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Abstract: Partially linear models find extensive application in biometrics, econometrics, social
sciences, and various other fields due to their versatility in accommodating both parametric and
nonparametric elements. This study aims to establish statistical inference for the parametric compo-
nent effects within these models, employing a nonparametric empirical likelihood approach. The
proposed method involves a projection step to eliminate the nuisance nonparametric component and
utilizes an empirical-likelihood-based technique, along with the Bartlett correction, to enhance the
coverage probability of the confidence interval for the parameter of interest. This method demon-
strates robustness in handling normally and non-normally distributed errors. The proposed empirical
likelihood ratio statistic converges to a limiting chi-square distribution under certain regulations.
Simulation studies demonstrate that this method provides better inference in terms of coverage
probabilities compared to the conventional normal-approximation-based method. The proposed
method is illustrated by analyzing the Boston housing data from a real study.
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1. Introduction

In many practical situations, linear models may not be complex enough to capture
the underlying relation between the response variable and some associated covariates,
especially when the response variable Y is not linearly related to all the covariates. For
example, suppose one is interested in estimating the relationship between an outcome
variable Y and vectors of variables X and Z. The researcher is comfortably modeling
the linear function in X but hesitates to extend the linearity to Z. One example given by
Engle et al. [1] is the effect of temperature on electricity consumption for four cities. They
modeled the average monthly electricity consumption as the sum of a smooth function of
the monthly temperatures and a linear function of the monthly price of electricity, income
and 11 other monthly dummy variables. It is natural to impose linearity on the part of the
regression function involving household characteristics and a nonlinear function involving
temperature since electricity consumption tends to be higher at extreme temperatures but
lower at moderate temperatures. A partially linear model provides a good fit for these
types of data because it allows for a regression function that maintains linearity in some
variables and also extends the effect of other variables to be nonlinear.

A partially linear regression model is defined as

Yi = Xiβ + g(Zi) + εi, i = 1, . . . , n, (1)

where the Yi’s are scalar response variables, Xi = (xi1, . . . , xip) are known p-variate covari-
ate, Zi is a scalar explanatory variable, and g(·) is the smooth part of the model, which is
assumed to represent a smooth unparameterized functional relationship. β = (β1, . . . , βp)
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is a vector of unknown parameters and ε1, . . . , εn are independent random errors with
mean zero and finite variance σ2 given the covariates X and Z.

The partial linear model Equation (1) is a semiparametric model since it contains both
parametric and nonparametric components. The partially linear model is more flexible to
interpret the effect of each linear covariate and allows one to focus on particular variables
that can have nonlinear effects. It may be preferable to a completely nonparametric model
because of the well-known “curse of dimensionality”. Computationally, partially linear
models are remarkably easier than additive models, in which iterative approaches such as
a backfitting algorithm [2] or marginal integration [3] are necessary.

Partially linear models are widely used in biometrics, econometrics, social sciences and
other fields (see [1,4]), and have been studied extensively for estimating β and g(·). For
example, Wahba [5], Engle et al. [1], and Green et al. [6] described penalized spline estimates
of β and g(·). Heckman [7] and Rice [8] proposed the polynomial method. Speckman [9]
described the kernel method. Chen and Shiau [10] used a smoothing spline method. Chen [11]
proposed the projection method. For more discussions about partially linear models, we refer
to Härdle et al. [12] for a summary.

In most cases, investigators are more interested in the parameter β and take g(·) as a
nuisance parameter [13]. Estimating the confidence interval for the parametric components
in partially linear models using a backfitting algorithm or marginal integration can be
computationally heavy. Severini and Staniswalis [14] derived the asymptotic properties for
their proposed estimators of β and g(·) under mild regularity conditions. These asymptotic
properties serve as a foundation for constructing confidence intervals that are asymptoti-
cally accurate for the parameters. However, in practice, the finite-sample performance of
these confidence intervals may be less satisfactory because of the complex structure of the
covariance matrix, requiring estimates to be plugged in for multiple parameters. The linear
components in the partially linear models can also be estimated using the generalized
additive models [15], but the results depend on the distribution family used in the gam
function in R. When a wrong distribution family is chosen, the results could be very biased.
Confidence interval for the parametric components in the partially linear models can also
be constructed based on the asymptotic normal distribution; however, this may not hold
when the normality assumption fails or when the sample size is small.

Empirical likelihood provides a good alternative among the nonparametric methods
that can be used to make statistical inference when the normality assumption fails or when
the distribution is unspecified. The advantages of empirical likelihood compared to the
bootstrap method and the jackknife method arise from it being a nonparametric method of
inference based on a data-driven likelihood ratio function. As a combination of a nonpara-
metric method and the likelihood method, on one hand, it does not require any specification
of a family of distributions for the data; on the other hand, like parametric likelihood meth-
ods, it makes an automatic determination of the shape of confidence regions [16]. This
property makes it a serious competitor with other nonparametric methods such as the
bootstrap method and the jackknife method. Although empirical likelihood can be a very
useful tool for deriving statistical inference, the use of a conventional empirical likelihood
method or the profile empirical likelihood has limitations when constructing confidence
intervals for each element of a large parameter vector.

Motivated by the above mentioned concerns, this paper develops an empirical-
likelihood-based procedure which can be used to make inferences a for large parameter
vector β in partially linear models in Equation (1) by incorporating the projection method.
The proposed method has two main advantages. First, it does not require distribution
assumptions. Second, we provide theoretical justification that the proposed method can
be applied to partially linear models, and the computation requirements are relatively
straightforward because it does not require an asymptotic variance estimation. After the
Bartlett correction, the coverage probability of the confidence interval is improved and
better than normal-approximation-based methods in most cases.



Mathematics 2024, 12, 162 3 of 12

The structure of the paper is as follows. Section 2 gives the model formulation of the
empirical likelihood for the parameter of interest and the Bartlett correction procedure for
the proposed method. Section 3 studies the performance of the proposed methods through
simulation studies and illustrates the method by a real study example. Section 4 gives the
conclusion. All the proofs are given in the Appendix A.

2. Materials and Methods
2.1. Model Formulation

Since the interest in this paper is in obtaining inference for β only in the partially
linear model, the nuisance parameter g(·) needs to be removed first. This is implemented
by using the projection principle [17,18]. Y and X need to be first regressed on Z using a
nonparametric regression method, where Y = (Y1, . . . , Yn), Z = (Z1, . . . , Zn), and X is an
n × p covariate matrix. Denote the nonparametric regressions of Y on Z and X on Z by
mY(Z) and mX(Z), respectively. Here, without loss of generality, let X be a one-dimensional
vector (for a multidimensional vector, E(Xi|Z) can be obtained for each column Xi of X,
respectively), and then, the effect of Z on Y and X can be removed by using the regression
residual of Y and X given Z. For simplicity of notation, the matrix form of the partially
linear model was used here:

Y = Xβ + g(Z) + ε. (2)

The first step is to regress Y and X onto Z and obtain the following equation

mY(Z) = mX(Z)β + g(Z). (3)

Then, Equation (3) is subtracted from the original model (2), and the residual model is
obtained as follows:

Y − mY(Z) = {X − mX(Z)}β + ε. (4)

Denote A
⊗

2 = AAT and ζ̃ = ζ − mζ(Z). For example, X̃ = X − mX(Z). Assuming X̃
has full rank, based on Speckman [9], the estimator of β can then be given by Equation (5)
by the least squares method if mX(Z) and mY(Z) are known:

β̂ =

[
n

∑
i=1

(Xi − mX(Zi))
⊗

2

]−1[ n

∑
i=1

{Xi − mX(Zi)}{Yi − mY(Zi)}
]

. (5)

The formula above cannot be applied directly since mX(Z) and mY(Z) need to be
estimated appropriately. There are lots of methods for estimating mX(Z) and mY(Z),
including local constant smoothers [9], higher-order local polynomial estimators [19],
kernel methods with varying bandwidths, smoothing and regression splines, etc. Fan and
Gijbels [19] showed that within the class of linear estimators which include kernel and spline
estimates, the local linear estimates achieve the best possible rates of convergence. Due
to these desirable properties, the local linear smoothers was used with fixed bandwidths
for estimating the nonparametric regression of Y and X on Z. Let m̂X(Z) and m̂Y(Z)
be the local linear nonparametric regression estimators for mX(Z) and mY(Z), K(.) be a
symmetric density function, h be a suitable bandwidth, and define Kh(z) = K(z/h)/h;
then, the estimators take the form given by Fan and Gijbels [19]:

m̂X(Z) = ∑n
i=1 wiXi

∑n
i=1 wi

and m̂Y(Z) = ∑n
i=1 wiYi

∑n
i=1 wi

, (6)

wi = Kh(Zi − Z){Sn,2 − (Zi − Z)Sn,1},

where Sn,j = ∑n
1 Kh(Zi − Z)(Zi − Z)j. mX(Z) and mY(Z) are then replaced with their

corresponding estimates m̂X(Z), m̂Y(Z) in the estimating procedure (a Gaussian kernel
is an example of kernel function used in the estimating procedure) and the empirical
likelihood estimator of β needs to satisfy the following estimating equation:
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n

∑
i=1

{Xi − m̂X(Zi)}T[Yi − m̂Y(Zi)− {Xi − m̂X(Zi)}β] = 0. (7)

This implies that the estimator for β̂ can be obtained by

β̂∗ =

[
n

∑
i=1

(Xi − m̂X(Zi))
⊗

2

]−1[ n

∑
i=1

{Xi − m̂X(Zi)}{Yi − m̂Y(Zi)}
]

. (8)

Next, the empirical likelihood principle was applied to construct statistical inference
for β. Let pi be the probability assigned to (Xi, Zi, Yi). The empirical likelihood ratio
function for β can be expressed as:

Rn(β) = suppi

{
n
∏
i=1

npi|
n
∑

i=1
pi{Xi − m̂X(Zi)}T[Yi − m̂Y(Zi)− {Xi − m̂X(Zi)}β] = 0,

pi ≥ 0,
n
∑

i=1
pi = 1

}
.

(9)
We establish the asymptotic distribution of −2 log{Rn(β)} under the following

assumptions:

Assumption 1. E(∥ X ∥4) < ∞, E(∥ X ∥2 Y2) < ∞, and E(XTX) is nonsingular; X and Z
are correlated.

Assumption 2. The bandwidths used in estimating mx(Z) and my(Z) are of order n−1/5.

Assumption 3. The function K(.) is a bounded symmetric density function with compact support
and satisfies

∫
K(u)du = 1,

∫
K(u)udu = 0 and

∫
u2K(u)du = 1.

Assumption 4. The functions mx(Z) and my(Z) have bounded and continuous second derivatives.

Assumption 5. The density function of Z, fz(Z) is bounded away from zero and has bounded
continuous second derivatives.

Theorem 1. −2 log{Rn(β)} converges to a chi-squared distribution with p degrees of freedom
under Assumptions 1–5.

The proof of Theorem 1 is given in the Appendix A. A confidence region for β can be
constructed based on Theorem 1 and further adjusted by using the Bartlett correction [20].

When β is a vector (or when X is an n × p matrix), and we are interested in a subset
of the parameter vector β, say the first element β1, we can apply the projection method
again, i.e., we regress X̂1, the first column of X̂, which is X − m̂X(Z), onto the space of X̂−1,
which is the remaining columns of X̂. Similarly, we apply the same projection principle
from Ŷ = Y − m̂Y(Z) to X̂−1. Then, we obtain a new residual model, i.e., β1 should satisfy
the estimating equation as follows:

1
n

n

∑
i=1

{X̂1 − Ê(X̂1|X̂−1)}T[Ŷ − Ê(Ŷ|X̂−1)− {X̂1 − Ê(X̂1|X̂−1)}β1] = 0. (10)

Let pi be the probability assigned to (Yi, Xi, Zi), where pi could be different from the pi in
Theorem 1. The estimating equation for β1 can be written as:

Rn(β1) = suppi

{
n
∏
i=1

npi|
n
∑

i=1
pi{X̂1 − Ê(X̂1|X̂−1)}T[Ŷ − Ê(Ŷ|X̂−1)

−{X̂1 − Ê(X̂1|X̂−1)}β1] = 0, pi ≥ 0,
n
∑

i=1
pi = 1

}
.

(11)
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Theorem 2. −2 log{Rn(β1)} converges to a chi-squared distribution with 1 degree of freedom
under Assumptions 1–5.

The proof of Theorem 2 is given in the Appendix A. Based on Theorem 2, the
100(1 − α)% empirical likelihood confidence interval for β1 can be obtained by:

{β1 : −2 log{Rn(β1)} ≤ cα}. (12)

The 100(1− α)% confidence interval for other components of β can be constructed similarly.

2.2. Bartlett Correction

To further improve the accuracy of the inference, the empirical likelihood ratio may be
Bartlett corrected with a higher-order error than the usual error term of order O(n−1) [20].
The Bartlett correction can effectively control the coverage error of the confidence interval,
providing more accurate estimations and reducing the chance of obtaining intervals that
do not contain the true parameter value. The basic idea is to multiply the χ2 threshold by
a constant (1 + Bc/n) instead of 1, where Bc is the Bartlett correction constant. Because it
is very difficult to obtain an exact expression for Bc , we give an estimator of (1 + Bc/n)
by using the bootstrap procedure, which has successfully been applied in a more complex
setting by Chen and Cui [21].

The Bartlett correction of the empirical likelihood confidence interval for a parameter
of interest β1 in a partially linear model in Equation (1) is constructed by the following
procedures. The procedures for another component of β, say β2, would be similar.

1. First, the nonparametric regression method is used to regress Y and X on the non-
parametric component Z. The reduced partial residuals follow a linear model of the
form Y − mY(Z) = {X − mX(Z)}β + ε. We use m̂Y(Z) and m̂X(Z) to replace mY(Z)
and mX(Z) in the estimating procedure.

2. Then, the first column of X̂ (denoting by X̂1) is regressed on the rest of the columns
(denoting by X̂−1). The residual serves as the new fixed covariates of β1, and the
residual of regressing Ŷ on X̂−1 serves as the new response variable. The residual
model is obtained and given by

{Ŷ − E(Ŷ|X̂−1)} = {X̂1 − E(X̂1|X̂−1)}β + ε.

3. We treat the residual model as the new linear model. The bootstrap procedure of
estimating the Bartlett correction factor in the new linear model follows the procedure
shown below:

(a). Generate bootstrap resamples of size n by sampling with replacement from
the sample {Ŷ − E(Ŷ|X̂−1)}n

1 and {X̂1 − E(X̂1|X̂−1)}n
1 , respectively, after the

projection; then, calculate −2 log{R∗
n(β̂1)} based on the resamples, where β̂1 is

the global maximum empirical likelihood estimator of β1 based on the original
sample {Ŷ − E(Ŷ|X̂−1)}n

1 and {X̂1 − E(X̂1|X̂−1)}n
1 .

(b). Repeat (a) B times to obtain −2 log{R∗1
n (β̂1)},−2 log{R∗2

n (β̂1)}, . . . ,−2 log{R∗B
n (β̂1)}

and B−1 ∑B
b=1 −2 log{R∗b

n (β̂1)}, which is the bootstrap estimator of E[−2 log{Rn(β̂1)}].
The bootstrap estimator of τ is B−1 ∑B

b=1 −2 log{R∗b
n (β̂1)}. In consequence, the

Bartlett corrected confidence region is constructed by

CIα = {β1 : −2 log{Rn(β1)} ≤ τ̂cα}.

The Bartlett corrected confidence interval for β1 is thus constructed.
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3. Results
3.1. Simulation Studies

In the simulation studies, we studied the performance of the proposed method in
getting the inference of the parameter of interest β in the partially linear model (1). We
first simulated Z from a Unif(0, 1) distribution with sample size n. The true β value was
set to be β = (2, 5, 7, 4), and we aimed to estimate the first component of β. X was
set to be the sum of two matrices Σ1 and Σ2, where Σ1 was the matrix composed of
vectors 1.5exp(1.5z), 5z, 5

√
z, and 3z + z2. Σ2 was the matrix of error terms composed of n

samples from the scaled multivariate normal distribution with zero mean and a compound
symmetry covariance matrix with diagonal 1 and off-diagonal 0.4; the scale parameter
was 0.5. The columns of the X matrix were functions of Z and were thus correlated.
The nonparametric component g(Z) took the function g(Z) = sin(Z). Two cases for the
distribution of the error term ε were considered,

Case 1: ε follows a normal distribution with mean 0 and variance σ2 = 1.
Case 2: ε follows the scaled log-normal distribution such that ε has mean 0 and variance σ2 = 1.

In the simulations, the sample sizes were considered to be 50, 100, and 200. In each
simulation, we generated 1000 independent data sets and constructed the 95% confidence
interval for each data set. In estimating the nonparametric regression of my(Z) and mx(Z),
the direct plug-in method was used to select the bandwidth of a local linear Gaussian kernel
regression estimate, as described by Ruppert, Sheather, and Wand [22]. The proposed
method was compared with the normal-based method and the generalized additive model
method (gam) [15].

Table 1 gives the average results from the 1000 simulations (the endpoints of the
confidence intervals were obtained by the medians of the 1000 simulation results, and the
confidence interval lengths were computed using the difference of the two endpoints). In
Table 1, Est refers to the estimated β1 value; Norm, Gam, EL, and ELb refer to the normal-
based method, the gam function in R, the empirical-likelihood-based method without
Bartlett correction, and the empirical-likelihood-based method with Bartlett correction,
respectively. Length and coverage probability refer to the respective length and coverage
probability of the confidence intervals constructed using the four different methods. It
is worth mentioning that each confidence interval based on the normal approximation is
symmetric while the confidence interval based on empirical likelihood is not symmetric. In
the simulation, the Gaussian distribution was used as the distribution family within the
gam function under both error cases.

Table 1. Confidence interval and coverage probability for partially linear models; β = (2, 5, 7, 4),
σ = 1, and β1 is the parameter of interest.

n Est Length Coverage Probability

Norm Gam EL ELb Norm Gam EL ELb
Norm 50 1.957 1.496 1.498 1.437 1.520 0.935 0.936 0.924 0.945

100 2.047 1.052 1.085 1.016 1.049 0.963 0.963 0.949 0.953
200 2.026 0.706 0.704 0.689 0.701 0.946 0.950 0.944 0.950

Non-norm 50 1.975 1.368 1.289 1.278 1.386 0.946 0.934 0.944 0.950
100 2.05 1.012 1.051 0.980 1.008 0.973 0.962 0.954 0.956
200 2.027 0.681 0.689 0.668 0.677 0.944 0.940 0.930 0.946

The simulation results from Table 1 indicates that the Bartlett correction indeed im-
proved the statistical inference. The coverage probability was improved after the Bartlett
correction, especially when the sample size is small, where the normal approximation
method may not be appropriate. When the sample size is small (for example n = 50),
our proposed method tends to enlarge the confidence interval to have a better coverage
probability for the true parameter. In that case, the length of the confidence interval for
the Bartlett correction is larger than that of the normal approximation, the gam method,
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and the empirical likelihood without Bartlett correction, but the coverage probability is
the closest to the nominal level 95%. When the sample size becomes larger, the length of
the confidence interval using the proposed method tends to be close to or shorter than the
confidence interval of the normal approximation method and yet still has slightly better or
equally good coverage probability compared to the normal approximation method and
gam method.

3.2. A Real Study Example

The proposed method is illustrated by an application to the Boston housing data set,
which was obtained from the StatLib archive and has been extensively used in regression
analysis. The data set consists of the median value of owner-occupied homes in 506 US
census tracts in the Boston area in 1970, as well as several variables which might explain
the variation in housing values. Based on the correlations and multicollinearity analysis,
we fit a partially linear model with the variable of interest MEDV (median value of owner-
occupied home in USD 1000) linearly related with predictor PTRATIO (pupil–teacher ratio
by town), RM (number of rooms per dwelling), and nonlinearly related with variable LSTAT
(% lower status of the population). The partially linear model has the following form:

MEDV = β0 + β1PTRATIO + β2RM + g(LSTAT) + ε.

The proposed method was used to construct the 95% confidence interval for β1. The
proposed empirical-likelihood-based Bartlett corrected 95% confidence interval for β1 was
(2.375, 4.656), and the normal-based 95% confidence interval was (2.406, 4.502). Both
methods indicated a positive linear relationship between PTRATIO and MEDV, with the
proposed method’s confidence interval slightly wider than the normal-based confidence
interval. Based on our simulation results for the coverage probability under a large sample
size, the confidence interval obtained from the proposed method was comparable with the
normal-based confidence interval and was trustworthy.

4. Discussion

In this paper, an empirical-likelihood-based method to construct the confidence inter-
val for the linear components in partially linear models was proposed. Simulation studies
showed that the length of the confidence interval for the proposed empirical likelihood with
Bartlett correction method was larger than the normal approximation when the sample size
was small, but the coverage probability was the closest to the nominal 95% level. When the
sample size was larger, the confidence interval for the proposed empirical likelihood with
Bartlett correction method had a slightly shorter length and a similar coverage probability
as the normal-based method and gam method, which indicated the confidence interval
constructed by the proposed method was more desirable in estimating the parameter of
interest. The above findings are mostly true under both normally distributed error and
non-normally distributed error terms. This ensures the robustness of our proposed test
numerically, which also makes the proposed method a practically useful tool in real studies
where we usually do not know the distribution of the data. The trade-off of the proposed
method is that it requires more computation than the normal-approximation method.

In summary, this proposed method gives better inference in terms of the length and
coverage probabilities of the confidence intervals compared to the normal-approximation-
based method. It does not impose any restrictions on the data distribution, and the
computations are relatively straightforward for partially linear models. This proposed
method is recommended for estimating and constructing confidence intervals for the linear
components in partially linear models, particularly when the sample size is small.

Author Contributions: Methodology, H.S.; software, H.S. and L.C.; formal analysis, H.S. and L.C.;
writing—original draft, revision, H.S.; writing—review and editing, L.C. All authors have read and
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Appendix A

Proof of Theorem 1. First, we give the following fact, which is used later in the proof of
the theorem. Its proof can be shown by Assumptions 2–5:

m̂x(Z)− mx(Z) = op(n−1/4), m̂y(Z)− my(Z) = op(n−1/4) (A1)

From Y = Xβ + g(Z) + ε, we have Y − my(Z) = {X − mx(Z)β}+ ε. In the estimating
process, it is rewritten as Ŷ = X̂β + ε with the notation that m̂ξ(T) is the local linear
kernel regression estimator (for example, the kernel function can be the Gaussian kernel
function, the bandwidth h can be determined by using the direct plug-in method by
Ruppert, Sheather, and Wand [22] of a local linear Gaussian kernel regression estimate) of
mξ(T) and ξ̂ = ξ − m̂ξ(T).

Let Ωi = X̂T
i (Ŷi − X̂iβ), Ω̃i = X̃T

i (Ỹi − X̃iβ). A standard simplification as in Owen [16]
yields

pi =
1

n(1 + aTΩ̃i)
, i = 1, . . . , n,

where a is the solution of the equation

n−1
n

∑
i=1

Ω̃i

1 + aTΩ̃i
= 0.

A direct calculation yields

Ω̃i − Ωi = X̃T
i (Ỹi − X̃iβ)− (X̂i − X̃i + X̃i)

T(Ŷi − Ỹi + Ỹi − X̂iβ + X̃iβ − X̃iβ)

= X̃T
i (Ỹi − Ŷi) + X̃T

i (X̂i − X̃i)β − (X̂i − X̃i)
T(X̂i − Ỹi)

+(X̂i − X̃i)
T(X̂i − X̃i)β − (X̂i − X̃i)

T(Ỹi − X̃iβ)

= op(1),

(A2)

where op(1) is independent of the index i. The above equation is of order op(1) because X̃i
is Op(1). Ỹi − Ŷi and X̃i − X̂i are of order op(n−1/4) by (A1).

Using arguments similar to those in the proof of Theorem 3.2 of Owen [16], we have

∥ a ∥= Op(n−1/2) and max
1≤i≤n

∥ Ω̃i ∥= op(n1/2).

With (A2), we have max1≤i≤n ∥ Ωi ∥ ≤ max1≤i≤n ∥ Ω̃i ∥ +op(1) = op(n1/2). Using the
same argument as those in the proof of Theorem 4 in Liang et al. [23], we have

−2 log{Rn(β)} =
n

∑
i=1

aTΩ̃iΩ̃T
i a + op(1)

=

(
n−1/2

n

∑
i=1

Ω̃i

)T(
n−1

n

∑
i=1

Ω̃iΩ̃T
i

)−1(
n−1/2

n

∑
i=1

Ω̃i

)
+ op(1).

http://lib.stat.cmu.edu/datasets/boston
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Now, we need to show that by replacing Ω̃ with Ωi, the above equation still holds. To show
that, we first show that n−1/2 ∑n

i=1 X̃T
i (Ỹi − Ŷi) = op(1). Given ϵ > 0 and some constant c,

let ai = Ỹi − Ŷi = m̂y(Zi)− my(Zi). We have

P

(
n−1/2|

n

∑
i=1

X̃T
i (Ỹi − Ŷi)| > ϵ

)

≤ P

(
n−1/2|

n

∑
i=1

X̃T
i ai| > ϵ, |ai| ≤ cn−1/4

)
+ P(|ai| > cn−1/4)

≤ P

(
n−1/2 · cn−1/4|

n

∑
i=1

X̃T
i | > ϵ

)
+ op(1)

= P

(
n−1/2|

n

∑
i=1

X̃T
i | > cn1/4ϵ

)
+ op(1)

= op(1) + op(1)

= op(1).

In the above equations, P
(

n−1/2 ∑n
i=1 |X̃T

i | > cn1/4ϵ
)
= op(1) because n−1/2 ∑n

i=1 X̃T
i ∼

N(0, v(X|Z)), where v(X|Z) is the covariance matrix of X − E(X|Z). Similarly, we
can show

1√
n

n

∑
i=1

X̃T
i (X̃i − X̂i)β = op(1).

1√
n

n

∑
i=1

(X̂i − X̃i)
T(Ỹi − X̃i)β = op(1).

To show 1√
n ∑n

i=1(X̂i − X̃i)
T(Ŷi − Ỹi) = op(1), note that

1√
n

n

∑
i=1

(X̂i − X̃i)
T(Ŷi − Ỹi) = n−1/2op(n−1/4) · op(n−1/4) · n = op(1). (A3)

The first equal sign in (A3) holds because sup∥Zi∥ | m̂w(Zi)− mw(Zi) |= op(n−1/4), where
w = X or w = Y, so that we can take op(n−1/4) out of the summation. With the same
procedure, we can also show that

1√
n

n

∑
i=1

(X̂i − X̃i)
T(X̂i − X̃i)β = op(1).

These arguments imply that n−1/2
1 ∑n

i=1 Ωi and n−1/2 ∑n
i=1 Ω̃i asymptotically have the

same limiting normal distribution, and n−1 ∑n
i=1 ΩiΩT

i and n−1 ∑n
i=1 Ω̃iΩ̃T

i have the same
limiting value. Since(

n−1/2
n

∑
i=1

Ω̃i

)T(
n−1

n

∑
i=1

Ω̃iΩ̃T
i

)(
n−1/2

n

∑
i=1

Ω̃i

)
∼ χ2

p,

we have (
n−1/2

n

∑
i=1

Ωi

)T(
n−1

n

∑
i=1

ΩiΩT
i

)(
n−1/2

n

∑
i=1

Ωi

)
∼ χ2

p.

The proof is thus complete.
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Proof of Theorem 2. We continue to use the notations ξ̃ = ξ − ξ(Z), ξ̂ = ξ − m̂ξ(Z) for
any random vector ξ. First, denote

Ωi = {X̂1i − Ê(X̂1|X̂−1)i}T[Ŷi − Ê(Ŷi|X̂−1i)− {X̂1i − Ê(X̂1|X̂−1)iβ1}].

Ω̂i = {X̂1i − E(X̂1|X̂−1)i}T[Ŷi − E(Ŷi|X̂−1i)− {X̂1i − E(X̂1|X̂−1)iβ1}].

Ω̃i = {X̃1i − E(X̃1|X̃−1)i}T[Ỹi − E(Ỹi|X̃−1i)− {X̃1i − E(X̃1|X̃−1)iβ1}].

We first need to show Ωi = Ω̃i + op(1), and n−1/2
1 ∑n

i=1 Ωi and n−1/2 ∑n
i=1 Ω̃i asymptotically

have the same limiting distribution.
Since in the linear model case, we have proved that Ωi − Ω̂i = op(1) and n−1/2

1 ∑n
i=1 Ω̂i

and n−1/2 ∑n
i=1 Ω̃i asymptotically have the same limiting distribution, now we only need

to show
Ω̂i − Ω̃i = op(1)

and

n−1/2
n

∑
i=1

Ω̂i − n−1/2
n

∑
i=1

Ω̃i = op(1). (A4)

Assume
E(Ỹ|X̃−1) = X̃−1η,

E(X̃1|X̃−1) = X̃−1γ.

Recall that in the estimating procedures, we replaced Ỹ, X̃ with Ŷ, X̂, so we have

E(Ŷ|X̂−1) = X̂−1η,

E(X̂1|X̂−1) = X̂−1γ.

We first show that with this replacement, Ω̃i = Ω̂i + op(1) holds. Note that by using
Equation (A1) where mv(Z) − m̂v(Z) = op(1) and v = x or y, because X̃1i − X̃−1iγ,
Ỹi − X̃−1iη and X̃1i − X̃−1iγ are random variables, we have

Ω̃i − Ω̂i

= (X̃1i − X̃−1iγ)
T{Ỹi − Ŷi − (X̃−1i − X̂−1i)η − (X̃1i − X̂1i)β1 + (X̃−1i − X̂−1i)γβ1}

−{(X̂1i − X̃1i)− (X̂−1i − X̃−1i)γ}T[Ŷi − Ỹi − (X̂−1i − X̃−1i)η + Ỹi − X̃−1iη

−{X̂1i − X̃1i − (X̂−1i − X̃−1i)γ + X̃1i − X̃−1iγ}β1]

= Op(1){op(n−1/4)− op(n−1/4)η − op(n−1/4)β1 + op(n−1/4)γβ1}
−{op(n−1/4)− op(n−1/4)γ}[op(n−1/4)− op(n−1/4)η + Op(1)

−{op(n−1/4)− op(n−1/4)γ − Op(1)}β1]

= op(1).

To show Equation (A4), we first need to show

n−1/2
n

∑
i=1

(X̃1i − X̃−1iγ)(Ỹi − Ŷi) = op(1).

For a given ϵ and a certain constant c, we have
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P
{

n−1/2|
n
∑

i=1
(X̃1i − X̃−1iγ)(Ỹi − Ŷi)| > ϵ

}
≤ P

(
n−1/2|

n
∑

i=1
(X̃1i − X̃−1iγ)(Ỹi − Ŷi)| > ϵ, |ỸiŶi| ≤ cn−1/4

)
+P
(
|Ỹi − Ŷi| > cn−1/4

)
≤ P

(
n−1/2cn−1/4|

n
∑

i=1
(X̃1i − X̃−1iγ)| > ϵ

)
+ op(1)

= op(1).

(A5)

Equation (A5) holds because n−1/2 ∑n
i=1(X̃1i − X̃−1iγ) converges to N(0, v(X̃1|X̃−1)),

where v(X̃1|X̃−1) is the variance of (X̃1 − X̃−1γ). Using a similar proof, we have

n−1/2
n

∑
i=1

(X̃1i − X̃−1iγ)(X̃−1i − X̂−1i)η = op(1).

n−1/2
n

∑
i=1

(X̃1i − X̃−1iγ)(X̃1i − X̂1i)β1 = op(1).

n−1/2
n

∑
i=1

(X̃1i − X̃−1iγ)(X̃−1i − X̂−1i)γβ1 = op(1).

n−1/2
n

∑
i=1

(X̂1i − X̃1i)(Ỹi − X̃−1iη) = op(1).

n−1/2
n

∑
i=1

(X̂1i − X̃1i)(X̃1i − X̃−1iγ) = op(1).

n−1/2
n

∑
i=1

(X̂−1i − X̃−1i)γ(Ỹi − X̃−1iη) = op(1).

n−1/2
n

∑
i=1

(X̂−1i − X̃−1i)γ(X̃1i − X̃−1iγ) = op(1).

With the same proof as in Equation (A3), we have

n−1/2
n

∑
i=1

(X̂1i − X̃1i)
T(Ŷi − Ỹi) = op(1).

n−1/2
n

∑
i=1

(X̂1i − X̃1i)
T(X̂−1i − X̃−1i)η = op(1).

n−1/2
n

∑
i=1

(X̂1i − X̃1i)
T(X̂1i − X̃1i)β1 = op(1).

n−1/2
n

∑
i=1

(X̂1i − X̃1i)
T(X̂−1i − X̃−1i)γβ1 = op(1).

n−1/2
n

∑
i=1

(X̂−1i − X̃−1i)γ
T(Ŷi − Ỹi) = op(1).

n−1/2
n

∑
i=1

(X̂−1i − X̃−1i)γ
T(X̂−1i − X̃−1i)η = op(1).

n−1/2
n

∑
i=1

(X̂−1i − X̃−1i)γ
T(X̂1i − X̃1i)β1 = op(1).
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n−1/2
n

∑
i=1

(X̂−1i − X̃−1i)γ
T(X̂−1i − X̃−1i)γβ1 = op(1).

With the above equations, Equation (A4) holds. The proof is thus completed following the
same procedure as in proving Theorem 1.
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