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Abstract: The article is devoted to the analytical and numerical study of the pattern of propagation
and attenuation, due to Coulomb friction, of shear waves in an infinite elastic thin plate with a
circular orifice of radius r0 lying on a rough base. Considering the friction forces and their influence
on the sample of wave propagation in extended rods or thin plates is important for calculating
the stress–strain state in them and the size of the area of motion. An exact analytical solution of a
nonlinear boundary value problem for tangential stresses and velocities is obtained in quadratures
by the Laplace transform, with respect to time. It turned out that the complete exhaustion of the
wave front of a strong rupture occurs at a finite distance r∗ from the center of the orifice, and an
elementary formula is given for this distance (the case of tangential shock stresses suddenly applied
to the orifice boundary is considered). For various ratios of the magnitude of the limiting friction
force to the amplitude of the applied load, the stopping (trailing) wave fronts are calculated. After
passing them, a state of static equilibrium between the elastic and friction forces with a nonlinear
distribution of residual stresses is established in the region r0 ≤ r ≤ r∗. For the first time, a precise
analytical solution was obtained for the boundary value problem of the propagation of elastic shear
waves in an infinite isotropic space with a cylindrical cavity, when a tangential shock load is set on
its surface.

Keywords: shear wave; dry friction; elastic plate with orifice; non-linear partial equations; residual
stresses; trailing wave front
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1. Introduction

In engineering practice, important tasks often arise for bodies whose transverse di-
mensions are significantly smaller than longitudinal ones (rods, plates, etc.). Wave motion
in such objects drastically depends on the dynamic contact interaction of these bodies
with the environment. Such tasks include, for example, the calculation of pile driving,
the interaction of an underground pipeline with the ground, various friction devices—for
example, clutch discs in cars. The determining role in such devices is played by the friction
force that occurs on the contact surfaces both during wave motion and at its completion.
The pattern of propagation and attenuation of elastic waves significantly depends on the
magnitude of the friction force that attracts the close attention of researchers. For example,
dynamics of elastic rods considering the dry friction law interaction with surrounding
media is studied in [1]. The monograph [2] provides a detailed review of papers published
before 1997 and devoted to interaction of an elastic rod and a rigid medium with a constant
dry friction force acting on the contact surface in the presence of relative motion. The
mentioned monograph presents exact analytical solutions to the problems of statics and
dynamics of elastic and elastoplastic bodies with dry friction, as well as modeling of impact
on a pipeline located in an elastic medium. A non-linear mathematical model of dynamic
processes that appear under the stuck drill string release, using pulse installations with
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consideration of the internal and external friction, is developed in [3]. Authors of [3] found
that the dry friction arising on the interaction surfaces of the drill string and the drill mud
has a significant influence on the longitudinal wave propagation in the drill string. Elastic
wave propagation in a cylindrical body in the presence of Coulomb friction on the contact
surface with another nondeformable body and induced by the propagating wave parame-
ters is considered in [4]. It is shown that the accumulation of elastic energy in sliding plates
on both sides of the fault can cause fluctuations in the sliding velocity, even with constant
friction [5]. The authors of [6] study the problem of longitudinal wave propagation in an
elastic rod attached to a locally damaged foundation through a thin elastic layer. In [7], an
exact solution to the problem of the wave motion of a semi-infinite rod interacting with
a surrounding elastic medium according to the dry friction law under the action of an
exponentially dropping dynamic load on the butt of the rod and under a finite mass impact
by a rigid body is obtained. It should be noted that there are no articles in the literature
known to us where dynamic problems for plates on a rough base are considered.

In this paper, an exact analytical solution is given in quadratures to the boundary
value problem of the propagation of elastic shear waves in a thin plate having a circular
orifice. The plate is pressed against a rough base by uniform pressure and suddenly applied
constant loading acts at the boundary of the orifice. Due to the braking action of friction
forces, the shear wave gradually degenerates at a finite distance from the orifice. The radius
and the moment of time of complete exhaustion of the elastic wave front are determined.
For various values of the ratio of the specific friction force to the load magnitude, the
trailing (stopping) fronts of the elastic wave are found. After the passage of these fronts, a
state of statical equilibrium occurs between the elastic and dry friction forces in the annular
region of the plate adjacent to the orifice. Along the way, formulas for the originals of some
Laplace transformants are obtained, which are not found in the known literature.

2. Setting of the Boundary Value Problem

Consider an infinite elastic homogeneous plate of constant thickness h, with a circular
cutout of radius r0, lying on a hard, rough base and interacting with it according to
Coulomb’s dry friction law (Figure 1). In the case where there is a slip between the plate
and the base, a friction force will act on an arbitrary part of the contact surface of area S,
the magnitude of which is equal in modulus fNS, where N—pressure on the plate and
f —the coefficient of friction between the materials of the plate and the base. In the absence
of slippage, the friction force takes on some values, generally speaking, not the same at
different points of the plate, but not exceeding the absolute value of the limit.
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Figure 1. Plate with a circular orifice on the rough base: (a) Plate cross section. (b) View from above. 
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Figure 1. Plate with a circular orifice on the rough base: (a) Plate cross section. (b) View from above.

In the problem under consideration, as well as in [1–6], we will consider the limiting
friction force to be constant. In the case when h is small compared to the characteristic
propagation length of the elastic pulse, the stress change over the thickness of the plate
can be neglected and the friction force can be considered as a volumetric one with density
η = f N/h.
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Let us choose the beginning of the polar coordinate system in the center of the cutout
(Figure 1). Prior to the application of the load, we consider the plate to be at rest, unstressed
and undeformed. At time t = 0, tangential forces are applied instantly to the boundary
of the orifice r = r0 so that the magnitude of these forces does not depend on the polar
angle and is maintained constant in time. Then, due to the symmetry of the problem, the
tangential stresses τ(r,t) and the transversal velocity v(r,t) satisfy the following system of
partial differential equations:

∂τ
∂r + 2 τ

r = ∂v
∂t + κq,

∂τ
∂t = ∂v

∂r −
v
r .

(1)

Dimensionless variables and quantities are used here: the stress is related to the shear
modulus µ of the plate material, the velocity is related to the velocity of transverse elastic
waves cτ =

√
µ/ρ (ρ—the plate material density), the radial coordinate r is related to the

radius of the hole r0, time t—by the time the shear wave travels a distance equal to the
radius of the hole r0, and the friction parameter q = r0 f N/(hµ) = r0η/µ is introduced.
The value of κ in the case of motion coincides with the sign of velocity, and in the case of
rest, takes some values from the interval (−1;1), depending on the radial coordinate of the
circular cross section under consideration, and is determined further from the solution of
the problem.

We assume that in the presence of motion v(r,t) > 0. Then, in (1), it should be put
κ = H(t − r + 1), since in the area before of the elastic wave front t = r − 1, the friction
force is zero (here, H(x) is the Heaviside function). In the accepted notations, the initial and
boundary conditions acquire, respectively, the form:

τ = v = κ = 0 at t = 0, r > 1, (2)

τ = −τ0H(t) at r = 1, t ≥ 0. (3)

where τ0—positive dimensionless constant.

3. Solution of the Boundary Value Problem
3.1. Laplace Transform

The solution of the boundary value problem (1)–(3) is sought using the Laplace time
transform method. Applying the transform to the equations of system (1) and bound-
ary condition (3), and also taking into account (2), we obtain a system of two ordinary
differential equations with respect to images of stress T(r,p) and velocity V(r,p):

dT
dr + 2 T

r − q e−p(r−1)

p = pV,
pT = dV

dr − V
r ,

(4)

where

T(r, p) =
∞∫

0

τ(r, t)e−ptdt, V(r, p) =
∞∫

0

v(r, t)e−ptdt, (5)

and p is the transform parameter.
The boundary condition (3) in the images takes the form:

T(1, p) = −τ0

p
. (6)

3.2. Getting a Solution in Images

From (4), it is easy to obtain second-order ordinary differential equations for transfor-
mants T(r,p) and V(r,p):

d2T
dr2 +

1
r

dT
dr

−
(

p2 +
4
r2

)
T = −q

(
1 +

1
rp

)
e−p(r−1), (7)
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d2V
dr2 +

1
r

dV
dr

−
(

p2 +
1
r2

)
V = qe−p(r−1). (8)

Let us introduce a new variable y instead of r by the formula: y = pr. In this case,
Equations (7) and (8) will be rewritten as:

d2T
dy2 +

1
y

dT
dy

−
(

1 +
22

y2

)
T = − q

p2

(
1 +

1
y

)
ep−y, (9)

d2V
dy2 +

1
y

dV
dy

−
(

1 +
1
y2

)
V =

q
p2 ep−y. (10)

The homogeneous equations corresponding to (9) and (10) are Bessel differential
equations, and their general solutions vanishing at infinities, y → +∞, r → +∞ , are
represented [8] as:

T0(y, p) = A × K2(y), V0(y, p) = B × K1(y), (11)

where Kn(y)—MacDonald function of order n.
Partial solutions of Equations (9) and (10) have the following form:

Tp(y, p) =
q

3p2 yep−y, Vp(y, p) = − q
3p2 yep−y. (12)

Returning to the variable r, taking into account (11) and (12), we arrive at the general
solution of Equations (9) and (10), respectively, in the form:

T(r, p) = A × K2(pr) +
qr
3p

e−p(r−1), (13)

V(r, p) = B × K1(pr)− qr
3p

e−p(r−1). (14)

To find the constants A and B in the solutions (13) and (14), we use the boundary con-
dition (6) and the second of Equation (4). As a result, we obtain the following expressions
for stress and velocity transformants:

T(r, p) = −
(

τ0 +
q
3

)K2(pr)
pK2(p)

+
qr
3p

e−p(r−1), (15)

V(r, p) =
(

τ0 +
q
3

)K1(pr)
pK2(p)

− qr
3p

e−p(r−1). (16)

For the transition from T(r, p) and V(r, p) to τ(r, t) and v(r, t) in Formulas (15) and
(16), it is necessary to calculate the originals of the functions of a complex variable p:

f1(p) =
K1(pr)
pK2(p)

, f2(p) =
K2(pr)
pK2(p)

, (17)

which, apparently, are not found in the known literature. The originals of the additional
terms in Formulas (15) and (16) have the form:

qr
3p

e−p(r−1) ↔ qr
3

H(t − r − 1). (18)

3.3. Inversion of Laplace’s Images

To determine the originals of the images (17), we will perform contour integration.
The MacDonald function Kn(z) (n ∈ Z) of the complex variable z is analytic on the entire
complex plane, with a cut along the negative part of the real axis [8]. Consider the closed
contour ACDEFA (Figure 2), consisting of arcs BC and FA of a large circle of radius R
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centered at point p = 0 of the complex plane p, as well as an arc DE of a small circle of radius
ε centered at the same point, a segment AB of a vertical line p = γ + i∞ (here γ > 0) and the
shores of the CD and EF cuts. The MacDonald function K2(p) inside the specified contour,
bypassed so that the area it bounds remains on the left, has only two complex-conjugate
zeros [8]:

z0 = −x0 + iy0, z0 = −x0 − iy0. (19)

The values of x0 and y0 with an accuracy of nine significant digits after the decimal
point are equal [9]:

x0 = 1.28137380, y0 = 0.429484965. (20)
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We apply the residue theorem [10] to functions f1(p)ept and f2(p)ept that are unam-
biguous and analytic inside a closed contour ABCDEF, with the exception of points p = z0
and p = z0, in which both functions have simple poles. At the same time, we have:

1
2πi

∫
ABCDEFA

K1(pr)
pK2(p)

eptdp = ∑
p = z0
p = z0

Res
K1(pr)
pK2(p)

ept, (21)

1
2πi

∫
ABCDEFA

K2(pr)
pK2(p)

eptdp = ∑
p = z0
p = z0

Res
K2(pr)
pK2(p)

ept. (22)

First, we transform the integral in (22), dividing it into integrals along smooth contour
pieces. Since on the arcs BC and FA we have, respectively:

p = Reiφ, arctg
R
γ

< φ < π,

p = Reiφ, −π < φ < −arctg
R
γ

and dp = ipdφ; then, tending the radius R to infinity and taking into account the asymp-
totics of Kn(z) under |z| → ∞ [8]:

Kn(z) ≃
√

π

2z
e−z,
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by Jordan’s lemma [11] we will have under t > r − 1:

1
2πi lim

R→+∞

∫
BC

f2(p)eptdp = 1
2πi lim

R→+∞

π∫
arctan R

γ

iK2(rReiφ)
K2(Reiφ)

etReiφ
dφ =

1
2π

π∫
π
2

lim
R→+∞

[√
π

2rReiφ e−rReiφ
√

2Reiφ

π eReiφ
etReiφ

]
dφ = 1

2π
√

r

π∫
π
2

lim
R→+∞

e(t−r+1)Reiφ
dφ = 0,

(23)

1
2πi

lim
R→+∞

∫
FA

f2(p)eptdp =
1

2π
√

r

− π
2∫

−π

lim
R→+∞

e(t−r+1)Reiφ
dφ = 0. (24)

In exactly the same way, we get:

1
2πi

lim
R→+∞

∫
BC

f1(p)eptdp = 0,
1

2πi
lim

R→+∞

∫
FA

f1(p)eptdp = 0 under t > r − 1. (25)

On the contour DE of a small circle, we have p = εeiφ, where φ decreases from π to −π.
Tending the radius ε to zero and considering that K1(z) ∼ 1

z , K2(z) ∼ 2
z2 under |z| → 0,

we have:
1

2πi lim
ε→0

∫
DE

f2(p)eptdp = 1
2πi lim

ε→0

−π∫
π

iK2(rεeiφ)
K2(εeiφ)

etεeiφ
dφ =

1
2π lim

ε→0

−π∫
π

etεeiφ

r2 dφ = 1
2πr2 lim

ε→0

−π∫
π

dφ = − 1
r2 ,

(26)

1
2πi lim

ε→0

∫
DE

f1(p)eptdp = 1
2π lim

ε→0

−π∫
π

K1(rεeiφ)
K2(εeiφ)

etεeiφ
dφ =

1
2π lim

ε→0

−π∫
π

1
rεeiφ

ε2e2iφ

2 etεeiφ
dφ = 1

4πr lim
ε→0

−π∫
π

εetεeiφ
eiφdφ = 0.

(27)

Let us now consider integrals along the shores of the cut CD and EF. Noticing that:

p = zeiπ , ε < z < R along CD; p = ze−iπ , ε < z < R along EF, (28)

and considering the relation Kν

(
ze±πi) = e∓νπiKν(z)∓ πiIν(z) known in the theory of

Bessel functions [8], where z ∈ R+, and Iν(z) is the Bessel function of an imaginary
argument of order ν, we obtain a series of equalities:

K2

(
zeπi

)
= K2(z)− πiI2(z), K2

(
ze−πi

)
= K2(z) + πiI2(z),

K1

(
zeπi

)
= −K1(z)− πiI1(z), K1

(
ze−πi

)
= −K1(z) + πiI1(z), z ∈ R+. (29)

Taking into account (28) and (29), we make the necessary calculations:

1
2πi lim

ε → 0
R → ∞

( ∫
CD

f2(p)eptdp +
∫

EF
f2(p)eptdp

)
=

1
2πi lim

ε → 0
R → ∞

(
ε∫

R

K2(rzeiπ)
zeiπK2(zeiπ)

e−tzeiπdz +
R∫
ε

K2(rze−iπ)
ze−iπK2(ze−iπ)

e−tzeiπdz

)
=

1
2πi

(
0∫

∞

K2(rz)−πiI2(rz)
K2(z)−πiI2(z)

e−tz

z dz +
∞∫
0

K2(rz)+πiI2(rz)
K2(z)+πiI2(z)

e−tz

z dz

)
=

−
∞∫
0

K2(rz)I2(z)−I2(rz)K2(z)
K2

2(z)+π2I2
2(z)

e−tz

z dz,

(30)
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1
2πi lim

ε → 0
R → ∞

( ∫
CD

f1(p)eptdp +
∫

EF
f1(p)eptdp

)
=

∞∫
0

K1(rz)I2(z)+I1(rz)K2(z)
K2

2(z)+π2I2
2(z)

e−tz

z dz. (31)

Now let us calculate the sum of residues in (21) and (22). To do this, we need the
following formulas linking the modified Bessel functions and their derivatives:

zK/
ν (z) + νKν(z) = −zKν−1(z). (32)

It is known that if z = z0 is a simple zero of the function ψ(z) and φ(z0) ̸= 0, then we
have [10]: Res

z=z0

φ(z)
ψ(z) =

φ(z0)
ψ/(z0)

.

Therefore, given (32) when ν = 2 and K2(z0) = 0, K2(z0) = 0, we have:

∑
p = z0
p = z0

Res
K2(pr)
pK2(p)

ept =
K2(rz0)

z0K/
2 (z0)

ez0t +
K2(rz0)

z0K/
2 (z0)

ez0t = −2
Re
[
z0K1(z0)K2(rz0)ez0t]
|z0|2|K1(z0)|2

, (33)

∑
p = z0
p = z0

Res
K1(pr)
pK2(p)

ept = −2
Re
[
z0K1(z0)K1(rz0)ez0t]
|z0|2|K1(z0)|2

. (34)

Substituting calculated integrals (23), (24), (26), (27), (30) and (31), and also the
relations (33) and (34) in Formulas (21) and (22) and taking into account that

1
2πi lim

R→+∞

∫
AB

f2(p)eptdp = 1
2πi

γ+i∞∫
γ−i∞

K2(pr)
K2(p) eptdp,

1
2πi lim

R→+∞

∫
AB

f1(p)eptdp = 1
2πi

γ+i∞∫
γ−i∞

K1(pr)
K2(p) eptdp,

we will get new operational relations:

K1(pr)
pK2(p)

↔ −
∞∫

0

K1(rz)I2(z) + I1(rz)K2(z)
K2

2(z) + π2I2
2(z)

e−tz

z
dz − 2

Re
[
z0K1(z0)K1(rz0)ez0t]
|z0|2|K1(z0)|2

, t > r − 1, (35)

K2(pr)
pK2(p)

↔ 1
r2 +

∞∫
0

K2(rz)I2(z)− I2(rz)K2(z)
K2

2(z) + π2I2
2(z)

e−tz

z
dz − 2

Re
[
z0K1(z0)K2(rz0)ez0t]
|z0|2|K1(z0)|2

, t > r − 1. (36)

4. Analysis of the Pattern of Shear Wave Propagation and Discussion
4.1. Determination of True Velocities and Stresses

Since the originals of functions (17) are determined by the relations (35) and (36), then
the transition to the true stresses and velocities in (15) and (16) is not difficult. To shorten
and make numerical calculations easier, we introduce new ratios by formulas:

σ =
τ

τ0
, w =

v
τ0

, α =
q

3τ0
. (37)

Taking into account (37), the formulas for the stress σ and the velocity w in the region
of motion t > r − 1, where the velocity is positive, will be written as follows:

σ(r, t) = αr − 1 + α

r2 + (1 + α)

2
Re
[
z0K1(z0)K2(rz0)ez0t]
|z0|2|K1(z0)|2

−
∞∫

0

K2(rz)I2(z)− I2(rz)K2(z)
K2

2(z) + π2I2
2(z)

e−tz

z
dz

, (38)
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w(r, t) = −αr + (1 + α)

−2
Re
[
z0K1(z0)K1(rz0)ez0t]
|z0|2|K1(z0)|2

−
∞∫

0

K1(rz)I2(z) + I1(rz)K2(z)
K2

2(z) + π2I2
2(z)

e−tz

z
dz

. (39)

In this case, the system (1) written with respect to σ(r,t) and w(r,t) will take the
following form:

∂σ

∂r
+ 2

σ

r
=

∂w
∂t

+ 3ακ, (40)

∂σ

∂t
=

∂w
∂r

− w
r

. (41)

The solutions presented by Formulas (38) and (39) are valid only in that part of the
phase plane (r,t), where w(r,t) > 0.

4.2. Determination of the Stopping Front of Circular Sections of the Plate

Suppose that a curve on which the velocity of circular sections w(r,t) turns to zero is
found, and its equation is

t = φ(r), (42)

at the same time as
w(r, φ(r)) = 0. (43)

Differentiating (43) by the variable r and denoting the acceleration at the leading wave
front as aφ(r) ≡ ∂w+

∂t (r, φ(r)), we find that

∂w+

∂r
(r, φ(r)) = −aφ(r)φ/(r). (44)

Here, the superscript “+” means that partial derivatives are taken from the side of the
domain t > φ(r). From Equations (41) and (42), it is easy to obtain the following relations:

∂σ+

∂r
(r, φ(r)) = −2

σ(r, φ(r))
r

+ aφ(r) + 3ακ,
∂σ+

∂t
(r, φ(r)) =

∂w+

∂r
(r, φ(r)). (45)

Let us introduce the notation

σ∗(r) ≡ σ(r, φ(r)), (46)

differentiating which by the variable r we have:

dσ∗(r)
dr

≡ dσ(r, φ(r))
dr

=
∂σ+

∂t
(r, φ(r))φ/(r) +

∂σ+

∂r
(r, φ(r)). (47)

Substituting the relations (44)–(46) into (47) and expressing acceleration aφ(r) from
the resulting formula, we have:

aφ(r) =
dσ∗(r)

dr + 2 σ∗(r)
r − 3ακ

1 −
(

φ/(r)
)2 . (48)

Now let us assume that a particle located at time t on the line t = φ(r) has a positive
velocity at the next moment of time. Then, it should be aφ(r) > 0 at κ = +1. If this is not
possible, then the second possible variant of motion with a negative velocity is analyzed,
for which the inequality aφ(r) < 0 must be fulfilled at κ = −1. If this also leads to a
contradiction with Formula (48), then consequently aφ(r) = 0, and a static equilibrium is
established between the forces of elasticity and friction in the region t > φ(r), described by
the equation arising from (48):

dσ∗(r)
dr

+ 2
σ∗(r)

r
= 3ακ(r). (49)
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Here σ∗(r) is the residual distribution of tangential stresses after passing the stopping
front t = φ(r) (see the designation (46)). The frictional forces at the moment of stopping
abruptly acquire values less than the maximum dry friction force, depending on the
coordinate r and representing the κ(r)—part of its limiting value, so that the function κ(r)
is determined from Equation (49):

κ(r) =
1

3α

(
dσ∗(r)

dr
+ 2

σ∗(r)
r

)
, |κ(r)| < 1. (50)

Equating the expression (39) for velocity to zero, we obtain an implicit equation
for determining the parametric family of zero velocity curves (by parameter α), i.e., the
stopping (trailing) fronts of an elastic wave:

α

1 + α
=

1
r

−2
Re
[
z0K1(z0)K1(rz0)ez0t]
|z0|2|K1(z0)|2

−
∞∫

0

K1(rz)I2(z) + I1(rz)K2(z)
K2

2(z) + π2I2
2(z)

e−tz

z
dz

. (51)

The zero velocity curves t = φ(r; α) are thus the level lines of the function on the right
side of Equation (51).

Figure 3 shows curves t = φ(r; α), which are stopping (trailing) wave fronts, for
the values of the parameter α equal 1/3, 1/7, 1/9, determined numerically based on
Equation (51) using the Mathematica® application software package (version 13). As
expected, the stopping fronts t = φ(r; α) of the plate sections at lower α (lower friction
force) are located on the phase plane (r,t) above. Thus, the wave motion is carried out only
in a bounded region of the phase plane (r,t), enclosed between the leading front of the
wave t = r − 1 and the stopping front t = φ(r; α), whose position depends on the value of
parameter α.
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Figure 3. Elastic shear wave stopping fronts (trailing wave fronts) depending on the limiting value of
the friction force (parameter α) in the phase plane (r,t).

4.3. Determination of Residual Stresses after Passing the Stop Front

Differentiating expressions (38) and (39) by time t gives under t > r − 1:

∂σ

∂t
(r, t) = (1 + α)

2
Re
[
K1(z0)K2(rz0)ez0t]

|K1(z0)|2
+

∞∫
0

K2(rz)I2(z)− I2(rz)K2(z)
K2

2(z) + π2I2
2(z)

e−tzdz

 (52)
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∂w
∂t (r, t) = −(1 + α)

(
2

Re[K1(z0)K1(rz0)ez0t]
|K1(z0)|2

−
∞∫
0

K1(rz)I2(z)+I1(rz)K2(z)
K2

2(z)+π2I2
2(z)

e−tzdz

)
(53)

Further, since φ/(r; α) = − ∂σ
∂t

∣∣∣
t=φ(r;α)

/
∂w
∂t

∣∣∣
t=φ(r;α)

, and ∂σ
∂t

∣∣∣
r=1, t=φ(1;α)

= 0 (see

Equation (52)), then φ/(1; α) = 0 for any values of α. Consequently, the initial velocity of
propagation of the stopping front t = φ(r; α) is infinite. The analysis of the possibilities of
motion in the region, carried out on the basis of the relation (48), shows that t = φ(r; α) is
the trailing front of an elastic wave, so that after its passage a static equilibrium between
elastic forces and friction forces is established on the plate sections 1 ≤ r ≤ r∗(α), described
by Equation (49). The distribution of residual stresses σ∗(r) after passing the stopping front
is shown in Figure 4 for three values of α.
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Figure 4. The distribution of residual stresses σ∗(r) after the passage of the stopping front of the
elastic shear wave, depending on the limiting friction force (parameter α).

It can be seen from Figure 4 that the larger the parameter α, the faster and on a shorter
distance the residual tangential stresses σ∗(r) decrease modulo from 1 to zero. In the
cross section r = r∗(α), at the moment of time t∗(α) = r∗(α)− 1, a strong discontinuity
degenerates at the leading front of the elastic wave t = r − 1, so that

σ∗(r∗) = 0, w(r∗, t∗) = 0 (54)

and, therefore, r∗(α) is the maximum distance to which transverse elastic waves propagate
in the plate. The value of r∗, as a function of the parameter α, is easy to determine by
integrating the relations between the complete differentials of partial derivatives of the
transversal displacement u(r,t) (v(r, t) = ∂u(r,t)

∂t ) of the circular sections of the plate along the
leading front t = r − 1. It can be shown, using system (1), that u(r,t) satisfies the following
hyperbolic differential equation:

∂2u
∂r2 +

1
r

∂u
∂r

− u
r2 =

∂2u
∂t2 + H(t − r − 1)q. (55)

The characteristics of Equation (55) are straight lines t = ±r + C1,2 and along them,
the characteristic conditions have the form:

dur +
1
r

(
ur −

u
r

)
dr = ±dut + qdr, (56)
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where specified ur ≡ ∂u
∂r , ut ≡ ∂u

∂t = v. Since on the leading front t = r − 1, the following
relations are valid:

u|t=r−1 = 0, ur|t=r−1 + ut|t=r−1 = 0, (57)

then, substituting them in (56), we obtain an ordinary differential equation for determin-
ing the velocity v on this front: 2dv + v

r = −qdr. The solution of the last equation is
v = − A0√

r −
q
3 r, (A0 = const). Using the relation (57) and Hooke’s law τ = ur − u

r , as well
as the boundary condition (3), we find the velocity and stresses at the leading front:

v =
τ0 +

q
3√

r
− q

3
r, τ = −

τ0 +
q
3√

r
+

q
3

r at t = r − 1. (58)

Formula (58) with respect to the variables w and σ can be rewritten in the following
form:

w =
1 + α√

r
− αr, σ = −1 + α√

r
+ αr at t = r − 1. (59)

From condition (54) we find a point on the phase plane where the shear wave is
completely exhausted:

r*(α) = 3

√(
1 +

1
α

)2
, t*(α) = 3

√(
1 +

1
α

)2
− 1. (60)

4.4. Determination of Residual Stresses in the Case of Quasi-Static Loading

In the case of limiting equilibrium, when κ = +1, with quasi-static loading of the plate
with the same load on the orifice boundary as in case of dynamic loading, the stress σstatic
satisfies the equilibrium equation:

dσstatic

dr
+ 2

σstatic

r
= 3α (61)

and the condition at the boundary of the orifice r = 1 is

σstatic = −1. (62)

The solution of the Cauchy problem (61) and (62) is easily obtained and the expression
for σstatic has the form:

σstatic = −1 + α

r2 + αr. (63)

From (63) we find the boundary of the slip region in the case of realization of the
limiting equilibrium:

r∗static(α) =
3

√
1 +

1
α

. (64)

In the general case, when 0 < κ < 1, the length of the slip area is obviously greater than
in the limiting case (64):

r∗static(α) =
3

√
1 +

1
κα

. (65)

Comparing (60) and (64), we conclude that under dynamic loading, the length of the
slip region (the region of motion) is significantly longer than under quasi-static (in the case
of limiting equilibrium). In other words, there is a quadratic relationship between them:
r∗(α) =

(
r∗static(α)

)2.
It should be noted that the essential difference between the problem considered here

and a similar problem for a semi-infinite rod (pipeline) immersed in an elastic Winkler
medium with a friction force on its lateral surface depending on local deformation [7] is
that during quasi-static loading of the rod, slippage between its lateral surface and the



Mathematics 2024, 12, 165 12 of 15

environment occurs throughout the whole length of the rod. Here, for all possible states
of static equilibrium, the area of slippage in the presence of friction is always finite (see
Equation (65)).

4.5. Distribution of Friction Forces after Passing the Stopping Front

The nonlinear distribution of friction forces in the region 1 ≤ r ≤ r∗(α) after passing
the stopping front t = φ(r; α) becomes immediately known as soon as the function κ = κ(r)
is determined by Formula (50). Calculations show that κ(r) does not always monotonically
decrease from its maximum value at the boundary of the orifice r = 1 to the value in cross
sections r = r∗(α). From Formula (50) and the equations of motion (40) and (41), one can
obtain the expression:

κ(r) = 1 +
1

3αaφ(r)

(
a2

φ(r)−
(

∂σ

∂t
(r; φ(r; α))

)2
)

= 1 +
aφ(r)

3α

(
1 −

(
dφ(r; α)

dr

)2
)

. (66)

Acceleration graphs aφ(r) at the stopping front t = φ(r; α) of the plate sections,
determined numerically using the Mathematica® application software package (version 13),
are shown in Figure 5 for the values of the parameter α equal to 1/3, 1/7, 1/9. From
Formula (66), considering that ∂σ

∂t (1; t) = 0, φ/(1; α) = 0, it is possible to obtain values of
κ(r) on the motion region edges depending on the parameter α:

κ(1) = 1 +
aφ(1)

3α
, κ(r∗) = − 3α

4aφ(r∗)
.
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Figure 5. Distribution of accelerations aφ(r) at the stopping front of the elastic shear wave depending
on the limiting friction force (parameter α).

Table 1 shows the values r∗(α)—the distance at which the wave propagates,
t∗(α) = φ(1; α)—the moment when the orifice boundary stops; the magnitudes of
κ(1) and κ(r∗) for various α. Figure 6 shows the dependences of the residual friction
force κ(r) in various sections after passing the stopping front, depending on the magnitude
of the limiting friction force α. It can be seen that the residual friction force does not always
decrease monotonically from its value at the boundary of the orifice to the value in the
elastic wave depletion section. The greatest drop in κ(r) is observed near the boundary of
the hole. At small relative values of the friction force (α = 1/9), noticeable fluctuations of
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the residual friction force are observed in the region of the plate through which the elastic
shear wave passed.

Table 1. Stopping moments t∗(α) of the orifice boundary r = 1; maximum distances r∗(α) at which the
elastic shear wave is depleted; distribution of residual friction forces κ(1) and κ(r∗) at the boundaries
of the motion area.

α t∗(α) r∗(α) κ(1) κ(r∗)

1/3 0.82 2.52 0.35 0.17
1/7 1.15 4.00 0.23 0.11
1/9 1.24 4.64 0.17 0.09
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Figure 6. The distribution of the dimensionless residual friction force κ(r) after passing the stopping
front of the elastic shear wave as a function of the limiting friction force (parameter α).

5. Discussion

The results obtained in this study additionally allow us to establish new mathematical
relations, as well as the solution of an important boundary value problem about a tangential
impact on the surface of a cylindrical cavity in an elastic space.

Assuming t = r − 1 in Formulas (38) and (39) and comparing the obtained relations
with the expressions (59) for σ and w on the leading front of the elastic shear wave, we have
new identities valid for r ≥ 1:

∞∫
0

K2(rz)I2(z)− I2(rz)K2(z)
K2

2(z) + π2I2
2(z)

e−(r−1)z

z
dz =

1√
r
− 1

r2 + 2
Re
[
z0K1(z0)K2(rz0)ez0(r−1)

]
|z0|2|K1(z0)|2

, (67)

∞∫
0

K1(rz)I2(z) + I1(rz)K2(z)
K2

2(z) + π2I2
2(z)

e−(r−1)z

z
dz = − 1√

r
− 2

Re
[
z0K1(z0)K1(rz0)ez0(r−1)

]
|z0|2|K1(z0)|2

, (68)

which are not found, apparently, in the well-known literature. Substitute r = 1 into Formula (68),
then considering the identity K1(z)I2(z) + K2(z)I1(z) = 1/z known in the theory of Bessel
functions [8], it will be written in the following form (see (19)):

∞∫
0

1
K2

2(z) + π2I2
2(z)

1
z2 dz = −1 − 2

Re[z0]

|z0|2
= −1 +

2x0

x2
0 + y2

0
≈ 0.4031872.
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Checking the resulting integral with the help of the NIntegrate utility of the Mathematica®

computing shell (version 13) naturally gives the same result.
If we put α = 0 in expressions (39) and (40), then as a result, we immediately have an

exact solution to the axisymmetric problem of the propagation of shear elastic waves in
an infinite isotropic space with a cylindrical cavity r = 1, when the shock tangent stresses
σ(1,t) = −H(t) are set on its boundary (plane problem):

σ(r, t) =

− 1
r2 + 2

Re
[
z0K1(z0)K2(rz0)ez0t]
|z0|2|K1(z0)|2

−
∞∫

0

K2(rz)I2(z)− I2(rz)K2(z)
K2

2(z) + π2I2
2(z)

e−tz

z
dz

H(t − r + 1), (69)

w(r, t) =

−2
Re
[
z0K1(z0)K1(rz0)ez0t]
|z0|2|K1(z0)|2

−
∞∫

0

K1(rz)I2(z) + I1(rz)K2(z)
K2

2(z) + π2I2
2(z)

e−tz

z
dz

H(t − r + 1). (70)

From Formula (70) it is easy to obtain the law of change of the transversal velocity in
time on the boundary of the cylindrical cavity:

w(1, t) = 2
x0 cos(y0t)− y0 sin(y0t)

x2
0 + y2

0
e−x0t −

∞∫
0

1
K2

2(z) + π2I2
2(z)

e−tz

z2 dz,

so at the moment of time t = 0, the boundary abruptly acquires velocity w(1, 0) = 1. When
t → ∞ , both terms in the last formula tend to zero; that is, the shear wave exponentially
decays in time.

In conclusion, we note that Formula (6) indicates a method for determining the
magnitude of the limiting friction force. Indeed, by measuring the velocity jump w1 in any
circular section r = r1 of the plate at the time of the passage of the leading front t = r − 1,
we easily find the value of α by Formula (59), α =

1−w1
√

r1√
r3

1−1
, and consequently the depletion

coordinate r∗(α) (see Equation (60)) of the leading front of the shear wave.

6. Conclusions

An exact analytical solution of the problem of the propagation of elastic shear waves
in a plate interacting with a rigid rough base according to Coulomb’s dry friction law in
the case of a tangential impact on the surface of a circular hole is obtained. Depending on
the ratio of the specific friction force to the load amplitude, the finite areas of motion in the
plate and the radius of complete exhaustion of the wave front are determined. In the future,
it is projected to consider similar boundary value problems with a different type of load on
the boundary of the hole in the plate.

Awkwardly, there are no articles in known literature where dynamic problems for
plates on a rough base are considered. In the introduction, we analyzed the few articles
considering wave propagation in rods with external friction that are directly or indirectly
related to the subject of research in our work. In [4], for example, the propagation of
a longitudinal but not shear wave in a cylindrical semi-infinite rod surrounded by a
rigid medium is considered, accounting for the dry friction occurring at the interface and
depending on deformation of the cross sections of the rod. A shock load is instantly applied
to the butt of the rod and maintained constant over time. The problem is solved in a
one-dimensional formulation and an analytical solution has been found at the front of the
strong rupture wave for stresses that decrease exponentially with distance from the end
section of the rod. In fact, this solution to a similar problem was first found earlier in my
work [7], and not only at the wave front, but also in the area beyond this front, up to the
stopping front.

Along the way, for the first time, a precise analytical solution was obtained to the
boundary value problem of the propagation of elastic shear waves in an infinite isotropic
space with a cylindrical cavity, when a tangential shock load is set on its surface.
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