
Citation: Ma, X.; Tan, J.; Zhu, L.; Yan,

X.; Kong, X. GSRec: A Graph-Sequence

Recommendation System Based on

Reverse-Order Graph and User

Embedding . Mathematics 2024, 12, 164.

https://doi.org/10.3390/

math12010164

Academic Editors: Nazim Choudhury

and Matloob Khushi

Received: 12 December 2023

Revised: 23 December 2023

Accepted: 3 January 2024

Published: 4 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

GSRec: A Graph-Sequence Recommendation System Based on
Reverse-Order Graph and User Embedding
Xulin Ma 1, Jiajia Tan 1, Linan Zhu 1 , Xiaoran Yan 2 and Xiangjie Kong 1,*

1 College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China;
2112112045@zjut.edu.cn (X.M.); 2112112058@zjut.edu.cn (J.T.); zln@zjut.edu.cn (L.Z.)

2 Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 310023, China; yanxr@zhejianglab.com
* Correspondence: xjkong@zjut.edu.cn

Abstract: At present, sequence-based models have various applications in recommendation systems;
these models recommend the interested items of the user according to the user’s behavioral sequence.
However, sequence-based models have a limitation of length. When the length of the user’s behavioral
sequence exceeds the limitation of the model, the model cannot take advantage of the complete
behavioral sequence of the user and cannot know the user’s holistic interests. The accuracy of the
model then goes down. Meanwhile, sequence-based models only pay attention to the sequential
signals of the data but do not pay attention to the spatial signals of the data, which will also affect the
model’s accuracy. This paper proposes a graph sequence-based model called GSRec that combines
Graph Convolutional Network (GCN) and Transformer to solve these problems. In the GCN part we
designed a reverse-order graph, and in the Transformer part we introduced the user embedding. The
reverse-order graph and the user embedding can make the combination of GCN and Transformer
more efficient. Experiments on six datasets show that GSRec outperforms the current state-of-the-art
(SOTA) models.

Keywords: graph neural network; sequential recommendation; representation learning

MSC: 68T07

1. Introduction

In the past few decades, because of the rapid development of the Internet, individuals
can collect various information simply. However, massive amounts of information often
make individuals unable to find items they are interested in; as a consequence, the person-
alized recommendation system is proposed. The personalized recommendation system can
provide information filtering for users and screen out items that users need.

Many experiments [1–5] show that the user’s current interest is dynamic in nature, and
the user’s behavioral sequence influences this interest. For example, if a user buys a phone,
he is more likely to buy a phone shell, even though he would not usually buy one. In order
to capture this dynamic interest, many models [6–8] based on users’ behavioral sequences
have been proposed. These models learn the sequential signals between items and predict
which item is most likely to be purchased based on the user’s behavioral sequence.

Although sequence-based models have achieved great success in recommendation
systems, sequence-based models have the following disadvantages. First, the length of
the sequence is limited. When the length of the user’s behavioral sequence exceeds the
limit of the model, the model cannot fully capture the user’s interest, thus reducing the
model’s accuracy. Furthermore, if the length is too long, it will inevitably increase the
model prediction time. For example, in a scenario where the sequence length is 5, and
the model predicts that the user is likely to buy a computer based on the last five items
purchased by the user, due to the length limit of the model, the model cannot observe the
complete purchase sequence of the user and, therefore, cannot find that the item had been

Mathematics 2024, 12, 164. https://doi.org/10.3390/math12010164 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12010164
https://doi.org/10.3390/math12010164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7451-4421
https://orcid.org/0000-0003-2698-3319
https://doi.org/10.3390/math12010164
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12010164?type=check_update&version=1

Mathematics 2024, 12, 164 2 of 21

purchased long ago. Second, sequence-based models only pay attention to the sequential
signals between items but do not pay attention to the spatial signals of items and users,
which will also affect the effectiveness of the model. This is because, without the spatial
signals, the model cannot learn a user’s interest from other users.

Overall, the sequence-based models have the following issues: (1) Due to the limitation
of sequence length, the sequence-based models may discard the long-term behavior of
users and cannot fully capture the user’s interest. (2) Sequence-based models focus on
the user’s recent behavior and ignore their complete behavior. (3) Sequence-based models
only focus on the user’s behavior sequence and ignore the spatial signal between users
and items.

To solve the above questions, we propose a novel model called GSRec that combines
Graph Convolutional Network (GCN) and Transformer. We use GCN because GCN
constructs a graph based on the user’s historical behavior and the nodes in the graph
aggregate information about their neighbors. This means that GCN can learn the user’s
holistic interest and spatial signals. At the same time, in order to ensure a GCN can better
learn the user’s holistic interest, and thus make the combination of GCN and Transformer
more efficient, we design a reverse-order graph in the GCN part. The contributions of this
work are summarized as follows:

• We present a graph-sequence model that can fully use the users’ complete behavior
sequence and the spatial signals of data to increase data utilization and improve the
accuracy of recommendations.

• To make the combination of GCN and Transformer more efficient, we design the
reverse-order graph in GCN and the user embedding in Transformer.

• We conducted experiments on six datasets, and the results show that our model
outperforms the current state-of-the-art (SOTA) models.

2. Related Work

Our work is related to three lines of research: sequence-based recommendation, GCN-
based recommendation, and hybrid recommendation. We review the recent advances in
these areas in the following sections.

2.1. Sequence-Based Recommendation

The task of sequence-based recommendation is to predict the next item the user
will buy based on the user’s behavioral sequence. The Markov chain-based model is a
classic sequence-based recommendation model [9,10]. Because of the development of
deep learning, RNN-based models were introduced into sequence-based recommendations.
Bal et al. used the RNN-based model GRU4Rec [11] for the first time to predict the next
item that the user might be interested in. However, because Markov assumes that the
current interaction only depends on one or several recent interactions, the results predicted
by models would only be dependent on the user’s most recent behavioral sequence. In
addition, CNN-based models were also introduced into sequential recommendations,
such as Caser [12]. Since CNN-based models do not have a strong ordering assumption
for the interaction in the sequence, the CNN-based recommendations can make up for
the disadvantage based on RNN to a certain extent. Transformer [13], as a sequence-
based model, achieved state-of-the-art performance and efficiency for machine translation
tasks because of ’self-attention’. Therefore, an attention mechanism was introduced into
sequence-based recommendations [14], and Wang et al. [15] proposed SASRec, which
focuses more on the whole sequence instead of the most recent behavioral sequence. In
addition, Li et al. [16] proposed TiSASRec, which is based on SASRec and uses the temporal
factor, and Sun et al. [7] proposed Bert4Rec using Bidirectional Encoder Representations
from Transformers (BERT). Yukuo et al. [17] introduced multiple interests into sequence-
based recommendations to improve the model’s performance. Although the above models
are efficient, they require a fixed length, which means that if the user’s sequence exceeds
this length these models will not be able to express the user’s interests fully. In order to

Mathematics 2024, 12, 164 3 of 21

solve this problem, Bai et al. proposed LSDA [18], which uses multiple LSTM to learn
the whole sequences of users, and Bo et al. proposed HAM [19]; this model uses MLP to
learn the whole sequences of users. Nevertheless, these models only pay attention to the
sequence and do not pay attention to the spatial signals of data.

2.2. GCN-Based Recommendation

Initially, traditional matrix factorization models [20,21] were used for the recommenda-
tion system. With the rise in deep learning methods, traditional matrix factorization models
have been gradually replaced by deep neural networks, especially graph neural networks
(GNN). Berg et al. [22] utilized a graph convolutional neural network in a recommendation
system, and then Wang et al. [23] improved it and proposed NGCF. However, these models
use the Laplacian matrix, and the matrix operation is troublesome; hence, He et al. [24]
simplified the matrix operation and proposed LightGCN, which improved the efficiency
of the operation in sparse datasets. Fan et al. [25] improved LightGCN by changing the
global graph into a subgraph to improve the generalization of the model. In addition,
Liang et al. [26] used auto-encoders for recommendations, which can effectively provide
feedback on the implicit data of users. At the same time, Wang et al. [27] combined the
attention mechanism with the graph neural network, proposed GAT, and applied it to
recommendation systems [28]. Some scholars also use dynamic graphs to improve the
recommendation ability of models [29–32]. GCN-based models can fully use the user’s
behaviors and can also use the spatial signal of the data to learn the user’s holistic interests.
However, GCN-based models cannot utilize the user’s temporal signals and capture the
recent interests effectively.

2.3. Hybrid Recommendation

Since graph convolutional neural networks can handle graph-structured data well,
some scholars combine GNN with other models and apply them to sequence-based recom-
mendation systems. For example, SR-GNN [33], MA-GNN [34], and DGCN [35] combine
GNN and GRU, which improves the generalization ability of the model. APGNN [36]
combines GNN and attention mechanisms. However, these models that use GRU will focus
too much on the recent behavior of users and ignore their complete behavior, and GRU’s
computational complexity is high. Some scholars have also introduced a memory network
into the recommendation system; thereby, the matrix can more explicitly and dynamically
store and update the historical interactions in the sequence to improve the expressive ability
of the model. For example, Chen et al. [37] and Huang et al. [38] added a memory network
to the GRU to improve the expression ability of the model. Yuan et al. [39] used a mem-
ory network for session-based recommendations, and Wang et al. [40] used an attention
network for the next location recommendation. Tan et al. [41] and Hsu et al. [42] used an
attention graph for sequential recommendations. Meanwhile, some scholars introduce
models that pay more attention to sequence. Zhu et al. proposed GES [43], combining
GNN and Transformer, but this model focuses too much on the user’s recent behavioral
sequence. These hybrid models combine GCN-based models and sequence-based models,
but the above models still focus on the recent behavior sequence of users and lack attention
to the complete behavior of users.

3. Preliminaries

Researchers created the GCN to extract features from graph-structured data. Let a
graph G = (V , E) with node v ∈ V , edge (v, v′) ∈ E . H0 ∈ Rn×d is the original node
embedding matrix, n is the number of nodes, and d is the embedding dimension of a node.
Hl ∈ Rn×d is l-th layer hidden state of nodes. The original GCN [44] model follows the
layer-wise propagation rule:

L = D−
1
2 ÃD−

1
2 (1)

Mathematics 2024, 12, 164 4 of 21

H(l+1) = σ
(

LH(l)W(l)
)

(2)

where Ã = A + I is the added self-connections adjacency matrix of graph G.
I ∈ R(nu+ni)×(nu+ni) is the identity matrix. D denotes the degree matrix and W(l) is the l-th
layer trainable weight matrix. σ(·) denotes an activation function. As summarized in [44],
during GCN training the updating process of each node follows two steps, aggregation
and combination, which are defined as

h(l)
agg = σ

(
W(l) ·AGG

({
h(l−1)

v′ , ∀v′ ∈ A(v)
}))

(3)

h(l)
v = COMBINE

(
h(l−1)

v , h(l)
agg

)
(4)

where A(v) is the set of adjacent nodes v and AGG(·) is an aggregation function aggregating
hidden features from neighbor nodes v. Some aggregation functions have been studied,
such as mean-pooling, max-pooling [45], and attention mechanism [27]. W(l) is the l-th
layer trainable weight matrix. AGG(·) denotes aggregated neighbors’ embeddings of node
v at l-th layer. COMBINE(·) is a combination function that combines node v self-embedding
and aggregated neighbors’ embeddings, whose optional operators include element-wise
product, concatenation [45], and so on. In the original GCN, there is no explicit combination
step because the adjacency matrix in the original GCN has self-connections. Hence, in the
aggregation step the node self-embedding has been combined with its neighbors’ features.

4. Methodology

In this section, we will introduce our GSRec model in detail and the summary of key
notations is shown in Table 1.

Table 1. Summary of key notations.

Key Description

nu the number of users
ni the number of items
U the set of users, U = {u1, u2, · · ·, un}
I the set of items, I = {i1, i2, · · ·, im}
I the identity matrix, I ∈ R(nu+ni)×(nu+ni)

L the length of behavioral sequence
Su the historical behavioral sequence of the user u ∈ U
sl the length of training sequence
A adjacency matrix that has interactive information between users and items
D degree matrix, D ∈ R(n+m)×(n+m)

d the embedding size
eu an embedding of user u, eu ∈ R
ei an embedding of item i, ei ∈ R
E an embedding matrix, E = [eu1, · · · , eun, ei1, · · · , eim]

T

P position embedding, P ∈ Rsl×d

θ incentive factor in adjacency matrix, θ = 1/avglength
index the distance between an item and the last item the user clicked or purchased

GSRec is devised to predict top-N ranked items with which the user will likely interact by
exploiting existing user–item interaction information. As demonstrated in Figure 1, GSRec
consists of two parts: The GCN layer and the sequence coding layer. In the GCN layer, the
model first generates embeddings for each user and item. The model then generates the
reverse-order graph through user–item interaction. Finally, the model uses GCN to extract
high-dimensional spatial signals and learn the user’s holistic interests, and the sequence
coding layer uses multiple Transformer blocks to capture the users’ sequential signals.

Mathematics 2024, 12, 164 5 of 21

Figure 1. The architecture of the GSRec.

4.1. Problem Statement

In sequence-based recommendation, U = {u1, u2, · · · , un} is the set of users,
I = {i1, i2, · · · , im} is the set of items, and Su = [iu

1 , · · · , iu
t , · · · , iu

L] represents the his-
torical behavioral sequence of the user u ∈ U, where iu

t ∈ I, L is the length of interaction
sequence for user u. Given a sequence of historical items, the probability that the user will
interact with the item at the next moment L + 1: p(iu

L+1 = i | Su) is predicted, and the
top-N items can be recommended to user u according to the probabilities in descending
order.

4.2. GCN Components

Embedding Layer: We can describe a user u (an item i) with an embedding vector
eu ∈ Rd,ei ∈ Rd, where d denotes the embedding size. Therefore, we can build an
embedding matrix E:

E =

[
EU
EI

]
EU = [eu1, · · · , eun]

T EI = [ei1, · · · , eim]
T (5)

where n is the number of users and m is the number of items. It should be noted that our
task is to learn this embedding matrix; we update the embeddings by propagating them on
the user–item interaction graph and finally predict the next item that the user will purchase
or click according to this embedding matrix.

Reverse-Order Graph: In the traditional GCN-based model, the adjacency matrix is
constructed from the user–item interaction graph:{

a(ui, ij) = 1 ui interact ij,
a(ui, ij) = 0 other.

(6)

The behavioral information is shown in Figure 2a. This method treats all interactions as
equally important, which means that all the interactions have the same status. However,
Transformer pays more attention to the user’s recent behavioral sequence; if we use this
method to construct the adjacency matrix, the model will focus on the recent behavioral
sequence of users. On the contrary, we want the model to treat holistic behaviors and recent
behaviors synthetically; thus, we introduce the incentive factor θ to the adjacency matrix in

Mathematics 2024, 12, 164 6 of 21

sparse and sequential datasets. In the following, index means the distance between an item
and the last item the user clicked or purchased.{

a(ui, ij) = 1 + (θ × index)/2 ui interact ij.
a(ui, ij) = 0 other.

(7)

This method gives greater weight to the items that the user interacted with earlier, allowing
GCN to focus more on these items. Through the above method, we can obtain the adjacency
matrix A f us ∈ Rnu×ni based on the incentive factor, and we can then obtain our reverse-
order graph Lr.

Lr = D−
1
2 (

[
01 A f us

AT
f us 02

]
+ I)D−

1
2 (8)

I ∈ R(nu+ni)×(nu+ni) is the identity matrix and D ∈ R(nu+ni)×(nu+ni) is the degree matrix.
nu is the number of users and ni is the number of items. 01 ∈ Rnu×nu and 02 ∈ Rni×ni are
the null matrices. Here are the reasons why we do not use the incentive factor in dense
or non-sequential datasets. In non-sequential datasets, we do not know users’ behavioral
sequences; thus, we cannot distinguish which behaviors are recent and which behaviors
are from earlier. In dense datasets, the GCN module can learn the holistic behaviors of
users better than the recent behaviors of users.

Figure 2. The process of the adjacency matrix.

Graph Convolution: Graph convolution is an important part of a recommendation
system based on GCN. Its function is to learn the characteristics of nodes. The method of
graph convolution can be expressed as

e(k+1)
u = AGG(e(k)u , {e(k)i : i ∈ Nu}) (9)

where AGG is a propagation function, which is the core of graph convolution and rep-
resents the representation of the next layer of the matrix. Many scholars have studied
AGG [46,47], and although these methods have good results in graph classification they
may be redundant for graph-based recommendations. Because, in graph-based recommen-
dations, the initial embedding settings are random without valid information, the operation
of graph convolution in GSRec is defined as

e(k+1)
u = ∑

i∈Nu

1√
|Nu|

√
|Ni|

e(k)i (10)

e(k+1)
i = ∑

u∈Ni

1√
|Nu|

√
|Ni|

e(k)u (11)

Mathematics 2024, 12, 164 7 of 21

where 1√
|Nu |
√
|Ni |

can avoid the scale of embeddings increasing with graph convolutional

operations. After the propagation of K layers, we need to combine each layer to obtain the
final embedding representation. The combining rules are as follows:

eu =
K

∑
k=0

1
1 + k

e(k)u (12)

ei =
K

∑
k=0

1
1 + k

e(k)i (13)

If each element is processed more time complexity is required; thus, the matrix representa-
tion is given here:

E(i) = LrE(i−1) (14)

4.3. Sequential Encoder with Transformer

After the graph convolutional network training, the embedding E aggregated the
spatial signals and holistic interests of users. To capture the sequential signals, we used
Transformer as an encoder.

Transform the Sequence: In different situations, we transform the sequence differently.
If the count of users is less than the count of items in a dataset, we transform the sequence Su
into a fixed-length sequence, and the index of a user is then added to the first of the sequence
s = (ui, i1, i2, · · · , iL). If the count of users is more than or equal to the count of items in
a dataset, we transform the sequence Su into a fixed-length sequence s = (i1, i2, · · · , iL).
Here are the reasons: When the count of users is less than the count of items, the users’
embedding has more spatial signals, which makes the model more balanced. When the
count of users is more than or equal to the count of items, the users’ embedding has fewer
spatial signals, which makes the model more unbalanced. After this, if the length of a
sequence is more than or equal to sl , we choose the most recent sl items, and if the length
of a sequence is less than sl , we add a ’padding’ item to the left repeatedly until the length
is equal to sl . A random vector is used as the embedding for the padding item.

Positional Embedding: In Transformer, the self-attention model does not include any
positive modules; in order to capture the position information of items we inject a learnable
position embedding P ∈ R(sl+1)×d into the sequential embedding Eseq ∈ R(sl+1)×d, and sl
means the length of the sequence.

Ẽ = Eseq + P =

 eu + p1
· · ·

eisl
+ psl

 (15)

Self-Attention: The attention mechanism mainly captures the correlation between
representation pairs in the sequence model. An attention function can be described as
mapping a query and the set of key-value pairs to an output, where the query, keys, values,
and output are all vectors. The output is computed as a weighted sum of the values. The
weight assigned to each value is computed by a compatibility function of the query with
the corresponding key [13]. In Transformer, the attention function is

Attention (Q, K, V) = softmax

(
QK⊤√

d/h

)
V (16)

Multi-headed attention enables the model to pay joint attention to the information of
different representation subspaces at different positions.

Mathematics 2024, 12, 164 8 of 21

S = MultiHead−SA(Ẽ) = Concat (h1, . . . , hh)Ẽ
hi = Attention

(
QWQ

i , KWK
i , VWV

i

) (17)

WQ
i ∈ Rd×d/h WK

i ∈ Rd×d/h WV
i ∈ Rd×d/h are learnable parameters.

Position-Wise Feed-Forward Network: Self-attention is mainly based on linear projec-
tion. To construct a model with nonlinearity and interactions between different dimensions,
we apply a Position-wise Feed-Forward Network to the outputs of the self-attention sub-
layer, which is applied to each position separately and identically. This consists of two
linear transformations with a ReLU activation in between.

Fi = FFN(Si) = ReLU
(

SiW(1) + b(1)
)

W(2) + b(2) (18)

W(1) ∈ Rd×d, W(2) ∈ Rd×d, bias b(1), and bias b(2) are learnable parameters.
Stacking Self-Attention Blocks: Fi has aggregated previous embeddings of items

through a self-attention block. To capture more complex item transition information, we
use stacked self-attention blocks, and the b-th (b > 1) block is defined as

S(b) = SA
(

F(b−1)
)

F(b)
i = FFN

(
S(b)

i

)
∀i ∈ {1, 2, . . . , n},

(19)

The 1-st block is defined as S(1) = S, F(1) = F. In order to alleviate the problem of depth
model overfitting and model instability, we perform the following operations:

g(x) = x + Dropout(g(LayerNorm(x))) (20)

LayerNorm(x) = α⊙ x− µ√
σ2 + ϵ

+ β (21)

where g(x) represents the self-attention layer or the feed-forward network, ⊙ is an element-
wise product, µ and σ are the mean and variance of x, and α and β are learned scaling
factors and bias terms.

Prediction Layer: Through self-attention blocks, the model can extract information
about consumed items, and we predict the next item based on F(b). Finally, the model
predicts item i score through the MF layer:

ri,t = F(b)
t ET

I (22)

where ri,t is the score of item i that the model predicts the user will purchase next, EI is item
embeddings, and T means transposition. We can generate recommendations by ranking
the scores.

4.4. Learning

We exploit binary cross entropy (BCE) loss as the objective function; the BCE loss
function is used to measure the difference between predicted values and real values:

loss = − ∑
Su∈S

n

∑
t=1

[
log(σ(rot ,t)) + ∑

j/∈Su
log
(
1− σ

(
rj,t
))]

(23)

The entire framework can be trained effectively by using end-to-end paradigm reverse
propagation. The optimizer we used is Adaptive Moment Estimation (Adam) [48]. The
Adam optimizer is an adaptive optimizer that combines the RMSProp optimizer and the

Mathematics 2024, 12, 164 9 of 21

Momentum optimizer, which can adjust the learning rate based on historical gradient infor-
mation:

∆wt = α mt√
Vt+ϵ

mt = β1 ∗mt−1 + (1− β1) ∗ gt

Vt = β2 ∗Vt−1 + (1− β2) ∗ g2
t

(24)

where α is the learning rate, mt is the momentum of the current step, Vt is the variance of
the current step, ϵ is a coefficient that increases the stability of the denominator, β1 is the
historical momentum retention rate, β2 is the historical variance retention rate, and gt is the
gradient. Additionally, to prevent overfitting a dropout strategy [49] is used for the linear
layer of the model. The pseudocode for GSRec is shown in Algorithm 1.

Algorithm 1 Process of GSRec.
Input:historical behavior information of users S, the count of users n, the count of items m,
epoch count T, learning rate lr, embedding size d, batch size B, GCN layer L
Output: predict scores Sui

1: initialize embedding matrix E. initialize reverse-order graph Lr according to
Equations (6) and (7).

2: for t← 1 to T do
3: take B samples(u, i1, i2, · · ·isl , predict item, label)
4: for layer ← 1 to L do
5: update E according to Equation (14)
6: end for
7: for b← 1 to B do
8: if n > m then
9: training sequence is (u, i1, i2, · · ·isl , predict item)

10: else
11: training sequence is (i1, i2, · · ·isl , predict item)
12: end if
13: uses sequence encoder updating E
14: gets predict scores Sui according to equation (22)
15: gets loss according to equation (23)
16: end for
17: uses Adam to optimize the Model.
18: end for

5. Experiment

In this section, we perform extensive experiments to evaluate the performance of our
model on six real-world datasets and compare our model with different types of current
state-of-the-art (SOTA) models. Our experiments are designed to answer the following
research questions (RQs):

• RQ1: How does GSRec perform compared to the SOTA recommendation methods?
• RQ2: Do the reverse-order graph and user embedding affect the performance of GSRec?
• RQ3: How do different hyper-parameter settings, such as the dimension of embed-

dings, the depth of GCN layers, and the number of Transformer blocks, affect GSRec?

5.1. Datasets

In our experiments, six common datasets are used to evaluate our model. Three
datasets are from Amazon, AmazonBaby (Baby), Amazon Video (Video), and AmazonBook
(Book), and the other datasets are ML_100K (100K), Delicious, and LastFM. These datasets
are widely used in the research and experimentation of recommendation systems to eval-
uate the performance and effectiveness of various recommendation algorithms. Among

Mathematics 2024, 12, 164 10 of 21

them, Delicious does not have any sequential signals, which means we have no way of
knowing users’ sequential behaviors. Here are the descriptions of the datasets:
100K: The dataset is a public dataset used for recommendation systems, containing 100,000
movie rating data. Each data row contains information such as userId, movieId, rating,
timestamp, movieName, age, gender, occupation, city, etc. In this paper, we only used
userId, movieId, and timestamp data. https://grouplens.org/datasets/movielens/ (ac-
cessed on 2 January 2024).
Video: The dataset is a public dataset that contains a large number of user ratings and
comments on video games. This dataset is very useful for studying the performance of
recommendation systems in the field of video games. Each data row represents a user’s
rating and comment on a video game. The fields usually include userId, videoId, rating,
timestamps, comment, etc. In this paper, we only used userId, videoId, and timestamps.
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/ (accessed on 2 January 2024).
Book: The dataset is a public recommendation system dataset that contains information
such as user ratings and comments on books on the Amazon website. Each data row
includes userId, bookId, rating, timestamp, userComment, bookTitle, author, etc. In this
paper, we only used userId, bookId, and timestamp data. https://cseweb.ucsd.edu/
~jmcauley/datasets/amazon_v2/ (accessed on 2 January 2024).
Baby: The dataset is a public dataset used for recommendation systems, which includes
purchase records and user information of maternal and child products on the Amazon
website. Each data row includes userId, productId, timestamp, purchaseQuantity, item-
Name, itemPrice, and itemtRating, etc. In this paper, we only used userId, movieId, and
timestamp data. https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/ (accessed on
2 January 2024).
Delicious: The dataset is a publicly available recommendation system dataset that includes
user tag records for web pages on the Delicious website. Each data row includes userId,
webURL, tag, userPersonalWebPageURL, userFollowedUserList, etc. In this paper, we
only used userId and webURL. This dataset does not have any sequential signals. https:
//grouplens.org/datasets/hetrec-2011/ (accessed on 2 January 2024).
LastFm: The dataset is a publicly available recommendation system dataset that includes
user listening records and music tags on the Last.fm music recommendation website. Each
data row includes userId, artistI, timestamp, listeningFrequency, artistName, artistType,
etc. In this paper, we only used userId, artistId, and timestamp. http://www.dtic.upf.edu/
ocelma/MusicRecommendationDataset/index.html (accessed on 2 January 2024).

We construct the behavioral sequences of users based on the interaction time between
users and items. For the GCN part, we divide the historical behavioral sequences of users
into three parts:

• The last item of the behavioral sequence of the user is used as the test set.
• The penultimate item of the behavioral sequence of the user is used as the validation set.
• Other behavioral information of the user is used as the training set. The training set

consists of triples (user, positive item, negative item), and the adjacency matrix is
constructed according to the training set.

For the sequential part, we also divide the historical behavioral data of users into three
parts according to the above rules. The characteristics of these datasets are shown in Table 2.
UsersLen represents the average number of interactions a user has with an item (same
as ItemsLen).

5.2. Evaluation Metric

To compare the recommendation effect of all models, we use two evaluation metrics,
namely, Hit Ratio (HIT) and Normalized Discounted Cumulative Gain (NDCG). HR mea-
sures how many candidate items are ranked with the TOP-N list, while NDCG accounts
for the position of the hit by assigning a higher score to hit at top positions. In this work,
we report HR and NDCG with k = 5, 10, or 20. It is essential to point out that each user has

https://grouplens.org/datasets/movielens/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://grouplens.org/datasets/hetrec-2011/
https://grouplens.org/datasets/hetrec-2011/
http://www.dtic.upf.edu/ocelma/MusicRecommendationDataset/index.html
http://www.dtic.upf.edu/ocelma/MusicRecommendationDataset/index.html

Mathematics 2024, 12, 164 11 of 21

only one ground truth item. Higher values are associated with better model performance
for all of these metrics.

HIT@K =
1
N

N

∑
i=1

Hit(i) (25)

where N is the total number of users and Hit(i) represents whether the item visited by the
i-th user is in the top K of the recommendation list: 1 if yes, 0 otherwise.

NDCG@K =
1
N

N

∑
i=1

1
log2(pi + 1)

(26)

where N is the total number of users and pi represents the position of the item visited by
the ith user in the top K of the recommendation list.

Table 2. Statistics of datasets used in this paper. Density means the density of the dataset.

Dataset Users Items Interactions UsersLen ItemsLen Density

100K 943 1682 100,000 106.04 59.45 6.30%

Video 5066 1655 36,635 7.23 22.14 0.44%

Book 15,041 7329 182,504 12.13 24.90 0.17%

Baby 19,369 6997 160,155 8.27 22.89 0.12%

Delicious 1862 1862 15,329 8.23 8.23 0.44%

LastFM 1893 12,524 186,470 98.51 14.89 0.79%

5.3. Baselines

To verify the performance of the GSRec model proposed in this paper, we compared
the model with the following state-of-the-art recommendation methods. It is mainly
divided into three models. The first is collaborative filtering-based (CF-Based), the second
is sequence-based, and the last is hybrid-based.
Collaborative Filtering-Based (CF-Based) Model

• NCF [50]: A modification of MF by replacing the inner product in MF with an MLP.
• NGCF [23]: Integrates the user–item bipartite graph structure into the embedding

propagation process, enabling expressive modeling of higher-order connectivities in
the graph.

• LightGCN [24]: An improved version of NGCF that removes the feature transforma-
tion and nonlinear activation modules in NGCF. It makes GCN-based methods more
concise and suitable for recommendation and achieves SOTA performance.

Sequence-Based Model

• Caser [12]: Uses a CNN model to capture high-order Markov chains by applying
convolutional operations on the embedding of the L recent items, which makes it good
at capturing the short-term interests of users.

• SASRec [15]: The first to introduce Transformer into recommendation systems. This
model uses Transformer to capture the sequential behaviors of users and achieves
SOTA performance on sequential recommendations.

• ComiRec-SA [17]: Replaced ComiRec-DR’s dynamic routing module with a self-
attention mechanism.

• FMLP [51]: Applied a filter-enhanced all-MLP architecture to the sequential recom-
mendation task.

Hybrid-Based Model

• GES [43]: Combines GCN and SASRec and is the SOTA method in hybrid
recommendations.

Mathematics 2024, 12, 164 12 of 21

5.4. Parameter Setting

In order to make sure the comparison is fair, we set the same parameters in different
models. The embedding size is 64 and the learning rate is 0.001. The batch size is 4096. The
activation function is sigmoid. In sparse datasets, the layer is 2; in dense datasets, the layer
is 1. The length is 50; the dropout rate is 0.2 and the L2 regularization is 1 × 10−6. In Caser,
the number of horizontal filters is 6, the number of vertical filters is 4, and the width of the
vertical filter is 1. In transform-based models, the block is 2 and the head is 1. In Comi-DR
and Comi-SA, the number of interests is 4 and the route time is 3.

5.5. Performance Comparison (RQ1)

We evaluated the performance of all compared methods, and Table 3 shows the results.
We can observe that GSRec outperforms different types of baselines on six datasets. This
ascertains the effectiveness of our proposed model.
NCF: In 100K, its performance surpasses that of GCN-based models because, in 100K,
NCF has enough training samples, while GCN-based models suffer from oversmooth
problems. The performance of NCF is worse than sequence-based models because, in
100K, the user’s behavior sequence is long and sequence-based models can learn the user’s
sequence information well, while NCF cannot learn the sequential signal. In sparse datasets,
the performance of NCF is the worst owing to the fact that training data in sparse datasets
is limited and NCF exhibits underfitting. In Delicious, NCF outperforms Caser because
Caser is an intense sequence model.
NGCF: In 100K, the performance of NGCF only surpassed that of LightGCN, because
the GCN-based model experienced smoothing issues in dense datasets. NGCF performs
better than LightGCN because its convolutional strategy is more suitable for dense datasets.
In Book, Video, Baby, and LastFM, NGCF performs only better than NCF because its
convolutional strategy is more suitable for dense datasets.
LightGCN: LightGCN performs the worst in 100K and performs better on Book, Video,
Baby, and LastFMs. This is because LightGCN’s convolution strategy is more suitable for
sparse datasets, which can lead to oversmooth problems in dense datasets. In Delicious, the
performance of LightGCN is second only to GES, because sequence-based models cannot
obtain sequence information and Delicious is relatively sparse, while NGCF and NCF are
more suitable for dense datasets.
Caser: In 100K, Caser outperformed the GCN-based model and NCF in terms of perfor-
mance, as the 100K dataset had a great sequential signal, but GCN-based models and NCF
did not utilize this sequential signal. In Delicious, Caser performs the worst because the
CNN used by Caser extracts sequence information that does not exist.
SASRec, ComiSA, FMLP: The above methods have achieved great performance in these
datasets because they capture long-term semantic information through self-attention mecha-
nisms and sequence modeling while using relatively few actions for prediction. In addition,
in sparse datasets the model can focus on information related to the current prediction,
thereby reducing the impact of noise and redundant information. However, the above
methods only focus on the user’s sequential signal and cannot find spatial signals, so their
effectiveness is not as good as that of GES and GSRec.
GES: GES achieved good results in the above datasets because GES combines GCN and
Transformer. However, due to the attempt of GES to make the short-term behavior of users
more significant during GCN, its performance is not as good as FMLP, SASRec, or GSRec
in 100K.
GSRec: In the above datasets, GSRec achieved the best results, and the results can prove the
superiority of GSRec. In addition, we also found that the improvement of NDCG is not as
good as HIT, mainly due to GCN. GCN enables the model to discover more items of interest
to users, resulting in an improvement in HIT. However due to the increasing number
of items that users are interested in, the score difference between each item decreases
and the sorting quality of the recommendation list deteriorates to a certain extent, which
affects NDCG.

Mathematics 2024, 12, 164 13 of 21

Table 3. Performance comparison of all methods on six datasets. The best and the second-best results
are highlighted in boldface and underlined, respectively. Imp denotes the improvement of GSRec
over the best baseline performer.

Model Dataset HIT@5 HIT@10 HIT@20 NDCG@5 NDCG@10 NDCG@20

NCF

100K 57.20 72.35 85.91 44.29 50.14 54.60
Video 30.48 41.14 54.34 33.23 40.65 47.29
Book 25.47 36.45 52.41 28.67 35.68 43.74
Baby 15.03 23.41 36.73 22.51 30.06 39.17
Delicious 17.35 28.20 42.16 22.42 30.54 38.37
LastFM 48.81 58.90 68.89 52.03 56.65 60.72

NGCF

100K 55.30 71.72 85.91 43.28 49.62 54.47
Video 30.22 41.55 55.88 31.14 38.24 45.20
Book 35.75 52.07 67.14 36.34 43.25 49.27
Baby 17.34 27.12 41.28 22.21 29.89 38.78
Delicious 39.21 46.56 56.39 49.61 53.95 58.64
LastFM 62.70 69.41 76.28 66.44 69.90 72.32

LightGCN

100K 54.13 69.81 85.38 37.86 45.21 50.20
Video 38.02 49.84 64.42 38.12 44.85 50.74
Book 41.13 55.14 70.90 35.72 42.93 48.97
Baby 20.89 30.49 43.84 26.38 33.58 41.53
Delicious 52.63 60.10 67.86 60.12 64.38 67.70
LastFM 62.18 70.89 77.87 64.30 68.23 70.88

Caser

100K 59.70 72.43 86.64 44.11 50.12 54.84
Video 34.23 45.65 60.32 41.10 43.03 47.36
Book 47.69 61.74 75.79 38.98 45.75 50.94
Baby 19.95 30.42 46.411 23.46 31.35 39.85
Delicious 10.21 16.65 25.35 19.88 29.62 37.56
LastFM 61.68 68.54 76.05 62.88 66.25 69.05

SASRec

100K 61.28 75.19 88.62 46.70 52.61 56.73
Video 40.47 50.76 63.12 41.90 47.83 53.30
Book 54.17 65.53 77.02 48.24 53.87 57.99
Baby 21.84 31.56 45.30 27.62 35.03 42.77
Delicious 40.53 49.06 58.71 47.25 52.55 56.74
LastFM 68.65 72.73 78.43 76.80 81.90 84.01

ComiSA

100K 57.90 71.76 84.09 45.60 51.23 55.45
Video 31.85 40.02 52.06 41.64 47.08 53.07
Book 42.14 52.77 65.24 43.27 49.19 54.17
Baby 17.81 26.47 39.64 24.57 31.94 40.31
Delicious 38.88 49.47 56.41 47.36 51.84 56.64
LastFM 61.41 67.78 73.19 79.69 81.95 83.81

GES

100K 60.13 74.23 86.74 46.27 52.45 56.41
Video 40.26 51.81 63.67 40.27 46.71 51.86
Book 57.44 68.19 78.12 49.95 55.36 58.31
Baby 23.83 32.88 44.69 31.60 38.69 45.55
Delicious 49.53 56.76 66.59 54.45 58.34 62.38
LastFM 68.81 73.73 77.62 80.73 81.97 82.93

FMLP

100K 61.94 75.26 88.05 46.31 52.34 57.11
Video 40.90 51.64 63.96 43.13 50.02 54.76
Book 53.82 65.13 76.65 48.59 51.13 58.18
Baby 22.59 33.32 46.64 30.02 38.67 44.44
Delicious 43.50 52.38 60.86 50.28 55.51 59.32
LastFM 69.28 73.93 77.86 80.09 81.58 84.01

Mathematics 2024, 12, 164 14 of 21

Table 3. Cont.

Model Dataset HIT@5 HIT@10 HIT@20 NDCG@5 NDCG@10 NDCG@20

GSRec

100K 64.58 78.69 91.73 49.72 55.23 59.32
Video 45.05 57.16 69.18 42.85 49.85 54.50
Book 62.87 74.08 84.34 52.50 57.51 60.84
Baby 27.15 38.08 52.07 31.79 38.76 45.60
Delicious 55.71 62.59 69.82 60.76 64.35 67.41
LastFM 75.35 80.11 84.59 81.18 83.39 85.91

Imp

100K 4.26% 4.60% 3.51% 6.52% 5.01% 3.87%
Video 11.90% 10.33% 8.37% -0.65% -0.34% -0.47%
Book 9.45% 8.64% 7.96% 5.11% 3.88% 4.34%
Baby 13.93% 14.29% 11.67% 0.50% 0.18% 0.11%
Delicious 5.85% 4.14% 2.93% 1.06% 0.11% 0.03%
LastFM 8.69% 7.92% 7.81% 1.07% 1.76% 1.74%

5.6. Ablation Study (RQ2)

In this section, we answer question 2: Do the reverse-order graph and the user embed-
ding affect GSRec? At first, we tried to construct a forward-order graph and add a penalty
factor to items purchased or clicked far back in the adjacency matrix.{

a(ui, ij) = 0.5 + (1− θ × index)/2 ui interact ij

a(ui, ij) = 0 other
(27)

This method is effective in GCN-based models but pays more attention to the recent
behaviors of users, and the effect in GSRec is worse than without the forward-order graph.
This probably places more emphasis on recent behaviors than on holistic behaviors. We
then construct the reverse-order graph and add an incentive factor to items purchased or
clicked far back in the adjacency matrix. The results are shown in Table 4, and we can see
that the effect in GSRec is better than without the reverse-order graph. In these datasets,
the incentive factor improves the effect of the model, which means that it is necessary to
use the reverse-order graph in sequential and sparse datasets.

Table 4. The effect of incentive factor; GSRec-R means the model uses the reverse-order graph and
GSRec-NO-R means the model does not use the reverse-order graph.

Dataset Model HIT@5 HIT@10 HIT@20 NDCG@5 NDCG@10 NDCG@20

Video
GSRec-NO-R 43.79 55.02 67.11 42.68 48.90 54.07
GSRec-R 45.05 57.16 69.18 42.85 49.85 54.50
Imp 2.88% 3.89% 4.02% 0.40% 2.00% 0.80%

Book
GSRec-NO-R 62.70 73.89 84.18 52.12 57.29 60.64
GSRec-R 62.87 74.08 84.34 52.50 57.51 60.84
Imp 0.27% 0.26% 0.19% 0.73% 0.38% 0.33%

Baby
GSRec-NO-R 26.93 37.08 51.00 30.76 38.69 45.55
GSRec-R 27.15 38.08 52.07 31.79 38.76 45.6
Imp 0.82% 2.70% 2.10% 3.34% 1.84% 1.15%

LastFM
GSRec-NO-R 73.57 78.38 82.76 79.05 81.17 82.93
GSRec-R 74.11 78.81 83.35 81.18 83.28 84.79
Imp 0.73% 0.55% 0.71% 2.69% 2.60% 2.24%

To investigate whether user embedding works in Transformer, we compare GSRec-
NO-USER and GSRec. Table 5 summarizes the experimental results. This table shows that
user embedding benefits our model in datasets where the number of users is more than the
number of items.

Mathematics 2024, 12, 164 15 of 21

Table 5. The effect of the user embeddings; GSRec-U means the model uses the user embeddings and
GSRec-NO-U means the model does not use the user embeddings.

Dataset Model HIT@5 HIT@10 HIT@20 NDCG@5 NDCG@10 NDCG@20

100K
GSRec-NO-U 63.20 76.88 89.61 47.51 53.60 57.43
GSRec-U 64.58 78.69 91.73 49.72 55.23 59.32
Imp 2.18% 2.35% 2.37% 4.65% 3.04% 3.29%

Delicious
GSRec-NO-U 55.29 62.21 69.53 59.78 63.32 66.17
GSRec-U 55.71 62.59 69.82 60.76 64.35 67.41
Imp 0.76% 0.61% 0.42% 1.64% 1.63% 1.87%

LastFM
GSRec-NO-U 73.57 78.38 82.76 79.05 81.17 82.93
GSRec-U 75.30 79.57 83.95 80.09 82.17 84.76
Imp 2.35% 1.52% 1.44% 1.32% 1.23% 2.21%

5.7. Parameter Sensitivity Analysis (RQ3)

In this section, we answer question 3: How do different hyper-parameter settings
affect GSRec? In order to answer RQ3, we mainly analyze the dimension of the embeddings,
the depth of GCN layers, and the number of Transformer blocks. We use the Sum metrics.

Sum = HIT@5 + HIT@10 + HIT@20 + NDCG@5 + NDCG@10 + NDCG@20 (28)

Influence of the embedding dimension: As can be seen from Figure 3, the embedding
dimension is tuned from [8, 16, 32, 64, 128]. We can find that the change in the embedding
dimension has a specific influence on the quality of the model. When the value is 8, the
result is the worst; this may be because the embedded dimensions are too small, resulting in
the model only learning some of the features from the dataset. The results are better when
gradually increasing to 64, and when the value is 128 the effect in some datasets is worse
than 64. When the embedding dimension is too large, the model becomes too complex
and overfitting may occur. On the other hand, as the embedding dimension increases, the
number of model parameters also increases, making it hard to optimize the model. In
addition, if the embedding dimension is too large, the model may capture more noise and
irrelevant information. Therefore, we believe that the embedding dimension has a specific
impact on the model. With the increase of the embedding dimension, the training time also
increases, so we choose the embedding size of 64.

Figure 3. Influence of the embedding dimension.

Influence of the number of GCN layers: To research whether the number of GCN
layers is helpful for our model, we change the count of layers, which searches the layer
numbers in the range of [1, 2, 3, 4]. Figure 4 summarizes the experimental results. Through
experiments, we have the following observations. In dense datasets, the model works best
when the layer is 1, and in sparse datasets the model works best when the layer is 2 or 3.

Mathematics 2024, 12, 164 16 of 21

Therefore, the higher the number of layers, the worse the effect of the model. This may be
because too many GCN layers can lead to signal convergence and loss of diversity in node
features, which may have a negative impact on the learning performance of the model. All
in all, we can see that the number of layers has an effect, even though the effect is relatively
small.

Figure 4. Influence of the depth of the GCN layer.

Influence of the number of Transformer blocks: To research whether the number of
blocks is helpful for our model, we change the count of blocks, which searches the block
numbers in the range of [1, 2, 3]. Figure 5 summarizes the experimental results. Through
the experiments, we obtain the following results. As the number of blocks increases, the
model’s performance will improve at the beginning. When the number of blocks is 1,
the model can only capture partial features of the data. When the number of blocks is
2, the model’s performance is optimal because the depth of the model is moderate and
the number of parameters of the model is also appropriate, which can capture different
features of input data without being too complex. When the number of blocks is 3, the
performance of the GSRec degrades because the number of model parameters increases
and overfitting occurs.

Figure 5. Influence of the number of Transformer blocks.

6. Discussion

GSRec achieved SOTA performance on six datasets, demonstrating the superiority
of GSRec. However, Table 6 shows that GSRec also has some drawbacks, especially
in computational efficiency. Caser, SASRec, ComiSA, GES, and FMLP only used item
embeddings and did not use user embeddings. Therefore, we can see that their models
have fewer parameters and higher computational efficiency, which is particularly evident
in datasets with fewer users. LightGCN and NGCF have a large number of parameters
and poor computational efficiency due to the use of user embeddings. NCF has two user

Mathematics 2024, 12, 164 17 of 21

embeddings and two item embeddings; thus, compared to other models, NCF has the
highest number of parameters and the lowest computational efficiency. GSRec has a large
number of parameters and computational complexity, resulting in low computational
efficiency. This is because GSRec not only uses user and item embeddings, but also uses
Transformers. This leads to its lower real-time performance compared to sequence-based
models or collaborative filtering-based models, making it difficult for it to play a role in
scenarios with high real-time requirements. However, we believe that this difference is not
significant, so it is acceptable in the vast majority of scenarios. In addition, GSRec uses GCN,
which requires recalculating the matrix values when new users enter. In recommendation
systems, the number of model parameters is largely determined by the embeddings and the
embeddings are determined by the number of users and items. Therefore, the more users
and items there are, the larger the parameters of the model. How to design a lightweight
and efficient hybrid recommendation model is our future research direction.

Table 6. Time consumption comparison of all methods on six datasets. The metric is the number of
parameters in the model (Mb).

Model 100K Video Book Baby Delicious LastFM

NCF 0.87 2.15 7.25 7.94 1.24 4.36
NGCF 0.68 1.65 5.47 6.46 0.92 3.54
LightGCN 0.64 1.64 5.46 6.44 0.91 3.52
Caser 0.48 0.47 1.86 1.78 0.52 3.13
SASRec 0.57 0.56 1.95 1.87 0.62 3.22
ComiSA 0.59 0.58 2.02 1.93 0.67 3.31
GES 0.73 0.72 1.98 1.91 0.77 3.27
FMLP 0.52 0.52 1.91 1.84 0.61 3.12
GSRec 0.82 1.66 5.48 6.46 1.07 3.54

As for the cold start problem, the focus of GSRec is to combine the long-term and short-
term interests of users. GSRec does not focus on the cold start problem in recommendation
systems, but compared to sequential recommendation models GSRec can alleviate the
cold start problem to some extent. When a new user enters, GSRec cannot understand
their interests as they have not purchased or browsed related items. A usual method for
this is to recommend popular items. When a user purchases an item, GSRec calculates
the similarity between the new user and the user who has purchased the item through
GCN and predicts which items the new user may like based on the similarity. In summary,
GSRec is not meant to solve the cold start problem, but rather to address the combination
of long-term and short-term interests. The commonly used methods for cold start problems
include providing non-personalized recommendations, utilizing information provided by
new users during registration and content-based recommendations, and by adopting quick
probing strategies.

Since the dataset we are using has excluded users with behavior of less than 4, we will
recommend users with behavior equal to 4 to evaluate whether the model can have good
recommendation performance under cold start conditions. Due to the relatively dense
nature of the 100K and LastFM datasets, we chose to use Video, Baby, Book, and Delicious
as the test datasets. The baselines we selected were LightGCN, SASRec, GES, and Caser.
It should be emphasized that these baselines and GSRec are not designed to solve the
cold start problem. We also do not believe that the effectiveness of GSRec in cold start
scenarios can exceed that of models specifically designed to solve cold start problems. From
Table 7, we can observe that LightGCN achieved good results in the cold start scenario.
Therefore, compared to the sequence model LightGCN, it can aggregate the information of
neighboring nodes through convolution. The performance of sequence models deteriorates
in cold start scenarios because they can only obtain the user’s data and cannot perform
data augmentation. GSRec achieved the best performance in all four datasets because it
enhanced user embedding information and item embedding information by aggregating

Mathematics 2024, 12, 164 18 of 21

neighboring nodes using GCN, making the embeddings used by Transformer contain
more information.

Table 7. Performance comparison of different methods on four datasets. The best results are
highlighted in boldface and the second-best results are highlighted underlined, respectively. Imp
denotes the improvement of GSRec over the best baseline performer.

DataSet Model HIT@5 HIT@10 HIT@20 NDCG@5 NDCG@10 NDCG@20

Video

LightGCN 41.02 52.03 64.24 41.49 48.16 53.38
Caser 38.21 50.84 65.25 37.20 44.17 50.18
SASRec 37.67 48.88 63.09 38.25 44.28 50.12
GES 39.24 51.82 64.17 41.06 47.03 52.14
GSRec 44.12 56.34 67.14 43.21 52.62 55.77
Imp 7.55% 8.23% 4.51% 4.15% 9.26% 4.48%

Book

LightGCN 49.44 60.90 73.55 45.84 51.32 55.98
Caser 47.61 60.95 75.09 39.75 46.35 51.41
SASRec 48.05 59.42 73.63 42.99 48.76 54.11
GES 50.44 61.53 75.32 44.35 49.60 56.37
GSRec 52.84 63.71 78.17 48.97 54.40 57.63
Imp 4.76% 3.54% 3.78% 6.83% 6.00% 2.95%

Baby

LightGCN 19.33 29.00 41.87 25.52 33.23 41.04
Caser 20.25 29.64 44.13 24.20 32.28 40.56
SASRec 21.04 30.74 45.72 25.7 33.24 41.47
GES 22.80 31.39 44.98 28.95 35.17 43.44
GSRec 25.82 36.21 49.55 30.02 36.12 44.30
Imp 13.24% 15.36% 8.38% 3.59% 2.70% 1.98%

Delicious

LightGCN 16.77 28.31 42.84 24.64 34.05 42.82
Caser 7.38 15.09 28.57 11.45 20.74 30.2
SASRec 12.36 21.03 37.24 19.22 27.5 37.21
GES 14.17 25.57 40.06 22.56 30.47 39.98
GSRec 19.37 31.46 44.29 27.57 37.73 43.08
Imp 15.50% 11.12% 3.38% 11.90% 10.80 0.61%

7. Conclusions

In this work, we propose a novel framework for sequence-based recommendation,
called GSRec. In GSRec, we construct a user–item reverse-order graph from the interaction
between users and items, and we use an incentive factor to make the model more focused
on the long-term behaviors of users. In addition, we try to capture the transfer information
for the sequence of items. Transformer is developed to encode sequential signals. Finally,
learned item embedding is used to make the final recommendation. We conduct experi-
ments on six existing datasets showing that our method is more advanced than the current
SOTA methods.

Author Contributions: Data curation, X.M.; formal analysis, X.M. and X.Y.; methodology, X.M., L.Z.
and X.K.; resources, J.T.; supervision, X.K.; validation, J.T.; writing—original draft, X.M. and X.K.;
writing—review and editing, J.T., L.Z. and X.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
under Grant 62072409 and Grant 62176234, in part by Key Research Project of ZheJiang Lab under
Grant 2022NF0AC01, in part by the Zhejiang Provincial Natural Science Foundation under Grant
LR21F020003, and in part by the Fundamental Research Funds for the Provincial Universities of
Zhejiang under Grant RF-B2020001.

Data Availability Statement: This research employed publicly available datasets for its experimen-
tal studies.

Conflicts of Interest: The authors declare no conflicts of interest.

Mathematics 2024, 12, 164 19 of 21

References
1. Sun, K.; Qian, T.; Zhong, M.; Li, X. Towards more effective encoders in pre-training for sequential recommendation. World Wide

Web 2023, 26, 2801–2832. [CrossRef]
2. Jiang, N.; Hu, Z.; Wen, J.; Zhao, J.; Gu, W.; Tu, Z.; Liu, X.; Li, Y.; Gong, J.; Lin, F. NAH: Neighbor-aware attention-based

heterogeneous relation network model in E-commerce recommendation. World Wide Web 2023, 26, 2373–2394. [CrossRef]
3. Duan, J.; Zhang, P.F.; Qiu, R.; Huang, Z. Long short-term enhanced memory for sequential recommendation. World Wide Web

2023, 26, 561–583. [CrossRef]
4. Zhu, L.; Zhu, Z.; Zhang, C.; Xu, Y.; Kong, X. Multimodal sentiment analysis based on fusion methods: A survey. Inf. Fusion 2023,

95, 306–325. [CrossRef]
5. Kim, Y.E.; Choi, S.M.; Lee, D.; Seo, Y.G.; Lee, S. A Reliable Prediction Algorithm Based on Genre2Vec for Item-Side Cold-Start

Problems in Recommender Systems with Smart Contracts. Mathematics 2023, 11, 2962. [CrossRef]
6. Chen, Y.; Liu, Z.; Li, J.; McAuley, J.; Xiong, C. Intent contrastive learning for sequential recommendation. In Proceedings of the

ACM Web Conference 2022, Singapore, 13–17 May 2024; pp. 2172–2182. [CrossRef]
7. Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. BERT4Rec: Sequential recommendation with bidirectional encoder

representations from transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, Beijing, China, 3–7 November 2019; pp. 1441–1450. [CrossRef]

8. Zheng, Y.; Gao, C.; Chang, J.; Niu, Y.; Song, Y.; Jin, D.; Li, Y. Disentangling long and short-term interests for recommendation. In
Proceedings of the ACM Web Conference 2022, Virtual, 25–29 April 2022; pp. 2256–2267. [CrossRef]

9. Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L. Factorizing personalized markov chains for next-basket recommendation.
In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 811–820.
[CrossRef]

10. He, R.; McAuley, J. Fusing similarity models with markov chains for sparse sequential recommendation. In Proceedings of
the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 191–200.
[CrossRef]

11. Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; Tikk, D. Session-based Recommendations with Recurrent Neural Networks. In
Proceedings of the 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016.
[CrossRef]

12. Tang, J.; Wang, K. Personalized top-n sequential recommendation via convolutional sequence embedding. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining, Marina Del Rey, CA, USA, 5–9 February 2018;
pp. 565–573. [CrossRef]

13. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [CrossRef]

14. Liu, Q.; Zeng, Y.; Mokhosi, R.; Zhang, H. STAMP: Short-term attention/memory priority model for session-based recommendation.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23
August 2018; pp. 1831–1839. [CrossRef]

15. Kang, W.C.; McAuley, J. Self-attentive sequential recommendation. In Proceedings of the 2018 IEEE International Conference on
Data Mining (ICDM), Singapore, 17–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 197–206. [CrossRef]

16. Li, J.; Wang, Y.; McAuley, J. Time interval aware self-attention for sequential recommendation. In Proceedings of the 13th
International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February 2020; pp. 322–330. [CrossRef]

17. Cen, Y.; Zhang, J.; Zou, X.; Zhou, C.; Yang, H.; Tang, J. Controllable Multi-Interest Framework for Recommendation. In
Proceedings of the KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual, 23–27
August 2020; Gupta, R.; Liu, Y.; Tang, J.; Prakash, B.A., Eds.; Association for Computing Machinery: New York, NY, USA, 2020.
[CrossRef]

18. Bai, T.; Du, P.; Zhao, W.X.; Wen, J.; Nie, J. A Long-Short Demands-Aware Model for Next-Item Recommendation. arXiv 2019,
arXiv:1903.00066. [CrossRef]

19. Peng, B.; Ren, Z.; Parthasarathy, S.; Ning, X. HAM: Hybrid Associations Model with Pooling for Sequential Recommendation.
IEEE Trans. Knowl. Data Eng. 2020, 34, 4838–4853. [CrossRef]

20. Lee, D.D.; Seung, H.S. Algorithms for Non-Negative Matrix Factorization. In Proceedings of the NIPS’00: 13th International
Conference on Neural Information Processing Systems, Denver, CO, USA, 1 January 2000; pp. 535–541. [CrossRef]

21. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L.B. Bayesian personalized ranking from implicit feedback. In
Proceedings of the 25 Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18–21 June 2009; pp. 452–461.

22. Li, X.; She, J. Collaborative variational autoencoder for recommender systems. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 305–314.
[CrossRef]

23. Wang, X.; He, X.; Wang, M.; Feng, F.; Chua, T.S. Neural graph collaborative filtering. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 165–174.
[CrossRef]

http://doi.org/10.1007/s11280-023-01163-1
http://dx.doi.org/10.1007/s11280-023-01147-1
http://dx.doi.org/10.1007/s11280-022-01056-9
http://dx.doi.org/10.1016/j.inffus.2023.02.028
http://dx.doi.org/10.3390/math11132962
http://dx.doi.org/10.1145/3485447.3512090
http://dx.doi.org/10.1145/3357384.3357895
http://dx.doi.org/10.1145/3485447.3512098
http://dx.doi.org/10.1145/1772690.1772773
http://dx.doi.org/10.1109/ICDM.2016.0030
http://dx.doi.org/10.48550/arXiv.1511.06939
http://dx.doi.org/10.1145/3159652.3159656
http://dx.doi.org/10.5555/3295222.3295349
http://dx.doi.org/10.1145/3219819.3219950
http://dx.doi.org/10.1109/ICDM.2018.00035
http://dx.doi.org/10.1145/3336191.3371786
http://dx.doi.org/10.1145/3394486.3403344
https://doi.org/10.48550/arXiv.1903.00066
http://dx.doi.org/10.1109/TKDE.2021.3049692
http://dx.doi.org/10.1007/978-3-642-23241-1_6
http://dx.doi.org/0.1145/3097983.3098077
http://dx.doi.org/10.1145/3331184.3331267

Mathematics 2024, 12, 164 20 of 21

24. He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual, 25–30 July 2020; pp. 639–648. [CrossRef]

25. Liu, F.; Cheng, Z.; Zhu, L.; Gao, Z.; Nie, L. Interest-aware Message-Passing GCN for Recommendation. In Proceedings of the
WWW ’21: The Web Conference 2021, Virtual, 19–23 April 2021; Leskovec, J., Grobelnik, M., Najork, M., Tang, J., Zia, L., Eds.;
Association for Computing Machinery: New York, NY, USA, 2021; pp. 1296–1305. [CrossRef]

26. Liang, D.; Krishnan, R.G.; Hoffman, M.D.; Jebara, T. Variational autoencoders for collaborative filtering. In Proceedings of the
2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 689–698. [CrossRef]

27. Wang, X.; Wang, R.; Shi, C.; Song, G.; Li, Q. Multi-component graph convolutional collaborative filtering. Proc. Aaai Conf. Artif.
Intell. 2020, 34, 6267–6274. [CrossRef]

28. Xia, F.; Sun, K.; Yu, S.; Aziz, A.; Wan, L.; Pan, S.; Liu, H. Graph learning: A survey. IEEE Trans. Artif. Intell. 2021, 2, 109–127.
[CrossRef]

29. Zhang, Y.; Shen, G.; Han, X.; Wang, W.; Kong, X. Spatio-Temporal Digraph Convolutional Network Based Taxi Pick-Up Location
Recommendation. IEEE Trans. Ind. Inform. 2022, 19, 394–403. [CrossRef]

30. Shen, G.; Tan, J.; Liu, Z.; Kong, X. Enhancing interactive graph representation learning for review-based item recommendation.
Comput. Sci. Inf. Syst. 2022, 19, 573–593. [CrossRef]

31. Liu, T.; Lou, S.; Liao, J.; Feng, H. Dynamic and Static Representation Learning Network for Recommendation. IEEE Trans. Neural
Netw. Learn. Syst. 2022. [CrossRef] [PubMed]

32. Zhang, X.; Wang, Z.; Du, B. Graph-aware collaborative reasoning for click-through rate prediction. World Wide Web 2023,
26, 967–987. [CrossRef]

33. Xu, D.; Ruan, C.; Korpeoglu, E.; Kumar, S.; Achan, K. Inductive representation learning on temporal graphs. arXiv 2020,
arXiv:2002.07962. [CrossRef]

34. Ma, C.; Ma, L.; Zhang, Y.; Sun, J.; Liu, X.; Coates, M. Memory augmented graph neural networks for sequential recommendation.
Proc. Aaai Conf. Artif. Intell. 2020, 34, 5045–5052. [CrossRef]

35. Zheng, Y.; Gao, C.; Chen, L.; Jin, D.; Li, Y. DGCN: Diversified Recommendation with Graph Convolutional Networks. In
Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 401–412. [CrossRef]

36. Zhang, M.; Wu, S.; Gao, M.; Jiang, X.; Xu, K.; Wang, L. Personalized graph neural networks with attention mechanism for
session-aware recommendation. IEEE Trans. Knowl. Data Eng. 2020, 34, 3946–3957. [CrossRef]

37. Qu, S.; Yuan, F.; Guo, G.; Zhang, L.; Wei, W. CmnRec: Sequential Recommendations with Chunk-accelerated Memory Network.
IEEE Trans. Knowl. Data Eng. 2022, 35, 3540–3550. [CrossRef]

38. Huang, J.; Zhao, W.X.; Dou, H.; Wen, J.R.; Chang, E.Y. Improving sequential recommendation with knowledge-enhanced memory
networks. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval,
Ann Arbor, MI, USA, 8–12 July 2018; pp. 505–514. [CrossRef]

39. Yuan, J.; Song, Z.; Sun, M.; Wang, X.; Zhao, W.X. Dual Sparse Attention Network For Session-based Recommendation. Proc. Aaai
Conf. Artif. Intell. 2021, 35, 4635–4643. [CrossRef]

40. Wang, R.; Wu, Z.; Lou, J.; Jiang, Y. Attention-based dynamic user modeling and deep collaborative filtering recommendation.
Expert Syst. Appl. 2022, 188, 116036. [CrossRef]

41. Tan, Q.; Zhang, J.; Liu, N.; Huang, X.; Yang, H.; Zhou, J.; Hu, X. Dynamic Memory based Attention Network for Sequential
Recommendation. Proc. Aaai Conf. Artif. Intell. 2021, 35, 4384–4392. [CrossRef]

42. Hsu, C.; Li, C. RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation. In
Proceedings of the WWW ’21: The Web Conference 2021, Virtual, 19–23 April 2021; Leskovec, J., Grobelnik, M., Najork, M., Tang,
J., Zia, L., Eds.; Association for Computing Machinery: New York, NY, USA, 2021; pp. 2968–2979. [CrossRef]

43. Zhu, T.; Sun, L.; Chen, G. Graph-based Embedding Smoothing for Sequential Recommendation. IEEE Trans. Knowl. Data Eng.
2021, 35, 496–508. [CrossRef]

44. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
[CrossRef]

45. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 30,
1–11.

46. Zhu, H.; Feng, F.; He, X.; Wang, X.; Li, Y.; Zheng, K.; Zhang, Y. Bilinear Graph Neural Network with Neighbor Interactions. In
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, Yokohama, Japan, 7–15
January 2021; pp. 1452–1458. [CrossRef]

47. Liao, J.; Zhou, W.; Luo, F.; Wen, J.; Gao, M.; Li, X.; Zeng, J. SocialLGN: Light graph convolution network for social recommendation.
Inf. Sci. 2022, 589, 595–607. [CrossRef]

48. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [CrossRef]

49. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [CrossRef]

http://dx.doi.org/10.1145/3397271.3401063
http://dx.doi.org/10.1145/3442381.3449986
http://dx.doi.org/10.1145/3178876.3186150
http://dx.doi.org/10.1609/aaai.v34i04.6094
http://dx.doi.org/10.1109/TAI.2021.3076021
http://dx.doi.org/10.1109/TII.2022.3181045
http://dx.doi.org/10.2298/CSIS210228064S
http://dx.doi.org/10.1109/TNNLS.2022.3177611
http://www.ncbi.nlm.nih.gov/pubmed/35653447
http://dx.doi.org/10.1007/s11280-022-01050-1
https://doi.org/10.48550/arXiv.2002.07962
http://dx.doi.org/10.1609/aaai.v34i04.5945
http://dx.doi.org/10.1145/3442381.3449835
http://dx.doi.org/10.1109/TKDE.2020.3031329
http://dx.doi.org/10.1109/TKDE.2022.3141102
http://dx.doi.org/10.1145/3209978.3210017
http://dx.doi.org/10.1609/aaai.v35i5.16593
http://dx.doi.org/10.1016/j.eswa.2021.116036
http://dx.doi.org/10.1609/aaai.v35i5.16564
http://dx.doi.org/10.1145/3442381.3449957
http://dx.doi.org/10.1109/TKDE.2021.3073411
https://doi.org/10.48550/arXiv.1609.02907
http://dx.doi.org/10.24963/ijcai.2020/202
http://dx.doi.org/10.1016/j.ins.2022.01.001
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.48550/arXiv.1207.0580

Mathematics 2024, 12, 164 21 of 21

50. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182. [CrossRef]

51. Zhou, K.; Yu, H.; Zhao, W.X.; Wen, J.R. Filter-enhanced MLP is all you need for sequential recommendation. In Proceedings of
the ACM Web Conference 2022, Virtual, 25–29 April 2022; pp. 2388–2399. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3038912.3052569
http://dx.doi.org/10.1145/3485447.3512111

	Introduction
	Related Work
	Sequence-Based Recommendation
	GCN-Based Recommendation
	Hybrid Recommendation

	Preliminaries
	Methodology
	Problem Statement
	GCN Components
	Sequential Encoder with Transformer
	Learning

	Experiment
	Datasets
	Evaluation Metric
	Baselines
	Parameter Setting
	Performance Comparison (RQ1)
	Ablation Study (RQ2)
	Parameter Sensitivity Analysis (RQ3)

	Discussion
	Conclusions
	References

