier
domain (A-tCG-FFT). The A-tCG-FFT method projects Problems (1) into the Fourier domain
and uses the CG method that preserves the matrix structure for computation. The solution
obtained by the A-tCG-FFT method is of higher quality than the solution obtained by
directly matrix or vectorizing the data. The tensor Conjugate Gradient (t-CG) method
proposed by Kilmer et al. [10] is employed to address Problem (4), where the regularization
parameter is user specified. In this article, we extend our work on the tCG method from [10]
and utilize the discrepancy principle for automatic parameter estimation. The proposed
method is called the tCG method with automatical determination of regularization param-
eters (auto-tCG). We also present a truncated auto-tCG method (auto-ttCG) to improve
the auto-tCG method by reducing the computation. At last, a preprocessed version of the
auto-ttCG method is proposed, which is abbreviated as auto-ttpCG. We remark that the
auto-tCG, auto-ttCG, and auto-ttpCG methods are quite different from the methods in [31]
because the former do not need to project the problems (1) into the Fourier domain and
could maintain the t-product structure of tensors during the iteration process.

The remainder of this manuscript is structured as follows: Section 2 provides an
introduction to relevant symbols and foundational concepts essential for the ensuing
discussion. In Section 3, we expound upon the auto-tCG, auto-ttCG, and auto-ttpCG
methodologies designed to address minimization Problems (4) and (9). Subsequently,
Section 4 illustrates various examples pertaining to image and video restoration, while
Section 5 encapsulates concluding remarks.

2. Preliminaries

This section provides notations and definitions, offering a concise overview of relevant
results that are subsequently applied in the ensuing discourse. Figure 1 illustrates the
frontal slices (A(:,:,k)), lateral slices (A(:,j,:)), and tube fibers (A(i,j,:)).

(a) (b) (c)

Figure 1. (a) Frontal slices A(:,:,k), (b) lateral slices A(:,j,:) and (c) tube fibers A(i,j,:).

In this manuscript, we employ two operators, unfold and fold. The operator unfold
unfolds the tensor into a matrix of dimensions ln× m, while fold serves as the inverse
of unfold folding the matrix back into its original three-order tensor form. For clarity of
exposition, we denote matrix Ak specifically as the kth frontal slice of third-order tensor
A ∈ Rl×m×n, i.e., Ak = A(:,:,k). We have
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unfold(A) =


A1
A2
...

An

, fold(unfold(A)) = A.

The forthcoming definitions and remarks, introduced herein, are utilized in the subse-
quent theoretical proofs.

Definition 1. Assuming A is a third-order tensor, the block-circulant matrix bcirc(A) is defined
as follows:

bcirc(A) =


A1
A2
...

An

An
A1
...

An−1

· · ·
· · ·
. . .
· · ·

A2
A3
...

A1

.

Definition 2 ([9]). Given two tensors A ∈ Rl×m×n and B ∈ Rm×p×n, the t-product A ∗ B is
defined as

A ∗ B = fold(bcirc(A)unfold(B)) = C, (10)

where C ∈ Rl×p×n.

Remark 1 ([32]). For any two tensors A and B for which the t-product is defined, they satisfy
(1). bcirc(A ∗ B) = bcirc(A)bcirc(B).
(2). bcirc(A+ B) = bcirc(A) + bcirc(B).
(3). bcirc(AT) = bcirc(A)T .

We define tensor Â obtained by applying the Fast Fourier Transform (FFT) along each
tube of A, i.e.,

bdiag
(
Â
)
=


Â1

Â2
. . .

Ân

 = (Fn ⊗ Il)bcirc(A)(F∗n ⊗ Im), (11)

where ⊗ is the Kronecker product, and matrix F∗n represents the conjugate transpose of
the n-by-n unitary discrete Fourier transform matrix Fn. The structure of Fn is defined
as follows:

Fn =
1√
n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

,

where ω = e
−2πi

n . Thus the t-product in (10) can be represented as

A ∗ B = fold((F∗n ⊗ Il)((Fn ⊗ Il)bcirc(A)(F∗n ⊗ Im))(Fn ⊗ Im)unfold(B)), (12)

and (10) is reformulated as
Â1

Â2
. . .

Ân




B̂1
B̂2
...

B̂n

 =


Ĉ1
Ĉ2
...

Ĉn

. (13)
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It is easy to calculate (12) in MATLAB.
For a non-zero tensor X⃗ ∈ Rm×1×n, we can decompose it in the form

X⃗ = D⃗ ∗ d, (14)

where D⃗ ∈ Rm×1×n is a normalized tensor; see, e.g., ref. [11], and d ∈ R1×1×n is a tube
scalar. Algorithm 1 summarizes the decomposition in (14).

Algorithm 1 Normalization

Input: X⃗ ∈ Rm×1×n is a nonzero tensor
Output: D⃗, d with X⃗ = D⃗ ∗ d, ∥D⃗∥ = 1
D⃗ ← fft(X⃗ ,[ ],3)
for j = 1, 2, . . . , n do

dj ← ∥D⃗j∥2 (D⃗j is a vector)
if dj > tol then
D⃗j ← 1

dj
D⃗j

else
D⃗j ← randn(m, 1); dj ← ∥D⃗j∥2; D⃗j ← 1

dj
D⃗j; dj ← 0

end if
end for
D⃗ ← ifft(D⃗,[ ],3); d← ifft(d,[ ],3)

Given tensorA ∈ Rl×m×n, the singular value decomposition (tSVD) ofA is expressed as

A = U ∗ S ∗ VT ,

where U ∈ Rl×l×n and V ∈ Rm×m×n are orthogonal under the t-product;

S = diag[s1, s2, . . . , smin{l,m}] ∈ Rm×l×n

is an upper triangular tensor with the singular tubes sj satisfying

∥s1∥F ≥ ∥s2∥F ≥ · · · ≥ ∥smin{l,m}∥F.

Algorithm 2 introduces the tensor Conjugate Gradient (t-CG) method, presented
in [11], for solving the least squares solution of the tensor linear systems (1).

Algorithm 2 The tCG method for sloving (4).

Input: A ∈ Rm×m×n, B⃗ ∈ Rm×1×n, µ.
Output: Approximate solution X⃗ ∗ of Problem (4).
X⃗0 = 0, k = 0.
[R⃗0, a]← Normalize(AT ∗ B⃗ − (AT ∗ A+ µI) ∗ X⃗0); P⃗0 ← R⃗0.
for i = 1, 2, ... until σ < tol do

c =
(
P⃗T

i−1 ∗ (AT ∗ A+ µI) ∗ P⃗i−1

)−1
∗
(
R⃗T

i−1 ∗ R⃗i−1

)
.

X⃗i = X⃗i−1 + P⃗i−1 ∗ c.
R⃗i = R⃗i−1 − (AT ∗ A+ µkI) ∗

(
P⃗i+1 ∗ c

)
.

σ = |∥R⃗i∥F − ∥R⃗i−1∥F|.
d =

(
R⃗T

i−1 ∗ R⃗i−1

)−1
∗
(
R⃗T

i ∗ R⃗i

)
.

P⃗i = R⃗i + P⃗i−1 ∗ d.
end for
X⃗ ∗ = X⃗i ∗ a
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The operators squeeze and twist [11] are expressed by

X = squeeze(X⃗j) =⇒ X(i, j) = X⃗(i,1,j), twist(squeeze(X⃗ )) = X⃗ .

Figure 2 illustrates the transformation between a matrix and a tensor column by using
squeeze and twist. Generally, operators multi−squeeze and multi−twist are defined
for a third-order tensor to make it squeezed or twisted. For tensor D ∈ Rm×p×n with
p > 1, C = multi−squeeze(D) means that all side slices of D are squeezed and stacked
as front slices of C, the operator multi−twist is the reverse operation of multi−squeeze.
Thus, multi−twist(multi−squeeze(D)) = D. We refer to Table 1 for more notations
and definitions.

Figure 2. Twist squeeze.

Table 1. Notation Explanation.

Notation Interpretation

A matrix
I identity matrix
AT transpose of tensor
A−1 inverse of tensor, A−T = (A−1)T = (AT)−1

Â FFT of A along the third mode
I identity tensor

∥A∥F the Frobenius norm , i.e, ∥A∥F =
√

∑l
i=1 ∑m

j=1 ∑n
k=1 a2

ijk.
∗ t-product
A⃗j, A(:,j,:) the jth tensor column of A, jth lateral slice of A
A(:,:,k) the kth frontal slice of tensor A
d tube
⟨A,B⟩ ⟨A,B⟩ = ∑ijk aijkbijk〈
A⃗, B⃗

〉 〈
A⃗, B⃗

〉
= ∑ik ai1kbi1k

3. Tensor Conjugate Gradient Methods

This section initiates the discussion on the automated determination of an appropriate
regularization parameter for the tensor Conjugate Gradient (tCG) method. We abbreviate
the improved method as auto-tCG. A truncated auto-tCG method is developed to improve
the auto-tCG method and is abbreviated as auto-ttCG. A preprocessed version of the
auto-ttCG method is presented, which is abbreviated as auto-ttpCG.

3.1. The Auto-tCG Method

The regularization parameter in the t-CG method was not discussed and was user-
specified. This subsection enhances the t-CG method by utilizing the discrepancy principle for
the determination of an appropriate regularization parameter, operating under the assump-
tion (3) and uses it to solve the normal Equation (6). We consider the polynomial function

µk = µ0qk, k = 0, 1, . . . , (15)

where q ∈ (0, 1). We set µ0 = ∥A∥F and obtain an optimal regularization parameter by
continuously reducing the parameter. An effective method to deal with general Problems
(9) is to regard it as p independent subproblems (4), i.e.,
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min
X⃗j∈Rm×1×n

{
∥A ∗ X⃗j − B⃗j∥2

F + µ∥X⃗j∥2
F

}
, j = 1, . . . , p, (16)

where B⃗j is the tensor column of tensor B and is polluted by noise E⃗j. B⃗j,true represents
unknown error-free tensor. We assume noise tensor

E⃗j = B⃗j − B⃗j,true

can be used or the norm of E⃗j can be estimated, i.e.,

∥E⃗j∥F ≤ δj, j = 1, . . . , p.

Algorithm 3 encapsulates the auto-tCG method designed for solving Equation (9).
The initial tensor of Algorithm 3 is set as a zero tensor. The iteration concludes when the
Frobenius norm of the residual tensor

R⃗i
j,µk

= AT ∗ B⃗j − (AT ∗ A+ µkI) ∗ X⃗ i
j,µk

is small enough, where R⃗i
j,µk

denotes the residual generated by the ith iterative solution

X⃗ i
j,µk

of the normal equation with µk of the jth independent subproblem. We let X⃗int = X⃗ ∗µk

be the initial tensor of the normal equation of µk+1. When µ = µk with m iterations for
the CG-process, the affine space is X⃗ 0

µk
+Km

(
AT ∗ A+ µkI , r0

µk

)
, where r0

µk
= AT ∗ B⃗ −(

AT ∗ A+ µkI
)
∗ X⃗ 0

µk
.

Algorithm 3 The auto-tCG method for sloving (9).

Input: A ∈ Rm×m×n, B⃗j ∈ Rm×1×n, δj, j = 1, . . . , p, µ0, η > 1.
Output: Approximate solution X ∗ of Problem (9).
for j = 1, 2, . . . p do
X⃗int = 0, k = 0.
while do∥A ∗ X⃗ ∗j,µk

− B⃗j∥2
F > η2δ2

j

k = k + 1, (AT ∗ A+ µkI) ∗ X⃗j = AT ∗ B⃗j, e.g., µk = µ0qk

[R⃗0, a]← Normalize(AT ∗ B⃗j − (AT ∗ A+ µkI) ∗ X⃗int); P⃗0 ← R⃗0.
i = 0, σ > tol.
while σ > tol do

i = i + 1.

c =
(
P⃗T

i−1 ∗ (AT ∗ A+ µkI) ∗ P⃗i−1

)−1
∗
(
R⃗T

i−1 ∗ R⃗i−1

)
.

X⃗i = X⃗i−1 + P⃗i−1 ∗ c.
R⃗i = R⃗i−1 − (AT ∗ A+ µkI) ∗

(
P⃗i+1 ∗ c

)
.

σ = |∥R⃗i∥F − ∥R⃗i−1∥F|.
d =

(
R⃗T

i−1 ∗ R⃗i−1

)−1
∗
(
R⃗T

i ∗ R⃗i

)
.

P⃗i = R⃗i + P⃗i−1 ∗ d.
end while
X⃗ ∗j,µk

= X⃗i ∗ a (X⃗ ∗j,µk
is the solution of the normal equation about µk of the jth

independent Subproblem (4)).
X⃗int = X⃗ ∗j,µk

.
end while
X ∗(:,j,:) = X⃗

∗
j,µk

.
end for
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3.2. The Truncated Tensor Conjugate Gradient Method

Frommer and Maass in [33] proposed a good condition that can roughly judge some
inappropriate value of µ. We introduce this condition to improve Algorithm 3 by excluding
some unsuitable value of µ, and present a truncated tensor Conjugate Gradient method for
solving (9). We first provide the following results:

Theorem 1. Given A ∈ Rl×m×n, we define a t-linear operator T: Rm×1×n → Rl×1×n, i.e.,
T(X⃗ ) = A ∗ X⃗ with X⃗ ∈ Rm×1×n. We let X⃗ ∗µ be the exact solution of the normal equations

(AT ∗ A+ µI) ∗ X⃗ = AT ∗ B⃗;

then, for an arbitrary X ∈ Rm×1×n, we have

∥A ∗ X⃗ ∗µ − B⃗∥2
F ≥ ∥A ∗ X⃗ − B⃗∥2

F −
1

4µ
∥AT ∗ B⃗ − (AT ∗ A+ µI) ∗ X⃗ ∥2

F.

Proof. For an arbitrary X⃗ ∈ Rm×1×n, we set Z⃗ = X⃗ ∗µ − X⃗ . We let the singular value
decomposition of A be A = U ∗ S ∗ VT ; then,

A ∗ Z⃗ = U ∗ S ∗ VT ∗ Z⃗ .

We suppose VT ∗ Z⃗ = D⃗ ∈ Rm×1×n; then,

∥A ∗ Z⃗∥2
F = ∥U ∗ S ∗ VT ∗ Z⃗∥2

F = ∥S ∗ D⃗∥2
F = ∥bcirc(S)unfold(D⃗)∥2

2. (17)

Thus,

∥(AT ∗ A+ µI) ∗ Z⃗∥2
F

=∥V ∗ (ST ∗ S + µI) ∗ VT ∗ Z⃗∥2
F = ∥V ∗ (ST ∗ S + µI) ∗ D⃗∥2

F

=∥
(
ST ∗ S + µI

)
∗ D⃗∥2

F = ∥(bcirc(ST ∗ S) + µbcirc(I))unfold(D⃗)∥2
2

=∥(bcirc(S)Tbcirc(S) + µbcirc(I))unfold(D⃗)∥2
2.

(18)

We denote bcirc(S) = S ∈ Rnl×nm, bcirc(I) = I ∈ Rnm×nm and unfold(D⃗) = d ∈
Rnm×1, then ∥A ∗ Z⃗∥2

F = ∥Sd∥2
2 and ∥(AT ∗ A+ µI) ∗ Z⃗∥2

F = ∥(STS + µI)d∥2
2. Thus, we

transform the tensor norm into the equivalent matrix norm. We let the singular value
decomposition of S be S = UΣVT , where Σ = diag(σ1, σ2, . . . , σr), r ≤ min{nl, nm},
U = [u1, u2, . . . , ur] and V = [v1, v2, . . . , vr] are orthogonal matrices with orthogonal
columns uk ∈ Rnl×1 and vk ∈ Rnm×1, respectively. Thus, we have

Sd = ∑
σk>0

σk⟨d, vk⟩uk.

Using equation s2 = (s + µs−1)−2(s2 + µ)2 with estimate

1
s + µs−1 ≤

1
2
√

µ
, (s, µ > 0),

we have

∥Sd∥2
2 = ∑

σk>0
σ2

k |⟨d,vk⟩|
2
= ∑

σk>0

(
σk + µσ−1

k

)−2(
σ2

k + µ
)2
|⟨d,vk⟩|2

≤ 1
4µ ∑

σk>0

(
σ2

k + µ
)2
|⟨d,vk⟩|2.

(19)
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We note that

∥
(

STS + µI
)

d∥2
2 = ∑

σk>0

(
σ2

k + µ
)2
|⟨d,vk⟩|

2
. (20)

It results from (19) and (20) that

∥Sd∥2
2 ≤

1
4µ
∥
(

STS + µI
)

d∥2
2.

We note that ∥A ∗ Z⃗∥2
F = ∥Sd∥2

2 and ∥(AT ∗ A + µI) ∗ Z⃗∥2
F = ∥(STS + µI)d∥2

2;
we have

∥A ∗ Z⃗∥2
F ≤

1
4µ
∥(AT ∗ A+ µI) ∗ Z⃗∥2

F. (21)

Thus,

∥A ∗ X⃗ ∗µ − B⃗∥2
F = ∥A ∗ X⃗ − B⃗ +A ∗

(
X⃗ ∗µ − X⃗

)
∥2

F

≥ ∥A ∗ X⃗ − B⃗∥2
F − ∥A ∗ Z⃗∥2

F

≥ ∥A ∗ X⃗ − B⃗∥2
F −

1
4µ
∥
(
AT ∗ A+ µI⃗

)
Z⃗∥2

F.

(22)

We note that

(AT ∗ A+ µI) ∗ Z⃗ = (AT ∗ A+ µI) ∗ (X⃗ ∗µ − X⃗ ) = AT ∗ B⃗ − (AT ∗ A+ µI) ∗ X⃗ ; (23)

then, (23) and (22) result in

∥A ∗ X⃗ ∗µ − B⃗∥2
F ≥ ∥A ∗ X⃗ − B⃗∥2

F −
1

4µ
∥AT ∗ B⃗ − (AT ∗ A+ µI) ∗ X⃗ ∥2

F.

We apply Theorem 1 to predict in advance whether the exact solution X⃗ ∗µk
satisfies the

discrepancy principle in Algorithm 3. We add condition

∥A ∗ X⃗ i
µk
− B⃗∥2

F −
1

4µk
∥R⃗i

µk
∥2

F > η2δ2 (24)

in Steps 9–16 of Algorithm 3. If the ith iteration solution of the normal equation with
µk is X⃗ i

µk
and its residual R⃗i

µk
satisfies (24), then ∥A ∗ X⃗ ∗µk

− B⃗∥2
F > η2δ2. This indicates

that the exact solution of the normal equation with µk does not satisfy the discrepancy
principle, so we continue to solve next normal equation with µk+1. Therefore, we obtain a
truncated tensor Conjugate Gradient method of automatical determination of a suitable
regularization parameter, which is abbreviated as auto-ttCG. Algorithm 4 summarizes the
auto-ttCG method.

3.3. A Preconditioned Truncated Tensor Conjugate Gradient Method

In this section, we explore the acceleration of Algorithm 4 through preconditioning.
When tensorM is symmetric positive definite under the t-product structure, we can obtain
its tensor approximate Cholesky decomposition (tChol) by Algorithm 5.

In Algorithm 4, coefficient tensor AT ∗ A+ µkI of kth normal equation

(AT ∗ A+ µkI) ∗ X⃗ = AT ∗ B⃗ (25)

is symmetric and positive definite. We setM = AT ∗ A+ µkI and apply Algorithm 5 to
obtain the decomposition ofM = H ∗HT , where each frontal slice ofH is a fully sparse
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lower triangular matrix. After normal Equation (25) is preconditioned byM, we solve
preconditioned normal equations

Ã ∗ ˜⃗X = ˜⃗B (26)

instead of Equation (25) in Algorithm 4, where Ã = H−1 ∗ (AT ∗ A + µkI) ∗ H−T ,
˜⃗X = HT ∗ X⃗ , ˜⃗B = H−1 ∗ AT ∗ B⃗.

Algorithm 4 The auto-ttCG method for sloving (9)

Input: A ∈ Rm×m×n, B⃗j ∈ Rm×1×n, δj, j = 1, . . . , p, µ0, η > 1, tol.
Output: Approximate solution X ∗ of Problem (9).
for j = 1, 2, ...p do
X⃗int = 0, k = 0
while ∥A ∗ X⃗ i

j,µk
− B⃗j∥2

F > η2δ2
j do

k = k + 1, (AT ∗ A+ µkI) ∗ X⃗j = AT ∗ B⃗j, e.g., µk = µ0qk.
[R⃗0, a]← Normalize(AT ∗ B⃗j − (AT ∗ A+ µkI) ∗ X⃗int); P⃗0 ← R⃗0.
i = 0, σ = 10 tol, X⃗ 0

j,µk
= X⃗int.

while σ > tol and ∥A ∗ X⃗ i
j,µk
− B⃗∥2

F −
1

4µk
∥R⃗i ∗ a∥2

F < η2δ2 do
i = i + 1.

c =
(
P⃗T

i−1 ∗ (AT ∗ A+ µkI) ∗ P⃗i−1

)−1
∗
(
R⃗T

i−1 ∗ R⃗i−1

)
.

X⃗i = X⃗i−1 + P⃗i−1 ∗ c, X⃗ i
j,µk

= X⃗i ∗ a.

R⃗i = R⃗i−1 − (AT ∗ A+ µkI) ∗
(
P⃗i+1 ∗ c

)
σ = |∥R⃗i∥F − ∥R⃗i−1∥F|.
d =

(
R⃗T

i−1 ∗ R⃗i−1

)−1
∗
(
R⃗T

i ∗ R⃗i

)
.

P⃗i = R⃗i + P⃗i−1 ∗ d.
end while
X⃗int = X⃗ i

µk
.

end while
X ∗(:,j,:) = X⃗

i
j,µk

.
end for

Algorithm 5 Tensor Cholesky decomposition (tChol)

1: Input:M ∈ Rm×m×n ̸= O
2: Output: H ∈ Rm×m×n andM = H ∗HT .
3: M̂ ← fft(M,[ ],3)
4: for j = 1, 2, . . . , n do
5: H ← chol(M̂(:,:,j)), H is the lower triangular matrix, which is obtained by approxi-

mate Cholesky decomposition.
6: Ĥ(:,:,j) ← H.
7: end for
8: H ← ifft(Ĥ,[ ],3).

We apply Algorithm 4 to solve (26) instead of (25). We let X⃗i and ˜⃗Xi denote the solution
of (25) and (26), respectively. Then, we have

˜⃗Ri =
˜⃗B − Ã ∗ ˜⃗Xi (27)

= H−1 ∗ AT ∗ B⃗ − (H−1 ∗ (AT ∗ A+ µkI) ∗ H−T) ∗ HT ∗ X⃗i

= H−1 ∗ (AT ∗ B⃗ − (AT ∗ A+ µkI) ∗ X⃗i) (28)

= H−1 ∗ R⃗i. (29)
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We let W⃗i = H−1 ∗ R⃗i,
˜⃗Pi−1 = HT ∗ P⃗i−1; then, we have

d̃ = ( ˜⃗RT
i−1 ∗

˜⃗Ri−1)
−1 ∗ ( ˜⃗RT

i ∗
˜⃗Ri) (30)

= ((H−1 ∗ R⃗i−1)
T ∗ H−1 ∗ R⃗i−1)

−1 ∗ ((H−1 ∗ R⃗i)
T ∗ H−1 ∗ R⃗i)

= (W⃗T
i−1 ∗ W⃗i−1)

−1 ∗ (W⃗T
i ∗ W⃗i), (31)

and

c̃ = ( ˜⃗PT
i−1 ∗ Ã ∗

˜⃗Pi−1)
−1 ∗ ( ˜⃗RT

i−1 ∗
˜⃗Ri−1)

= ((HT ∗ P⃗i−1)
T ∗ H−1 ∗ (AT ∗ A+ µkI) ∗ H−T ∗ (HT ∗ P⃗i−1))

−1 ∗ ((H−1 ∗ R⃗i−1)
T ∗ H−1 ∗ R⃗i−1)

= ((HT ∗ P⃗i−1)
T ∗ H−1 ∗ (AT ∗ A+ µkI) ∗ P⃗i−1)

−1 ∗ W⃗T
i−1 ∗ W⃗i−1

= (P⃗T
i−1 ∗ (AT ∗ A+ µkI) ∗ P⃗i−1)

−1 ∗ W⃗T
i−1 ∗ W⃗i−1. (32)

In addition, we have iteration

˜⃗Xi =
˜⃗Xi−1 +

˜⃗Pi−1 ∗ c̃

HT ∗ X⃗i = HT ∗ X⃗i−1 +HT ∗ P⃗i−1 ∗ c̃

X⃗i = X⃗i−1 + P⃗i−1 ∗ c̃, (33)

and

˜⃗Ri =
˜⃗Ri−1 − Ã ∗ ˜⃗Pi+1 ∗ c̃

H−1 ∗ R⃗i = H−1 ∗ R⃗i−1 −H−1 ∗
(
AT ∗ A+ µkI

)
∗ H−T ∗ HT ∗ P⃗i+1 ∗ c̃

R⃗i = R⃗i−1 −
(
AT ∗ A+ µkI

)
∗ P⃗i+1 ∗ c̃, (34)

together with

˜⃗Pi =
˜⃗Ri +

˜⃗Pi−1 ∗ d̃

HT ∗ P⃗i = H−1 ∗ R⃗i +HT ∗ P⃗i−1 ∗ d̃

P⃗i = H−T ∗ H−1 ∗ R⃗i + P⃗i−1 ∗ d̃ = H−T ∗ W⃗i + P⃗i−1 ∗ d̃. (35)

Implementing Preprocessing procedure (27)–(35) into Algorithm 4, we obtain the
improved auto-ttCG method, which is called the truncated tensor preconditioned
Conjugate Gradient method of automatical determination of a suitable regularization
parameter and abbreviated as auto-ttpCG. Algorithm 6 summarizes the auto-ttpCG
method. Numerical experiments in Section show Algorighm 6 converges faster than
Algorithm 4.
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Algorithm 6 The auto-ttpCG method for sloving (9)

Input: A ∈ Rm×m×n, B⃗j ∈ Rm×1×n, δj, j = 1, . . . , p, µ0, η > 1, tol.
Output: Approximate solution X ∗ of Problem (9).
for j = 1, 2, ...p do
X⃗int = 0, k = 0
while ∥A ∗ X⃗ i

j,µk
− B⃗j∥2

F > η2δ2
j do

k = k + 1, µk = µ0qk.
H = tChol(AT ∗ A+ µkI).
[R⃗0, a]← Normalize(AT ∗ B⃗j − (AT ∗ A+ µkI) ∗ X⃗int).
W⃗0 = H−1 ∗ R⃗0, P⃗0 = H−T ∗ W⃗0.
i = 0, σ = 10 tol, X⃗ 0

j,µk
= X⃗int.

while σ > tol and ∥A ∗ X⃗ i
j,µk
− B⃗j∥2

F −
1

4µk
∥R⃗i ∗ a∥2

F < η2δ2 do
i = i + 1.
c̃ = (P⃗T

i−1 ∗ (AT ∗ A+ µkI) ∗ P⃗i−1)
−1 ∗ W⃗T

i−1 ∗ W⃗i−1.
X⃗i = X⃗i−1 + P⃗i−1 ∗ c̃, X⃗ i

j,µk
= X⃗i ∗ a.

R⃗i = R⃗i−1 −
(
AT ∗ A+ µkI

)
∗ P⃗i+1 ∗ c̃, W⃗i = H−1 ∗ R⃗i

σ = |∥R⃗i∥F − ∥R⃗i−1∥F|.
d̃ = (W⃗T

i−1 ∗ W⃗i−1)
−1 ∗ (W⃗T

i ∗ W⃗i).
P⃗i = H−T ∗ W⃗i + P⃗i−1 ∗ d̃.

end while
X⃗int = X⃗ i

µk
.

end while
X ∗(:,j,:) = X⃗

i
j,µk

.
end for

4. Numerical Examples

This section presents three illustrative examples showcasing the application of
Algorithms 3, 4 and 6 in the context of image and video restoration. All computations
are executed using MATLAB R2018a on computing platforms equipped with Intel Core i7
processors and 16 GB of RAM.

We suppose Xk is the kth approximate solution to Minimization problem (9). The
quality of the approximate solution Xk is defined by the relative error

Errk =
∥Xk −Xtrue∥F
∥Xtrue∥F

,

and the signal-to-noise ratio (SNR)

SNR(Xk) = 10 log10
∥Xtrue − E(Xtrue)∥2

F
∥Xk −Xtrue∥2

F
,

where Xtrue represents the uncontaminated data tensor and E(Xtrue) is the average gray-
level of Xtrue. The observed data, B, in (9) is contaminated by a “noise” tensor E , i.e.,
B = Btrue + E . E is determined as follows. We let E⃗j be the jth transverse slice of E , whose
entries are scaled and normally distributed with a mean of zero, i.e.,

E⃗j = ν
E⃗r,j

∥E⃗r,j∥F
∥B⃗true,j∥F, j = 1, . . . , p, (36)

where the data of E⃗r,j is generated according to N(0, 1).
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Example 1 (Gray image). This illustration concerns the restoration of the blurred and noisy
image of the cameraman with a size of 256× 1× 256. For operator A, its front slices A(:,:,i), i =
1, . . . , 256 are generated by using the MATLAB function blur, i.e.,

z = [exp(−([0 : band− 1].2)/(2σ2)), zeros(1, N − band)],

A =
1

σ
√

2π
toeplitz([z(1) f liplr(z(2 : end))], z), A(:,:,i) = A(i, 1)A,

(37)

with N = 256, σ = 4 and band = 12. The condition numbers of A(i) are cond(A(:,:,1)) =
cond(A(:,:,246)) = · · · = cond(A(:,:,256)) = 11.1559, while he condition numbers of the remaining
slices are infinite. We let Xtrue denote the original undaminated cameraman image. The operator
twist converts Xtrue into tensor column X⃗true ∈ R256×1×256 for storage. The noised tensor E⃗ is
generated by (36) with different noise level ν = 10−i, i = 2, 3. The images characterized by blurring
and noise are generated through the mathematical expression B⃗ = A ∗ X⃗true + E⃗ .

The auto-tCG, auto-ttCG and auto-ttpCG methods are used to solve tensor discrete
linear ill-posed Problems (1). The discrepancy principle is utilized to ascertain an appropriate
regularization parameter and set µk = µ0qk, µ0 = ∥A∥F, q = 1

2 . We set η = 1.05 in (8).
Figure 3 shows the convergence of relative errors verus (a) the iteration number k and (b)

the CPU time for the tCG, auto-tCG, auto-ttCG and auto-ttpCG methods with the noise level
ν = 10−3 corresponding in Table 2. The iteration process is terminated when the discrepancy
principle is satisfied. From Figure 3a, we can see that the auto-ttCG and auto-ttpCG methods
do not need to solve the normal equation for all µk(k < 8). This shows that the auto-ttCG and
auto-ttpCG methods improve the auto-tCG method by Condition (24). Figure 3b shows that
the auto-ttpCG method converges fastest among three methods.

2 4 6 8 10 12 14

k-th itertions  

10
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v
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rr
o
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auto-ttCG

auto-ttpCG

0 10 20 30 40 50 60 70 80 90

CPU times (s) 

10
-1
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ti
v
e
 e

rr
o
r

auto-tCG

auto-ttCG

auto-ttpCG

(a) (b)

Figure 3. Example 1: Comparison of convergence between (a) relative errors verus the iteration
number k and (b) relative errors verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG
methods with the noise level ν = 10−3.

Table 2 lists the regularization parameter, the iteration number, the relative error,
SNR and the CPU time of the optimal solution obtained by using the tCG, A-tCG-FFT,
A-CGLS-FFT, A-tpCG-FFT, auto-tCG, auto-ttCG and auto-ttpCG methods with different
noise levels ν = 10−i, i = 2, 3. The determination of the regularization parameter for the
tCG method involved conducting several experiments to obtain a more appropriate value.
The CPU time represents only the usage in a single CG process.
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Table 2. Example 1: Comparison of relative error, SNR, and CPU time between the tCG with
µ = 1 × 10−3, the A-tCG-FFT, A-CGLS-FFT, A-tpCG-FFT, auto-tCG, auto-ttCG and auto-ttpCG
methods with different noise level ν = 10−i, i = 2, 3.

Noise Level Method k µk Relative Error SNR CPU (s)

10−3

tCG - 1 × 10−3 9.14 × 10−2 12.21 9.87
A-tCG-FFT - - 5.44 × 10−2 18.63 88.02

A-tCGLS-FFT - - 5.44 × 10−2 18.63 82.23
A-tPCG-FFT - - 5.42 × 10−2 18.67 76.09

auto-tCG 15 1.96 × 10−5 3.54 × 10−2 22.36 109.87
auto-ttCG 15 1.96 × 10−5 3.52 × 10−2 22.41 80.93

auto-ttpCG 15 1.96 × 10−5 3.49 × 10−2 22.48 33.98

10−2

tCG - 1 × 10−3 1.17 × 10−1 11.97 9.64
A-tCG-FFT - - 1.04 × 10−2 12.75 79.33

A-tCGLS-FFT - - 1.04 × 10−2 12.75 72.29
A-tPCG-FFT - - 9.81 × 10−2 12.90 61.75

auto-tCG 11 3.14 × 10−4 8.74 × 10−2 14.51 81.94
auto-ttCG 11 3.14 × 10−4 8.64 × 10−2 14.61 26.42

auto-ttpCG 11 3.14 × 10−4 8.54 × 10−2 14.72 18.50

The image restoration experiment of Example 1, the A-tCG-FFT, A-CGLS-FFT, and A-
tpCG-FFT methods proposed by Song et al. [31] project the t-product into the Fourier
domain and solve 256 ill-posed problems in matrix form, respectively. In Song et al.’s
setting, when the frontal slice is small, the time required is very small. In the setting of our
article, the number of frontal slices is related to the size of the image. As the number of
frontal slices increases, the time cost increases. The calculation process of auto-tCG, auto-
ttCG and auto-ttpCG methods always maintains the tensor t-product structure, resulting
in higher quality image restoration in the end. The quality of the regularization solution
obtained by the auto-tCG surpasses that of the solution obtained by the tCG method. It can
be seen from Table 2 that the auto-ttpCG method has the lowest relative error, highest SNR
and the least CPU time for different noise level.

Figure 4 shows the reconstructed images obtained by using the tCG, A-tCG-FFT,
A-CGLS-FFT, auto-tCG, auto-ttCG and auto-ttpCG methods on the blurred and noised
image with the noise level ν = 10−3 in Table 2. From Figure 4, we can see that the restored
image by the auto-ttpCG method looks a bit better than others but with the least CPU
time. The image restoration performance of the tCG method is inferior to three conjugate
gradient methods with automatically determined parameters.

Example 2 (Color image). This example illustrates the restoration of a blurred Lena color image
using Algorithms 3, 4 and 6. The original Lena image Xori ∈ R256×256×3 is stored as a tensor
Xtrue ∈ R256×3×256 through the MATLAB function multi−twist. We set N = 256, σ = 3 and
band = 12, and obtain A ∈ R256×256×256 by

z =
[
exp(−([0 : band− 1].2)/(2σ2)), zeros(1, N − band)

]
,

A = toeplitz(z),A(:,:,i) =
1

2πσ
A(i, 1)A, i = 1, . . . , 256.

Then, cond(A(:,:,1)) = · · · = cond(A(:,:,12)) = 4.68e + 07, and the condition number of
other tensor slices of A is infinite. The noise tensor E is defined by (36). The blurred and noised
tensor is derived by B = A ∗ Xtrue + E , which is shown in Figure 5b.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Example 1: (a) The original image and (b) the blurred and noised image, reconstructed
images by (c) the tCG method (SNR = 12.21, CPU = 9.87), (d) the A-tCG-FFT method (SNR = 18.63,
CPU = 88.02), (e) the A-CGLS-FFT method (SNR = 18.63, CPU = 82.23), (f) the auto-tCG method
(SNR = 22.36, CPU = 109.87), (g) the auto-ttCG method (SNR = 22.41, CPU = 80.93) and (h) the
auto-ttpCG method (SNR = 22.48, CPU = 33.98) according to the noise level ν = 10−3 in Table 2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Example 2: (a) The original image Lena, (b) the blurred and noised image and reconstructed
images by (c) the tCG method, (d) the A-tCG-FFT method, (e) the A-CGLS-FFT method, (f) the auto-tCG
method, (g) the auto-ttCG and (h) the auto-ttpCG method according to the noise level ν = 10−3 in Table 3.

We set color image B to be divided into multiple lateral slices and independently
process each slice through (1) by using the tCG, auto-tCG, auto-ttCG and auto-ttpCG
methods. Figure 6 shows the convergence of relative errors verus (a) the iteration number k
and (b) the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG methods when dealing
with the first tensor lateral slice B(:,1,:) of B with ν = 10−3. Similar results can be derived as
that in Example 1 from Figure 6. We can see that the auto-ttCG and auto-ttpCG methods
need less iterations than the auto-tCG method from Figure 6a and the auto-ttpCG method
converges fastest among all methods from Figure 6b.
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Figure 6. Example 2: Comparison of convergence between (a) relative errors verus the iteration
number k and (b) relative errors verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG
methods with the noise level ν = 10−3.

Table 3 lists the relative error, SNR and the CPU time of the optimal solution obtained
by using the tCG, A-tCG-FFT, A-CGLS-FFT, A-tpCG-FFT, auto-tCG, auto-ttCG and auto-
ttpCG methods with different noise levels ν = 10−i, i = 2, 3. The results are very similar
to that in Table 2 for different noise levels. In the application of the tCG method, we
define distinct regularization parameters, specifically setting µ = 0.01 when ν = 10−2,
and µ = 0.005 when ν = 10−3. The regularization parameter set for the tCG method
has been determined through multiple iterations, yielding a reasonably suitable value.
However, when applying tCG to solve Problem (9) corresponding to other regularization
parameters attempted during this process, divergence or excessively large relative errors are
commonly observed. When the condition number for frontal slicing is larger, the condition
number for the matrix projected into the Fourier domain also increases, which leads to
increased ill-posedness and results in more CPU time for the A-tCG-FFT, A-CGLS-FFT and
A-tpCG-FFT methods to obtain regularization parameters. The quality of the solutions
obtained by the tCG method is inferior to that of the other three versions with automatic
parameter tuning. However, the CPU time used by the tCG method is shorter than the
other three methods. This is because it only represents the time spent solving a regularized
equation, whereas the process of manually selecting regularization parameters would
consume more time. Table 3 also reflects the advantages of both truncation parameters and
preprocessing operations.

Figure 5 shows the recovered images by the tCG, A-tCG-FFT, A-CGLS-FFT, auto-tCG,
auto-ttCG and auto-ttpCG methods corresponding to the results with noise level ν = 10−3.
The results are very similar to that in Figure 5.

Example 3 (Video). In this example, we employ three distinct reconstruction methods on MATLAB
to recover the initial 10 consecutive frames of the blurred and noisy Rhinos video, with each frame
containing 240× 240 pixels. We store ten frames devoid of pollution and noise from the original
video in the tensor Xtrue ∈ R240×10×240. We let z be defined by (37) with N = 240, σ = 2 and
band = 12. The coefficient tensor A is defined as follows:

A =
1√
2πσ

toeplitz(z),A(:,:,i) = A(i, 1)A, i = 1, . . . , 240.

The condition number of the frontal slices ofA is cond(A(:,:,i)) = 7.4484e + 09(i ≤ 12), and the
condition number of the remaining frontal sections ofA is infinite. The suitable regularization parameter
is determined by using the discrepancy principle with η = 1.1. The blurred and noised tensor B is
generated by B = A∗Xtrue + E with E ∈ R120×30×120 being defined by (36).
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Table 3. Example 2: Comparison of relative error, SNR, and CPU time between the tCG (ν = 10−2:
µ = 0.01; ν = 10−3: µ = 0.005), the A-tCG-FFT, A-CGLS-FFT and A-tpCG-FFT, auto-tCG, auto-ttCG
and auto-ttpCG methods with different noise levels ν = 10−i, i = 2, 3.

Noise Level Method Relative Error SNR Time (s)

10−3

tCG 8.90 × 10−2 11.15 34.73
A-tCG-FFT 7.34 × 10−2 13.39 6939.36

A-tCGLS-FFT 7.34 × 10−2 13.39 5634.69
A-tPCG-FFT 7.34 × 10−2 13.39 1638.91

auto-tCG 5.90 × 10−2 14.62 314.73
auto-ttCG 5.90 × 10−2 14.62 262.81

auto-ttpCG 5.43 × 10−2 15.37 103.41

10−2

tCG 9.64 × 10−2 10.23 31.63
A-tCG-FFT 8.98 × 10−2 11.01 5236.55

A-tCGLS-FFT 8.98 × 10−2 11.01 4895.52
A-tPCG-FFT 8.98 × 10−2 11.01 1236.21

auto-tCG 7.64 × 10−2 12.37 117.48
auto-ttCG 7.48 × 10−2 12.55 62.01

auto-ttpCG 7.01 × 10−2 13.13 54.85

Figure 7 shows the convergence of relative errors verus the iteration number k and
relative errors verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG methods
when the second frame of the video with ν = 10−3 is restored. Very similar results can be
derived from Figure 7 to that in Example 1.
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Figure 7. Example 3: Comparison of convergence between (a) relative errors verus the iteration
number k and (b) relative errors verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG
methods with the noise level ν = 10−3.

Table 4 displays the relative error, SNR and the CPU time of the optimal solution
obtained by using the tCG, the A-tCG-FFT, A-CGLS-FFT, A-tpCG-FFT, auto-tCG, auto-
ttCG and auto-ttpCG methods for the second frame with different noise levels ν = 10−i,
i = 2, 3. In video restoration experiments with continuous frames, using the A-tCG-FFT,
A-CGLS-FFT, A-tpCG-FFT methods to perform matrix calculations in the Fourier domain
may cause a certain degree of damage to the spatial structure that may exist between
consecutive frames, resulting in a decrease in restoration quality. When employing the tCG
method, we configured distinct regularization parameters, specifically, when ν = 10−2,
µ = 0.05; and when ν = 10−3, µ = 0.001. With the increase in data volume, the auto-tCG
method demonstrates better solution quality compared to the tCG method. Additionally,
the truncation parameter operation and preprocessing strategy exhibit superior solution
quality and time advantages over auto-tCG. We can see that the auto-ttpCG method has
the largest SNR and the lowest CPU time for different noise level ν = 10−i, i = 2, 3.
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Table 4. Example 3: Comparison of relative error, SNR, and CPU time between the tCG (ν = 10−2:
µ = 0.05; ν = 10−3: µ = 0.001), the A-tCG-FFT, A-CGLS-FFT, A-tpCG-FFT, auto-tCG, auto-ttCG and
auto-ttpCG methods with different noise level ν = 10−i, i = 2, 3.

Noise Level Method Relative Error SNR Time (s)

10−3

tCG 3.94 × 10−2 21.43 96.33
A-tCG-FFT 3.67 × 10−2 21.95 9396.36

A-tCGLS-FFT 3.67 × 10−2 21.95 7423.69
A-tPCG-FFT 3.67 × 10−2 21.95 3798.81

auto-tCG 2.94 × 10−2 23.17 697.78
auto-ttCG 2.92 × 10−2 23.23 487.35

auto-ttpCG 2.66 × 10−2 24.05 214.16

10−2

tCG 8.31 × 10−2 14.14 80.61
A-tCG-FFT 7.89 × 10−2 14.89 8972.69

A-tCGLS-FFT 7.89 × 10−2 14.89 7263.02
A-tPCG-FFT 7.89 × 10−2 14.89 3269.36

auto-tCG 5.24 × 10−2 18.15 480.75
auto-ttCG 5.10 × 10−2 18.38 281.54

auto-ttpCG 4.74 × 10−2 19.02 156.44

Figure 8 shows the original video, blurred and noised video, and the recovered video
of the second frame of the video for the tCG, A-tCG-FFT, A-CGLS-FFT, A-tCG-FFT, A-
CGLS-FFT, auto-tCG, auto-ttCG and the auto-ttpCG methods with noise level ν = 10−3

corresponding to the results in Table 4. The recovered frame by the auto-ttpCG method
looks best among all recovered frames.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Example 3: (a) The second frame image of the original video, (b) the blurred and noisy
image and recovered images by (c) the tCG method, (d) the A-tCG-FFT method, (e) the A-CGLS-FFT
method, (f) the auto-tCG method, (g) the auto-ttCG and (h) the auto-ttpCG method according to the
noise level ν = 10−3 in Table 4.

5. Conclusions

This paper introduces three tensor Conjugate Gradient methods designed for the
resolution of large-scale linear discrete ill-posed problems formulated in tensor repre-
sentation. Initially, we introduce an automated strategy for determining an appropriate
regularization parameter for the tensor Conjugate Gradient (tCG) method. Furthermore,
we develop a truncated version and a preprocessed version of the tCG method. The intro-
duced methodologies are employed in diverse instances of image and video restoration.
The efficacy of the proposed methodologies in image and video restoration applications is
demonstrated through illustrative examples. These approaches circumvent the need for
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problem matrixization or vectorization. Notably, these methods exhibit significant potential
in terms of both speed and quality of computed restoration, as assessed by relative errors
and SNR values, providing a comprehensive evaluation of algorithmic performance in
image restoration.
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