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Abstract: In this paper, the distributed interval estimation problem for networked Cyber-Physical
systems suffering from both disturbances and noise is investigated. In the distributed interval
observers, there are some connected interval observers built for the corresponding subsystems.
Then, due to the communication burden in Cyber-Physical systems, we consider the case where the
communication among distributed interval observers is switching topology. A novel approach that
combines L∞ methodology with reachable set analysis is proposed to design distributed interval
observers. Finally, the performance of the proposed distributed interval observers with switching
topology is verified through a simulation example.
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1. Introduction

Cyber-Physical Systems (CPSs) are the combinations of physical procedures, high-
efficiency computation, communication, and effective control defined by [1]. Architec-
turally, from [2], a typical CPS can be divided into three layers, which are composed of the
sensing layer, the network layer, and the control layer. The development of distributed
sensing and networking technologies such as [3,4] has enabled omnipresent sensing and
computing capabilities. This has led to the implementation of CPSs in large-scale net-
works. CPSs are widely used in industrial informatics [5] manufacturing [6], healthcare [7],
electrical grids [8], and so on. State estimation and observer design are crucial research
areas in CPSs. Ref. [9] used a sliding mode observer and integrated the event-triggered
mechanism to estimate the state of CPSs from sensor measurements. Ref. [10] introduced
a security estimator combined with a Kalman filter to improve the practical performance
of state estimation for CPSs. Ref. [11] accomplished state estimation and resilient con-
trol of CPSs using finite time observer techniques and switching schemes. It should be
noted that the state estimation for CPSs with bounded disturbance and noise has not been
investigated sufficiently.

On the other hand, disturbances and noise always exist in real systems, and the interval
observer serves as a powerful estimator of upper and lower bounds for uncertain systems
with disturbances and noise. In [12], the concept, as well as the framework of interval
observer, were presented. Using the monotone system theory, Refs. [13,14] proposed the
approach of coordinate transformation that serves as an efficient strategy to reduce the strict
conditions for interval observer design. In recent years, the set-membership estimation
method was applied effectively in interval observer design. A two-step interval observer
design methodology that combines reachability analysis with robust observer was first
presented in [15]. In [15], the H∞ method and reachable set analysis are combined to design
interval observers that eliminate the effects of perturbations and noise on the system. At the
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same time, the L∞ (or L2) method is also a powerful, robust property, and it is widely used
in control and observation fields, such as [16–18]. It has been recently shown by [19–21]
that the reachability analysis estimation method can not only enhance the accuracy of
estimation but also increase the design freedom. Concurrently, in the context of distributed
systems, several recent studies have been conducted on distributed interval observers, such
as [22–24]. Ref. [22] designed distributed interval observers based on the monotone system
approach for multiagent systems. Ref. [23] considered a distributed interval observers de-
sign problem for a class of linear time-invariant systems with uncertainty. At the same time,
Ref. [24] improved distributed interval observers by using a set-membership estimation
approach. However, the topology of interval observer in the aforementioned work [22–24]
is fixed, and it is usually switching with respect to time in practice.

In light of the above discussion, for the problem of state estimation for uncertain CPSs,
we apply distributed interval observers to such systems. Since the state estimation of CPSs
with bounded disturbances and noise has not been investigated sufficiently, it is meaningful
to study the state estimation problem for uncertain CPSs. Each interval observer has two
types of observer gain: one is obtained by using the traditional observer design method,
and the other one is determined by employing neighborhood information. Considering
the practical communication problem of the network layer in CPSs, we suppose that the
communication among distributed interval observers is described by switching topology.
There are three main challenges: one is to design L∞ observers with optimal performance
for networked CPSs, another is to construct a reachable set analysis framework for CPSs,
which then gives upper and lower bounds on the state of the system, and the last is to solve
the switching topology problem among the observers. The contributions of this paper are
summarized in aspects below.

(1) A distributed interval observer methodology for CPSs is proposed. Compared with
the monotone system method, the estimation accuracy is greatly improved by using
the two-step method. The L∞ technique is used to deal with the effects of uncertainty
in observer design.

(2) The switching topology with average dwell time (ADT) among distributed interval
observers is taken into account and is more closely aligned with the actual system. It
can also reduce the communication burden of CPSs.

This paper is structured as follows, with the rest of the paper starting with the graph
theory, system model, and some basics presented in Section 2. In Section 3, the optimal
robust observer is designed using the L∞ technique. In order to complete the interval
estimation, a reachability analysis methodology is used to design the distributed interval
observer. In Section 4, the paper simulates a networked CPS with four Unmanned Aerial
Vehicles (UAV) models to illustrate the effectiveness of the distributed interval observer.
Finally, Section 5 concludes the paper.

Notation: For a matrix of real symmetry E ∈ RN×N , E ≻ 0 demonstrates that E is
positive definite, while E ≺ 0 demonstrates that E is negative and He(E) = E + ET . The
maximal (minimum) eigenvalue of the matrix Q is denoted by λmax(Q)(λmin(Q)). The
norm L2 of the vector v is represented by ∥v∥2. In other words, ∥v∥2 =

√
vTv. Similarly,

the norm L∞ of the vector v is denoted by ∥v∥∞. The symbol ∗ means the term that can
arise due to symmetry in the symmetric matrices.

2. Preliminaries
2.1. Graph Theory

For a digraph G which has N vertices, A = [aij] ∈ RN×N is called the adjacency
matrix. The weight associated with the edge (i, j) ∈ S that connects node i to node j is
called aij, and A is provided by aij = 0. The length path from vertex i to vertex j is made
up of t + 1 distinct vertices with consecutive vertices adjacent to each other. If there is
a path connecting any two vertices of the graph G, the graph G is considered connected.
L = D −A is defined as Laplacian matrix of a graph G. D is referred to as a degree matrix
of G . The Laplacian matrix L of a connected graph has a single zero eigenvalue, and 1N
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is the associated eigenvector. Furthermore, 0 = λ1(G) ≤ · · · ≤ λN(G) if G is connected,
where λi(G) (i = 1, 2, · · · , N) is the eigenvalue of a Laplacian matrix L.

Lemma 1 ([25]). For a strongly connected graph G, denote ti(i = 1, 2, · · · , N) as the left eigenvec-
tor with a 0 eigenvalue, and T = diag{t1, t2, · · · · · · , tN}, then, we can obtain TL+ LTT ≥ 0.

Lemma 2 ([26]). Suppose that graph G is a strongly connected and balanced graph, and the algebraic

connectivity of G is defined by a(L) = min
tTx=0,x ̸=0

xT(TL+LTT)x
2xTTx where T = diag{t1, t2, · · · · · · , tN}.

Then, we can obtain a(L) = λmin(
He(L)

2 ).

2.2. System Model

For a networked CPS, consider a network with N subsystems. The following is the ith
subsystem with disturbances and noise:

xi(k + 1) = Axi(k) + Bui(k) + pi(k),

yi(k) = Cxi(k) + qi(k),
(1)

where xi(k) ∈ Rn is the state, ui(k) ∈ Rn is the control input, yi(k) ∈ Rm is the output,
pi(k) ∈ Rn is the disturbance, qi(k) ∈ Rm is the noise. A ∈ Rn×n , B ∈ Rn×n and C ∈ Rm×n

are constant matrices.
In the following, it is supposed that the communication topology of the subsystem is

strongly connected. The global dynamic system of (1) can be given:

x(k + 1) = Ax(k) + Bu(k) + p(k),

y(k) = Cx(k) + q(k),
(2)

where x = [xT
1 , · · · , xT

N ]
T , u = [uT

1 , · · · , uT
N ]

T , y = [yT
1 , · · · , yT

N ]
T , q = [qT

1 , · · · , qT
N ]

T ,
p = [pT

1 , · · · , pT
N ]

T , A = diag{A, · · · , A︸ ︷︷ ︸
N

}, B = diag{B, · · · , B︸ ︷︷ ︸
N

} and C = diag{C, · · · , C︸ ︷︷ ︸
N

}.

Since the information can be received by a single subsystem from its neighborhood, we
consider the case of switching topology of the observer system and then present ϕ(k), a step-
wise constant function that takes values from the finite collection S =

{
1, 2, · · · , N

}
.

The observer dynamics of ith subsystem are:

x̂i(k + 1) = Ax̂i(k) + Bui(k) + Li(yi(k)− Cx̂i(k)) + κϕ(k)Mi

N

∑
j=1

aϕ(k)
ij (x̂j(k)− x̂i(k)), (3)

where κϕ(k) is the coupled gain that needs to be designed and Mi and Li are observer gains

of the ith subsystem, and aϕ(k)
ij represents the connectivity weight from subsystem i to

subsystem j at moment k.
By subtracting (1) from (3), we obtain the error dynamics of a single subsystem:

ei(k) = xi(k)− x̂i(k),

ei(k + 1) = (A − LiC)ei(k)− κϕ(k)Mi

N

∑
j=1

aϕ(k)
ij (x̂j(k)− x̂i(k)) + Didi(k),

(4)

with Di =
[
I −Li

]
and di(k) =

[
pi(k)
qi(k)

]
.

Then we can obtain the dynamic system of the global observer

x̂(k + 1) = Ax̂(k) + Bu(k) + Lϕ(k)(y(k)− Cx̂(k))

+ κϕ(k)Mϕ(k)(Lϕ(k) ⊗ IN)(x(k)− x̂(k)),
(5)
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with L = diag{L1, · · · , LN︸ ︷︷ ︸
N

} and M = diag{M1, · · · , MN︸ ︷︷ ︸
N

}.

The global error system e(k) = [eT
1 (k), · · · , eT

N(k)]
T is as follows

e(k + 1) = (A − Lϕ(k)C − κϕ(k)Mϕ(k)(Lϕ(k) ⊗ IN))e(k) + Dd(k), (6)

and the compact form of (6) can be writen as

e(k + 1) = Γϕ(k)e(k) + Dd(k), (7)

where D = diag{D1, · · · , DN︸ ︷︷ ︸
N

} and Γϕ(k) = A − Lϕ(k)C − κϕ(k)Mϕ(k)(Lϕ(k) ⊗ IN).

Definition 1 ([27]). If the following condition holds,

∥e(k)∥2 ≤ κ
√
∥d∥2

∞ + V(0)ωk, (8)

where κ > 0 and 0 < ω < 1, V(0) = eT(0)Pϕ(k)e(0) and Pϕ(k) ≻ 0. Then the observer (5) is a
L∞ robust observer for system (2).

Definition 2 ([28]). Let Nψ(k1, k2) be the switching times of ψ(k) across the range [k1, k2). If

Nψ(k1, k2) ≤ N0 +
k2 − k1

τ̃
, (9)

for given τ̃ > 0 and N0 ≥ 0, τ̃ is the average dwell time (ADT) of the switching signal ψ(k). In
this paper, we let N0 = 0.

Definition 3 ([29]). The definition of an α-dimensional zonotope is as follow

Ω = ν ⊕ HYα = ν + Hz, z ∈ Yα, (10)

where ν ∈ Rι represents a given vector, H ∈ Rι×α represents a given matrix, Yα is a unitary
box made up of α unitary intervals and Yα is a unitary interval. In the sequel, the zonotope Ω is
represented as ⟨ν, H⟩ for the sake of simplicity.

Lemma 3 ([30]). The following equation is satisfied for a zonotope defined in (10):

⟨ν1, H1⟩ ⊕ ⟨ν2, H2⟩ = ⟨ν1 + ν2, [H1, H2]⟩,

W ⊙ ⟨ν, H⟩ = ⟨Wν, WH⟩,

⟨ν, H⟩ ⊆ ⟨ν, H⟩,

where H1 and H2 represent the shape matrices of each of the zonotopes, and ν1 and ν2 are their
centers. H ∈ RN×N means a diagonal matrix with HM,M = ∑α

i=1 |HM,i|, M = 1, ..., ρ .

Remark 1. H can be expressed in the form shown below:

H =

∑α
i=1 |H1,i| · · · 0

...
. . .

...
0 · · · ∑α

i=1 |Hρ,i|

. (11)

If α > ρ, then ⟨ν, H⟩ ⊆ ⟨ν, H⟩ is applied to reduce the order of high order zonotopes.
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Remark 2. For zonotopes ΩM ⊂ RN , M = 1, ..., ρ, the Minkowski sum of them is

ρ⊕
M=1

ΩM = Ω1 ⊕ Ω2 ⊕ · · · ⊕ Ωρ. (12)

Definition 4 ([19]). For an α-order zonotope, there is an interval hull Ω that could contain Ω in
its entirety:

Ω ⊂ Box(Ω) = [a, b], (13)

with a = [a1, · · · , aα]T , b = [b1, · · · , bα]T and Box(·) stands for the interval hull. For any
zonotope, the interval hull is the smallest interval vector.

Lemma 4 ([29]). If Ω = ⟨ν, H⟩, the components of its interval hull are
ai = νi −

α

∑
j=0

∣∣Hij
∣∣, i = 1, . . . , ι,

bi = νi +
α

∑
j=0

∣∣Hij
∣∣, i = 1, . . . , ι.

(14)

Lemma 5 ([29]). Given zonotopes Ωi, i = 1, 2, . . . , m

Box(
ρ⊕

m=1

Ωm) =
ρ⊕

m=1

(Box(Ωm)). (15)

Lemma 6 ([31]). For the given symmetric matrix
[
A B
BT C

]
, the following inequalities are equiva-

lent:

(1)
[
A B
BT C

]
≺ 0,

(2) C ≺ 0;A−BA−1BT ≺ 0,
(3) A ≺ 0;C−BTC−1B ≺ 0.

Assumption 1. The initial state of the ith subsystem satisfies the following condition

xi(0) ≤ xi(0) ≤ xi(0). (16)

Assumption 2. The disturbances and output noise in system (6) are bounded, which are:

∥d(k)∥2 ≤ ∥d∥∞, (17)

where ∥d∥∞ is a constant.

Assumption 3. The initial state, disturbance and noise, and initial error are represented by x(0),
d(0) and e(0), which can be wrapped as in the equations below:

x(0) ∈⟨ν0, H0⟩ = X (0),

d(0) ∈⟨0, Ed⟩ = D(0),

e(0) ∈⟨0, H0⟩ = E(0),
(18)

where H0 is given matrix and Ed = diag{di}.

3. Main Results

In this part, we provide sufficient conditions for the observer with L∞ property for
CPS. Then, a reachability analysis methodology is used to design the distributed interval
observer.
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Theorem 1. Let η and θ be two given constants with 0 < η < 1 and θ > 1. If there exists a
constant χ and matrices Pn ≻ 0 ∈ RN×N , Pm ≻ 0 ∈ RN×N such that

min χ2,

subject to : −ηPn ∗ ∗
0 −χ2 IN ∗

Pn A − WnC − κnQn(Ln ⊗ IN) PnD −Pn

 ≺ 0,

Pn ≺ θPm,
1
τ̃
+

lnη

lnθ
< 0,

κn >
1

a(Ln)
,

(19)

where Wn = PnLn, Qn = Pn Mn, n ̸= m, ∀n, m ∈ S and τ̃ satisfying ADT. Then (5) is a robust
L∞ observer for system (3).

Proof. Please see the Appendix A.

Remark 3. In Theorem 1, the parameter κn depends on a(Ln). The algebraic connectivity a(Ln)
of a graph tends to increase with graph stability. As the stability of the graph increases, there will be
a greater range of options for κn.

Remark 4. In practice, the ADT τ̃ and the disturbance attenuation level χ2 stand for the perfor-

mance of the observer. Owing to the fact that the ADT
1
τ̃
+

lnη

lnθ
< 0 depends on η and θ, it is

necessary to select suitable values for η and θ to minimize the ADT τ̃.

After completing the design of the optimal L∞ observer, we need to construct the
interval observer by designing the interval hull that can completely wrap the system
disturbances, noise, and errors. The real-time error from (5) can be wrapped by the
zonotope as

e(k) ∈⟨ν0, H(k)⟩ = E(k). (20)

Then, we add the reachability analysis methodology to the distributed L∞ observer
designed in Theorem 1 and then give the following interval observer:{

x = x̂ + e

x = x̂ + e
(21)

where e and e are the upper and lower bounds of e(k).

Theorem 2. An interval estimate of the system state is provided by (22), if Assumption 3 holds,
then the error e(k) has the following upper and lower bounds:

[
e(k), e(k)

]
= Box((

k−1

∏
n=0

Γn)E(0))⊕
k−1⊕
n=0

Box((
k−1

∏
m=1

Γm)Γ−1
n DD), (22)

where Box(E(0)) =
[
e(0), e(0)

]
.

Proof. Based on Assumption 3, we can obtain E(1),

E(1) = Γϕ(0)E(0)⊕ DD. (23)
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When k = 1, then we can obtain

E(2) = Γϕ(1)E(1)⊕ DD
= Γϕ(1)Γϕ(0)E(0)⊕ Γϕ(1)DD ⊕ DD.

(24)

Iterating the above process yields

E(k + 1) = (
k−1

∏
n=0

Γn)E(0)⊕
k−1⊕
n=0

(
k−1

∏
m=1

Γm)Γ−1
n DD. (25)

Then the interval hull below describes the set E(k)

E(k) =
[
e(k), e(k)

]
= Box((

k−1

∏
n=0

Γn)E(0))⊕
k−1⊕
n=0

Box((
k−1

∏
m=1

Γm)Γ−1
n DD). (26)

The proof of Theorem 2 is now completed.
Based on Theorems 1 and 2, the design of a distributed interval observer with switching

topology can be implemented by Algorithm 1.

Remark 5. According to Theorem 1, the robust L∞ observer is designed to reduce the effect of
outside disturbance and output noise. It is obvious that a bounded interval hull exists based on the
result of Theorem 1, which can include errors and disturbances. Then, using the given interval hull
E(0) as a starting point, Theorem 2 gives the interval hull E(k). We propose a reachable set analysis
technique by combining Theorem 1 with Theorem 2.

Algorithm 1: Algorithm for designing the distributed interval observer with
switching topology.

(1) Model CPSs with given disturbances and noise.
(2) Design distributed observers for subsystems.
(3) Select the appropriate κn according to the switching topology.
(4) Solve the LMI problem in Theorem 1 using the information of the bounds of

disturbances
and noise.

(5) Calculate the gains of the observers by Mn = P−1
n Qn, Ln = P−1

n Wn.
(6) Determine the ADT by given η and θ.
(7) Obtain the zonotopes of the initial value according to (18)
(8) Transform the zonotope at the moment k = n into an interval hull starting from

n = 0.
(9) Iterate the interval hull in step (6).
(10) Obtain the interval hull at the moment k = n + 1.
(11) The interval observer is obtained through (21).

Remark 6. If the modeling uncertainty is taken into consideration, the new model of this paper is
as follows:

xi(k + 1) = (A + ∆A(k))xi(k) + (B + ∆B(k))ui(k) + pi(k),

yi(k) = (C + ∆C(k))xi(k) + qi(k),

where ∆A(k), ∆B(k) and ∆C(k) represent the uncertainty of the system, respectively. Then, we may
use the norm-bounded condition on ∆A(k), ∆B(k) and ∆C(k) to design the L∞ interval observer.
However, it is not an easy task to construct the interval hull of the corresponding error system since
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the time-varying terms are contained. In the near future, we will deal with systems with model
uncertainty with the method proposed in this paper.

Remark 7. In Theorems 1 and 2, limited by the current knowledge of authors, this paper only gives
sufficient conditions for observer design. In the future, we will study the necessary conditions for
the design of interval observers, and in conjunction with this paper, we will give the necessary and
sufficient conditions for the design of interval observers.

4. Simulation

Among CPSs, UAVs have recently achieved widespread application. In this section,
we simulate through a networked CPSs with four UAVs.

Referring to [11], the dynamical system of each UAV is as follows[
α̇i(t)
β̇i(t)

]
= A

[
αi(t)
βi(t)

]
+ Bui(k) + pi(k),

yi(k) = C
[

αi(t)
βi(t)

]
+ qi(k),

(27)

where the pitch rate and angle of attack of each UAV are indicated by βi(t) and αi(t). The
schematic of each UAV is shown in Figure 1, and the detailed derivation of the dynamics
model is omitted here.

Figure 1. Longitudinal axis system of UAV.

Table 1 displays the output noise and the external disturbance borrowed from [11],
and the partial matrix values are as follows:

A =

[
0.8825 0.0987
−0.8458 0.9122

]
, B =

[
−0.0194 −0.0036
−1.9290 −0.3803

]
, C =

[
1 0.2

]
.

Table 1. The output noise and the external disturbance.

Subsystem Output Noise External Disturbance

1 0.1 cos(k) 0.2 + 0.1 cos(0.5k)
2 0.1 sin(k) 0.1 cos(0.1k)
3 0.01 cos(k) cos(0.2πk) + 0.3 sin(0.2πk)
4 0.05 sin(k) cos(0.3πk) + 0.1 sin(0.3πk)

For illustrative purposes, Figure 2 shows a switching communication topology G1,G2
and G3 with four UAVs. Figure 3 displays the change in the switching signal ϕ(k). Then,
from Figure 2, we can give the corresponding matrix Ln:

L1 =


1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

,L2 =


1 −1 0 0
0 2 −1 −1
0 0 1 −1
−1 −1 0 2

,L3 =


1 0 0 −1
0 1 0 −1
0 0 1 −1
−1 −1 −1 3

.
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Figure 2. Three switching communication topology of UAVs.
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Figure 3. The change in the switching signal of distributed interval observers.

From Lemmas 1 and 2, we can obtain a(L1) = a(L2) = a(L3) = 1, then we have
κ > 1. In this simulation, κ1 = 1.8, κ2 = 2.3, κ3 = 3.2 are chosen. We can determine Ln and
Mn by solving (19), the observer gains for 1th subsystem are listed below

L1 =
[
47.8095 −46.2386

]
, L2 =

[
−9.5528 47.7273

]
, L3 =

[
17.8244 −11.9289

]
.

M1 =

[
−41.7480 −36.5506
−1.8874 −6.9585

]
, M2 =

[
10.3302 8.4984
−79.5140 −71.1991

]
, M3 =

[
−11.7589 −7.5478
−6.1219 −9.0834

]
.

The peak estimation error of Angle of Attack and Pitch Rate of 1th subsystem are
0.4184 and 0.7668, respectively. The disturbance attenuation level χ2 and ADT τ̃ are as
follows

χ2 = 0.4984, τ̃ ≤ 0.1763.

Below are the results of the numerical simulation. The states of the original systems
and the upper and lower observers are depicted in Figures 4 and 5. xij are the original
states of the subsystems. uij and vij reflect the bounds produced via the interval hull
technique used in this paper and the monotone system method in [32], where i denotes
the ith subsystem and j denotes the jth state. Figure 6 shows the error system for a single
subsystem, euij, and evij reflect the observation error through the method used in this paper
and the monotone system method in [32].
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Figure 4. Angle of attack and interval estimates of UAVs.
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Figure 5. Pitch rate and interval estimates of UAVs.

It is evident that the states of CPS are completely surrounded by those of the upper
and lower observers. From Figures 4–6, it can be seen that the distributed interval observer
designed in this paper has higher estimation accuracy compared to the traditional monotone
system approach in [32]. We design the optimal robust observer using the L∞ technique,
which reduces the design requirements of the observer, unlike the H∞ technique applied
in [24]. Different from [23] and most of the work, we consider for the first time the case of
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switching topology among distributed interval observers. Thus, the proposed distributed
interval observers design method for CPSs is effective and feasible.
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Figure 6. Observation error of angle of attack and pitch rate of UAVs.

Remark 8. For networked CPSs with perturbations and noise, we propose a class of distributed
interval observer design methods with switching topology that combine the design of L∞ observers
with interval hulls. This class of methods eliminates the need to consider the error system to be
Schur and, therefore, eliminates the need to use coordinate transformation methods, significantly
reducing the conservatism of the estimation. It can be seen from the observer form (3), sufficient
conditions (19), and the proof of Theorem 1. In addition, the estimation accuracy is better than that
in [32], as it can also be seen from (22).

5. Conclusions

In this paper, a distributed interval estimation method for uncertain CPSs is inves-
tigated. Due to the communication burden of networked CPSs, we consider the case of
switching topology among distributed interval observers. To improve the accuracy of the
estimation, a reachability analysis is introduced in conjunction with the L∞ technique. Fi-
nally, the validity of the main results of this paper is verified by one example. In the future,
we may focus our research on the distributed interval estimation of the attacked CPSs.
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Appendix A

Proof. Define A =

[
−ηPn 0

0 −χ2IN

]
, B =

[
PnA −WnC − κnQn(Ln ⊗ IN)

PnD

]
, C = −Pn. Us-

ing Lemma 6 and the fact that C ≺ 0, we can determine that

A−BA−1BT ≺ 0. (A1)

Substituting Qn = Pn Mn, Wn = PnLn into (5), we obtain

G =

[
ΓT

n PnΓn − ηPn ∗
DT PnΓn DT PnD − χ2 IN

]
≺ 0. (A2)

where Γn = A − LnC − κn Mn(Ln ⊗ IN). It follows from (A2) that

[
eT(k) dT(k)

][ΓT
n PnΓn − ηPn ∗

DT PnΓn DT PnD − χ2 IN

][
e(k)
d(k)

]
≺ 0. (A3)

Thus, (A3) implies that

eT(k)(ΓT
n PnΓn − ηPn)e(k) + dT(k)(DT PnD − χ2 IN)d(k) + 2dT(k)DT PnΓne(k) < 0. (A4)

We then choose the following Lyapunov function

Vn(k) = eT(k)Pne(k). (A5)

Thus,

△Vn(k) =Vn(k + 1)− Vn(k)

=eT(k)(ΓT
n PnΓn − ηPn)e(k) + dT(k)(DT PnD − χ2 IN)d(k)

+ 2dT(k)DT PnΓne(k).

(A6)

Further simplification of (A6) yields

△Vn(k) < (η − 1)eT(k)Pne(k) + χ2dT(k)d(k), (A7)

which means
Vn(k + 1) < ηVn(k) + χ2dT(k)d(k). (A8)

Then consider the interval [kσ, k). Iterating (A8) yields

Vn(k) < ηk−kσ Vn(kσ) + χ2
k−kσ−1

∑
ϱ=0

ηϱdT(k − 1 − ϱ)d(k − 1 − ϱ). (A9)

Suppose that ϕ(kσ−1) = m, using Pn ≺ θPm, then

Vn(k) <ηk−kσ Vn(kσ) + χ2
k−kσ−1

∑
ϱ=0

ηϱdT(k − 1 − ϱ)d(k − 1 − ϱ)

<ηk−kσ+1θVm(kσ − 1) + ηk−kσ θχ2dT(kσ − 1)d(kσ − 1)

+ χ2
k−kσ−1

∑
ϱ=0

ηldT(k − 1 − ϱ)d(k − 1 − ϱ).

(A10)

Iterating (A10) yields the inequality below
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Vn(k) < ηkθNϕ(0,k)Vϕ(0)(0) + χ2
k−kσ−1

∑
ϱ=0

ηϱθNϕ(k−ϱ,k)dT(k − 1 − ϱ)d(k − 1 − ϱ). (A11)

In view of θ > 1 and Nϕ(0, k) ≥ Nϕ(k − ϱ, k), we have

χ2
k−kσ−1

∑
ϱ=0

ηϱθNϕ(k−ϱ,k)dT(k − 1 − ϱ)d(k − 1 − ϱ)

< χ2
k−kσ−1

∑
ϱ=0

ηϱθNϕ(0,k)dT(k − 1 − ϱ)d(k − 1 − ϱ).

(A12)

It follows from (A11) and (A12) that

Vn(k) < θNϕ(0,k)[ηkVϕ(0)(0) + χ2
k−kσ−1

∑
ϱ=0

ηldT(k − 1 − ϱ)d(k − 1 − ϱ)]. (A13)

Due to Vn(k) ≥ λ∥e(k)∥2
2 , the error e(k) in (6) satisfies

∥e(k)∥2
2 ≤ 1

λ(Pn)
Vn(k),

∥e(k)∥2
2 ≤ θNϕ(0,k)

λ(Pn)
(ηkVϕ(0)(0) + χ2

k−1

∑
ϱ=0

ηϱ∥d(k)∥2
∞).

(A14)

By Definition 1, the proof of Theorem 1 is completed.
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