
Citation: González-Díaz, Y.;

Martínez-Trinidad, J.F.; Carrasco-

Ochoa, J.A.; Lazo-Cortés, M.S. An

Algorithm for Computing All Rough

Set Constructs for Dimensionality

Reduction. Mathematics 2024, 12, 90.

https://doi.org/10.3390/

math12010090

Academic Editors: Chengyou Wang,

Xiao Zhou, Zhaobin Wang

and Yingchun Guo

Received: 10 October 2023

Revised: 14 November 2023

Accepted: 16 November 2023

Published: 27 December 2023

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Algorithm for Computing All Rough Set Constructs for
Dimensionality Reduction
Yanir González-Díaz 1,* , José Fco. Martínez-Trinidad 1,† , Jesús A. Carrasco-Ochoa 1,†

and Manuel S. Lazo-Cortés 2,†

1 Department of Computer Science, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE),
Puebla 72840, Mexico; fmartine@inaoep.mx (J.F.M.-T.); ariel@inaoep.mx (J.A.C.-O.)

2 Graduate Division, Tecnológico Nacional de México/IT Tlalnepantla, Tlalnepantla de Baz 54070, Mexico;
manuel.lc@tlalnepantla.tecnm.mx

* Correspondence: ygdiaz@inaoep.mx
† These authors contributed equally to this work.

Abstract: In rough set theory, a construct is an attribute subset with the same ability to discern objects
belonging to different classes as the whole set of attributes, while maintaining the similarity between
objects belonging to the same class. Although algorithms for reducts computation can be adapted to
compute constructs, practical problems exist where these algorithms cannot compute all constructs
within a reasonable time frame. Therefore, this paper introduces an algorithm for computing all
constructs of a decision system. The results of experiments with various decision systems (both
artificial and real-world) suggest that our algorithm is, in most cases, faster than the state-of-the-art
algorithms when the simplified binary discernibility–similarity matrix has a density of less than 0.29.

Keywords: rough sets; constructs; fast algorithms; feature selection

MSC: 68T37; 68T30; 68Q25; 68T10

1. Introduction

In rough set theory (RST) [1], constructs [2], like reducts [3], are subsets of attributes
that allow discerning objects belonging to different classes to at least the same extent as the
complete set of attributes, but unlike reducts, constructs also maintain similarity between
objects belonging to the same class. Thus, although constructs are commonly larger than
reducts, they are a better option for building a reduced representation of a decision system
preserving as much knowledge as possible. Constructs can be used to build rule-based
classifiers [4], as feature selectors [5], in problems of reduction of the representation space
of the objects [6], among others.

The most challenging problem related to constructs involves computing all constructs
of a decision system, which is an NP-hard problem (reducible to the Boolean satisfiability
problem (SAT) in polynomial time). On the other hand, computing constructs has been
little explored; only a few studies have proposed methods to compute constructs using
algorithms designed for reducts computation [7,8]. The study presented in [7] is focused on
computing constructs using algorithms that compute reducts working on the discernibility
function. In contrast, the study presented in [8] focuses on computing constructs using
algorithms for reducts computation that operate on the binary discernibility matrix.

Although both works introduce methods that allow computing all constructs using al-
gorithms designed to compute reducts, it is worth mentioning that, for reducts computation,
in most datasets, it is better to operate with the binary discernibility matrix rather than the
discernibility function, since by considering specific properties of Boolean operations and
their bitwise implementations, faster executions of the algorithms can be achieved [9,10].

Mathematics 2024, 12, 90. https://doi.org/10.3390/math12010090 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12010090
https://doi.org/10.3390/math12010090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3492-6958
https://orcid.org/0000-0001-7973-9075
https://orcid.org/0000-0001-6244-2005
https://doi.org/10.3390/math12010090
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12010090?type=check_update&version=1

Mathematics 2024, 12, 90 2 of 19

Because of the above-mentioned, an algorithm for computing all constructs in a
dataset, based on the method described in [8], is introduced in this paper. The algorithm
introduced in this work for computing all constructs uses the concepts of gap elimination
and attribute contribution (denoted as CC-GEAC), which is also used in the most successful
algorithms for reducts computation reported in the literature [10–12]. The CC-GEAC
algorithm introduces a pruning strategy that allows for the a priori discarding of some
attribute subsets. This pruning strategy avoids unnecessary evaluations conducted during
the computation of constructs with the most successful algorithms for reducts computation:
fast-CT_EXT [11], fast-BR [12], and GCreduct [10] following the method described in [8], as
will be demonstrated later. Based on our experiments, it is observed that CC-GEAC, in most
cases, evaluates fewer candidates than the three algorithms above when they calculate all
the constructs following [8].

In summary, the contributions of this paper are as follows:
A new algorithm based on gap elimination and attribute contribution is proposed for

computing all constructs in a binary matrix calculated from a dataset, as described in [8].
This algorithm includes a pruning strategy that allows for the a priori discarding of

more attribute subsets than other pruning strategies (also based on gap elimination and
attribute contribution) used in state-of-the-art algorithms.

The rest of this document is organized as follows: Section 2 reviews the related works.
In Section 3, basic concepts are presented. The CC-GEAC algorithm is introduced in
Section 4. The experiments and results are shown in Section 5, and finally, in Section 6, our
conclusions and some directions for future work are provided.

2. Related Works

Constructs computation has been little explored, as mentioned earlier. This section
reviews the works reported in the literature on this issue.

In [13], the concept of a construct is introduced, and the relation between reducts and
constructs is studied. In this work, Susmaga mentioned that constructs could be computed
using a proper modification of an algorithm for reducts computation. This work adapted
the fast reducts generating algorithm (FRGA) proposed in [14] to compute constructs.

In [7], a new method for computing constructs of a DS is introduced. The method
consists of processing different parts of the object’s pairwise comparison matrix (PCM) [15]
to generate inter-class reducts, intra-class reducts, and constructs. This method has two
phases: in the first phase, empty, repeated, and non-minimal elements (attribute subsets)
with respect to inclusion are eliminated from the PCM; from this phase, the sorted absorbed
pairwise comparison list (SAPCL) is obtained. In the second phase, the SAPCL is provided
as the input to an algorithm for reducts computation. The result of the second phase
constitutes the output of the algorithm (i.e., the set of reducts/constructs). The particular
type of output is determined by the type of PCM supplied as input to the first phase of
the algorithm [7]. This method allows computing constructs using algorithms for reducts
computation as long as these algorithms work on the discernibility function.

In [8], the relationship between constructs, reducts, and irreducible testors is studied,
showing how algorithms for computing irreducible testors, designed into the logical com-
binatorial pattern recognition approach [16], can be used to compute constructs. Although
the authors did not propose a new algorithm, this work increases the set of available algo-
rithms for reducts computation that can be used for computing constructs, since the authors
provide a way to compute constructs by defining a new binary matrix, where algorithms to
compute reducts and irreducible testors can be used for computing constructs. This new
matrix is constructed by comparing all pairs of objects in different ways, depending on
whether or not they belong to the same class, unlike the binary discernibility matrix that
only considers pairs of objects belonging to different classes. In this way, when two objects
from different classes are compared, if an attribute distinguishes these objects, a 1 in the
corresponding matrix entry is put. It means that this attribute should be taken into account
when a construct is built. Otherwise, when the objects under comparison belong to the same

Mathematics 2024, 12, 90 3 of 19

class, if an attribute does not distinguish these objects, a 1 is placed in the corresponding
matrix entry. This is because the attribute contributes to preserving the similarity between
the objects. This means that this attribute should be taken into account when a construct
is built. As shown in [17], reducts and irreducible testors (IT) are closely related concepts,
and under certain conditions, they coincide. Therefore, constructs can be computed by
methods for computing reducts and irreducible testors by using this new binary matrix.

Even though either method, [7] or [8], could be used to compute constructs, the
problem of finding all constructs has been little explored. This justifies the search for more
efficient algorithms to compute constructs.

3. Basic Concepts

In RST, the data in a supervised classification problem are represented by a decision
system (DS). Formally, a DS can be represented by a pair DS = ⟨O,Q⟩, where:

• O represents a finite non-empty set of objects O = {o1, o2, . . . , on} called universe;
• Q denotes a finite non-empty set of attributes, such thatQ = C ∪ {d} and C ∩ {d} = ∅;

being C ̸= ∅ the set of condition attributes and d the decision attribute.

For every attribute a ∈ Q, there is an information function Ia : O → Va, where Va is a
finite non-empty set of values for the attribute a, and Ia(oi) denotes the value corresponding
to the object oi in the attribute a.

A DS is commonly represented as a matrix, in which columns are associated with
attributes, rows to objects, and cells to attribute values of objects. A DS is considered
consistent if any combination of values from the entire set of condition attributes defines
the value of the decision attribute; otherwise, it is considered inconsistent.

To express the fact that a set of attributes cannot discern objects in a DS, the indiscerni-
bility relation [1], is defined for a non-empty set of attributes P ⊆ Q as follows:

IND(P) = {(x, y) ∈ O ×O : ∀
a∈P

Ia(x) = Ia(y)}

If a pair of objects belongs to IND(P), the objects cannot be differentiated from each
other given the attributes of the subset P .

Before formally defining the construct concept, it is important to introduce the defini-
tions of discernibility relation and similarity relation [13].

The discernibility relation, denoted as DIS(P) ⊆ O ×O, is defined as follows:

DIS(P) = {(x, y) ∈ O ×O : (x, y) /∈ IND(P)}

This means that if a pair of objects (x, y) belongs to DIS(P), then x and y differ from each
other by at least one attribute from the set P .

On the other hand, the similarity relation, denoted as SIM(P) ⊆ O ×O, is defined for
a set of attributes P ⊆ Q as follows:

SIM(P) = {(x, y) ∈ O ×O : ∃
a∈P

Ia(x) = Ia(y)}

If a pair of objects (x, y) belongs to SIM(P), then these two objects are similar in at least
one attribute from the set P .

A construct (introduced by R. Susmaga in [13]) is an attribute subset of condition
attributes that maintains the discernibility between pairs of objects belonging to different
classes with the same capability as the whole set of condition attributes, while simultane-
ously ensuring similarity between objects belonging to the same class. The definition of a
construct can be stated as follows:

Mathematics 2024, 12, 90 4 of 19

Definition 1. Given a DS, an attribute subset R ⊆ C is a construct of the DS, if and only if R
satisfies the following conditions:

∀
p∈O×O

{[p ∈ DIS({d}) ∧ p ∈ DIS(C)]→ p ∈ DIS(R)} (1)

∀
p∈O×O

{[p ∈ SIM({d}) ∧ p ∈ SIM(C)]→ p ∈ SIM(R)} (2)

∀
a∈R

∃

p∈O×O
p ∈ DIS({d}) ∧ p ∈ DIS(R) ∧ p /∈ DIS(R− {a})

or
∃

p∈O×O
p ∈ SIM({d}) ∧ p ∈ SIM(R) ∧ p /∈ SIM(R− {a})

(3)

All attribute subsets satisfying conditions (1) and (2) are called super-constructs.

Condition (1) means that a construct discerns objects belonging to different classes.
Moreover, according to condition (2), a construct guarantees similarity between objects
belonging to the same class. Condition (3) ensures minimality regarding inclusion, which
means that removing any attribute fromR will make Conditions (1) or (2) invalid.

The set of all attributes contained in all constructs is called a kernel. It is important to
highlight that the kernel could be empty.

Since the algorithm proposed in this article works on a binary matrix similar to the
binary discernibility matrix, first, we will define the binary discernibility matrix, which is
used by the most successful algorithms for computing all reducts.

The binary discernibility matrix (BDM), proposed by Felix and Ushio [18], is a binary
representation of the discernibility matrix proposed by Skowron and Rauszer [19].

Definition 2. Given a DS, the BDM, is a matrixM, where each row i results from comparing
two objects (u and w) that do not belong to the same class Id(u) ̸= Id(w), i.e.,:

Mi,j = {δcj(Icj(u), Icj(w))}

where Icj(u) denotes the value of the attribute cj ∈ C in the object u, Id(u) denotes the value of the
decision attribute in the object u, and δc is computed as follows:

δc : Vc ×Vc → {1, 0}

δc(v1, v2) =

{
0 i f v1 = v2
1 otherwise

(4)

4. Proposed Algorithm

Our algorithm (CC-GEAC) goes through the subsets of attributes in a particular order,
checking for each one if it is a construct. This verification is conducted on a binary matrix
built from a decision system. This binary matrix was first introduced in [8]; it contains all
pairs of object comparisons (attribute per attribute). In this work, we will refer to it as the
binary discernibility–similarity matrix (BDSM), and it is defined by:

Mi,j =

{
δcj(Icj(u), Icj(w)) i f Id(u) ̸= Id(w)

1− δcj(Icj(u), Icj(w)) otherwise

where Icj(u), Id(u), and δc are as in Definition 2.
The BDSM often contains redundant information, so it can be simplified. Next, some

definitions used to simplify the BDSM will be introduced.

Definition 3. LetM be a BDSM, i and f be two rows inM, and i is a sub-row of f if and only if:

Mathematics 2024, 12, 90 5 of 19

(i) ∀(column j inM)[(Mi,j = 1)⇒ (M f ,j = 1)];
(ii) ∃(column q inM) such thatM f ,q = 1 andMi,q = 0.

Example 1. Suppose i = (001010) and f = (101011) are rows within a specific BDSM, i is a
sub-row of f , since f has 1 everywhere i has 1, and there is at least one column, such that f has 1
and i has 0.

Those rows for which there are no sub-rows are called basic rows and are defined
as follows:

Definition 4. Let M and f be defined as before. Row f is a basic row of M if and only if
∄(row i inM) such that i is sub-row o f f .

The matrix formed by the basic rows of the BDSM, without repeating, will be denoted
as the simplified binary discernibility–similarity matrix (SBDSM).

CC-GEAC traverses the search space looking for super-constructs and then checks
minimality regarding inclusion (Condition (3) of Definition 1); thus, it is necessary to define
the concept of the super-construct in the SBDSM. Below, some definitions are provided to
help define this concept.

LetM be an SBDSM and A ⊆ C be an attribute subset.MA denotes the sub-matrix
ofM, containing only columns corresponding to attributes in A.

Definition 5. LetM be an SBDSM, A ⊆ C be an attribute subset, and r be a row ofMA ; r is
denoted as a zero-row if it contains only zeros.

Given an SBDSM, the super-construct definition (Definition 1) can be expressed
as follows.

Proposition 1. LetM and A as before. A is a super-construct inM if and only if inMA there
is no zero-row.

Proof. First, let us consider that A is a subset of attributes satisfying Proposition 1 and
suppose that A is not a super-construct; hence, A does not satisfy Conditions (1) or (2)
of Definition 1, then objects x and y exist in O, (x ̸= y), such that if Id(x) = Id(y), then
Ia(x) ̸= Ia(y) for all a in A, which, according to Definition 2, means that inMA, there is a
zero-row, or in another case, if Id(x) ̸= Id(y), then for all a ∈ A, one has that Ia(x) = Ia(y),
and according to Definition 2, one has a zero-row inMA. In either case, the hypothesis
that A satisfies Proposition 1 is contradicted.

Let us assume that, as a hypothesis, A is a super-construct in M, i.e., A satisfies
Conditions (1) and (2) of Definition 1. And let us suppose that a zero-row exists inMA,
then according to Definition 2, there are either two objects of the same class (Id(x) = Id(y))
that differ in all attributes of A, or there are two objects of different classes (Id(x) ̸= Id(y))
that are indistinguishable in all attributes of A, which contradicts the hypothesis; therefore,
A satisfies the proposition 1.

Proposition 1, analogous to Conditions (1) and (2) of Definition 1, ensures that a
super-construct distinguishes between objects of different classes and guarantees simi-
larity between objects of the same class. Therefore, if an attribute subset does not satisfy
Proposition 1, this subset is not a construct.

CC-GEAC generates subsets of attributes following the lexicographic order, like in [20],
to traverse the search space. Hereinafter, whenever we refer to a subset of condition
attributes, it is considered to be an ordered set of attributes according to this lexicograph-
ical order. The ⊕ operator will be used to denote the concatenation of two disjoint or-
dered subsets of attributes. In this way, {c1, c3, c5} ⊕ {c4, c6, c7} = {c1, c3, c5, c4, c6, c7} and
{c4, c6, c7} ⊕ {c1, c3, c5} = {c4, c6, c7, c1, c3, c5}; note that by concatenating two ordered

Mathematics 2024, 12, 90 6 of 19

subsets, the resulting subset maintains the order of the elements in these subsets, and
the order in which these subsets are concatenated is relevant. Therefore, concatenation is
non-commutative. Moreover, P ⪯ Q denotes that P precedes Q in the lexicographical
order, and P ≺ Q denotes that P precedes Q but P ̸= Q.

The CC-GEAC algorithm uses the gap concept introduced for the LEX algorithm [20].
The gap of an ordered attribute subset A is the rightmost attribute whose succeeding
attribute in A is not its succeeding attribute in C (column in SBDSM); e.g., consider
C = {c1, c2, c3, c4, c5}, for A = {c1, c2, c3}, there is no gap; for A = {c1, c3, c5}, the gap
is c3; finally, for A = {c1, c2, c4, c5}, the gap is c2.

The pruning property of gap elimination has been used for computing irreducible
testors and reducts [10,20]. The same property can be enunciated, adapting it to the BDSM
and the super-construct concept, as expressed in Proposition 2.

Proposition 2. LetM be an SBDSM and A = {cj0 , . . . , cjs} be a construct, such that A ⊂ C
and cjs is the last attribute in C. If there is a gap cjp in A and A′ = {cj0 , . . . , cjp−1 , cjp+1}; then,
there is no construct P , such that A ≺ P ≺ A′.

Proof of Proposition 2. LetW = {cj0 , . . . , cjp−1}, and Z = {cjp+1 , . . . , cjs}, then A and A′

can be written asA =W⊕{cjp}⊕Z andA′ =W⊕{cjp+1}. Let P be an ordered attribute
subset, such that A ≺ P ≺ A′, so P can be written as P = W ⊕ {cjp} ⊕ V . Knowing
that cjp is a gap (all attributes in Z are consecutive in C) and cjs is the last attribute in C,
we can guarantee that V ⊂ Z and, hence, P ⊂ A. From this, P cannot be a construct by
condition (3) of Definition 1 (minimality condition).

From Proposition 2, we have the following corollary.

Corollary 1. LetM be as in Proposition 2, and let A = {cj0 , . . . , cjs} be a non-super-construct,
such that cjs is the last attribute in C. If there is a gap cjp in A, and A′ = {cj0 , . . . , cjp−1 , cjp+1};
then, there is no construct P , such that A ≺ P ≺ A′.

Using Proposition 2 and Corollary 1, in both cases, all attribute subsets between A
and A′ can be discarded.

One of the recently proposed pruning strategies is also used in our proposal, which
is based on the definition of attribute contribution, which, in our case, is adapted to the
SBDSM as follows:

Definition 6. Let M be as before, A be a subset of condition attributes, and ci be a condition
attribute, such that ci /∈ A. The attribute ci contributes to A if and only if the number of zero rows
in the sub-matrixMA∪{ci} is less than the number of zero rows in the sub-matrixMA.

Definition 6 means that an attribute contributes to a given subset, which does not
contain it if the new increased subset is capable of distinguishing more objects from different
classes or making more objects from the same class appear similar than the original subset.

In CC-GEAC, the columns in SBDSM are represented as binary words, the length of
which is equal to the number of rows in the matrix. The cumulative mask [12] for an at-
tribute ci, denoted as cmci , is a binary representation of the ith column in the SBDSM
and the cumulative mask for an attribute subset A = {cj0 , cj1 , . . . , cjk} is defined as
cmA = cmcj0

∨ cmcj1
∨ · · · ∨ cmcjk

(∨ denotes the binary OR operator). The number of

0′s in cmA is equal to the number of zero rows inMA for a given SBDSMM. Accord-
ing to Definition 6, ci contributes to A if and only if cmA⊕{ci} has more 1’s than cmA.
The proposed algorithm generates subsets of attributes in increasing order following the
lexicographical order introduced in [20], so the cumulative mask can be computed as
cmA⊕{ci} = cmA ∨ cmci . Notice that, from Definition 6, ci contributes to A if and only if

Mathematics 2024, 12, 90 7 of 19

cmA⊕{ci} ̸= cmA since cmA⊕{ci} cannot have less 1’s than cmA. From Proposition 1, it can
be seen that A ⊆ C is a super-construct if and only if cmA = (1, . . . , 1).

The exclusion mask, defined for the first time in [21], is relevant to determine whether
or not a super-construct is a construct.

Definition 7. LetM and A be as before. emA denotes the exclusion mask of A, and it is defined
as the binary word that has a 1 in the ith bit if the ith row inM has a 1 in only one of the columns
corresponding to the attributes in A; the remaining bits of emA are zeros. Let ci be an attribute,
such that ci /∈ A. The exclusion mask of A⊕ {ci} is computed as follows:

emB⊕{ci} = (emB ∧ ¬cmci) ∨ (¬cmB ∧ cmci) (5)

where cm is the cumulative mask, and ¬ is the binary operator for negation.

Example 2. Let A0 = {c0, c1}, A1 = {c0, c2, c3}, and A2 = {c4, c5} be subsets of attributes of
a SBDSM:

c0 c1 c2 c3 c4 c5
r0 1 0 1 0 1 0
r1 0 1 0 1 1 1
r2 1 1 0 1 0 0
r3 1 0 0 1 1 1
r4 0 0 1 1 1 0
r5 0 1 1 1 0 1
r6 1 0 1 1 0 0

The corresponding cumulative and exclusion masks are as follows:

cmA0 = (1, 1, 1, 1, 0, 1, 1), emA0 = (1, 1, 0, 1, 0, 1, 1),

cmA1 = (1, 1, 1, 1, 1, 1, 1), emA1 = (0, 1, 0, 0, 0, 0, 0),

cmA2 = (1, 1, 0, 1, 1, 1, 0), emA2 = (1, 0, 0, 0, 1, 1, 0)

The following proposition represents a contribution to the cumulative calculation of
the exclusion mask.

Proposition 3. LetM and A be as defined in Definition 7. Let ci /∈ A. If ∃cx ∈ A, such that
emA⊕{ci} ∧ cmcx = (0, . . . , 0), then A⊕ {ci} cannot be a subset of any construct, and ci is said to
be exclusionary with A.

Proof of Proposition 3. First, suppose that ∃cx ∈ A, such that emA⊕{ci} ∧ cmcx = (0, . . . , 0).
Now, suppose that A⊕ {ci} is a subset of a construct; thus, cx is an essential attribute,
which implies that there is a zero-row rx in the sub-matrixMA⊕{ci}−{cx}, such that the
bit in cmcx associated with the row rx is 1. Thus, by Definition 7, the bit in emA⊕{ci} is
associated with the row rx is 1. So we can conclude that emA⊕{ci} ∧ cmcx ̸= (0, . . . , 0) if
A⊕ {ci} is a subset of a construct, which is a contradiction ⊥.

Proposition 3 allows all supersets of A⊕ {ci} to be discarded when ci is exclusion-
ary with A. In what follows, the application of Proposition 3 will be referred to as the
exclusion evaluation.

Proposition 4. Let A be a subset of condition attributes and ci be a condition attribute, such that
ci /∈ A. A⊕ {ci} is a construct if and only if cmA⊕{ci} = (1, . . . , 1) and ci is non-exclusionary
with A.

Mathematics 2024, 12, 90 8 of 19

Proof of Proposition 4. First, suppose that cmA⊕{ci} = (1, . . . , 1); therefore, A⊕ {ci} is a
super-construct by Proposition 1. Then, if ci is non-exclusionary with A, all attributes in
A⊕ {ci} are essential attributes by Proposition 3, which means that removing an attribute
from A⊕ {ci} would invalidate any (or both) of the Conditions (1) or (2) of Definition 1.
Thus, we can conclude that A⊕ {ci} is a construct.

To reduce the search space, Proposition 5 is used to determine a priori if a zero-row pre-
vails after adding any of the remaining attributes to the current attribute subset. This idea
was introduced in [22] as a pruning strategy to compute the minimum-length irreducible
testor. Similarly, it can be used to prune the search space for computing constructs.

Proposition 5. LetM be an SBDSM, A = {cj0 , cj1 , . . . , cjp} be a subset of condition attributes,
and ci be a condition attribute, such that ci /∈ A. If there is a zero-row r in MA, such that
Mr,ci =Mr,ci+1 = · · · =Mr,cn = 0, then A⊕ {ci} is not contained in any construct.

Proof of Proposition 5. Since there is a zero-row r inMA,A is not a construct. By hypothe-
sis, if we considerMA⊕{ci}, the row r prevails as a zero-row, even if we add any attribute in
{ci+1, . . . , cn}. So, we can conclude that A⊕ {ci} will not be a subset of any construct.

Corollary 2. Let M be an SBDSM, A = {cj0 , cj1 , . . . , cjp} be a non-super-construct, and
ci be a condition attribute, such that ci /∈ A. If there is a zero-row r in MA, such that
Mr,ci = Mr,ci+1 = · · · = Mr,cn = 0, then there is no construct P , such that A ≺ P ≺ A′,
where A′ = {cj0 , . . . , cjp+1}.

Consequently, following Proposition 5 and Corollary 2, all attribute subsets between
A and A′ can be discarded.

Next, we introduce the definition of a zero mask to determine, a priori and in constant
time, whether a zero-row will prevail after adding any remaining attributes to the current
attribute subset.

Definition 8. LetM be as before; we define the zero mask of a condition attribute ci, denoted as
zmci , to the binary word that has a one in the ith bit if the ith row inM has a one in any of the (at
least one) columns corresponding to the condition attributes cj, such that j ≥ i, and it is 0 otherwise.
The zero mask of ci is computed as follows:

zmci = cmci ∨ cmci+1 ∨ cmci+2 ∨ · · · ∨ cmcn

where cm refers to the cumulative mask.

By using Definition 8, we can discard some subsets of attributes, thereby pruning the
search space. To facilitate this, the following proposition is introduced.

Proposition 6. Let M, A, and ci be as in Proposition 5. If zmci ∨ cmA ̸= (1, . . . , 1), then
A⊕ {ci} is not a subset of any construct.

Proof of Definition 8. Since zmci ∨ cmA ̸= (1, . . . , 1), there is a zero-row r in MA that
remains as a zero-row inMA⊕{ci}, even if we add any attribute in {ci+1, . . . , cn}. So, we
can conclude that A⊕ {ci} is not a subset of any construct.

CC-GEAC, unlike the algorithms reported in [10–12], uses the kernel [7] and the
minimum attribute subset [11] together to reduce the number of generated subsets.

Next, the kernel definition is introduced, given a simplified binary discernibility–
similarity matrix.

Mathematics 2024, 12, 90 9 of 19

Definition 9. LetM be an SBDSM and C be the set of condition attributes associated with the
columns inM. The kernel ofM is defined as:

Kernel(M) = {cq ∈ C | ∃ f : M f ,q = 1 and ∀(i ̸= q) : M f ,i = 0M f ,q = 1}

Given a simplified binary discernibility–similarity matrix (SBDSM), according to
Definition 9, if, in SBDSM, there exists a row with all zeros except for one column, the
attribute corresponding to the column with the value 1 is indispensable for discriminating
objects from different classes or maintaining similarity between objects in the same class.
Therefore, this attribute must belong to every construct and, consequently, to the kernel.
Attributes that meet this condition, and only those, belong to the kernel. It is evident that
the kernel is a subset of every construct.

On the other hand, following [11], those attributes in the row with the least amount of
1’s belong to the minimum attribute subset (MSA). Therefore, if the kernel is not empty,
MSA has one attribute, which also belongs to the kernel. For this reason, in this paper,
the rows with only a “1” are not considered to compute the MSA. Accordingly, given
an SBDSM, the definition of the minimum attribute subset (MSA) used in this paper is
as follows:

Definition 10. LetM′ be the sub-matrix resulting from eliminating the rows with just a 1 in
the SBDSM, C be the set of condition attributes, and f be the row with the least number of 1’s in
M′ (if there is more than one row, any one of them can be selected). The minimum attribute subset
(MSA) is the subset:

MSA(M′) = {cq ∈ C | M′
f ,q = 1}

In CC-GEAC, the kernel is computed first. Then if the kernel is a construct, it will
be the unique construct in the SBDSM. Otherwise, if the kernel is not a construct, to
search for constructs, only those subsets contained in C ′ will be taken into account by the
algorithm, being:

C ′ = MSA(M)⊕ (C − (MSA(M)⊕ Kernel(M))) (6)

The attributes in C ′ = {c′0, c′1, . . . , c′q, . . . , c′p} are relabeled, such that the first q attributes
belong to the MSA following the order in C, and the remaining p− q attributes are attributes
in C that neither belong to the kernel nor the MSA; the last p− q attributes also follow the
order in C, e.g., let C = {c1, c2, c3, c4, c5, c6}, MSA = {c3, c5}, and the Kernel = {c2}, then
according to Equation (6) C ′ = {c′0, c′1, c′2, c′3, c′4}, where c′0 = c3, c′1 = c5, c′2 = c1, c′3 = c4,
c′4 = c6.

CC-GEAC uses Proposition 5 and Corollary 2 to determine if there is a zero-row after
adding all the remaining attributes in C ′ to the current attribute subset. If there is no
zero-row, the attribute contribution condition is verified. If the new attribute contributes,
it is checked whether the current candidate (the current attribute subset along with the
added attribute) is a super-construct. If the current candidate is a super-construct, then,
using Proposition 3, CC-GEAC determines whether the candidate is a construct; if it is
a construct, the candidate is saved. At this stage, the algorithm generates the following
attribute subset, pruning those subsets that cannot lead to a construct based on Corollary 2
and Corollary 1. The CC-GEAC algorithm continues this process until the first attribute in
the current attribute subset no longer belongs to the MSA.

Algorithm 1 shows the pseudo-code of CC-GEAC. The CC-GEAC algorithm operates
over the simplified binary discernibility–similarity matrix (SBDSM). First, the kernel is
computed. If the kernel is a super-construct, the algorithm ends by returning the kernel
as the only construct. Otherwise, the MSA is computed to form set C ′, which will be
considered to generate the candidate subsets to evaluate. The current attribute subset is
initialized with the first attribute in C ′, and then the cumulative mask is updated. Then, if
after adding one of the remaining attributes to the current attribute subset, there is no zero-

Mathematics 2024, 12, 90 10 of 19

row (using Proposition 6), the attribute contribution (Definition 6) is evaluated. For those
attribute subsets with a contributing attribute (candidates), the super-construct condition
(Proposition 1) is evaluated. Proposition 3 is applied to each found super-construct to
determine whether it is a construct that will be saved in the result (SC). Candidate
evaluation ends at this point, and the next attribute subset in lexicographical order is
generated by calling nextSet().

Algorithm 1: All Constructs Computation
Input :M, an SBDSM; C, the set of condition attributes
Output : SC, set of all constructs

1 SC ← ∅
2 A ← ∅ // Attribute subset (candidate).
3 K ← Kernel(M)
4 if cmK = (1, . . . , 1) then

// The kernel is the only construct in the SBDSM
5 SC ← K
6 return SC
7 end
8 SA← MSA(M)
9 C ′ ← SA⊕ (C − (SA⊕K)) // C ′ = {c′0, c′1, . . . , c′p}, where p is the index of the last

attribute in C ′
10 next← True
11 i← 0 // Index of the new attribute in C ′ to add in the current attribute subset,

i = (0, 1, . . . , p).
12 while next do
13 construct, superConstruct, contributes, zeroRows← False
14 cmA⊕{c′i} ← updateCM(A, i)

15 if zmc′i
∨ cmA ̸= (1, . . . , 1) then

16 zeroRows← True
17 end
18 else
19 if cmA⊕{c′i} ̸= cmA then
20 contributes← True
21 if cmA⊕{c′i} = (1, . . . , 1) then
22 superConstruct← True
23 construct← exclusion(A, i)
24 if construct then
25 SC ← SC⊕ {K ⊕A⊕ {c′i}}
26 end
27 end
28 end
29 end
30 next,A, i← nextSet(A, i, contributes, superConstruct, construct, zeroRows)
31 end
32 return SC

The procedure for updating the CM of a candidate (A⊕ {c′i}) appears in Algorithm 2.
The CM is stored in an array, indexed by the index in C ′ of the last attribute in the current
attribute subset (A). The last attribute in B is determined using last(B), while cmK stores
the CM of the kernel.

The gap elimination is performed through Algorithm 3. Every consecutive attribute in
the current attribute subset, beginning from the last attribute, is removed. In Algorithm 3,
the variable q keeps the index in C ′ of the last attribute in A, while p keeps track of the
index of the last attribute in C ′.

Algorithm 4 performs the exclusion evaluation. Firstly, it computes the exclusion mask
by applying Equation (5) (see Definition 7). Then by applying Proposition 3, each attribute
in the current attribute subset A is evaluated for exclusion. Thus, using Proposition 4, it is
possible to determine whether or not the current candidate A⊕ {c′i} is a construct.

Mathematics 2024, 12, 90 11 of 19

Algorithm 2: UpdateCM
Input :A, i
Output : cmA⊕{c′i}

1 if A = ∅ then
2 cmA ← cmK// All attribute subsets must contain the kernel.
3 end
4 else
5 c′q = last(A)
6 cmA ← mask[q]
7 end
8 cmA⊕{c′i} ← (cmA ∨ cmc′i

)

9 c′q = last(A)
10 mask[q]← cmA⊕{c′i}
11 return cmA⊕{c′i} // Updated cumulative mask (CM)

Algorithm 3: RemoveGAP
Input :A
Output :A

1 c′p ← last(C ′) // The last attribute in C ′.
2 while last(A) = (p− 1) do
3 c′q ← last(A)
4 p← q
5 A ← A− {c′q}
6 if | A |= 1 then
7 break
8 end
9 end

10 return A

Algorithm 4: Exclusion
Input :A, i
Output : construct

1 em, cm← (0, . . . , 0)
2 foreach x ∈ A⊕ {c′i} do
3 em← (em ∧ ¬cmx) ∨ (¬cm ∧ cmx)
4 cm← cm ∨ cmx

5 end
6 construct← True
7 foreach x ∈ A do
8 if em ∨ cmx = (0, . . . , 0) then
9 construct← False

10 break
11 end
12 end
13 return construct

Algorithm 5 shows the pseudocode for generating the following attribute subset A
and determining the index in C ′ of the next attribute to be processed according to the
lexicographic order. First, using Proposition 6, it is determined if there is a zero-row after
adding to A all of the remaining c′q attributes, for q ≥ i, where i is the index in C ′ of the
current attribute. If there is no zero-row, if the last attribute in C ′ is included in the current
candidate, and if the current candidate is not a super-construct (Proposition 2) or a construct
(Proposition 4), the gap is removed. Otherwise, the following attribute subset is generated
in lexicographical order as follows:

1. If the current candidate is a super-construct or the current attribute c′i does not con-
tribute to A; the next attribute in C ′ is then considered, which is c′i+1. Thus, if the
current candidate is a super-construct or if c′i does not contribute to A, all supersets of
A⊕ {c′i} are discarded.

Mathematics 2024, 12, 90 12 of 19

2. If the current candidate (A⊕ {c′i}) is not a super-construct and c′i contributes to A;
then c′i is included in A and the next attribute in C ′ is set as the current attribute,
i.e., i← i + 1.

Algorithm 5: NextSet
Input :A, i, contributes, superConstruct, construct, zeroRows
Output : next,A, i

1 next← True
2 if zeroRows then
3 c′q ← last(A)
4 A ← A− {c′q}
5 i← q + 1
6 end
7 else
8 if i = p then
9 if construct or not superConstruct then

10 removeGAP(A)
11 end
12 c′q ← last(A)
13 i← q + 1
14 A ← A− {c′q}
15 end
16 else
17 if not contributes or superConstruct then
18 i← i + 1
19 end
20 else
21 A ← A⊕ {c′i}
22 i← i + 1
23 end
24 end
25 end
26 if A = ∅ and i = (|SA| − 1) then
27 next← False
28 end
29 return next,A, i

As described above, the search space is traversed following the lexicographical order,
evaluating some attribute subsets and discarding others. First, the kernel and the MSA are
computed to reduce the number of generated and evaluated attribute subsets (the kernel
is contained in all constructs, and every construct must have at least one attribute from
the MSA). The time complexity in the worst case for computing the kernel and the MSA
is Θ(nm), where n is the number of columns and m is the number of rows in the SBDSM.
On the other hand, the time complexity for updating the cumulative mask, checking for
zero rows, and determining if the current attribute subset is a super-construct is Θ(m) in all
cases. To check if a super-construct is a construct, firstly, the exclusion mask is computed;
after that, the attribute exclusion is evaluated, which is Θ(nm). Generating the following
attribute subset, we have Θ(n), as in the worst-case scenario, all n attributes of the current
subset must be analyzed. Since the exclusion evaluation has the highest time complexity in
CC-GEAC, the time complexity for evaluating a candidate is Θ(nm). Therefore, since, in
the worst case, the number of evaluated candidates has an exponential relation with the
number of attributes (n), CC-GEAC has an exponential complexity in terms of the number
of attributes. Thus, our algorithm has the same complexity as the algorithms designed to
compute reducts or IT that can be used for computing constructs following the process
described in [8]. In the next section, some experiments regarding runtimes showing the
performance of CC-GEAC are discussed.

Mathematics 2024, 12, 90 13 of 19

5. Experiments and Results

The CC-GEAC algorithm uses the binary discernibility–similarity matrix to com-
pute constructs following the process described in [8]. Hence, to assess our algorithm
in Section 5.1, we present a runtime comparison of CC-GEAC against the option of comput-
ing constructs following [8] using the fastest algorithms for reducts computation currently
available: Fast-CT-EXT [11], FastBR [12], and GCreduct [10], over SBDSMs computed from
real-world datasets taken from [23–25]. Subsequently, in Section 5.2, we present a second
experiment using artificial SBDSMs. We used the authors’ implementation of Fast-CT-EXT,
FastBR, and GCreduct for our experiments, jointly with CC-GEAC, all implemented in Java.
To carry out our experiments, a computer with two Intel Xeon processors at 2.40 GHz, with
256 GB of RAM, and with a Windows 10 64-bit operating system was used.

5.1. Experiments on Real-World Datasets

A total of 34 real-world datasets were selected from the UCI Machine Learning Reposi-
tory [23], Keel Repository [24], and OpenML Repository [25]. These datasets have SBDSMs
with different densities, which allows representing the runtime variations among the four
algorithms with respect to the variation of the SBDSM density. The density is computed by
dividing the number of ones in the matrix by the total number of cells. Additionally, the
discretization method described in [26] was employed for numerical attributes using Weka.

Table 1 shows the 34 datasets used in our experiment. The Dataset column specifies the
dataset’s name. The columns Instances, Attributes, and Classes show the number of objects,
attributes, and classes of the respective dataset. The Size column indicates the size of the
SBDSM, based on the number of rows and columns. The Density column shows the density
of the SBDSM. The Constructs column shows the number of constructs. On the other hand,
Table 2 shows the number of evaluated candidates and runtimes (in seconds) for each
dataset in Table 1, as computed by the four algorithms. The cells containing the shortest
runtime or the smallest number of assessed candidates for each dataset are highlighted in
bold red.

According to Table 2, CC-GEAC shows the best performance in SBDSM with a density
under 0.34. From Table 2, it can be seen that CC-GEAC is outperformed in some cases for
SBDSM with a density under 0.34. However, in those cases, the difference in runtimes is
quite small, less than 16 milliseconds. From Table 2, it can also be noted that for SBDSM
with a density under 0.34, the number of candidates evaluated by CC-GEAC in all cases
is the smallest. On the other hand, Fast-BR outperformed CC-GEAC for most simplified
binary discernibility–similarity SBDSM with a density higher than 0.34. Indeed, as can
be seen in Table 2, as the density increases, CC-GEAC loses efficiency since fewer subsets
are eliminated and the evaluation cost of each subset in our algorithm is higher compared
to Fast-BR.

This experiment concludes that CC-GEAC is the best option for computing constructs
for SBDSM with a density under 0.34, while Fast-BR is the best option for SBDSM with a
density higher than 0.34.

Table 1. Datasets used in the experiments and some of their characteristics.

Dataset Instances Attributes Classes Size Density Constructs

Landsat_tst [23] 2000 36 6 36× 36 0.028 1
Kr-vs-kp [23] 3196 36 2 29× 36 0.029 4

Ionosphere [24] 351 33 2 30× 33 0.031 2
Hypothyroid [25] 3772 29 4 25× 29 0.036 15,932
Spect-Heart [23] 267 44 2 39× 44 0.037 36
Connect-4 [23] 676 42 3 241× 42 0.047 84

Wdbc [25] 569 30 2 18× 30 0.056 29
Vehicle [25] 846 18 4 17× 18 0.056 1

Primary-tumor [24] 339 17 21 16× 17 0.059 1

Mathematics 2024, 12, 90 14 of 19

Table 1. Cont.

Dataset Instances Attributes Classes Size Density Constructs

LtterUV [25] 1577 16 2 16× 16 0.063 1
Vote [23] 435 16 2 13× 16 0.067 2

Segment [25] 2310 19 7 9× 19 0.070 4
Credit-Approval [25] 690 15 2 14× 15 0.071 2

Heart-c [23] 303 13 5 12× 13 0.083 2
Led24 [24] 3200 24 10 75× 24 0.103 47
Flags [23] 194 28 4 36× 28 0.106 177

German-credit [25] 1000 20 2 30× 20 0.110 23
Heart-h [23] 294 13 5 14× 13 0.165 8

Lsd [23] 266 35 15 119× 35 0.233 6536
Zoo [23] 101 17 7 21× 17 0.235 46

Student-Por [23] 649 32 20 2588× 32 0.242 135,743
Dermatology [24] 366 34 6 522× 34 0.262 82,228

Lymph [23] 148 18 4 193× 18 0.265 827
QSAR-Biodeg [23] 1055 41 2 278× 41 0.298 28,941

Mushroom [23] 8124 21 2 56× 21 0.299 1038
Student-Mat [23] 395 32 20 3755× 32 0.305 487,613

Hepatitis [23] 155 19 2 201× 19 0.342 1754
Sponge [23] 76 45 2 99× 45 0.346 24,209
Labor [24] 57 16 2 90× 16 0.351 458

Diabetes130US [25] 1018 35 3 3330× 35 0.374 1,046,864
Cylinder-Bands [23] 540 39 2 5771× 39 0.390 1,850,264

Sick [24] 3772 29 2 830× 29 0.480 15,372
Lung-Cancer [23] 32 56 3 446× 56 0.492 20,669,421

Divorce [24] 170 54 2 2941× 54 0.565 51,736,610

Table 2. Number of evaluated candidates and runtimes (in seconds) spent by Fast-CT-EXT, FastBR,
GCreduct, and CC-GEAC.

Name
Fast-CT_EXT Fast-BR GCreduct CC-GEAC

Candidates Time Candidates Time Candidates Time Candidates Time

Landsat_tst 3.44 × 1010 549.268 630 0.016 36 <0.001 1 0.016
Kr-vs-kp 6.23 × 108 9.773 3683 0.016 29 <0.001 5 0.004

Ionosphere 8.06 × 108 11.542 4090 0.026 30 <0.001 2 0.004
Hypothyroid 5.24 × 107 0.602 2325 0.015 25 <0.001 2 0.003
Spect-Heart 3.27 × 1010 618.079 7.44 × 109 902.853 1.55 × 1010 335.687 2047 <0.001
Connect-4 4.33 × 109 140.182 7.90 × 108 145.276 2.53 × 108 9.218 37,122 0.063

Wdbc 1.38 × 106 0.049 1.94 × 105 0.052 1.92 × 105 0.014 101 0.003
Vehicle 1.31 × 105 0.011 153 0.003 18 <0.001 1 <0.001

Primary-tumor 32,784 0.016 576 0.015 16 <0.001 1 <0.001
LtterUV 32,784 <0.001 120 <0.001 16 <0.001 1 <0.001

Vote 9312 0.001 299 0.002 13 <0.001 3 0.003
Segment 1596 <0.001 93 0.016 9 <0.001 4 0.003

Credit-Approval 12,296 <0.001 91 <0.001 14 <0.001 2 0.003
Heart-c 3104 0.015 66 0.015 12 <0.001 2 0.002
Led24 8.11 × 106 0.172 2.32 × 106 0.312 2.84 × 105 0.031 572 0.015
Flags 2.28 × 107 0.300 4.18 × 106 0.288 2.87 × 106 0.064 16,105 0.010

German-credit 3.92 × 105 0.063 1.79 × 105 0.058 24,098 0.018 336 <0.001
Heart-h 1974 <0.001 740 <0.001 616 <0.001 48 <0.001

Lsd 1.48 × 108 3.589 1.47 × 107 1.531 1.46 × 108 3.938 4.81 × 105 0.156
Student-Por 3.04 × 109 292.027 1.31 × 109 239.086 2.01 × 108 27.968 7.41 × 107 23.748

Dermatology 7.66 × 108 25.323 8.63 × 107 8.346 6.65 × 108 26.413 5.10 × 107 4.756

Mathematics 2024, 12, 90 15 of 19

Table 2. Cont.

Name
Fast-CT_EXT Fast-BR GCreduct CC-GEAC

Candidates Time Candidates Time Candidates Time Candidates Time

Zoo 14,131 0.002 3953 0.005 13252 0.002 1220 0.003
Lymph 179,763 0.015 100,255 0.031 72,575 0.031 50,351 0.063

QSAR-Biodeg 5.53 × 1010 1853.365 1.25 × 109 169.121 3.65 × 1010 1242.256 1.96 × 107 1.526
Mushroom 150,248 0.016 36,220 0.031 105,139 0.016 38,573 0.016

Student-Mat 2.38 × 109 342.415 8.34 × 108 223.088 5.49 × 108 116.848 1.90 × 108 79.715
Hepatitis 286,082 0.063 1.39 × 105 0.083 1.38 × 105 0.047 88,004 0.094
Sponge 4.15 × 108 7.251 2.91 × 106 0.313 2.44 × 108 4.500 2.92 × 107 1.552
Labor 31,105 <0.001 16,535 0.015 22,275 <0.001 11,043 0.009

Diabetes130US 1.54 × 109 574.130 2.41 × 108 119.906 1.13 × 109 480.050 3.39 × 108 210.349
Cylinder-Bands 8.73 × 109 4141.789 6.27 × 108 338.837 5.04 × 109 2812.581 2.65 × 109 946.929

Sick 4.75 × 105 0.077 21,350 0.031 46,990 0.018 55,147 0.038
Lung-Cancer 2.85 × 1010 2784.221 5.61 × 108 85.886 2.05 × 1010 2118.727 1.19 × 1010 1075.469

Divorce 6.27 × 1010 12,609.659 4.64 × 109 1065.11 5.16 × 1010 9034.070 2.28 × 1010 7029.546
The cells containing the shortest runtime or the smallest number of assessed candidates for each dataset are
highlighted in bold red.

5.2. Experiments on Artificial SBDSMs

Another experiment was performed with the aim of further evaluating the performance
of CC-GEAC, with respect to the density of the SBDSMs. In this experiment, the runtime
and the number of evaluated candidates of the algorithm are compared against those
obtained by the same aforementioned algorithms. This experiment was performed over
artificial SBDSMs generated in an ample interval of densities; 900 artificial SBDSMs were
generated with 30 columns and between 30 and 1000 rows. These dimensions were selected
to guarantee runtimes within certain reasonable limits and generate different densities. The
densities of the matrices used in our experiments range from 0.01 to 0.9, which allows for a
demonstration of the performance of the algorithms as the density of the matrices varies.
Figures 1 and 2 show, on a logarithmic scale, the average runtime and the average number
of evaluated candidates for all SBDSMs with the “same density” (taking into account two
decimal points), sorted in acceding order by their density. From these figures, it can be seen
that CC-GEAC is the fastest for all SBDSMs with a density lower than 0.29.

Three distinct Wilcoxon right-tailed tests were performed using 300 matrices with
densities less than 0.29 from the 900 artificial SBDSMs containing 30 columns. Each test
had a 95% confidence level and an alpha value set at 0.05. The objective was to evaluate
the performance of CC-GEAC in computing constructs compared to the Fast-CT_EXT, Fast-
BR, and GCreduct algorithms, when each is used for the same purpose with the SBDSM.
The results of these tests show a p-value of 0.00 for each test. These results confirm that
CC-GEAC is statistically faster than Fast-CT_EXT, Fast-BR, and GCreduct algorithms for
computing constructs using SBDSM with a density of less than 0.29.

Furthermore, to delve into the performance of CC-GEAC for SBDSMs with a density
of less than 0.29, 300 artificial SBDSMs were generated with 40 columns, and between
40 and 1000 rows. This also allows us to show the behavior of CC-GEAC as long as the
number of columns in the SBDSMs increases. Figures 3 and 4 show the average results in
the logarithmic scale regarding the runtime and the number of evaluated candidates over
artificial SBDSMs with 40 columns. These figures show that our algorithm obtained the
best results concerning the runtime and the number of evaluated candidates for artificial
SBDSMs with a density of 1’s under 0.29.

Mathematics 2024, 12, 90 16 of 19

0.04 0.07 0.10 0.13 0.24 0.27 0.30 0.39 0.48 0.58 0.61 0.69 0.76 0.79 0.87
DENSITY OF 1'S

101

102

103

104

RU
NT

IM
E(

m
s)

Fast-CT_EXT
Fast-BR
Gcreduct
CC-GEAC

Figure 1. Average runtime in milliseconds (logarithmic scale) vs. SBDSM’s density, using artificial
matrices with 30 columns.

0.04 0.07 0.10 0.13 0.24 0.27 0.30 0.39 0.48 0.58 0.61 0.69 0.76 0.79 0.87
DENSITY OF 1'S

102

103

104

105

106

107

108

109

NU
M

BE
R

OF
 C

AN
DI

DA
TE

S

Fast-CT_EXT
Fast-BR
Gcreduct
CC-GEAC

Figure 2. Average number of evaluated candidates (logarithmic scale) vs. SBDSM’s density, using
artificial matrices with 30 columns.

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
DENSITY OF 1'S

102

103

104

105

106

107

108

RU
NT

IM
E(

m
s)

Fast-CT_EXT
Fast-BR
Gcreduct
CC-GEAC

Figure 3. Average runtime in milliseconds (logarithmic scale) vs. SBDSM’s density, using artificial
matrices with 40 columns.

Mathematics 2024, 12, 90 17 of 19

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
DENSITY OF 1'S

105

106

107

108

109

1010

1011

1012

NU
M

BE
R

OF
 C

AN
DI

DA
TE

S

Fast-CT_EXT
Fast-BR
Gcreduct
CC-GEAC

Figure 4. Average number of evaluated candidates (logarithmic scale) vs. SBDSM’s density, using
artificial matrices with 40 columns.

6. Conclusions

As discussed in this paper, the problem of computing constructs has been little studied,
with only a few studies proposing methods to compute constructs using algorithms for
reducts computation. This paper introduces a new algorithm, CC-GEAC, to compute con-
structs using the binary simplified discernibility-similarity matrix. Our algorithm utilizes
the kernel and the minimum set of attributes to prune the search space, and it searches
for gaps in the subsets for further pruning. Additionally, it looks for rows of zeros in the
current subset, enabling the elimination of subsets that will never form constructs. We
evaluated CC-GEAC and compared it, in terms of runtime and the number of evaluated
candidates, against the option of computing constructs using algorithms for reducts com-
putation [8]. Our experiments on real and artificial matrices demonstrate that CC-GEAC is
the best option for computing constructs when the discernibility–similarity matrices have
densities lower than 0.29. In most cases, our algorithm evaluates fewer attribute subsets
than Fast-CT-EXT [11], FastBR [12], and GCreduct [10], which are the fastest state-of-the-art
algorithms for reducts computation that can also be used to compute constructs follow-
ing [8]. However, this efficiency comes at a higher computational cost. Therefore, in future
work, we will work on speeding up the process of evaluating candidates. Another line of
future work will involve implementing CC-GEAC using GPU-based architectures.

Author Contributions: Y.G.-D., the corresponding author of the contribution “An algorithm for
computing all rough set constructs for dimensionality reduction”, hereby confirm on behalf of myself
and my co-authors (J.F.M.-T., J.A.C.-O. and M.S.L.-C.) that they have participated sufficiently in the
work to take public responsibility for its content. This includes participation in the concept, design,
analysis, writing, or revision of the manuscript. Accordingly, the specific contributions made by each
author are as follows: J.F.M.-T., J.A.C.-O. and M.S.L.-C.: conceptualization, methodology, reviewing,
and editing. Y.G.-D.: investigation, software, data curation, writing—original draft preparation,
writing—reviewing and editing. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets used during the current study are available in the “UC
Irvine Machine Learning Repository”: https://archive.ics.uci.edu/ml/datasets.php, “OpenML”:
https://www.openml.org/; the source code of the CC-GEAC algorithm is available at https://github.
com/ygdiaz1202/CC-GEAC.git.

Acknowledgments: The first author thanks the support given by CONAHCYT through his doc-
toral fellowship.

https://archive.ics.uci.edu/ml/datasets.php
https://www.openml.org/
https://github.com/ygdiaz1202/CC-GEAC.git
https://github.com/ygdiaz1202/CC-GEAC.git

Mathematics 2024, 12, 90 18 of 19

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RST rough set theory
SAT Boolean satisfiability problem
DS decision system
BDSM binary discernibility–similarity matrix
SBDSM simplified binary discernibility–similarity matrix
MSA minimum attribute subset
CM cumulative mask
CONAHCYT Consejo Nacional de Humanidades, Ciencias y Tecnologías

References
1. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
2. Susmaga, R. Reducts and constructs in classic and dominance-based rough sets approach. Inf. Sci. 2014, 271, 45–64. [CrossRef]
3. Kopczynski, M.; Grzes, T. FPGA supported rough set reduct calculation for big datasets. J. Intell. Inf. Syst. 2022, 59, 779–799.

[CrossRef]
4. Bazan, J.G.; Skowron, A.; Synak, P. Dynamic reducts as a tool for extracting laws from decisions tables. In Proceedings of the

Methodologies for Intelligent Systems, Charlotte, NC, USA, 16–19 October 1994; Raś, Z.W., Zemankova, M., Eds.; Springer:
Berlin/Heidelberg, Germany, 1994; pp. 346–355. [CrossRef]

5. Stańczyk, U. Application of rough set-based characterisation of attributes in feature selection and reduction. In Advances in
Selected Artificial Intelligence Areas: World Outstanding Women in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 35–55. [CrossRef]

6. Carreira-Perpinán, M.A. A Review of Dimension Reduction Techniques; Technical Report CS-96-09; Department of Computer Science,
University of Sheffield: Sheffield, UK, 1997; Volume 9, pp. 1–69.

7. Susmaga, R.; Słowiński, R. Generation of rough sets reducts and constructs based on inter-class and intra-class information.
Fuzzy Sets Syst. 2015, 274, 124–142. [CrossRef]

8. Lazo-Cortés, M.S.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F.; Sanchez-Diaz, G. Computing constructs by using typical testor
algorithms. In Proceedings of the Mexican Conference on Pattern Recognition, Mexico City, Mexico, 24–27 June 2015; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 44–53. [CrossRef]

9. Bao, Y.; Du, X.; Deng, M.; Ishii, N. An efficient method for computing all reducts. Trans. Jpn. Soc. Artif. Intell. 2004, 19, 166–173.
[CrossRef]

10. Rodríguez-Diez, V.; Martínez-Trinidad, J.F.; Carrasco-Ochoa, J.A.; Lazo-Cortés, M.S. A new algorithm for reduct computation
based on gap elimination and attribute contribution. Inf. Sci. 2018, 435, 111–123. [CrossRef]

11. Sánchez-Díaz, G.; Piza-Dávila, I.; Lazo-Cortés, M.; Mora-González, M.; Salinas-Luna, J. A fast implementation of the CT_EXT
algorithm for the testor property identification. In Proceedings of the Mexican International Conference on Artificial Intelligence,
Pachuca, Mexico, 8–13 November 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 92–103. [CrossRef]

12. Lias-Rodriguez, A.; Sanchez-Diaz, G. An algorithm for computing typical testors based on elimination of gaps and reduction of
columns. Int. J. Pattern Recognit. Artif. Intell. 2013, 27, 1350022. [CrossRef]

13. Susmaga, R. Reducts versus constructs: An experimental evaluation. Electron. Notes Theor. Comput. Sci. 2003, 82, 239–250.
[CrossRef]

14. Susmaga, R. Experiments in incremental computation of reducts. Methodol. Appl. 1998. Available online: https://cir.nii.ac.jp/
crid/1572824500035732992 (accessed on 1 September 2021).

15. Greco, S.; Matarazzo, B.; Slowinski, R. Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 2001, 129, 1–47.
[CrossRef]

16. Martínez-Trinidad, J.F.; Guzman-Arenas, A. The logical combinatorial approach to pattern recognition, an overview through
selected works. Pattern Recognit. 2001, 34, 741–751. [CrossRef]

17. Lazo-Cortés, M.S.; Martínez-Trinidad, J.F.; Carrasco-Ochoa, J.A.; Sanchez-Diaz, G. On the relation between rough set reducts and
typical testors. Inf. Sci. 2015, 294, 152–163. [CrossRef]

18. Felix, R.; Ushio, T. Rough sets-based machine learning using a binary discernibility matrix. In Proceedings of the Second
International Conference on Intelligent Processing and Manufacturing of Materials. IPMM’99 (Cat. No.99EX296), Honolulu, HI,
USA, 10–15 July 1999; Volume 1, pp. 299–305. [CrossRef]

19. Skowron, A.; Rauszer, C. The Discernibility Matrices and Functions in Information Systems. In Intelligent Decision Support:
Handbook of Applications and Advances of the Rough Sets Theory; Słowiński, R., Ed.; Springer: Dordrecht, The Netherlands, 1992;
pp. 331–362. [CrossRef]

20. Santiesteban Alganza, Y.; Pons Porrata, A. LEX: Un nuevo algoritmo para el cálculo de los testores típicos. Cienc. Mat. 2003,
21, 85–95.

http://doi.org/10.1007/BF01001956
http://dx.doi.org/10.1016/j.ins.2014.02.100
http://dx.doi.org/10.1007/s10844-022-00725-5
http://dx.doi.org/10.1007/3-540-58495-1_35
http://dx.doi.org/10.1007/978-3-030-93052-3_3
http://dx.doi.org/10.1016/j.fss.2014.06.012
http://dx.doi.org/10.1007/978-3-319-19264-2_5
http://dx.doi.org/10.1527/tjsai.19.166
http://dx.doi.org/10.1016/j.ins.2017.12.027
http://dx.doi.org/10.1007/978-3-642-16773-7_8
http://dx.doi.org/10.1142/S0218001413500225
http://dx.doi.org/10.1016/S1571-0661(04)80722-9
https://cir.nii.ac.jp/crid/1572824500035732992
https://cir.nii.ac.jp/crid/1572824500035732992
http://dx.doi.org/10.1016/S0377-2217(00)00167-3
http://dx.doi.org/10.1016/S0031-3203(00)00027-3
http://dx.doi.org/10.1016/j.ins.2014.09.045
http://dx.doi.org/10.1109/IPMM.1999.792493
http://dx.doi.org/10.1007/978-94-015-7975-9_21

Mathematics 2024, 12, 90 19 of 19

21. Lias-Rodríguez, A.; Pons-Porrata, A. BR: A new method for computing all typical testors. In Proceedings of the Iberoamerican
Congress on Pattern Recognition, Guadalajara, Jalisco, Mexico, 15–18 November 2009; Springer: Berlin/Heidelberg, Germany,
2009; pp. 433–440. [CrossRef]

22. Piza-Dávila, I.; Sánchez-Díaz, G.; Lazo-Cortés, M.S.; Villalón-Turrubiates, I. An Algorithm for Computing Minimum-Length
Irreducible Testors. IEEE Access 2020, 8, 56312–56320. [CrossRef]

23. Dua, D.; Graff, C. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine,
CA, USA, 2019. Available online: http://archive.ics.uci.edu/ml (accessed on 1 September 2021).

24. Derrac, J.; Garcia, S.; Sanchez, L.; Herrera, F. Keel data-mining software tool: Data set repository, integration of algorithms and
experimental analysis framework. J. Mult. Valued Log. Soft Comput. 2015, 17, 255–287.

25. Van Rijn, J.N.; Bischl, B.; Torgo, L.; Gao, B.; Umaashankar, V.; Fischer, S.; Winter, P.; Wiswedel, B.; Berthold, M.R.; Vanschoren,
J. OpenML: A collaborative science platform. In Proceedings of the Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Prague, Czech Republic, 23–27 September 2013; Springer: Berlin/Heidelberg, Germany,
2013; pp. 645–649. [CrossRef]

26. Rajalakshmi, A.; Vinodhini, R.; Bibi, K.F. Data Discretization Technique Using WEKA Tool. Int. J. Sci. Eng. Comput. Technol. 2016,
6, 293–298.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-642-10268-4_50
http://dx.doi.org/10.1109/ACCESS.2020.2982133
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/978-3-642-40994-3_46

	Introduction
	Related Works
	Basic Concepts
	Proposed Algorithm
	Experiments and Results
	Experiments on Real-World Datasets
	Experiments on Artificial SBDSMs

	Conclusions
	References

