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Abstract: We model the spatiotemporal dynamics of a community consisting of competing weed
and cultivated plant species and a population of specialized phytophagous insects used as the weed
biocontrol agent. The model is formulated as a PDE system of taxis–diffusion–reaction type and
computer-implemented for one-dimensional and two-dimensional cases of spatial habitat for the
Neumann zero-flux boundary condition. In order to discretize the original continuous system, we ap-
plied the method of lines. The obtained system of ODEs is integrated using the Runge–Kutta method
with a variable time step and control of the integration accuracy. The numerical simulations provide
insights into the mechanism of formation of solitary population waves (SPWs) of the phytophage,
revealing the factors that determine the efficacy of combined application of the phytophagous insect
(classical biological method) and cultivated plant (phytocenotic method) to suppress weed foci. In
particular, the presented results illustrate the stabilizing action of cultivated plants, which fix the
SPW effect by occupying the free area behind the wave front so that the weed remains suppressed in
the absence of a phytophage.

Keywords: population system; invasive weed; biological control agent; specialized phytophagous
insect; cultivated plant; competitive exclusion; indirect prey taxis; spatiotemporal heterogeneity;
solitary population wave
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1. Introduction

Both the theory and practice of biological control of adventive weeds require improve-
ments. There are many known cases of successful release of specialized phytophagous
insects to destroy dense patches of weeds, suppressing their further propagation [1–4].
López-Núñez et al. [5] report a recent case of the intentional release of the Australian
bud-galling wasp Trichilogaster acaciaelongifoliae (Frogatt) in Portugal to control the invasive
Acacia longifolia (Andr.), demonstrating the initial success of the biocontrol agent. However,
it is not completely clear which factors determine the success of biocontrol agent releases.
Occasionally, successful control over the “target” weed results even from accidental intro-
duction of a phytophagous agent [6]. Mathematical models could elucidate the point, but
classical predator–prey models ignoring spatial heterogeneity, animal behavior, and con-
sumers’ interference are not helpful because, in a scenario that should produce dynamics
interpreted as sustainable suppression of the weed or pest species by the biocontrol agent,
the models demonstrate periodic outbreaks of the prey population [7–10]. Retrospective
analysis of applications of the phytophagous insect for suppression of adventive weeds
suggests that success of biological methods of weed control is determined by a complex
of biophysical and ecological (rather than just biological) factors, providing conditions for
emergence of the so-called solitary population wave (SPW) of the biocontrol agent [3,11].
Spatial propagation of the SPW provides progressive phase transition of the ecosystem from
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the state of weed domination to the state of cultivated plant domination. There is a need
for mathematical models explaining a complex mechanism of the phytophage SPW action,
helping in studying the conditions of the population waves’ formation and providing
theoretical ground for practical recommendations on the use of biological methods of weed
control. Furthermore, in addition to modeling of spatiotemporal predator–prey interactions,
a comprehensive study of biological methods of weed control requires considering the
action of cultivated plants, which should be included in the model.

For the first time, the large-scale phenomenon of formation and propagation of SPWs
of phytophagous insect species was observed and studied in detail upon the introduction
of the ragweed leaf beetle Zygogramma suturalis F. from North America to the Old World in
1978 as a biocontrol agent against common ragweed Ambrosia artemisiifolia L. [12,13]. The
first mathematical model describing the SPW of the ragweed leaf beetle was suggested by
Vechernin and Kovalev [14]. Later, Tyutyunov and coauthors [15,16] elaborated a more
detailed demogenetical model capable of reconstructing the formation and movement of
the phytophage SPW and explaining other phenomena observed after the introduction of
the ragweed leaf beetle, including the rapid transformation of the genetic structure of the
leaf beetle population caused by selection of traits enhancing the flight ability of the beetle,
which had been evolutionarily lost in its homeland.

Kovalev et al. [17] described a long-lasting synergistic effect of the combined use of
a phytophage and cultivated plant, providing durable suppression of continuous dense
nidi of weeds: local explosion of the phytophage population, formations of the SPW, which
passes over the weed-infested territory, swiping the weed, and displacement of the weed
by a cultivated plant that fixes the result of the classical biological control achieved by the
SPW of phytophagous insects. We present a mathematical model explaining this complex
spatiotemporal process.

2. The Model

The model of the spatially distributed community consisting of competing weed and
cultivated plant species, and population of specialized phytophagous insect used as the
weed biocontrol agent, is formulated as the following taxis–diffusion–reaction type system
of partial differential equations (PDEs):

∂R
∂t

= R(rR(x)− cRR − cRPP)− Z · aR
1 + ahR

+ δR∆R; (1)

∂P
∂t

= P(rP(x)− cPP − cPRR) + δP∆P; (2)

∂Z
∂t

= ϵZ · aR
1 + ahR

· Z
Z + θ

− µZ −∇ · (κZ∇S) + δZ∆Z; (3)

∂S
∂t

= νR − ηS + δS∆S. (4)

Model (1)–(4) is a modification of the system presented previously in [15,16], which
did not consider effect of the cultivated plant but accounted for the genetic structure of the
phytophagous population. Since apart from the weed there present also other plants in
terrestrial ecosystems, inclusion of a cultivated plant in the model makes it more realistic
and appropriate for solving applied problems of weed biocontrol. Variables R = R(t, x),
P = P(t, x), and Z = Z(t, x) in System (1)–(4) denote, respectively, the densities of the
weed, cultivated plant, and population of phytophagous insect, defined at time t and spatial
position x ∈ Ω, where Ω is a considered spatial domain. Note that weed in the model can
be interpreted as a trophic resource (prey) for the phytophage being a consumer (predator)
population. Aside from the diffusive dispersal of densities of all modeled species, the
advection term in the balance equation of the phytophage population density (3) describes
directed movements of the insect density as indirect trophotaxis (prey taxis) toward gradient
of the taxis stimulus S = S(t, x). Parameters ν, κ, and η determine intensity of the consumer
taxis; see details in [15,16]. All parameters of the model are presented in Table 1, which also
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provides four sets of the parameter values that are used in numerical simulations discussed
in the next chapters.

Table 1. List of the model parameters and four sets of the parameter values used in numerical
simulations.

Parameter Meaning Set 1 Set 2 Set 3 Set 4 [Dimension Units] *

rR Growth rate of weed 1 1 1 0.0117
[
day−1

]
rP Growth rate of cultivated plant 0.8 0.8 0.5 0.00337

[
day−1

]
cR Intraspecific competition coefficient of weed 1 1 1 0.01

[
m2 · day−1 · kg−1

]
cP Intraspecific competition coefficient of cultivated plant 1 1 1 0.045

[
m2 · day−1 · kg−1

]
cRP

Interspecific competition coefficient representing the effect
of cultivated plant on weed 1.5 1.5 1.5 0.07

[
m2 · day−1 · kg−1

]
cPR

Interspecific competition coefficient representing the effect
of weed on cultivated plant 1.5 1.5 1.5 0.005

[
m2 · day−1 · kg−1

]
a Searching efficiency of phytophage 3 3 3 0.6 × 10−4

[
m2 · day−1

]
h Handling time of phytophage 1 1 1/15 35,700

[
day · kg−1

]
ϵ Conversion efficiency of phytophage 0.8 0.8 0.9 2625

[
kg−1

]
µ Mortality coefficient of phytophage 0.2 0.2 0.2 0.0114

[
day−1

]
θ Allee coefficient 0.001 0.001 0.001 0.001

[
ind · m−2]

δR Diffusion coefficient of weed – 0.001 0.001 0.5
[
m2 · day−1

]
δP Diffusion coefficient of cultivated plant – 0.001 0.001 0.2

[
m2 · day−1

]
δZ Diffusion coefficient of phytophage – 0.05 0.02 15

[
m2 · day−1

]
δS Diffusion coefficient of taxis stimulus – 0 0 0.05

[
m2 · day−1

]
ν Emission rate of taxis stimulus – 1 1 1

[
day−1

]
κ Trophotaxis coefficient – 0...0.17 0...0.7 0.01

[
m2 · kg−1 · day−1

]
η Decay coefficients of stimulus – 0.001 0.001 0.01

[
day−1

]
Lx Length of spatial domain – 1 1 4000 [m]
Ly Width of spatial domain – – – 3000 [m]

* The first three sets represent parameter values for the nondimentionalized model. The forth set contains values
and dimension units taken from [15] with values of additional parameters characterizing cultivated plant.

Growth of weed and cultivated plants is determined by rates rR, rP, intraspecific
competition coefficients cR, cP, and interspecific competition coefficients cRP and cPR,
which quantify strength of the effect of one species on another. Dependence of the growth
rates rR = rR(x) and rP = rP(x) on the spatial coordinate allows accounting for the spatial
heterogeneity of the domain Ω, considered unsuitable for vegetation areas (roads, water
bodies, forest plantations, buildings, etc.) where rR = 0 and rP = 0), and suitable regions
with strictly positive growth rates. According to Equation (1), the local consumption of
weed by phytophage is described by the Holling type II trophic function g(R) = aR

1+ahR .
The multiplier Z

Z+θ in Equation (3) allows accounting for the Allee effect [18–21] in the
population growth of the biological control agent, reducing the phytophage reproduction
when its density drops. The strength of this effect is quantified by the Allee coefficient θ.

System (1)–(4) is supplemented by the initial conditions

R|t=t0
= φR(x); P|t=t0

= φP(x); Z|t=t0
= φZ(x), (5)

and by the Neumann boundary conditions, implementing zero fluxes through the boundary
of the habitat Ω:

∇R · n = ∇P · n = ∇Z · n = ∇S · n = 0, x ∈ ∂Ω. (6)
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Note that a particular case of Model (1)–(6) considering a predator–prey system
without competing species P, where the predator reproduction subject to the Allee effect,
was studied earlier in [22].

The model is computer-implemented for 1D and 2D cases of the habitat domain Ω. To
numerically solve the initial boundary problems in the present research, we applied the
method of lines, approximating the continuous system (1)–(4) with spatial differences along
spatial coordinates, and the Runge–Kutta method with precision control and automatic
time step selection [23]. The accuracy of discretization was checked on a doubled grid. In
the results presented below obtained for 1D and 2D domains, [0, Lx] and [0, Lx]×

[
0, Ly

]
,

respectively, it was sufficient to use 120 nodes in each spatial direction. More details of the
numerical approach can be found in [24,25].

3. Results

According to our observations, the built model demonstrates a rich spectrum of various
dynamic regimes, including stationary modes and qualitatively different spatiotemporal
wave dynamics.

3.1. Homogeneous Case

We start with an analysis of uniform solutions of Model (1)–(4). This comes down to
studying the following ODE system describing the nonspatial (point) case of the model:

dR
dt

= R(rR − cRR − cRPP)− Z · aR
1 + ahR

;

dP
dt

= P(rP − cPP − cPRR);

dZ
dt

= ϵZ · aR
1 + ahR

· Z
Z + θ

− µZ.

(7)

We are primarily interested in scenarios of (i) success of the cultivated plant, ending
with disappearance of the weed, (ii) coexistence of both plant species, and (iii) conditions
leading to negative scenario of suppression of the cultivated plant by the weed.

Let us consider the corresponding stationary states. Success of the cultivated plant
corresponds to equilibrium R = 0, P = rP/cP, Z = 0. The stability condition for this
equilibrium is

rP
cP

>
rR

cRP
.

The case of suppression of the cultivated plant by the weed is provided by equilibrium
R = rR/cR, P = Z = 0, which is stable when

rR
cR

>
rP

cPR
.

The coexistence of the cultivated plant and the weed is possible through different
steady and oscillating scenarios, with or without phytophage. In the case of steady state
without phytophage, we obtain

P =
1
K

(
rP
cP

− cRP
cR

rR
cP

)
, R =

1
K

(
rR
cR

− cRP
cR

rP
cP

)
, where K = 1 − cRP

cR

cPR
cP

.

Analysis of its stability can be performed for specified parameter values.
Investigation of dynamic scenarios requires computer experiment. Below, we illustrate

influence of the initial phytophage density Z(0) = Z0 on the dynamics of nonspatial
model (7). We fix initial densities of the cultivated plant and the weed, varying Z0.

We consider Set 1 of the model parameter values presented in Table 1. In the nonspatial
case, in the absence of phytophage, i.e., with Z0 = 0, it corresponds to classical bistability
of two axial equilibria in a two-species Lotka–Volterra competition model [26,27], with
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either weed or cultivated plant reaching its carrying capacity: R = rR/cR, P = Z = 0, and
P = rP/cP, R = Z = 0. However, adding sufficient quantity of the phytophagous insects
into the system alternates the model dynamics. Figure 1 displays the results with fixed
initial densities R0 = 0.9 and P0 = 0.1 for three cases of Z0. For small initial density of Z0,
we obtain convergence to the state R = rR/cR, P = Z = 0; see Figure 1a. With higher Z0,
we see that phytophage suppresses weed, providing conditions for its total elimination by
the cultivated plant; see Figure 1b,c. Note that the second case Z0 = 0.00050729 provides
quite interesting transient oscillatory dynamics; see Figure 1b.

Figure 1. Dynamics in homogeneous case, R0 = 0.9, P0 = 0.1: (a) Z0 = 0.0004, (b) Z0 = 0.00050729,
(c) Z0 = 0.001.

To estimate the impact of phytophage on the success of biocontrol, we carried out
computations on realization of two scenarios: elimination of weeds (equilibrium R = Z = 0,
P = rP/cP) and downfall of cultivated plant (equilibrium P = Z = 0, R = rR/cR). The
structure of equilibrium basins (areas of attraction) was constructed numerically and shown
in Figure 2. We performed the calculations for different starting densities of weed and
cultivated plant for three initial densities of the phytophage population Z0. After reaching
equilibrium, the starting point was marked with either red (weed’s victory, equilibrium
P = Z = 0, R = rR/cR) or blue (domination of cultivated plant, equilibrium R = Z = 0,
P = rP/cP).

Figure 2. Basins of attraction for equilibria R = 1, P = 0, Z = 0 (red) and R = 0, P = 0.8, Z = 0 (blue)
computed for three different initial values Z0.

With a small amount of phytophage, only initial dominance of the cultivated plant
ensures its competitive advantage over the weed (Figure 2, Z0 = 0.0005). With increasing
density of the phytophage, we observe narrowing of a zone of initial data, for which the
weed can force the cultivated plant out (Figure 2, Z0 = 0.0006, Z0 = 0.001). Interestingly,
this zone is surrounded by a region of initial data, ensuring survival of the cultivated plant
suppressing the weed. It should be noted that the weed always outnumbers the cultivated
plant at the initial phase of the transient dynamics (as in the cases presented above in
Figure 1b,c).
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3.2. Case of 1D Spatial Domain

Numerical experiments reveal that, due to accounting for spatial effects, even the
1D version of the model demonstrates dependence of the simulated weed control mea-
sures on both parameter values and initial distribution of species densities, manifesting
the capability of the model to capture conditions determining successful suppression of
the weed foci, explaining the synergistic effect of the combined application of classical and
phytocenotic methods.

In this section, we consider a homogeneous habitat entirely suitable for vegetation,
i.e., rR(x) ≡ rR, rP(x) ≡ rP, presenting results obtained with System (1)–(4) subject to the
Neumann boundary conditions (6) on the edges of the 1D habitat domain Ω = [0, 1], with
Set 2 of the model parameter values presented in Table 1, which differs from Set 1 only
by the presence of additional parameters characterizing spatial processes in Model (1)–(4).
Note that these values correspond to a nondimentionalized model and have no other
biological meaning than illustration of the model capability to qualitatively reflect cases of
successful and unsuccessful application of the weed control actions.

First, let us analyze how spatial heterogeneity influences the multistability of homoge-
neous stationary states corresponding to competitive exclusion of either weed or cultivated
plant, which was observed for the spatially homogeneous case of the model. Figure 3
shows the calculation results for the following initial distribution of weed, cultivated plant,
phytophage, and trophotaxis stimulus:

φR(x) = R0(1 + cos(πx));

φP(x) = P0(1 + cos(π(1 − x)));

φZ(x) = Z0(1 + cos(πx));

φS(x) = 0.

This form of initial distribution depending on total abundances R0 and P0 allows
comparison with Figure 2 for Z0 = 0.0006, which presents the results for the nonspatial
model (7). Figure 3 shows basins of attraction to the two spatially homogeneous solutions
on the plane R0, P0 for different values of parameter κ.

Figure 3. Basins of attraction for stationary states R = 1, P = Z = 0 (red) and R = Z = 0,
P = 0.8 (blue) computed for Z0 = 0.0006 without taxis (left panel) and with taxis: κ = 0.002 (central
panel); κ = 0.005 (right panel).

One can see both similarity and differences with the results presented in Figure 2.
In particular, Figure 3 shows that, in the case of nonuniform initial distribution, initial
prevalence of the cultivated plant does not ensure suppression of the weed. Quite the
opposite, at least with small trophotaxis coefficient κ, successful control of the weed requires
prevailing of the weed over the plant phytomass. Figure 3 suggests that increasing ability
of phytophagous agent to perform trophotaxis movements strongly impacts its capacity
to control the weed, determining the overall success of the biological control strategy.
Moreover, higher values of the taxis coefficient in this experiment, e.g., κ > 0.05, ensure



Mathematics 2024, 12, 160 7 of 16

total suppression of the weed by the cultivated plant with any combination of initial
abundances R0 and P0. Moreover, according to our observations, successful suppression of
weeds in the spatial model (1)–(4) can be achieved with much lower initial abundance of
the phytophage population than in the point model (7), e.g., with Z0 = 0.00014.

Next, with the same parameters of Set 2 presented in Table 1, we analyzed the mech-
anism providing synergistic effect of complex application of classical and phytocenotic
methods of weed control, specifying the initial distributions of weed, cultivated plant,
and phytophagous biocontrol agent in order to consider separation of weed-infested and
cultivated areas, and the concentrated release of phytophagous insects in the zone of maxi-
mum weed density. Namely, the initial conditions (5) were specified using a bell-shaped
distribution functions normalized over the habitat domain as follows:

φR(x) = R0 · 0.24911−1 · e−50( 1
4−x)

2

;

φP(x) = P0 · 0.24911−1 · e−50( 3
4−x)

2
;

φZ(x) = Z0 · 0.07927−1 · e−500( 1
k −x)

2

;

φS(x) = 0,

(8)

where R0, P0, and Z0 are the initial abundances of weed, plant, and phytophage populations,
respectively, and parameter k specifies spatial position of the phytophage releasing. The
results in Figures 4–6 were obtained with initial distributions (8) computed with R0 = 0.25,
P0 = 0.15, Z0 = 0.00016, and k = 4, which corresponds to preferable release of the insects
in the left part of domain Ω with maximum initial weed infestation, while the cultivated
plant is concentrated in the right part of the habitat. The trophotaxis coefficient is κ = 0.17.

As shown in Figure 4, concentrated release of phytopages in the maximally infested
plot is a conductive factor leading to a favorable scenario; after local outbreak, the phy-
tophage population forms SPWs, which move over the whole domain, destroying the weed
and facilitating its replacement by the cultivated plant.

Figure 4. Spatiotemporal dynamics of the model, illustrating successful suppression of weed due to
synergistic effect of the combined application of phytophagous insects and cultivated plant competing
with the weed.

Figure 5 shows the result obtained with the hypothetical assumption of the absence
of a cultivated plant competing with the weed. As in the previous case, in the beginning,
we observe strong growth in the weed population, which now easily occupies the whole
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domain, providing the feeding resource for local outbreak of the phytophagous insects that
form SPWs, which rapidly move through the habitat, wiping out the weed. However, since
the result of the SPW action in this scenario is not fixed by cultivated plants, a secondary
focus of the weed emerges, giving rise to developing of a new wave of the phytophagous
agent, which loops the wave process iteratively. As a result, at each point of the habitat,
the weed density periodically grows and then drops to a negligible level, causing local
extinction of the phytophage due to the Allee effect affecting its growth, but the ability of
the phytophagous insects to perform active feeding migrations prevents global extinction
of the biocontrol agent. This particular case of Model (1)–(6) excluded from consideration
the cultural plant species that was exhaustively studied in [22].

Figure 5. Numerical simulation corresponding to scenario in which result of the phytophage SPW
passage is not fixed by the cultivated plant competing with the weed.

Simulations considering competing weeds and cultivated plants without introduction
of the phytophagous insects produces unsuccessful scenarios corresponding to exclusion
of the cultural plant by the weed; see Figure 6.

Numerical experiments with the given parameter values demonstrate the multistabil-
ity effect consisting of dependence of the model dynamics (and efficacy of the biological
method actions) on the initial conditions. Biological interpretation of the simulation results
emphasizes the fact that incorrect choice of the release point outside the weed-infested area
can cause waste of the agents. With k = 4 in (8), the initial peak of the phytophage density
distribution in Figure 4 coincides with the maximum regarding weed density. According
to simulations, moderate shifts in the peak of the phytophage initial distribution within
the patch of the weed density also end with weed suppression. However, release of insects
at the maximum point of the cultivated plant density (k = 4

3 ) causes rapid extinction of
the phytophage and exclusion of the cultivated plant by the weed. Decreasing by half the
initial amount of the insect population also leads to a negative scenario, and vice versa:
increasing it by half speeds up the weed suppression.

The demonstrated dependence of the model dynamics on the initial conditions sup-
ports general recommendations formulated by O.V. Kovalev regarding desired conditions
for the release of the biocontrol agent species being a specialized phtophage of the target
weed capable of forming SPWs [3,11,12,17]. In particular, it was noticed that releasing
the phytophage far away from the weed foci or with insufficient released insects leads to
phatophage extinction and cannot ensure the phytophage outbreak, which is a necessary
phase of SPW formation [15].
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Figure 6. Numerical result obtained for the scenario, which envisages unsuccessful attempt to
suppress the weed by cultivated plant without the use of phytophage.

Aside from spatially heterogeneous dynamics of the weed–phytophage system (Figure 5)
and stationary modes corresponding to exclusion of either cultivated plant or weed
(Figures 4 and 6), more complex dynamic spatiotemporal scenarios of all three species’
coexistence are possible. We illustrate this by varying the trophotaxis coefficient κ with
Set 3 of the model parameter values presented in Table 1 and k = 4 in the initial distribution
of species (8). With these parameters, ignoring the trophotaxis behavior of phytophagous
insects, i.e., setting κ = 0, the model approaches spatially homogeneous periodicity in time
dynamics, which corresponds to the stable limit cycle of coexistence of all three modeled
species in the nonspatial system (7). This scenario is presented in Figure 7.

Figure 7. Stabilization of uniformity in space and periodicity in time dynamics; κ = 0.

However, as seen in Figure 8, sufficiently large value of the trophotaxis coefficient,
e.g., κ = 0.14, destabilizes the homogeneous limit cycle, and spatially inhomogeneous
periodicity in time dynamics emerges. Higher values of the taxis coefficient provide
more complex nonperiodicity in time spatiotemporal solutions. Figure 9 shows irregular
dynamics obtained with κ = 0.7.
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Figure 8. Stabilization of nonuniformity in space and periodicity in time dynamics; κ = 0.14.

Similar effects of the taxis-induced destabilization of spatially homogeneous peri-
odic regime, causing emergence of spatially heterogeneous dynamics, undergoing further
transformations to quasi-periodic and chaotic regimes with increase in the prey taxis coeffi-
cient, have been observed previously in simpler predator–prey models with indirect prey
taxis of the predator, which did not take into account the population competing with the
prey [10,22].

Regarding interpretation of the obtained results in terms of the biological control prob-
lems, summarizing outcomes of the current section, we can conclude that, under plausible
assumptions, Model (1)–(6) is capable of reproducing successful (Figure 4), unsuccessful
(Figure 6), and partial control of the weed with either regular (as in Figures 7 and 8) or
irregular (as in Figure 9) outbreaks of the weed, followed by relatively satisfactory periods
of weed suppression.

Figure 9. Stabilization of nonuniformity in space and nonperiodicity in time dynamics; κ = 0.7.

3.3. Case of 2D Spatial Domain

Presenting an example of simulations with heterogeneous 2D rectangular spatial
domain Ω = [0, Lx]× [0, Ly], we use parameter values borrowed from the model of trophic
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system consisting of the common ragweed Ambrosia artemisiifolia L. and the ragweed leaf
beetle Zygogramma suturalis F. (Coleoptera, Chrysomelidae) [15], presented in Set 4 of
Table 1 along with the supplementary parameters characterizing the cultivated plant.

Note that, in the absence of phytophage population and with homogeneous distribu-
tion of weed and cultivated plant, the dynamics of the System (1)–(4) in a homogeneous
habitat with the Neumann boundary condition (6) obey the classical nonspatial Lotka–
Volterra model of two species competition [26,27]:

dR
dt

= R(rR − cRR − cRPP);

dP
dt

= P(rP − cPP − cPRR).
(9)

With the chosen parameters, depending on the initial condition, System (9) predicts
competitive exclusion of one or another species, approaching either equilibrium (KR, 0) or
equilibrium (0, KP) , where KR = rR/cR = 1.17 kg · m−2 and KP = rP/cP ≈ 0.75 kg · m−2

are the “carrying capacities” of the weed and cultivated plant, respectively (see Figure 10).

Figure 10. Phase portrait of the point model (9). Locally stable equilibria are represented by solid
dots; unstable equlibria are represented by hollow dots. The dashed line is the separatrix, dividing
the positive quadrant of the phase plane into basins of attraction of axial equlibria corresponding to
exclusion of either weed or cultivated plant.

Accounting for spatial effects in 2D, habitat heterogeneity, and inclusion of the phy-
tophage population in the Model (1)–(4) modifies the dynamics of the system, making it
more realistic. Figure 11 presents the result of a simulation obtained with a hypothetical het-
erogeneous habitat Ω = 4000 m × 3000 m, which includes being unsuitable for vegetation
plots, as shown in Figure 11.
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Figure 11. Snapshots of spatial distribution of population densities at the indicated moments of time,
computed with model (1)–(6) for hypothetical heterogeneous spatial domain Ω = 4000 m × 3000 m.

The initial conditions of the simulation correspond to homogeneous distribution
of high density of the weeds, locally superseded by the cultivated plant (the patch of
approximately 3–4 ha in the center of domain Ω). Additionally, the simulation scenario
includes a concentrated local release of 1500 individuals of phytophagous insects in the
right part of the domain Ω. These conditions of the release maximize the efficacy of
introduction of the weed biocontrol agents [3,15,17].

According to Figure 11, development of the cultural plant suppresses the weed patch
in the center of the domain during the initial phase of the weed control action; however,
further expansion of the cultivated plant slows down so that its practical effect becomes
almost negligible. Simultaneously, local outbreak of the introduced phytophagous insects
forms SPWs with an extremely high density of insects in front, which radically reduces
the weed density, expanding over the whole domain and exempting the territory for the
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cultivated plant competing with the weeds, which fixes the result of the biological method,
blocking emergence of secondary foci of the weeds.

4. Discussion and Conclusions

Despite the long (almost two hundred years) experience of classical biocontrol release
for weeds, a systemic approach is still lacking to determine the factors of efficacy of bio-
logical control actions and to find the most efficient agents. Some authors even describe
success in biological control in terms of a lottery model [28]. In practice, a maximal effect
may be achieved unexpectedly by using a single introduced phytophagous species [1,6,28],
which McEvoy and Coombs [29] called the “silver bullet”. Selection among the potentially
effective biocontrol agents and choice regarding the phytophagous insects strictly specific
to the targeted adventive weed are traditionally based on analysis of the peculiarities of
the species biology [30–33]. Having analyzed the biocontrol release history records [1,34]
and considering his own experience regarding the introduction of the North American
ragweed leaf beetle Zygogramma suturalis F. in the Old World, O.V. Kovalev [11,12] revealed
that evaluation of the efficacy of a particular weed biocontrol agent should not be based
solely on the species biology within its primary range. He suggested that the efficacy of
a biological method of weed suppression is determined not so much by the biological
characteristics of the released phytophage but by a more complex process that includes
conditions ensuring formation of SPW—a systemic phenomenon that can be observed only
in the secondary range of the invaded/introduced species, where its growth is not limited
by specific enemies and competitors [3,11,13,35,36]. Availability of extended plots with
high phytomass of target weeds is an essential condition for SPW emergence, which is
also not attainable within the native habitats of species. Another important effect in the
systemic process of weed suppression concerns the action of cultural plants competing
with weeds, which restores the natural succession in the treated territories after wiping
out the weeds behind the expanding SPW of the biocontrol agent [17]. All these circum-
stances define clear requirements for a mathematical model capable of describing the
system dynamics. In particular, the necessity of considering the dispersing population of
specialized phytophagous insects introduced into their secondary range infested by the
target weed justifies the use of a spatial predator–prey (consumer–resource) model with
additional inclusion of the cultural plant competing with the weed (prey) population. The
Holling type II trophic function of the phytophagous population with numerical response
subject to the Allee effect in Equations (1) and (3) enables a plausible description of the
weed consumption, taking into account the possibility of deterministic extinction of the
biocontrol agent failing to be established after its unsuccessful introduction. Inclusion of
the indirect prey taxis of predators into the Model (1)–(6) is crucial for reproducing spatially
heterogeneous dynamics induced solely by the spatial behavior of the predator capable of
performing directed movements upward the prey density gradient [37]. The role of prey
taxis behavior and of the spatiotemporal wave dynamics in obtaining durable and stable
control of the predator over its prey population have been demonstrated earlier in [10].

Even a spatially independent (point) model (7) that corresponds to a homogeneous
case of System (1)–(4) reveals an important peculiarity of the modeled community. Analyz-
ing basins of attractions in Figure 2 computed for equilibria R = 1, P = 0, Z = 0 and R = 0,
P = 0.8, Z = 0, which correspond, respectively, to the failure and success of the biocontrol
program, we can conclude that high initial phytomass of the weed is a crucial prerequisite
for efficient release of the biological agent.

Confronting Figures 2 and 3 leads us to another interesting observation. With the given
set of parameter values, which, in the absence of a phytophage, corresponds to bistability in
the homogeneous model (7), initial domination of the cultivated plant ensures suppression
of the weed with any initial abundance of the biocontrol agent population. This is indicated
by the fact that the blue triangle in the upper-left part of the R0–P0 plane in Figure 2 is not
affected by the Z0 value. However, in a spatial model (1)–(4) (which is undoubtedly more
realistic than a point model), in the absence of a phytophage, weeds, which are supposed
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to differ from the cultivated plant by a larger growth rate, win the competition with any
initial density. Figure 3 shows that initial dominance does not provide any advantage
to the slower-growing cultivated plant. Moreover, in the presence of phytophages in a
sufficient quantity, suppression of weeds by cultivated plants requires initial domination
of the weed population. Under such conditions, a spatial model (1)–(4) demonstrates the
possibility of biological control even with a diffusively dispersing agent. Adding the ability
of performing trophotaxis movements amplifies the phytophage efficacy significantly,
providing achievement of success with much lower initial quantity of released insects than
is required in a point model (7).

Experiments with a customizable initial distribution of species (8) emphasize the
importance of releasing the biocontrol agents within an extended area with high weed
density. According to simulation results, violation of this requirement can lead to the
extinction of the phytophage population lacking the source of energy for establishing and
growth. Thus, the Model (1)–(6) supports recommendations for releasing of the biocontrol
agent within a large and dense weed foci with high phytomass in order to ensure the
initial outbreak of the phytophage population at the initial phase of the SPW formation [17].
Note that, although locally this outbreak follows the classical pattern of the “bottom-up”
regulation of the trophic system, the expanding SPW of the biocontrol agent provides
the conditions for systemic “top-down” control, ensuring suppression of the extended
dense weed foci [3,13,36]. Thus, both kinds of control, “bottom-up” and “top-down”,
can be observed in the system due to the emergent SPW of the phytophage [38]. The
expanding SPW is in fact a spatially continuing outbreak of the phytophage population,
which would otherwise, in accordance with the typical pattern of population outbreak,
collapse in numbers after the explosion phase due to local starvation [39,40].

A simulation performed with a 2D habitat (Figure 11) presents an example of using
the model in an earlier applied study [15], describing the action of the SPW of the ragweed
leaf beetle that suppresses common ragweed and emphasizing the synergistic effect of
combined application of the phytophagous insect and cultivated plant, which was added
into the simulation scenario.

In sum, we can conclude that, despite its comparatively simple structure, the spatial
model (1)–(6) is capable of reproducing quite complex dynamics of the considered trophic
system, adequately describing the systemic process of weed suppression that includes
the initial arrangement of biocontrol action, release of the phytophagous agent, local
outbreak of phytophage population, formation and movement of SPW wiping the area,
and replacement of remaining weeds with cultivated plants, consolidating the final result.
The model helps to reveal a number of key aspects relating to factors that determine
success in biological control. Importantly, the modeling outcomes coincide with practical
recommendations for achieving maximum efficacy regarding biocontrol application.
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PDE Partial differential equation
ODE Ordinary differential equation
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