
Citation: Zhang, L.; Qin, B.; Gao, W.;

Luo, Y. An Improved Coppersmith

Algorithm Based on Block

Preprocessing. Mathematics 2024, 12,

173. https://doi.org/10.3390/

math12020173

Academic Editor: Antanas Cenys

Received: 1 December 2023

Revised: 2 January 2024

Accepted: 3 January 2024

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Improved Coppersmith Algorithm Based
on Block Preprocessing
Lu Zhang 1,2, Baodong Qin 1,2,* , Wen Gao 1 and Yiyuan Luo 3

1 School of Cyberspace Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China;
zhang_lu@stu.xupt.edu.cn (L.Z.); gaowen@xupt.edu.cn (W.G.)

2 National Engineering Research Center for Secured Wireless, Xi’an University of Posts
and Telecommunications, Xi’an 710121, China

3 School of Computer Science and Engineering, Huizhou University, Huizhou 516007, China;
luoyy@hzu.edu.cn

* Correspondence: qinbaodong@xupt.edu.cn

Abstract: Since Coppersmith proposed the use of the LLL algorithm to solve univariate modular
polynomial equations at EUROCRYPT’96, it has sparked a fervent research interest in lattice analysis
among cryptographers. Despite its polynomial-time nature, the LLL algorithm exhibits a high-order
polynomial upper bound in terms of theoretical complexity, particularly with longer computation
times when applied to high-dimensional lattices. In addressing this issue, we propose an improved
algorithm based on block preprocessing, building on the original Coppersmith algorithm and thus
providing proof of correctness for this algorithm. This approach effectively reduces the solution time
of the algorithm, offering a maximum improvement of 8.1% compared to the original Coppersmith
algorithm. Additionally, we demonstrate the compatibility of our algorithm with the rounding
algorithm proposed at PKC 2014. The combined utilization of these approaches further enhances the
efficiency of our algorithm. The experimental results show that the combined algorithm achieves a
maximum improvement of 22.4% in solution time compared to the original Coppersmith algorithm. It
also outperforms the standalone rounding algorithm with a maximum improvement of 12.1%. When
compared to the improved Coppersmith algorithm based on row common factor extraction, our
proposed algorithm demonstrates comparable or even superior performance in certain dimensions.
The block preprocessing algorithm in our approach enables independent execution without data
exchange, making it suitable for leveraging multi-processing advantages in scenarios involving
higher degrees of modular polynomial equations. This offers a new perspective for achieving the
parallel computation of the Coppersmith algorithm, facilitating parallel execution and providing
valuable insights.

Keywords: LLL algorithm; Coppersmith algorithm; block preprocessing; RSA attack

MSC: 94A60

1. Introduction

Currently, the research on lattice theory in cryptography is mainly divided into two
directions [1]. The first direction focuses on cryptographic design, where lattice-based hard
problems are utilized to construct post-quantum secure cryptographic algorithms that can
resist quantum attacks. The second direction is cryptographic analysis, which uses lattice-
based algorithms to analyze the security of traditional public-key cryptographic algorithms.
Lattice-based analysis methods are crucial in modern cryptography analysis. The basic
idea is to transform a specific cryptographic structure, under a particular configuration,
into a class of mathematical problems based on lattices. By constructing a specific lattice,
these mathematical problems are converted into difficult problems on lattices. Ultimately,
lattice-based reduction algorithms [2] are used to effectively solve these problems and

Mathematics 2024, 12, 173. https://doi.org/10.3390/math12020173 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020173
https://doi.org/10.3390/math12020173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7617-5462
https://doi.org/10.3390/math12020173
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020173?type=check_update&version=1

Mathematics 2024, 12, 173 2 of 15

obtain accurate results. In practical applications, experimental data often demonstrate
the superior performance of lattice basis reduction algorithms compared to theoretical
results [3].

Lattice analysis has broad applications in the field of cryptography, where it is widely
used to analyze the security of many public-key cryptographic algorithms. In 1978, three
cryptographers from the Massachusetts Institute of Technology—Rivest, Shamir, and
Adleman—introduced the well-known RSA algorithm [4]. RSA was the first practical
public-key cryptographic algorithm and continues to be extensively utilized. The analysis of
its security has remained a prominent research topic in the field of cryptography. During the
same period, Merkle and Hellman [5] proposed the MH public-key cryptographic algorithm
based on the knapsack problem. It was initially considered a potential alternative to RSA.
However, the MH algorithm was later broken by Shamir [6] using integer programming
problems. In 1982, A.K. Lenstra, H.W. Lenstra, and L. Lovász [7] introduced the LLL
algorithm—this algorithm is capable of reducing a random input set of lattice bases to a
shorter and approximately orthogonal set of lattice bases. It is commonly used for solving
the approximate shortest vector problem on lattices. In 1983, Adleman [8] made a significant
advancement in cryptography by successfully breaking the MH public-key cipher using
the LLL algorithm. This marked the first application of the LLL algorithm in cryptographic
analysis and showcased its superiority over Shamir’s attack algorithm in terms of simplicity
and effectiveness. At EUROCRYPT’96, Coppersmith [9] proposed an algorithm based
on the LLL algorithm for solving small root problems in univariate modular polynomial
equations. In a later publication [10], he further extended this approach to solving small root
problems in bivariate polynomial equations with integer coefficients. These developments
played a crucial role in establishing the groundwork for analyzing the RSA algorithm.
In 1997 [11], Coppersmith presented a significant breakthrough in the field of cryptography.
He demonstrated how the LLL algorithm can be utilized to factorize the RSA modulus
when partial information is available. This pioneering work set a precedent for using
lattice-based methods in the analysis of RSA. Coppersmith’s pioneering work has inspired
extensive research by scholars. The same year, Howgrave-Graham [12] presented an
algorithm, which is equivalent to Coppersmith’s method, for solving small root problems in
univariate modular equations. This algorithm offers a more straightforward understanding
and implementation compared to Coppersmith’s original approach [9]. Afterward, the
analysis of RSA primarily revolved around specific variants of the RSA algorithm [13],
with particular emphasis on the analysis of the CRT-RSA algorithm [14]. In 2010, May [15]
conducted a systematic review of the applications of lattice basis reduction algorithms in
RSA analysis. Additionally, lattice basis reduction algorithms have been used to analyze the
security of other public-key cryptographic algorithms, including DSA [16] and ECDSA [17].
Micheli [18] provided relevant examples pertaining to key recovery in situations involving
the partial leakage of information for these types of cryptographic problems. In recent
years, the Coppersmith algorithm has remained one of the most important algorithms for
analyzing RSA and its variants [19]. In addition, it has also been used to solve the sum
of EC-HNP problems under certain conditions [20] and factorization problems when a
sufficient number of bits of the prime factors are known [21].

The core of the Coppersmith algorithm is to use the LLL algorithm to convert modular
equations into integer equations; thus, the overall running time of the Coppersmith algo-
rithm primarily depends on the time of the LLL algorithm. Although the LLL algorithm
is polynomial time, its time complexity is O

(
n6log3C

)
, where n is the dimension of the

matrix and C is the maximum length of the row vectors in the matrix [7]. In practical
applications, for attacking RSA algorithms with limited information, constructing higher-
degree modular polynomials and reducing higher-dimensional lattice basis matrices are
often necessary. However, this leads to an exponential increase in the solution time of the
algorithm. Therefore, finding efficient solutions and reducing the algorithm’s solution
time hold significant practical significance. Motivated by the aforementioned research
background, in this study, the following contributions are proposed:

Mathematics 2024, 12, 173 3 of 15

• Based on the analysis of the construction and characteristics of the Coppersmith matrix,
we propose a preprocessing algorithm, which involves partitioning the lattice matrix
into blocks according to the degree of a modular polynomial equation. The correctness
of the algorithm is rigorously proved, demonstrating its validity and reliability.

• It is proven that the algorithm proposed in this study is compatible with the rounding
algorithm proposed by Bi et al. [22] at PKC 2014. The combined algorithm can be
improved by up to 22.4% compared with the original Coppersmith algorithm and by
up to 12.1% compared with the rounding algorithm.

• The improved Coppersmith algorithm is obtained by combining the block preprocess-
ing and rounding algorithms. Compared with the improved Coppersmith algorithm
proposed by Wang et al. [23] in 2021, the improvement effect is almost the same, and
notably, our algorithm performs better in some dimensions.

• Since block preprocessing does not need to exchange data when executing the LLL
algorithm, it can run independently. Therefore, this study provides a way to support
the parallel operation of the Coppersmith algorithm.

Section 2 of this paper provides an introduction to the necessary background knowl-
edge. Section 3 presents and describes the improved Coppersmith algorithm. In Section 4,
we present and analyze the experimental results. Finally, in Section 5, a summary and
conclusion of the paper are provided.

2. Preliminary
2.1. Notation

Definition 1 (Lattice). Given n linearly independent vectors b1, b2, . . . , bn ∈ Rm, a lattice L is
the set of all integer linear combinations, defined as

L(b1, b2 . . . bn) =

{
n

∑
i=1

xibi|xi ∈ Z

}
.

We call b1, b2, . . . , bn a basis of the lattice, n is referred to as the rank of the lattice, and
m is referred to as the dimension of the lattice. In general, n ≤ m; if n = m, the lattice is
called a full-rank lattice. In most cases, we primarily consider examples of full-rank lattices.

When dealing with lattice bases, a more compact matrix form can be used. The matrix
consists of column vectors b1, b2, . . . , bn representing the basis of the lattice. In other words,
we can express it as

B =

 | |
b1 · · · bn
| |

.

Thus, the lattice can be represented as

L(B) = {Bx|x ∈ Zn}.

Definition 2 (Unimodular Matrix). A matrix U ∈ Zn×n is called unimodular if det(U) = ±1.

For example, the matrix
(

1 2
0 1

)
is unimodular.

Corollary 1. Two bases B1, B2 ∈ Rm×n are equivalent if, and only if, B2 = B1U for some
unimodular matrix U. This implies that for a given lattice, there can be multiple lattice bases. Any
two lattice bases differ by a unimodular matrix.

Definition 3 (Fundamental Parallelepiped). Given n linearly independent vectors b1, b2, . . . , bn,
their fundamental parallelepiped is defined as

P(b1, b2, . . . , bn) =

{
n

∑
i=1

xibi|xi ∈ R, 0 ≤ xi < 1

}
.

Mathematics 2024, 12, 173 4 of 15

Thus, a fundamental parallelepiped is the (half-open) region enclosed by the vectors
b1, b2, . . . , bn. Evidently, different bases of the same lattice generate different fundamental
parallelepipeds.

Definition 4 (Determinant). Let L be a lattice of rank n. We define the determinant of L, denoted
det(L), as the n-dimensional volume of P(L). In symbols, this can be written as

det(L) =
√

det(BT B).

Particularly, if the lattice L is a full-rank lattice and B is a square matrix, the formula is

det(L) =
√

det(BT B) =
√

det(B)det(BT) = |det(B)|.

Definition 5 (Euclidean Norm). The Euclidean norm (also known as the 2-norm) of a vector
V = (v1, v2, v3, . . . , vn), referred to as the length of the vector, is defined as

∥V∥ =
√

n

∑
i=1

v2
i .

Definition 6 (Polynomial Norm). Let f (x) = ∑i=1 aixi, where ai ̸= 0. We define the polynomial
norm of f (x) as

∥ f (x)∥ =
(

∑
i

a2
i

) 1
2

.

Definition 7 (Gram–Schmidt Orthogonalization). For a sequence of n linearly independent
vectors b1, b2, . . . , bn, we define their Gram–Schmidt orthogonalization as

b̃1 = b1,

b̃i = bi −
i−1

∑
j=1

µi,j b̃i , 1 < i ≤ n.

Thus, b̃j is the component of bi orthogonal to b̃1, . . . , b̃i−1, and µi,j is called the Gram–Schmidt
coefficients.

2.2. LLL Algorithm

In 1982, A.K. Lenstra, H.W. Lenstra, and L. Lovász [7] introduced the LLL lattice basis
reduction algorithm. Although it does not directly yield the shortest vector exactly, it can

produce a short vector with an approximate factor of
(
(1 + ε)

√
4/3

)(n−1)/2
in polynomial

time. Here, ε is a positive constant, and n represents the dimension of the lattice [24]. The
LLL algorithm ensures that the length of the output vectors does not exceed a multiple
of the shortest vector’s length. Notably, in practical applications, the algorithm exhibits a
lower time complexity compared to its theoretical complexity [25]. In 2006, Nguyen and
Stehlé [26] conducted extensive experiments on the LLL algorithm, revealing its superior
ability to approximate the shortest vector in lower-dimensional lattices when compared to
higher-dimensional cases.

Definition 8 (LLL Reduction Basis). A basis B = {b1, b2, . . . , bn} ∈ Rm is a δ− LLL reduction
basis if the following holds

(1) ∀1 ≤ i ≤ n, j < i,
∣∣µi,j

∣∣ ≤ 1
2 ;

(2) ∀1 ≤ i < n, δ
∥∥b̃i
∥∥2 ≤

∥∥µi+1,i b̃i + b̃i+1
∥∥2.

Mathematics 2024, 12, 173 5 of 15

In other words, b̃1, b̃2, . . . , b̃n are the results of the Gram–Schmidt orthogonalization
on b1, b2, . . . , bn. Since b̃i and b̃i+1 are orthogonal, the second condition in Definition 8 can
be written as

∀1 ≤ i < n,
∥∥b̃i+1

∥∥2 ≥
(

δ− µ2
i+1,i

)∥∥b̃i
∥∥2.

Given any basis b1, b2, . . . , bn of a lattice, the LLL algorithm can produce a reduced
basis by running in polynomial time. The specific steps of the LLL algorithm are depicted
in Algorithm 1.

Algorithm 1 LLL Algorithm
Input: A basis b1, b2, . . . , bn.
Output: A δ− LLL reduction basis.

1: Compute b̃1, b̃2, . . . , b̃n.
2: for i = 2 to n do
3: for j = i− 1 to 1 do
4: bi ← bi − µi,jbj, where µi,j = ⌈⟨bi, b̃j⟩/⟨b̃j, b̃j⟩⌋.
5: end for
6: end for
7: if ∃ i such that

∥∥b̃i+1
∥∥ <

√
δ− µ2

i+1,i

∥∥b̃i
∥∥ then

8: swap bi and bi+1.
9: return step 1.

10: end if
11: Return b1, b2, . . . , bn.

Remark 1. We use ⌈·⌋ to denote rounding to the nearest integer; for example, ⌈3.3⌋ = 3, ⌈3.8⌋ = 4.

Here, we present a significant theorem regarding the length relationship among the
output vectors of the LLL algorithm.

Theorem 1 ([7]). For a lattice L, the LLL algorithm can find a set of reduced basis b1, . . . , bn in
polynomial time, satisfying the following condition

∥b1∥ ≤ ∥b2∥ ≤ . . . ≤ ∥bn∥ ≤ 2
n(n−1)

4(n−i+1) det (L)
1

n−i+1 , 1 ≤ i ≤ n.

2.3. Coppersmith Algorithm

In their work [9], Coppersmith proposed a small root algorithm for solving univariate
modular polynomial equations. In the following sections, we present an overview of this
algorithm and provide a detailed description of the specific steps.

Definition 9 (Univariate Modular Equation). Let N be an integer of unknown factorization,
where b is one of its factors satisfying b ≥ Nβ, 0 < β ≤ 1. Let f (x) be a univariate monic
polynomial of degree δ. The objective is to find all small roots of f (x), that is,

f (x0) ≡ 0 mod b, |x0| ≤ X,

where X represents the absolute upper bound for the small root solutions.

The goal of this problem is to maximize the upper bound X of the roots, allowing
for a greater number of output roots satisfying the given condition while ensuring that
the computational time complexity remains polynomial. In other words, the algorithm’s
running time is a polynomial function of (log N, δ).

Mathematics 2024, 12, 173 6 of 15

Theorem 2 (Coppersmith [15]). Let N be an integer of unknown factorization, where b is one of
its factors satisfying b ≥ Nβ, 0 < β ≤ 1. Furthermore, let f (x) be a univariate monic polynomial
of degree δ, 0 < ε ≤ 1

7 β. Then, we can find all solutions for the following equation:

f (x0) ≡ 0 mod b, |x0| ≤
1
2

N
β2
δ −ε.

The running time primarily depends on the time it takes the LLL algorithm to reduce
a lattice basis of dimension O

(
ε−1δ

)
with entries of bit-size O

(
ε−1 log N

)
, which can be

achieved in time O
(

ε−7δ5log2N
)

. Moreover, Coppersmith also provided a specific case of

this theorem by using an exhaustive search, namely it is possible to eliminate the terms 1
2

and ε described in Theorem 3.

Theorem 3 (Coppersmith [15]). Let N be an integer of unknown factorization. Furthermore,
let fN(x) be a univariate monic polynomial of degree δ. Then, we can find all solutions x0 for the
following equation

fN(x0) ≡ 0 mod N, |x0| ≤ N
1
δ ,

in time O
(

δ5log9N
)

.

In 1997, Howgrave-Graham summarized and simplified Coppersmith’s original al-
gorithm, presenting a more practical lattice algorithm [12]. Nowadays, the majority of
applied Coppersmith algorithms are based on Howgrave-Graham’s implementation. The
subsequent references to the Coppersmith algorithm in this paper specifically refer to the
improved algorithm by Howgrave-Graham. Here, we provide a detailed explanation of
this algorithm.

The core idea of the Coppersmith algorithm is to transform the problem of finding
small roots of a univariate modular equation into the problem of finding small roots of a uni-
variate integer equation. In other words, the algorithm aims to solve the following problem

f (x0) ≡ 0 mod N ⇒ g(x0) = 0, |x0| ≤ X.

Thus, the goal is to find such values of g(x). Howgrave-Graham presents the following
theorem [12].

Theorem 4 (Howgrave-Granham [15]). Let g(x) be a univariate polynomial with n monomials.
Further, let m be a positive integer. Suppose that

(1) g(x0) ≡ 0(mod Nm), where x0 < X;
(2) ∥g(xX)∥ < Nm

√
n .

Then, g(x) = 0 holds over the integers.

In the specific algorithm, the construction of g(x) can be divided into the following
two steps:

Step 1: Fix a positive integer and construct a set of polynomials where each poly-
nomial shares a common root but has a modulus Nm. The commonly used approach for
constructing is

gi,j(x) = xj f (x)i Nm−i, i = 0, . . . , m− 1, j = 0, . . . , δ− 1.

Thus, it is easy to observe that

gi,j(x0) = xj
0 f (x0)

i Nm−i = xj
0

(
f (x0)

N

)i
Nm ≡ 0 mod Nm.

Mathematics 2024, 12, 173 7 of 15

Step 2: Construct an integer coefficient linear combination of g(x) in set C to satisfy
|g(x0)| < Nm. By combining this with g(x0) ≡ 0 mod Nm in step 1, we establish the
validity of g(x0) = 0 over integers.

The condition in step 2 can be achieved through the LLL algorithm, as demonstrated
in Theorem 1. After applying the LLL algorithm for reduction, the length of the first output
vector satisfies a certain upper bound requirement. We can utilize this vector to construct

∥b1∥ = ∥g(xX)∥ < Nm
√

n
.

As a result, polynomials with smaller norms can be obtained, which further allows for
the deduction of |g(x0)| < Nm; May provides proof of this process in [15]. Therefore, by
following the aforementioned steps, a suitable g(x) is found. It shares a common root with
f (x) and has an integer root. Finally, the solution can be obtained using a general method
for solving integer equations. The general steps of the Howgrave-Graham-improved
Coppersmith algorithm are presented in Algorithm 2.

Algorithm 2 Original Coppersmith Algorithm
Input: A univariate monic polynomial of degree d with modulus N, parameter β, ε, m, X.
Output: All x0 ∈ Z, such that |x0| ≤ N

1
δ and f (x0) ≡ 0 mod N.

1: Choose β = 1, ε = β
7 , m =

⌈
β2

dε

⌉
.

2: Compute polynomials gi,j(x) = xj · Nm−i · f (x)i, i = 0, . . . , m− 1, j = 0, . . . , d− 1.

3: Compute X =

⌈
1
2 N

β2
d −ε

⌉
, where X is the bound of x0.

4: Build the n× n matrix B, the rows of which are the g(xX) coefficients.
5: Apply the LLL algorithm to the lattice basis B. Let v be the shortest vector in the

LLL-reduced basis. The vector v is the coefficient vector of some polynomial; then,
construct g(x) from v.

6: Find the set R of all roots of g(x) over the integers using standard methods. For every
root x0 ∈ R, check whether gcd(N, f (x0)) ≥ Nβ. If this condition is not satisfied,
remove x0 from R.

7: Return R.

3. Improved Coppersmith Algorithm
3.1. Block Preprocessing Algorithm

According to the number of modular polynomial equations, it is necessary to partition
the lattice basis matrix before applying the LLL reduction algorithm. To illustrate the
concept of partitioning, let us consider an example using a monic polynomial f (x) = x3 +

a12x2 + a11x + a10 of degree 3, where the square of f (x) is denoted as f (x)2 = x6 + a25x5 +
a24x4 + a23x3 + a22x2 + a21x + a20. Computing the small roots of a polynomial equation
f (x) with modulus N. The Coppersmith matrix constructed by selecting parameter m = 3
is represented as follows

1 x x2 x3 x4 x5 x6 x7 x8

g0,0(xX)
g0,1(xX)
g0,2(xX)
g1,0(xX)
g1,1(xX)
g1,2(xX)
g2,0(xX)
g2,1(xX)
g2,2(xX)

N3

XN3

X2N3

a10N a11XN2 a12X2N2 X3N2

a10XN2 a11X2N2 a12X3N2 X4N2

a10X2N2 a11X3N2 a12X4N2 X5N2

a20N a21XN a22X2N a23X3N a24X4N a25X5N X6N
a20XN a21X2N a22X3N a23X4N a24X5N a25X6N X7N

a20X2N a21X3N a22X4N a23X5N a24X6N a25X7N X8N

Mathematics 2024, 12, 173 8 of 15

In the above case of the polynomial f (x) with a degree of 3, the constructed lattice
basis matrix B is evenly partitioned into three blocks. Each block is separately preprocessed
via the LLL algorithm. Finally, the blocks are reassembled in order, as shown in Algorithm 3.
Step 6 means choosing a vector from row d · (i− 1) to row d · i of matrix B, which is denoted
as Bi.

Algorithm 3 Improved Coppersmith Algorithm Based on Block Preprocessing
Input: A univariate degree d monic polynomial f (x) with modulus N, parameter β, ε, m, X.
Output: All x0 ∈ Z such that |x0| ≤ N

1
δ and f (x0) ≡ 0 mod N.

1: Choose β = 1, ε = β
7 , m =

⌈
β2

dε

⌉
.

2: Compute polynomials gi,j(x) = xj · Nm−i · f (x)i, i = 0, . . . , m− 1, j = 0, . . . , d− 1.

3: Compute X =

⌈
1
2 N

β2
d −ε

⌉
, where X is the bound of x0.

4: Build the n× n matrix B, the rows of which are the g(xX) coefficients.
5: for i = 1 to m do
6: Bi = B[d · (i− 1) : d · i].
7: Applying the LLL algorithm on each block matrix Bi produces Bi

′.
8: end for
9: Combine B′ =

(
B1
′ ∥ B2

′ ∥ . . . ∥ Bm
′) in order.

10: Apply the LLL algorithm to the lattice basis B. Let v be the shortest vector in the
LLL-reduced basis. The vector v is the coefficient vector of some polynomial; then,
construct g(x) from v.

11: Find the set R of all roots of g(x) over the integers using standard methods. For every
root x0 ∈ R, check whether gcd(N, f (x0)) ≥ Nβ. If this condition is not satisfied,
remove x0 from R.

12: Return R.

Applying the LLL algorithm to both the preprocessed matrix B′ and the original matrix
B yields completely consistent results. This implies that the preprocessing algorithm does
not affect the correctness of the subsequent execution of the LLL algorithm, as depicted in
Theorem 5.

Theorem 5. Let B be a lattice basis matrix of rank n, and divide matrix B into m (m ≤ n)
blocks along the rows as B = (B1 ∥ B2 ∥ B3 ∥ . . . ∥ Bm); let B′ be the LLL-reduced result of
matrix B, then B′ =

(
B1
′ ∥ B2

′ ∥ . . . ∥ Bm
′)′. The parameter m is chosen for constructing the

Coppersmith matrix.

Based on the construction characteristics of Algorithm 2, the dimension of the Copper-
smith matrix is equal to the product of degree δ and parameter m. Therefore, when dividing
matrix B into m blocks along the rows, there is no case in which it cannot be evenly divided.

To prove Theorem 5 without the loss of generality, we randomly select a lattice basis
matrix B of rank 4. This choice allows us to avoid the inadequacy of a low-rank lattice basis
in illustrating the problem, as well as the excessive complexity of proof steps associated with
a high-rank lattice basis. We can divide the lattice basis matrix B into two rank-2 matrices
B1 = (b1, b2) and B2 = (b3, b4). After applying the LLL algorithm for reduction, matrix B is
transformed into matrix B′ =

(
b̃1, b̃2, b̃3, b̃4

)
, where the vector form is denoted as

b̃1 = b1

b̃2 = b2 − ⌈⟨b2, b̃1⟩/||b̃1||2⌋ · b̃1

b̃3 = b3 − ⌈⟨b3, b̃2⟩/||b̃2||2⌋ · b̃2 − ⌈⟨b3, b̃1⟩/||b̃1||2⌋ · b̃1

b̃4 = b4 − ⌈⟨b4, b̃3⟩/||b̃3||2⌋ · b̃3 − ⌈⟨b4, b̃2⟩/||b̃2||2⌋ · b̃2 − ⌈⟨b4, b̃1⟩/||b̃1||2⌋ · b̃1.

Mathematics 2024, 12, 173 9 of 15

Similarly, after the application of the LLL algorithm for reduction, the matrix B1
is transformed into matrix B1

′ =
(
b1
′, b2

′), while matrix B2 is transformed into matrix
B2
′ =

(
b3
′, b4

′). The vector forms are represented as

b1
′ = b1 b3

′ = b3

b2
′ = b2 − ⌈⟨b2, b1

′⟩/||b1
′||2⌋ · b1

′ b4
′ = b4 − ⌈⟨b4, b3

′⟩/||b3
′||2⌋ · b3

′.

After combining them, we can obtain the matrix B12
′ =

(
B1
′ ∥ B2

′) = (b1
′, b2

′, b3
′, b4

′).
The reduction result obtained after executing the LLL algorithm on matrix B12

′ is
B12
′′ =

(
b1
′′, b2

′′, b3
′′, b4

′′), where the vector form is

b1
′′ = b1

′

b2
′′ = b2

′ − ⌈⟨b2
′, b1

′′⟩/||b1
′′||2⌋ · b1

′′

b3
′′ = b3

′ − ⌈⟨b3
′, b2

′′⟩/||b2
′′||2⌋ · b2

′′ − ⌈⟨b3
′, b1

′′⟩/||b1
′′||2⌋ · b1

′′

b4
′′ = b4

′ − ⌈⟨b4
′, b3

′′⟩/||b3
′′||2⌋ · b3

′′ − ⌈⟨b4
′, b2

′′⟩/||b2
′′||2⌋ · b2

′′ − ⌈⟨b4
′, b1

′′⟩/||b1
′′||2⌋ · b1

′′ .

Proof of Theorem 5. If we can obtain bi
′′ = b̃i (i = 1, 2, 3, 4), it can be proven that the two

are equivalent. The specific proof process is given below

b1
′′ = b1

′ = b1 = b̃1

b2
′′ = b2

′ − ⌈⟨b2
′, b1

′′⟩/||b1
′′||2⌋ · b1

′′

= b2 − ⌈⟨b2, b1
′⟩/||b1

′||2⌋ · b1
′ − ⌈⟨b2 − ⌈⟨b2, b1

′⟩/||b1
′||2⌋ · b1

′, b1
′⟩/||b1

′||2⌋ · b1
′

= b2 − ⌈⟨b2, b1
′⟩/||b1

′||2⌋ · b1
′ − ⌈⟨b2, b1

′⟩/||b1
′||2 − ⌈⟨b2, b1

′⟩/||b1
′||2 ⌋⌋ · b1

′

= b2 − ⌈⟨b2, b1
′⟩/||b1

′||2⌋ · b1
′

= b2 − ⌈⟨b2, b̃1⟩/||b̃1||2⌋ · b̃1

= b̃2

b3
′′ = b3

′ − ⌈⟨b3
′, b2

′′⟩/||b2
′′||2⌋ · b2

′′ − ⌈⟨b3
′, b1

′′⟩/||b1
′′||2⌋ · b1

′′

= b3 − ⌈⟨b3, b2
′′⟩/||b2

′′||2⌋ · b2
′′ − ⌈⟨b3, b1

′′⟩/||b1
′′||2⌋ · b1

′′

= b3 − ⌈⟨b3, b̃2⟩/||b̃2||2⌋ · b̃2 − ⌈⟨b3, b̃1⟩/||b̃1|2⌋ · b̃1

= b̃3

b4
′′ = b4

′ − ⌈⟨b4
′, b3

′′⟩/||b3
′′||2⌋ · b3

′′ − ⌈⟨b4
′, b2

′′⟩/||b2
′′||2⌋ · b2

′′ − ⌈⟨b4
′, b1

′′⟩/||b1
′′||2⌋ · b1

′′

= b4 − ⌈⟨b4, b3
′⟩/||b3

′||2⌋ · b3
′

− ⌈⟨b4, b3
′′⟩/||b3

′′||2 − ⌈⟨b4, b3
′⟩/||b3

′||2⌋ · ⟨b3
′, b3

′′⟩/||b3
′′||2⌋ · b3

′′

− ⌈⟨b4, b2
′′⟩/||b2

′′||2 − ⌈⟨b4, b3
′⟩/||b3

′||2⌋ · ⟨b3
′, b2

′′⟩/||b2
′′||2⌋ · b2

′′

− ⌈⟨b4, b1
′′⟩/||b1

′′||2 − ⌈⟨b4, b3
′⟩/||b3

′||2⌋ · ⟨b3
′, b1

′′⟩/||b1
′′||2⌋ · b1

′′

= b4 − ⌈⟨b4, b3
′⟩/||b3

′||2⌋ · b3
′ − ⌈⟨b4, b3

′′⟩/||b3
′′||2⌋ · b3

′′ − ⌈⟨b4, b2
′′⟩/||b2

′′||2⌋ · b2
′′ − ⌈⟨b4, b1

′′⟩/||b1
′′||2⌋ · b1

′′

+ ⌈⟨b4, b3
′⟩/||b3

′||2⌋ ·
(
⌈⟨b3

′, b3
′′⟩/||b3

′′||2⌋ · b3
′′ + ⌈⟨b3

′, b2
′′⟩/||b2

′′||2⌋ · b2
′′ + ⌈⟨b3

′, b1
′′⟩/||b1

′′||2⌋ · b1
′′
)

= b4 − ⌈⟨b4, b3⟩/||b3||2⌋ · b3 − ⌈⟨b4, b̃3⟩/||b̃3||2⌋ · b̃3 − ⌈⟨b4, b̃2⟩/||b̃2||2⌋ · b̃2 − ⌈⟨b4, b̃1⟩/||b̃1||2⌋ · b̃1

+ ⌈⟨b4, b3⟩/||b3||2⌋ ·
(
⌈⟨b3, b̃3⟩/||b̃3||2⌋ · b̃3 + ⌈⟨b3, b̃2⟩/||b̃2||2⌋ · b̃2 + ⌈⟨b3, b̃1⟩/||b̃1||2⌋ · b̃1

)
= b4 − ⌈⟨b4, b3⟩/||b3||2⌋ · b3 − ⌈⟨b4, b̃3⟩/||b̃3||2⌋ · b̃3 − ⌈⟨b4, b̃2⟩/||b̃2||2⌋ · b̃2 − ⌈⟨b4, b̃1⟩/||b̃1||2⌋ · b̃1

+ ⌈⟨b4, b3⟩/||b3||2⌋ · b3

= b4 − ⟨b4, b̃3⟩/||b̃3||2 · b̃3 − ⟨b4, b̃2⟩/||b̃2||2 · b̃2 − ⟨b4, b̃1⟩/||b̃1||2 · b̃1

= b̃4.

From the above deduction, we can conclude that bi
′′ = b̃i(i = 1, 2, 3, 4), indicating

that applying the LLL algorithm to the lattice basis matrix with block partitioning and
sequential combination yields results consistent with directly applying the LLL algorithm
to the entire matrix. When the rank of the lattice basis matrix increases, the number of
lattice bases that need to be reduced also increases. However, fundamentally, the same
block partitioning concept and computational steps are used. Therefore, this approach can
be extended to the case of rank n.

Mathematics 2024, 12, 173 10 of 15

3.2. Rounding Algorithm

At PKC 2014, Bi et al. [22] proposed a rounding algorithm. This algorithm simplifies
the row vectors through elementary row operations, ensuring that each non-diagonal
element in the matrix is smaller than the corresponding diagonal element in its column.
It is guaranteed to reduce the size of elements when the matrix dimension is unchanged,
aiming to shorten the running time in the subsequent execution of the LLL algorithm. See
Algorithm 4 for more details.

Algorithm 4 Improved Coppersmith Algorithm Based on Rounding
Input: A univariate degree d monic polynomial f (x) with modulus N, parameter β, ε, m, X.
Output: All x0 ∈ Z such that |x0| ≤ N

1
δ and f (x0) ≡ 0 mod N.

1: Choose β = 1, ε = β
7 , m =

⌈
β2

dε

⌉
.

2: Compute polynomials gi,j(x) = xj · Nm−i · f (x)i, i = 0, . . . , m− 1, j = 0, . . . , d− 1.

3: Compute X =

⌈
1
2 N

β2
d −ε

⌉
, where X is the bound of x0.

4: Build the n× n matrix B, the rows of which are the g(xX) coefficients.
5: for i = n− 2 to 0 do
6: for j = i + 1 to n− 1 do
7: CO = ⌊(B[j, i]/B[i, i])⌋.
8: B[j] = B[j]− CO · B[i].
9: end for

10: end for
11: Apply the LLL algorithm to the lattice basis B. Let v be the shortest vector in the

LLL-reduced basis. The vector v is the coefficient vector of some polynomial; then,
construct g(x) from v.

12: Find the set R of all roots of g(x) over the integers using standard methods. For every
root x0 ∈ R, check whether gcd(N, f (x0)) ≥ Nβ. If this condition is not satisfied,
remove x0 from R.

13: Return R.

The lattice basis matrix constructed using the Coppersmith algorithm is a lower
triangular matrix, with all elements in the upper right corner being zero. Consequently, the
algorithm is designed to operate from the lower right corner to the upper left corner of the
matrix. This transformation process preserves the main diagonal elements and does not
alter the determinant of the matrix, ensuring the correctness of subsequent computations.

3.3. Improved Coppersmith Algorithm

Wang et al. [23] introduced an improved algorithm in 2021 that combines the struc-
tural characteristics and element properties of the lattice basis matrix in the Coppersmith
algorithm. By iteratively extracting common factors from the row vectors of different blocks
in the lattice basis matrix, the solving time of the Coppersmith algorithm is effectively
reduced. Furthermore, they demonstrated the compatibility between the row common
factor extraction algorithm and the rounding algorithm. The experimental results showed
that the combined algorithm further improved the efficiency of the Coppersmith algo-
rithm. The key distinction of this work is the proposal of an improved algorithm based on
block preprocessing and its compatibility with the rounding algorithm. As described in
Section 3.1, the constructed lattice basis matrix is first divided into blocks for preprocessing
using the LLL algorithm; then, the remaining steps are carried out. Through testing on the
same software platform and with the same parameter settings, the experimental results
demonstrated that both the proposed improved algorithm with the rounding algorithm
and the improved algorithm, as proposed by Wang et al., with the rounding algorithm
correctly solve the problem. In terms of time efficiency, these two improved algorithms
show consistent improvements over the original Coppersmith algorithm. In certain di-

Mathematics 2024, 12, 173 11 of 15

mensions, the proposed algorithm in this work performs even better. Additionally, the
proposed improved algorithm in this work does not require data exchanging during block
preprocessing, as each block can be processed independently. This provides a method to
support the Coppersmith algorithm in parallel. The following theorem provides a detailed
introduction to the proposed improved algorithm and demonstrates its compatibility with
the rounding algorithm, as outlined in Theorem 6.

Theorem 6. After executing the block preprocessing algorithm on the Coppersmith matrix, the
output matrix remains a lower triangular matrix, which does not affect the subsequent execution of
the rounding algorithm.

Proof of Theorem 6. According to Algorithm 2, the initial Coppersmith matrix is a lower
triangular matrix. Taking the construction of a Coppersmith matrix with a dimension
of 9 × 9 as an example from Section 3.1, utilizing the idea of block preprocessing, the
constructed lattice basis matrix B can be divided into three matrices of dimension 3× 9.
The vector form of the second block matrix is as follows.

b4 = (a10N2 a11XN2 a12X2N2 X3N2 0 0 0 0 0)
b5 = (0 a10XN2 a11X2N2 a12X3N2 X4N2 0 0 0 0)
b6 = (0 0 a10X2N2 a11X3N2 a12X4N2 X5N2 0 0 0)

It can be seen that when applying the LLL algorithm to the above block during the
reduction step bi ← bi − µi,jbj, vectors b4, b5, b6 have zero elements in the later components.
Since the reduction process proceeds from lower to upper, the computation results will
not affect the form of the later components. However, it may change the portion of
the earlier components of vectors b5 and b6, where the elements are zero. Due to the
construction method of the Coppersmith algorithm, the non-zero elements in the vector
of each row of the block matrices are N times the non-zero elements of the vector of the
previous row, arranged in increasing order of row vector lengths. Therefore, the swapping
step is not affected. After executing the LLL algorithm, the matrix can still maintain the
aforementioned stepped structure. Similarly, for each subsequent block, as the dimension of
the matrix increases, the number of non-zero elements in the vectors increases accordingly.
However, during the reduction process, the calculation formulae between the elements
remain the same, and the execution order remains unchanged. Therefore, each block retains
its stepped structure after executing the LLL algorithm. When combining all the blocks in
order, the resulting matrix remains a lower triangular matrix, ensuring that the subsequent
execution of the rounding algorithm is not affected.

The rounding algorithm is essentially a row-equivalent transformation, representing
the original lattice matrix. Thus, the transformation does not impact the correctness of the
final result. Combining it with the block preprocessing algorithm enhances the solving
efficiency of the Coppersmith algorithm. This integration leads to the development of the
improved Coppersmith algorithm, as presented in Algorithm 5.

Mathematics 2024, 12, 173 12 of 15

Algorithm 5 Improved Coppersmith Algorithm Based on Block Preprocessing and Rounding
Input: A univariate degree d monic polynomial f (x) with modulus N, parameter β, ε, m, X.
Output: All x0 ∈ Z such that |x0| ≤ N

1
δ and f (x0) ≡ 0 mod N.

1: Choose β = 1, ε = β
7 , m =

⌈
β2

dε

⌉
.

2: Compute polynomials gi,j(x) = xj · Nm−i · f (x)i, i = 0, . . . , m− 1, j = 0, . . . , d− 1.

3: Compute X =

⌈
1
2 N

β2
d −ε

⌉
, where X is the bound of x0.

4: Build the n× n matrix B, the rows of which are the g(xX) coefficients.
5: for i = 1 to m do
6: Bi = B[d · (i− 1) : d · i].
7: Applying the LLL algorithm on each block matrix Bi produces Bi

′.
8: end for
9: Combine B′ =

(
B1
′ ∥ B2

′ ∥ . . . ∥ Bm
′) in order.

10: for i = n− 2 to 0 do
11: for j = i + 1 to n− 1 do
12: CO = ⌊(B[j, i]/B[i, i])⌋.
13: B[j] = B[j]− CO · B[i].
14: end for
15: end for
16: Apply the LLL algorithm to the lattice basis B. Let v be the shortest vector in the

LLL-reduced basis. The vector v is the coefficient vector of some polynomial; then,
construct g(x) from v.

17: Find the set R of all roots of g(x) over the integers using standard methods. For every
root x0 ∈ R, check whether gcd(N, f (x0)) ≥ Nβ. If this condition is not satisfied,
remove x0 from R.

18: Return R.

4. Experiments and Analysis

To verify the solving efficiency of the improved Coppersmith algorithm, simulation
experiments were conducted on the proposed and comparative algorithms. The simulations
were performed using a computer with the following configuration:

• RAM: 32 GB;
• CPU: 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz;
• Operating System: Ubuntu 20.04.5 (64-bit).

The simulation experiments were conducted using SageMath 9.0 software, each ex-
periment was conducted during the same time period and network environment. The
following five algorithms were included:

• Algorithm 2(Alg. 2): the original Coppersmith algorithm [12];
• Algorithm 3(Alg. 3): the improved Coppersmith algorithm based on the block prepro-

cessing algorithm;
• Algorithm 4(Alg. 4): the improved Coppersmith algorithm based on the rounding

algorithm [22];
• Algorithm 5(Alg. 5): the improved Coppersmith algorithm based on the block prepro-

cessing and rounding algorithm;
• Algorithm 6(Alg. 6): the improved Coppersmith algorithm based on the row common

factor extraction algorithm and rounding algorithm [23].

Referring to the problem described in reference [27] and the commonly used RSA
algorithm parameters in practical applications, we selected a polynomial equation with
a degree of 3 and a modulus of 2048 bits for the experiments. We then constructed the
corresponding Coppersmith matrix using parameters m = 8, 9, . . . , 19, 20 to solve the
small roots of the equation. All experiments were able to correctly solve the problem. We
performed 10 experiments for each parameter and calculated the average solving time.

Mathematics 2024, 12, 173 13 of 15

The results are shown in Table 1, with the time measured in seconds. We compared the
performance of the algorithm with the following five aspects:

• Property 1(Prop. 1): the performance improvement in Algorithm 3 compared to
Algorithm 2;

• Property 2(Prop. 2): the performance improvement in Algorithm 4 compared to
Algorithm 2;

• Property 3(Prop. 3): the performance improvement in Algorithm 5 compared to
Algorithm 2;

• Property 4(Prop. 4): the performance improvement in Algorithm 5 compared to
Algorithm 4;

• Property 5(Prop. 5): the performance improvement in Algorithm 6 compared to
Algorithm 2.

The experimental results in Table 1 demonstrate that the proposed improved Cop-
persmith algorithm, based on block preprocessing, enhances the solving efficiency of the
algorithm to a certain extent. Compared to the original Coppersmith algorithm, it achieves
a maximum improvement of 8.1% (when m = 20) and an average improvement of 5.6%.
When combined with the rounding algorithm, the improved Coppersmith algorithm ex-
hibits a maximum improvement of 22.4% (when m = 10) and an average improvement of
18.0% over the original algorithm. Furthermore, compared to using the rounding algorithm
alone, it achieves a maximum improvement of 12.1% and an average improvement of
7.2%. In comparison to the improved Coppersmith algorithm proposed by Wang et al. in
2021, the average improvement of this proposed algorithm is consistent at 17.1%, even
surpassing it in cases with matrix dimensions of 30, 36, and 45.

Table 1. Comparison of experimental results from different algorithms. Average execution time
(seconds) for 10 runs of each algorithm.

m Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Prop. 1 Prop. 2 Prop. 3 Prop. 4 Prop. 5
8 8.79 8.16 7.85 7.30 7.17 7.2% 10.7% 17.0% 7.0% 18.4%
9 18.01 17.07 16.06 14.94 14.85 5.2% 10.8% 17.0% 7.0% 17.5%
10 35.67 33.19 30.44 27.68 28.31 7.0% 14.7% 22.4% 9.1% 20.6%
11 65.52 62.35 56.37 50.94 51.16 4.8% 14.0% 22.3% 9.6% 21.9%
12 108.33 102.50 96.05 84.42 87.15 5.4% 11.3% 22.1% 12.1% 19.6%
13 174.74 163.68 156.28 137.74 139.44 6.3% 10.6% 21.2% 11.9% 20.2%
14 279.86 264.58 251.47 227.26 228.10 5.5% 10.1% 18.8% 9.6% 18.5%
15 457.45 420.68 393.85 384.15 399.78 8.0% 13.9% 16.0% 2.5% 12.6%
16 655.06 633.84 572.97 543.31 547.18 3.2% 12.5% 17.1% 5.2% 16.5%
17 976.39 938.30 847.44 821.70 826.47 3.9% 13.2% 15.8% 3.0% 15.4%
18 1452.16 1396.65 1311.77 1173.08 1198.52 3.8% 9.7% 19.2% 10.6% 17.5%
19 1973.83 1897.81 1757.55 1702.86 1709.87 3.9% 11.0% 13.7% 3.1% 13.4%
20 2724.54 2504.61 2457.98 2399.13 2438.76 8.1% 9.8% 11.9% 2.4% 10.5%

The block preprocessing algorithm in our method supports independent execution
without data exchange, making it suitable for taking advantage of multiprocessing in
scenarios involving a high degree of modular polynomial equations and a large number
of blocks. For example, when analyzing the RSA algorithm with a large encryption index,
it can be divided into several large dimensional blocks, and each block can be calculated
in parallel without affecting each other, which may not only save the solving time of the
LLL algorithm but also achieve the purpose of reducing the size of matrix elements, thus
reducing the solving time of the Coppersmith algorithm. This provides a new perspective
for implementing the parallel computation of the Coppersmith algorithm, facilitates parallel
execution, and provides valuable insights.

In addition, during the experimental process, this study also attempted to present two
heuristic algorithms:

• Heuristic Algorithm 1: In an effort to enhance the Coppersmith algorithm, based on
row common factor extraction proposed by Wang et al. in 2021, this study integrates

Mathematics 2024, 12, 173 14 of 15

it with the block preprocessing algorithm. The lattice basis matrix is first subjected
to the block preprocessing algorithm, followed by the execution of the rounding
algorithm and subsequent row common factor extraction. However, during testing,
it was observed that although the combined algorithm successfully obtains accurate
results, it does not noticeably reduce the overall solving time of the Coppersmith
algorithm. The solving time is nearly equivalent to that of combining the rounding
algorithm and the row common factor extraction algorithm. This can be attributed to
the fact that the block preprocessing algorithm already reduces the matrix element
scale significantly, taking additional steps to further reduce it less impactful.

• Heuristic Algorithm 2: We attempted to place the rounding algorithm before the block
preprocessing algorithm. By applying an equivalence transformation prior to block
preprocessing, accurate results are obtained. However, it does not lead to a reduction
in the solving time of the algorithm. The difference lies in Algorithm 5 proposed
in this paper, which firstly pretreats each matrix using the block LLL algorithm and
reduces each matrix to its simplest form. At this point, the rounding algorithm is
used to transform the whole matrix from the lower-right corner to the upper-left
corner, potentially achieving a reduction in the size of matrix elements to the greatest
extent. On the contrary, if the constructed Coppersmith matrix is rounded, then LLL
partitioning is performed. Although this process reduces the element size to a certain
extent, it does not reflect the advantage of the block LLL algorithm in reducing the
matrix to a simpler one; that is, the overall solving time of the algorithm is increased.

5. Conclusions

The proposed improved Coppersmith algorithm, based on the block preprocessing algo-
rithm, effectively reduces the solving time of the algorithm. It also demonstrates compatibility
with the rounding algorithm proposed by Bi et al. in 2014 [22]. This combination further
enhances the efficiency of the Coppersmith algorithm. The experimental results show that the
combined algorithm almost performs as equally well as the improved algorithm based on row
common factor extraction proposed by Wang et al. in 2021 [23]. In fact, in certain dimensions,
the algorithm proposed in this study exhibits even superior performance.

In practical applications, as the RSA encryption exponent increases, the degree of the
corresponding modular polynomial equations also increases. Consequently, the dimensions
of the resulting block matrices also increase. To ensure accurate solutions, it is necessary
to choose larger parameters for constructing the lattice basis matrix, which, in turn, leads
to a larger number of blocks. In such cases, the computational advantage of utilizing
multiple processes in parallel can be harnessed. By parallelizing the proposed improved
Coppersmith algorithm, which combines block preprocessing with the rounding algorithm,
the solving time of the algorithm can be effectively reduced. Currently, the optimization of
the Coppersmith algorithm can be explored in two directions. First, improvements can be
made in constructing the lattice basis matrix by enhancing the polynomials used. Second,
more-efficient LLL algorithms can be considered as replacements in the reduction process.
Many aspects of the algorithm still require further research and investigation.

Author Contributions: Conceptualization, L.Z., B.Q. and W.G.; methodology, L.Z., B.Q. and W.G.;
software, L.Z.; validation, B.Q., W.G. and Y.L.; writing—original draft preparation, L.Z.; writing—
review and editing, B.Q., W.G. and Y.L.; project administration, B.Q.; funding acquisition, W.G., Y.L.
and L.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundations of China (grant nos.:
62002288 and 62072207), Xi’an University of Posts and Telecommunications Postgraduate Innovation
Fund (grant no.: CXJJYL2022088), and the Guangdong Basic and Applied Basic Research Foundation
(grant no.: 2022A1515140090).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

Mathematics 2024, 12, 173 15 of 15

References
1. Zhou, Y.B.; Jiang, Z.M.; Wang, T.Y.; Yuan, S.M.; Xu, J.; Wang, K.P.; Liu, Y.J. Progress of Lattice-based Cryptanalysis of RSA and Its

Variant Algorithms. J. Softw. 2022, 34, 4310–4335.
2. Nguyen, P.Q. Lattice Reduction Algorithms: Theory and Practice. In Proceedings of the Advances in Cryptology—EUROCRYPT

2011, Tallinn, Estonia, 15–19 May 2011; pp. 2–6.
3. Gama, N.; Nguyen, P.Q. Predicting Lattice Reduction. In Proceedings of the Advances in Cryptology—EUROCRYPT 2008,

Istanbul, Turkey, 13–17 April 2008; pp. 31–51.
4. Rivest, R.L.; Shamir, A.; Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM

1978, 21, 120–126. [CrossRef]
5. Merkle, R.; Hellman, M. Hiding information and signatures in trapdoor knapsacks. IEEE Trans. Inf. Theory 1978, 24, 525–530.

[CrossRef]
6. Shamir, A. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. IEEE Trans. Inf. Theory 1984,

30, 699–704. [CrossRef]
7. Lenstra, A.K.; Lenstra, H.W.; Lovász, L. Factoring polynomials with rational coefficients. Math. Ann. 1982, 261, 515–534. [CrossRef]
8. Adleman, L.M. On breaking generalized knapsack public key cryptosystems. In Proceedings of the Fifteenth Annual ACM

Symposium on Theory of Computing (STOC’83), Boston, MA, USA, 25–27 April 1983; pp. 402–412.
9. Coppersmith, D. Finding a Small Root of a Univariate Modular Equation. In Proceedings of the Advances in Cryptol-

ogy—EUROCRYPT’96, Zaragoza, Spain, 12–16 May 1996; pp. 155–165.
10. Coppersmith, D. Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known. In Proceedings of the

Advances in Cryptology—EUROCRYPT’96, Zaragoza, Spain, 12–16 May 1996; pp. 178–189.
11. Coppersmith D. Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities. J. Cryptol. 1997, 10, 233–260.

[CrossRef]
12. Howgrave-Graham, N. Finding small roots of univariate modular equations revisited. In Proceedings of the Cryptography and

Coding 1997, Cirencester, UK, 17–19 December 1997; pp. 131–142.
13. Bunder, M.; Nitaj, A.; Susilo, W.; Tonien, J. A New Attack on Three Variants of the RSA Cryptosystem. In Proceedings of the

Information Security and Privacy—ACISP 2016, Melbourne, Australia, 4–6 July 2016; pp. 258–268.
14. Quisquater, J.J.; Couvreur, C. Fast decipherment algorithm for RSA public-key cryptosystem. Electron. Lett. 1982, 18, 905–907.

[CrossRef]
15. May, A. Using LLL-Reduction for Solving RSA and Factorization Problems. In The LLL Algorithm: Survey and Applications; Nguyen,

P.Q., Vallée, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 315–348. ISBN 978-3-642-02295-1.
16. Nguyen, P.Q.; Shparlinski, I.E. The Insecurity of the Digital Signature Algorithm with Partially Known Nonces. J. Cryptol. 2002,

15, 151–176. [CrossRef]
17. Nguyen, P.Q.; Shparlinski, I.E. The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces.

Des. Codes Cryptogr. 2003, 30, 201–217. [CrossRef]
18. Micheli, G.D.; Heninger, N. Recovering cryptographic keys from partial information, by example. IACR Cryptol. ePrint Arch.

2020, 1506.
19. Nitaj, A.; Susilo, W.; Tonien, J. A new attack on some RSA variants. Theor. Comput. Sci. 2023, 960, 113898. [CrossRef]
20. Meers, J.; Nowakowski, J. Solving the Hidden Number Problem for CSIDH and CSURF via Automated Coppersmith. IACR

Cryptol. ePrint Arch. 2023, 1409.
21. Ajani, Y.; Bright, C. A Hybrid SAT and Lattice Reduction Approach for Integer Factorization. In Proceedings of the 8th

International Workshop on Satisfiability Checking and Symbolic Computation, Tromsø, Norway, 24–28 July 2023; pp. 39–43.
22. Bi, J.G.; Coron, J.S.; Faugère, J.C.; Nguyen, P.Q.; Renault, G.; Zeitoun, R. Rounding and Chaining LLL: Finding Faster Small Roots

of Univariate Polynomial Congruences. In Proceedings of the Public-Key Cryptography—PKC 2014, Buenos Aires, Argentina,
26–28 March 2014; pp. 185–202.

23. Wang, Y.F.; Li, G.S. Improved Coppersmith Algorithm Based on Extraction of Row Common Factor. J. Inf. Eng. Univ. 2021,
22, 81–86.

24. Wang, X.Y.; Liu, M.J. Survey of Lattice-based Cryptography. J. Cryptologic Res. 2014, 1, 13–27. [CrossRef]
25. Yu, W.C. Lattice Reduction Theory and Its Applications to Cipher Design; Southwest Jiaotong University: Chengdu, China, 2005.
26. Nguyen, P.Q.; Stehlé, D. LLL on the Average. In Proceedings of the Algorithmic Number Theory—ANTS 2006, Berlin, Germany,

23–28 July 2006; pp. 238–256.
27. Coupé, C.; Nguyenhttp, P.; Stern, J. The Effectiveness of Lattice Attacks Against Low-Exponent RSA. In Proceedings of the

Public-Key Cryptography—PKC 1999, Kamakura, Japan, 1–3 March 1999; pp. 204–218.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/359340.359342
http://dx.doi.org/10.1109/TIT.1978.1055927
http://dx.doi.org/10.1109/TIT.1984.1056964
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1007/s001459900030
http://dx.doi.org/10.1049/el:19820617
http://dx.doi.org/10.1007/s00145-002-0021-3
http://dx.doi.org/10.1023/A:1025436905711
http://dx.doi.org/10.1016/j.tcs.2023.113898
http://dx.doi.org/10.1007/s11401-023-0053-6

	Introduction
	Preliminary
	Notation
	LLL Algorithm
	Coppersmith Algorithm

	Improved Coppersmith Algorithm
	Block Preprocessing Algorithm
	Rounding Algorithm
	Improved Coppersmith Algorithm

	Experiments and Analysis
	Conclusions
	References

