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Abstract: Rockbursts are hazardous phenomena of sudden and violent rock failure in deep under-
ground excavations under high geostress conditions, which poses a serious threat to geotechnical
engineering. The occurrence of rockbursts is influenced by a combination of factors. Therefore,
it is necessary to find an efficient method to assess rockburst grades. In this paper, we propose
a novel method that enhances the VIKOR method using a novel combination of weight and gen-
eralized weighted Mahalanobis distance. The combination weights of the evaluation indicators
were calculated using game theory by combining subjective experience and objective data statis-
tical characteristics. By introducing the generalized weighted Mahalanobis distance, the VIKOR
method is improved to address the issues of inconsistent dimensions, different importance, and
inconsistent correlation among indicators. The proposed method can deal with the complexity of
the impact factors of rockburst evaluation and classify the rockburst intensity level. The results
show that the accuracy of the improved VIKOR method with the distance formula is higher than
that of the unimproved VIKOR method; the evaluation accuracy of the improved VIKOR method
with the generalized weighted Mahalanobis distance is 91.67%, which outperforms the improved
VIKOR methods with the Euclidean and Canberra distances. This assessment method can be easily
implemented and does not depend on the discussion of the rockburst occurrence mechanism, making
it widely applicable for engineering rockburst evaluation.

Keywords: rockburst; combination weights; intensity classification; VIKOR; Mahalanobis distance
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1. Introduction

Rockbursts are the rapid and intense fracturing of rock masses under high geostress
in deep underground excavations [1,2]. The occurrence of rockbursts involves complex
physical and mechanical processes, including stress concentration, energy accumulation
and release, rock failure and fragmentation, dynamic wave propagation, and vibration.
Rockbursts, characterized by its unpredictability and high intensity, are considered one
of the most hazardous geological disasters, capable of causing casualties and equipment
damage [3,4]. Given their potential hazards, predicting and evaluating rockbursts is of
utmost importance in geotechnical engineering, particularly in hard rock mining, tunneling,
and hydropower projects [5]. With the continuous development of deep resources and
underground engineering construction, rockburst disasters have become more frequent
and severe [6,7]. Therefore, accurate rockburst evaluation is crucial for reducing the
probability of rockburst hazards and enhancing the safety of deep rock engineering during
the preliminary design phase [3].

Evaluating rockbursts accurately is a challenging task that has attracted extensive
research from numerous countries. Various models have been proposed to address this
complex phenomenon. Early studies on rockbursts mainly focused on the influence of
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single factors on rockburst classification, such as Turchaninov criterion [8], Barton crite-
rion [9], Russense criterion [10], Hoek criterion [11], Kidybinski criterion [12], and Po-
tential stress failure [13]. However, later research revealed that rockburst occurrence is
affected by multiple factors, not just one [14]. The relationship between rockbursts and
these factors is highly nonlinear and interactive, which makes it hard to achieve high
prediction accuracy using traditional empirical criteria [1,15]. Therefore, researchers have
introduced new mathematical methods for rockburst evaluation, such as fuzzy comprehen-
sive evaluation [16,17], rough set theory [18,19], cloud model [4,20], attribute recognition
model [21], matter-extension theory [22], set pair analysis [23], unascertained measure-
ment [24,25], distance discriminant analysis [26,27], support vector machine [28], XG-
boost [29], artificial neural networks [30,31], particle swarm optimization [32], K-nearest
neighbor [15,33], decision tree [34], Bayesian network [35], and random forest [36]. Al-
though many machine learning models have shown promising predictive performance
for underground engineering projects, they rely heavily on sample data [37]. Mathemat-
ical models aim to establish analytical relationships between rockburst occurrences and
influencing factors using mathematical equations. Some researchers have shown interest
in applying multi-criteria decision-making (MCDM) methods to address classification
problems. One such method is VlseKriterijumska Optimizacijia IKompromisno Resenje
(VIKOR), which incorporates the concept of maximizing overall utility and minimizing in-
dividual regrets, ranking evaluated objects based on their distances from the ideal reference
values [38]. Its practical applications span diverse fields, including manufacturing [39],
management [40], environment [41], agriculture [38], healthcare [42], and finance [43].
However, traditional VIKOR methods, which rely on the Minkowski distance formula,
suffer from limitations such as inconsistent indicator dimensions, variations in indicator
importance, and correlations between indicators. These challenges necessitate the devel-
opment of a new method to overcome these issues. In addition, the determination of
evaluation criteria weights is a key issue in evaluating rockbursts using a multi-criteria
evaluation method, as it directly impacts the accuracy of the evaluation results and rock-
burst evaluations. Common weighting methods include subjective weighting and objective
weighting. Subjective weighting reflects the personal preferences of decision makers,
while objective weighting utilizes calculations based on differences in objective data. Re-
ducing the influence of subjective factors in the weight calculation process is crucial for
ensuring the credibility of the final rockburst evaluation levels. To address this issue, this
study introduces game theory and combines it with the AHP and the CRITIC methods
to calculate a combination weight that achieves a relative balance between subjective and
objective considerations.

In this paper, we propose a novel method for predicting rockburst classification based
on the VIKOR model and generalized weighted Mahalanobis distance. This method
aims to improve the accuracy and objectivity of rockburst evaluation by comprehensively
considering the subjective and objective evaluation methods, the correlation and importance
difference between the attribute indicators, the elimination of the attribute magnitude
influence, and the solution of the covariance matrix irreversibility problem. This method
can provide a new perspective and research idea for rockburst propensity evaluation.

2. Materials and Methods

In this study, the game theory comprehensive weighting method and the VIKOR
model are used to assess the rockburst intensity grade, and the specific algorithm flowchart
is shown in Figure 1.
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Figure 1. Flowchart of the proposed method. 

2.1. Weighting Calculation Method 

2.1.1. Subjective Weights Method 

The subjective weighting method used in this paper is the Analytic Hierarchy Process 

(AHP), which was proposed by the famous operations researcher Saaty [44] in the 1970s. 

AHP is a typical subjective weighting method that simulates the thinking and judging 

process of the human brain for a complex decision problem. Based on a deep analysis of 

the essence and intrinsic relationships of the problem, it decomposes the complex and 

fuzzy system problem into layers, refines it layer by layer, and establishes a clear hierar-

chical structure from top to bottom, modeling and mathematizing the decision makers’ 

thinking process, thus providing a simple, flexible, and practical decision-making method 

for complex problems. Due to its advantages of simplicity, flexibility, and ease of analysis 

and calculation, the analytical hierarchy process is widely used to determine the weights 

of different criteria in complex decision problems with uncertainty. The influencing fac-

tors of the rockburst evaluation problem are interrelated and interdependent. 

Figure 1. Flowchart of the proposed method.

2.1. Weighting Calculation Method
2.1.1. Subjective Weights Method

The subjective weighting method used in this paper is the Analytic Hierarchy Process
(AHP), which was proposed by the famous operations researcher Saaty [44] in the 1970s.
AHP is a typical subjective weighting method that simulates the thinking and judging
process of the human brain for a complex decision problem. Based on a deep analysis
of the essence and intrinsic relationships of the problem, it decomposes the complex
and fuzzy system problem into layers, refines it layer by layer, and establishes a clear
hierarchical structure from top to bottom, modeling and mathematizing the decision
makers’ thinking process, thus providing a simple, flexible, and practical decision-making
method for complex problems. Due to its advantages of simplicity, flexibility, and ease of
analysis and calculation, the analytical hierarchy process is widely used to determine the
weights of different criteria in complex decision problems with uncertainty. The influencing
factors of the rockburst evaluation problem are interrelated and interdependent.
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For the rockburst evaluation problem, the influencing factors are interrelated and inter-
dependent. The AHP can play an important role in rockburst evaluation when quantitative
data are lacking. The AHP modeling can be divided into four steps:

Step 1. Establishing a hierarchical structure.
σθ , σc, σt, σθ/σc, σc/σt, and Wet are used as evaluation indicators in this paper. The

hierarchical structure of rockburst evaluation constructed by them is shown in Figure 2.
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Step 2. Constructing a judgment matrix.
The elements of the judgment matrix represent the relative importance of the six

indicators, and the 1~9 scale method is commonly used to determine them [45]. The
judgment matrix is shown in Equation (1), and the specific assignment method is shown in
Table 1.

A =


1 a12 · · · a1n

a21 1 · · · a2n
...

...
. . .

...
an1 an2 · · · 1

 =


1 a12 · · · a1n

1/a12 1 · · · a2n
...

...
. . .

...
1/a1n 1/a2n · · · 1

 (1)

Here, aij (i = 1, 2, . . ., n; j = 1, 2, . . ., n) is the level of importance of the comparison of
2 adjacent indicators; n is the number of indicators, which is taken as 6 in this paper.

Table 1. Scale of Analytic Hierarchy Process (AHP) [46].

Value Definition Explanation

1 Equally Important
Both criteria are equally important or both the

indicators have same effect on occurrence
of landslides

3 Moderately Important One indicator is more effective as compared to the
other indicator

5 Highly Important One indicator affects highly as compared to the
other indicator

7 Very Highly Important One indicator is highly dominated over the
other indicator

9 Extremely Important One indicator has highest possibility of affecting the
occurrence of landslide over the other indicator

2, 4, 6, 8 Intermediate Values If a compromise between two indicators is required,
intermediate values can be used

Step 3. Solving the judgment matrix.
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The AHP method used in this work is the eigenvalue approach, which is mathematically
based as a method for finding eigenvalues and eigenvectors, where W̃ = [w̃1, w̃2, · · · , w̃n].
The eigenvector A is calculated using the square root method.

w̃i = n

√√√√ n

∏
j=1

aij (2)

Wi = W̃i/
n

∑
i=1

W̃i (3)

λmax =
n

∑
i=1

(AW)i
nWi

(4)

where W̃ij represents the value computed for the judgment matrix using column vector
normalization, while Wi represents the value computed for the judgment matrix using row
sum normalization, and λmax represents the largest eigenvalue of the judgment matrix.

Step 4. Checking and correcting the consistency.
The consistency index (CI) formula for the consistency check is as follows:

CI = (λmax − n)/(n − 1) (5)

where n is the order of the judgment matrix.
The consistency ratio (CR) represents the random consistency ratio of the judgment

matrix. When CR is less than 0.1, it indicates that the subjective weight (W1) assigned to
the indicators through AHP are valid. If the CR exceeds 0.1, it is necessary to adjust the
evaluation factors of the judgment matrix, recompute the matrix, and iterate the process
until the consistency criterion is met [47]. The formula for calculating the CR is as follows:

CR = CI/RI (6)

In this formula, RI refers to the random consistency index of A, which can be found in
Table 2, and CI denotes the consistency index of A.

Table 2. Randomness Index (RI) Table [25].

Number of Criteria 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

2.1.2. Objective Weights Method

An objective weighting method is adopted to determine the indicator weights for
rockburst evaluation, since the measured values of the indicators vary in units and scales,
and the subjective weighting method has high uncertainty [48]. The Criteria Importance
through Intercriteria Correlation (CRITIC) method, proposed by D. Diakoulaki [49], is
an objective weighting method that assigns weights based on the information content
and correlation of the indicators [50]. The information content reflects the variance of the
indicators, while the correlation reflects the conflict between them. The specific calculation
steps are as follows:

Step 1. Dimensionless processing.
Dimensionless processing is required to eliminate the influence of different units and

positive and negative indicators in the evaluation process. The formulas are shown below.
For positive indicators where a higher value is better:

xik =
Xik − min(Xk)

max(Xk)− min(Xk)
(7)
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For negative indicators where a lower value is better:

xik =
max(Xk)− Xik

max(Xk)− min(Xk)
(8)

In these formulas, k = 1, 2, 3, · · · , n; xik represents the k-th indicator of the i-th set of
the data of the matrix X; Xk represents the k-th column of matrix X, while xik represents the
data of Xik after dimensionless processing, i = [1, 2, 3, . . ., m].

Step 2. Calculation of standard deviation for each indicator.

σk =

√
1

m − 1

m

∑
i=1

(xik − xk)
2 (9)

Here, xk represents the average value of the measured data for indicator Xk; n rep-
resents the number of measured data for indicator Xk; and σk represents the standard
deviation of the measured data for indicator Xk.

Step 3. Construction of correlation coefficient matrix.
The correlation coefficient qkj for n indicators is calculated as the linear correlation

coefficient between indicator Xk and indicator Xj, where xj represents the average value of
the measured data for indicator Xj, as shown in Equation (10).

qkj =

m
∑

k=1
(xk − xk)

(
xj − xj

)
√

m
∑

k=1
(xk − xk)

2 m
∑

k=1

(
xj − xj

)2
(10)

Step 4. Calculation of information content for each indicator.
The information content Ck of each indicator is calculated by combining the standard

deviation and the correlation coefficient, as shown in Equation (11).

Ck = αk

n

∑
j=1

(
1 − qkj

)
(11)

Step 5. Calculation of objective weights.
The objective weights of each indicator are obtained by normalizing the information

content, W2 = [u1, u2, · · · , un], where the calculation of uk can be found in Equation (12).

uk =
Ck

n
∑

j=1
Cj

(12)

2.1.3. Game Theory to Determine Combination Weights

The game theory method (GM) is a combination weighting method that integrates
subjective and objective information to determine the relative importance of different
indicators. This method views weight determination as a non-cooperative game process,
where each indicator is an independent game player. The Nash equilibrium solution, i.e.,
the weight of each indicator, is obtained through game solving.

If L weighting methods are selected, then weight set wk = {wk1, wk2, · · · , wkn}
(k = 1, 2, · · · , L) can be constructed, where n is the number of rockburst evaluation indicators.

Any linear combination of different vectors can be expressed as follows:

W =
L

∑
k=1

ak · wk
T, ak > 0 (13)
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In this formula, W represents the comprehensive weight vector and ak represents the
linear combination coefficient.

Taking the combination weight W of the indicator and the sum of the deviations as
the objective of minimizing the sum of the deviations, the countermeasure modeling of the
optimal solution of W as follows:

min

∥∥∥∥∥ L

∑
k=1

akwT
k − wt

∥∥∥∥∥
2

(14)

where t = 1, 2, 3, · · · , L.
According to Equation (14), Equation (15) can be calculated as follows:

w1 · wT
1 w1 · wT

2 · · · w1 · wT
L

w2 · wT
1 w2 · wT

2 · · · w2 · wT
L

...
...

. . .
...

wL · wT
1 wL · wT

2 · · · wL · wT
L

 ·


a1
a2
...

aL

 =


w1 · wT

1
w2 · wT

2
...

wL · wT
L

 (15)

After normalization, the subjective and objective weight coefficients (ak
∗) are obtained:

ak
∗ =

ak
L
∑

k=1
ak

(16)

The combination weight vector (W) can be obtained by substituting the ak
∗ calculated

in Equation (16) into Equation (13).

2.2. Improved VIKOR Method

The VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) method, origi-
nally introduced by Opricovic in 1998, is a multi-attribute decision-making approach aimed
at discovering ideal alternatives for complex systems [51]. It begins by defining positive and
negative ideal alternatives, representing the best and worst values for each evaluation crite-
rion among all available alternatives [52]. Subsequently, it ranks these alternatives based
on their proximity to these ideal alternatives. The VIKOR method generates a compromise
solution that closely approaches the optimal solution while remaining feasible within the
given constraints. The VIKOR method is traditionally based on the Minkowski distance
formula [53], which has limitations in not taking into account data correlation, while
its outcomes are affected by the dimensions of indicators. In contrast, the Mahalanobis
distance effectively eliminates the influence of both dimensions and correlation, distin-
guishing it from the mentioned distance measures. Moreover, the Mahalanobis distance
remains unaltered even when the original data undergo linear transformation. However,
a challenge arises during the calculation of the Mahalanobis distance: if the covariance
matrix becomes singular (i.e., the determinant of the covariance matrix equals 0), then
Σ−1 becomes undefined, resulting in the inability to compute the Mahalanobis distance.
This paper introduces the generalized Mahalanobis distance proposed by Chen [54]. The
generalized Mahalanobis distance aims to prevent the non-existence of the Mahalanobis
distance by substituting the inverse matrix with a pseudo-inverse matrix of the covariance
array via singular value decomposition. This method inherits the relevance of the Maha-
lanobis distance and also solves the problem of the irreversibility of the covariance array.
Additionally, it satisfies the three fundamental properties of distance, of which symmetry,
non-negativity, and trigonometric inequality. Through singular value decomposition, the
Moore–Penrose pseudo-inverse matrix Σ+ of Σ replaces the inverse matrix, which perfectly
solves the problem of non-invertibility of the covariance matrix.

Therefore, this paper proposes a VIKOR evaluation method based on the generalized
weighted Mahalanobis distance, and the specific calculation steps are as follows:

Step 1. Creation the decision matrix.
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Let the decision matrix be P, cij be the j-th evaluation indicator of the i-th scheme, where
m, n are the number of programs and the number of evaluation indicators, respectively.
Then the original decision matrix can be expressed as:

P =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn

 (17)

Step 2. Normalization of the decision matrix.
There are m evaluated objects, n evaluation indicators, the inverse indicator to take

its inverse for the homothetic treatment, then the normalization method is shown in
Equations (7) and (8).

Step 3. Determination of the ideal alternative an negative-ideal alternative.
Determining ideal alternative (y+j ) and negative-ideal alternative (y−j ) for each crite-

rion, as shown in Equations (18) and (19). y+j = max
1≤i≤m

yij

y−j = min
1≤i≤m

yij
(18)

{
y+ = (y1

+, y2
+, · · · , yn

+)
y− = (y1

−, y2
−, · · · , yn

−)
(19)

where i = 1, 2, · · · , m, j = 1, 2, · · · , n.
Step 4: Calculation of the values Si and Ri by means of the following relations, as

shown in Equations (20) and (21), respectively:

Si =
n

∑
j=1

√
(y+ − yi)WTΣ+W(y+ − yi)

T√
(y+ − y−)Σ+(y+ − y−)T

(20)

Ri = max
1≤j≤n


√
(y+ − yi)WTΣ+W(y+ − yi)

T√
(y+ − y−)Σ+(y+ − y−)T

 (21)

where W is the comprehensive weight calculated by game theory, and the calculation of Σ+

is as follows:
The singular value decomposition form of Σ is Σ = UDVT , then Σ+ = VTUT , where

D = diag(a1, a2, · · · , ar), ai > 0, r is the rank of matrix Σ, U and V are orthogonal matrices.
If D(i, j) ̸= 0, then T(i, j) = 1/D(i, j); if D(i, j) = 0, then T(i, j) = 0.

Step 5: Calculation of Q-value.

Qi =
ε(Si − S−)

S+ − S− +
(1 − ε)(Ri − R−)

R+ − R− , i = 1, 2, · · · , m (22)

where S+ is maxS, S is minS, R+ is minR, R− is maxR, and ε(0 ≤ ε ≤ 1) is the compromise
coefficient that reflects the decision maker’s preference. The value of ε typically takes
ε = 0.5, signifying equal significance of the largest group effect and the smallest individual
regret [55,56].

Step 6: Determination of Rockburst Classification:
The rockburst intensity classification is determined by comparing the Q-value of the

sample to the threshold Q-value.
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3. Application

Rockburst is a complex phenomenon caused by the interaction of multiple factors
in underground engineering. The selection of evaluation parameters is a crucial step for
rockburst evaluation, as it determines the input variables and the output results of the
evaluation model. Meanwhile, the selection of indicators for rockburst evaluation should
balance the difficulty of data acquisition, the cost, and the comprehensiveness. Based on
existing research [20,33,57–60], six indicators are selected to evaluate the rockburst intensity
in this paper, considering the influencing factors, characteristics, and internal and external
conditions of rockbursts. They are the maximum tangential stress of rock mass (σθ), the
uniaxial compressive strength of rock mass (σc), the tensile strength of rock mass (σt), the
stress coefficient (σθ/σc), the rock brittleness coefficient (σc/σt), and the elastic energy index
(Wet). These parameters are:

(1) The maximum tangential stress of rock mass (σθ): This parameter reflects the stress
condition of the rock mass around the excavation boundary;

(2) The uniaxial compressive strength of rock mass (σc): This parameter reflects the
geological condition of the rock mass. It is a main rock characteristic that affects its
resistance to failure under compression;

(3) The tensile strength of rock mass (σt): This parameter reflects another mechanical
property of the rock mass. It is defined as the maximum tensile stress that a rock can
withstand before failure. It is related to the occurrence of tensile fracture instabilities,
which are also a cause of rockbursts;

(4) The stress coefficient (σθ/σc): This parameter reflects the ratio of the maximum tan-
gential stress to the uniaxial compressive strength. It indicates how close or far a rock
is from failure under shear stress;

(5) The rock brittleness coefficient (σc/σt): The uniaxial tensile strength is the other main
rock characteristic, and the rock brittleness coefficient has often been applied to such
engineering problems. It indicates how easily a rock can break under tension or
shear stress;

(6) The elastic energy index (Wet): This parameter reflects the energy condition of the
rock mass. Wet is defined as the proportion of retained strain energy to that dissipated,
which can reflect the rock’s ability to store elastic energy [12].

These parameters are comprehensive and representative of rockburst evaluation
and can reflect the characteristics and differences of different rockburst intensity lev-
els [36,57,58].

Based on the existing research [28,61], rockburst intensity can be classified into four
levels: no rockburst (level I), weak rockburst (level II), mediate rockburst (level III), and
strong rockburst (level IV). The relationship between these levels and the six indicators has
been established, and the specific criteria for each single-factor indicator for rockburst are
shown in Table 3.

Table 3. Specific criteria for each single-factor indicator.

Rockburst Level
Evaluation Index of Rockburst

σθ σc σt σθ/σc σc/σt Wet

No rockburst (I) 0–24 0–80 0–5 0–0.3 >40 0–2.0
Weak rockburst (II) 24–60 80–120 5–7 0.3–0.5 26.7–40 2.0–3.5

Mediate rockburst (III) 60–126 120–180 7–9 0.5–0.7 14.5–26.7 3.5–5.0
Strong rockburst (IV) ≥126 ≥180 ≥9 0.7–1.0 0–14.5 ≥5.0

Based on the selected rockburst evaluation indicators and rockburst intensity levels,
60 groups of rockburst engineering examples were selected from the existing literature as
sample data for rockburst intensity levels, as shown in Appendix A.

In this study, three experts were selected for evaluation and scoring, one of them is a
professor in geotechnical engineering and two experts are engineers with senior titles in
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the field of mining. Based on Equations (1)–(6), the maximum eigenvalues obtained are
CI = 0.0509 and CR = 0.0454. Since CR < 0.1, the matrix passes the consistency test, so the
AHP subjective weights W1 = (0.1010, 0.0929, 0.1744, 0.2355, 0.2533, 0.1429). According
to Equations (7)–(12), the CRITIC objective weight W2 = (0.1145, 0.1527, 0.1699, 0.1561,
0.0693, 0.3375) can be calculated. The competitive characteristic of game theory is reflected
in the calculation of subjective weights W1 and objective weights W2. The optimal solution
is the one that balances the AHP subjective weighting method and the CRITIC objective
weighting method. Substituting W1 and W2 into Equations (15) and (23) can be obtained.[

W1 · W1 W1 · W2
W2 · W1 W2 · W2

]
·
[

a1
a2

]
=

[
W1 · W1T

W2 · W2T

]
(23)

By solving Equations (23) and (24) can be computed.{
a1 = 0.4507
a2 = 0.6584

(24)

Combining Equations (16), (24) and (25) can be calculated as follows:{
a1

∗ = 0.4064
a2

∗ = 0.5936
(25)

Thus, based on Equations (13) and (25), the comprehensive weight, W, can be calcu-
lated as shown in Equation (26), and the specific weighting results are shown in Table 4
and Figure 3.

W = (0.1090, 0.1284, 0.1717, 0.1884, 0.1441, 0.2584) (26)

Table 4. The weights of each indicator of rockburst intensity.

Methods σθ σc σt σθ/σc σc/σt Wet

AHP 0.1010 0.0929 0.1744 0.2355 0.2533 0.1429
CRITIC 0.1145 0.1527 0.1699 0.1561 0.0693 0.3375

GM 0.1090 0.1284 0.1717 0.1884 0.1441 0.2584
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The positive and negative ideal alternatives of each sample can be obtained by
Equations (18)–(21). Q can be calculated by Equation (22), where the compromise co-
efficient ε is generally equal to 0.5 [62,63]. The critical Q values are 0.0583, 0.2519, and
0.4808, respectively. Therefore, it can be concluded that there is no rockburst (level I) when
0 ≤ Qi < 0.227; weak rockburst (level II) when 0.227 ≤ Qi < 0.483; moderate rockburst (level
III) when 0.483 ≤ Qi < 0.773; and strong rockburst (level IV) when 0.773 ≤ Qi ≤ 1. Figure 4
shows the grade results of the rockburst evaluations for each sample.
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To verify the rationality of the model, the unimproved VIKOR, the VIKOR algorithm
improved by Euclidean distance, and the VIKOR algorithm improved by Euclidean distance
were selected as comparison models. The detailed evaluation results are shown in Table 5,
Figures 5 and 6.

Table 5. Comparative statistics of the case samples.

Samples VIKOR-GWMD VIKOR-ED VIKOR-CD VIKOR Actual Grade

1 III III III III III
2 III III III IV• III
3 III III III III III
4 I I I II• I
5 IV IV IV III• IV
6 II II II II II
7 II II II III• II
8 I I I II• I
9 II II II II II

10 II II II III• II
11 I I I II• I
12 II III• III• III• II
13 II II II III• II
14 I I I II• I
15 III III III III III
16 I I I I I
17 I I I II• I
18 III III III III III
19 II II II II II
20 II II II III• II
21 II II II II II
22 II• II• II• II• I
23 IV IV IV IV IV
24 II II II III• II



Mathematics 2024, 12, 181 12 of 20

Table 5. Cont.

Samples VIKOR-GWMD VIKOR-ED VIKOR-CD VIKOR Actual Grade

25 II II II III• II
26 IV IV IV IV IV
27 IV IV IV IV IV
28 IV IV IV IV IV
29 IV IV IV IV IV
30 IV IV IV IV IV
31 IV IV IV IV IV
32 IV IV IV IV IV
33 III III III III III
34 IV IV IV IV IV
35 IV IV IV IV IV
36 III III III III III
37 IV IV IV IV IV
38 IV IV IV IV IV
39 II II II III• II
40 II II II III• II
41 II II II III• II
42 II II II III• II
43 III III III III III
44 II II II III• II
45 II II II III• II
46 II II II II II
47 III III III III III
48 IV IV IV III• IV
49 II II II III• II
50 IV• III III III III
51 III III III III III
52 I II• III• II• I
53 III• III• III• III• II
54 III III III III III
55 III IV• IV• III III
56 III III III III III
57 III• III• III• II II
58 III III III III III
59 IV• IV• IV• III III
60 IV IV IV IV IV

VIKOR-GWMD represents the VIKOR method improved by generalized weighted Mahalanobis distance; VIKOR-
ED represents the VIKOR method improved by Euclidean distance; VIKOR-CD represents the VIKOR method
improved by Canberra distance; and VIKOR represents the unimproved VIKOR method. The symbol “•” indicates
an incorrect judgment.
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The accuracy of the VIKOR method with distance formulas is more than 85%, as
shown in Tables 5 and 6 and Figures 5 and 7, which is much higher than that of the VIKOR
method without improvement. The accuracy of the VIKOR method with generalized
weighted Mahalanobis distance improvement is 91.67%, which is higher than that of the
VIKOR methods improved by Euclidean distance and Canberra distance. Moreover, when
misjudgments occurred in samples 22, 50, 53, 57, and 59, the results tend to be safe, which is
acceptable from an engineering safety perspective. Although the VIKOR methods enhanced
by the Euclidean distance and the Canberra distance have similar accuracies of 88.33%,
discrepancies arise in Sample 52. In this sample, VIKOR-ED evaluates a rockburst intensity
level of II, which is only one level below the actual level I, while VIKOR-CD evaluates a
level of III with a two-level error.

Table 6. Evaluation results of different models.

Methods VIKOR-GWMD VIKOR-ED VIKOR-CD VIKOR

Accurate 55 53 53 35
Misjudge 5 7 7 25

Accuracy (%) 91.67 88.33 88.33 58.33
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4. Discussion

In this paper, we proposed a novel method for rockburst intensity classification evalu-
ation based on the VIKOR method improved by the generalized weighted Mahalanobis
distance. The method considers six evaluation parameters: the maximum tangential stress
of rock mass (σθ), the uniaxial compressive strength of rock mass (σc), the tensile strength
of rock mass (σt), the stress coefficient (σθ/σc), the rock brittleness coefficient (σc/σt), and
the elastic energy index (Wet). The method is applied to 60 rockburst cases from all over
the world and compared with other VIKOR methods improved by Euclidean distance
and Canberra distance. The results show that our proposed method has higher evaluation
accuracy than other methods in both case studies. The purpose of this discussion section is
to explain the rationale behind our parameter selection and distance formula choice, and to
justify the superiority of our proposed method over other methods.

4.1. Model Selection

Another aspect of our proposed method is the choice of the VIKOR method over other
multi-criteria decision-making (MCDM) methods for rockburst intensity classification
evaluation. The VIKOR method is a compromise ranking method that can provide a
solution that is closest to the ideal alternative from the perspective of the majority of
decision makers [56]. The VIKOR method has some advantages over other methods, as on
the one hand, it can handle both quantitative and qualitative criteria, as well as conflicting
and non-commensurable criteria, which are common in rockburst evaluation problems.
On the other hand, it can generate a compromise solution that can satisfy most of the
decision makers, as well as a set of acceptable solutions that can provide more flexibility
and alternatives for decision making.

The main reason for this consistency and agreement is that the VIKOR method uses two
coefficients: the closeness coefficient and the regret coefficient, which can reflect both the
positive and negative aspects of each alternative. The closeness coefficient measures how
close an alternative is to the ideal alternative, while the regret coefficient measures how far
an alternative is from the anti-ideal alternative. Therefore, using both closeness coefficient
and regret coefficient can provide a more comprehensive and balanced evaluation of each
alternative. In contrast, other methods may have some limitations or drawbacks in their
evaluation processes. Such as the TOPSIS method uses only the relative closeness coefficient,
which measures how close an alternative is to the ideal alternative relative to the anti-ideal
alternative. However, this coefficient may not be able to capture the absolute distance or
difference between alternatives and reference values, which may affect its accuracy and
discrimination power.

4.2. Distance Formula Comparison

The choice of the distance formula is a critical component of multicriteria decision-
making methods like VIKOR and TOPSIS. It quantifies an alternative’s proximity or dis-
tance from a reference value (e.g., an ideal alternative or an anti-ideal alternative) based on
multiple evaluation parameters. Different distance formulas possess distinct properties and
assumptions that may impact their suitability and accuracy for various decision-making
problems. In this study, we compared three commonly used distance formulas in VIKOR
methods: Euclidean distance (ED), Canberra distance (CD), and generalized weighted
Mahalanobis distance (GWMD). Below are the summarized advantages and disadvantages
of each formula.

Euclidean distance (ED) has limitations, including:

(1) It is sensitive to outliers or extreme values in parameters. If some parameters have
much larger or smaller values than others, they may dominate the distance calculation
and overshadow the effects of other parameters. Therefore, using ED may require
normalization or standardization of parameters to avoid scale effects;

(2) It is linear and symmetric, which means that it does not consider any nonlinearities
or asymmetries in the relationship between parameters and rockburst levels. For
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example, a small increase in a parameter may have a larger impact on rockburst
intensity than a large decrease, or vice versa. Therefore, using ED may not capture
the complexity and diversity of rockburst phenomena;

(3) It assumes that all parameters have equal importance and are independent of each
other. However, this assumption may not be valid in reality, as some parameters may
have more influence or correlation than others on rockbursts. Therefore, using equal
weights or ignoring correlations may lead to inaccurate or biased results.

Canberra distance (CD) has limitations, including:

(1) It still assumes that all parameters have equal importance and are independent of
each other. Therefore, using CD may still lead to inaccurate or biased results if some
parameters have more influence or correlation than others on rockbursts;

(2) It is linear and symmetric, which means that it does not consider any nonlinearities or
asymmetries in the relationship between parameters and rockburst levels. Therefore,
using CD may not capture the complexity and diversity of rockburst phenomena.

We chose the generalized weighted Mahalanobis distance over other distance formu-
las for improving the VIKOR method for several reasons. Firstly, it considers both the
parameter importance and correlation in the distance calculation. The weights reflect the
relative importance of each parameter, while the covariance matrix reflects the variance
and covariance of each parameter. Therefore, using GWMD can better reflect the simi-
larity or difference between alternatives and reference values. Secondly, it can deal with
some nonlinearities, fuzziness, uncertainties, inconsistencies, outliers, or extreme values
in parameters, as it uses a quadratic form that can capture the variance and covariance of
parameters. Thirdly, it has some desirable mathematical properties that make it suitable for
multi-attribute decision-making problems, including:

(1) It is invariant to linear transformations of parameters, such as scaling or shifting. This
means that it does not depend on the units or ranges of parameters and does not
require normalization or standardization of parameters to avoid scale effects;

(2) It is a metric that satisfies the four axioms of distance: non-negativity, identity, symme-
try, and triangle inequality. This means that it has a clear geometric interpretation and
can be used to measure the actual distance between alternatives and reference values.

In this paper, as can be seen from Tables 5 and 6 and Figures 5 and 7, the accuracy
of using VIKOR-GWMD is higher than that of VIKOR-ED and VIKOR-CD, which may
be due to the fact that the martensitic distance overcomes the correlation between the
indicators and makes them independent of each other, and the results are more reasonable.
The precision of the results using the VIKOR-CD method is the same as that using the
VIKOR-ED method, but the discrepancy between the evaluation results using the VIKOR-
CD method and the actual outcomes is more considerable than that using the VIKOR-ED
in Sample 52. Consequently, the VIKOR improved by Euclidean distance proves to be
somewhat more accurate than that with Canberra distance improvement to some extent.

Our study has some implications and limitations for rockburst evaluation and preven-
tion. On one hand, it provides a simple, reliable, and effective tool and reference basis for
rockburst evaluation, which can help engineers and decision makers to assess the rockburst
risk and take appropriate measures to reduce the damage and loss caused by rockburst
risk. On the other hand, it also has some limitations, such as the parameter selection, the
data source, the model validation, etc., which need to be further improved and refined in
future research.

5. Conclusions

In this work, a novel method for rockburst intensity classification evaluation based
on the VIKOR method improved by the game theory and the generalized weighted Maha-
lanobis distance is proposed. The main work and conclusions of this paper are as follows:
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(1) The combined weights of the evaluation indicators were obtained by calculating
the combined weights of the hierarchical analysis method subjective assignment
method and CRITIC objective assignment method through the game theory combined
assignment method;

(2) The generalized weighted Mahalanobis distance was introduced to improve the
VIKOR algorithm, which overcame some limitations of other distance formulas or
methods, such as inconsistent indicator dimensions, variations in indicator impor-
tance, correlations between indicators;

(3) The method was applied to 60 examples of rock blasting projects worldwide, and the
accuracy of the VIKOR method improved by the distance formula was 88.3–91.77%,
which was higher than the accuracy of the unimproved VIKOR method of 51.3%.
Some samples are not consistent with expectations, but the security levels are all
improved. This indicates that it is feasible to improve the distance formula for the
traditional VIKOR method;

(4) The comparison of the method proposed in this paper with the commonly used
Euclidean and Canberra distances shows that the accuracy of the improved VIKOR
method using the Mahalanobis distances is 91.7%, which is higher than that of the
88.33% using the Euclidean and Canberra distances distance improvement. This
indicates that the accuracy of VIKOR method improved using Ma distances is higher
than that of VIKOR method improved using Euclidean and Canberra distances;

(5) The method proposed in this work is an effective tool for rockburst evaluation. It
assists operating system practitioners in detecting and preventing potential rockburst
hazards. Moreover, it ensures the safety of the practitioners and reduces the losses by
taking appropriate precautions in advance.
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σθ the maximum tangential stress of rock mass
σc the uniaxial compressive strength of rock mass
σt the tensile strength of rock mass
σθ/σc the stress coefficient
σc/σt the rock brittleness coefficient
Wet the elastic energy index
AHP analytic hierarchy process
CRITIC criteria importance though intercriteria correlation
GM Game Theory
VIKOR VlseKriterijumska Optimizacijia IKompromisno Resenje
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Appendix A

Table A1. Evaluation samples of rockburst intensity classification.

Samples σθ σc σt σθ/σc σc/σt Wet Actual Grade

1 75.00 180.00 8.30 0.42 21.69 5.00 III
2 89.00 236.00 8.30 0.38 28.43 5.00 III
3 98.60 120.00 6.50 0.82 18.46 3.80 III
4 18.32 96.41 2.01 0.19 47.93 1.87 I
5 110.30 167.19 12.67 0.66 13.20 6.83 IV
6 32.40 140.88 11.96 0.23 11.78 2.86 II
7 34.89 151.70 10.66 0.23 14.23 3.17 II
8 9.74 88.51 2.98 0.11 29.70 1.77 I
9 46.22 140.07 2.01 0.33 69.69 3.29 II
10 30.95 123.79 12.67 0.25 9.77 2.57 II
11 7.28 52.00 3.70 0.14 14.05 1.30 I
12 60.00 86.03 7.14 0.70 12.05 2.85 II
13 60.00 136.79 10.42 0.44 13.13 2.12 II
14 2.60 20.00 3.00 0.13 6.67 1.39 I
15 70.40 110.00 4.50 0.64 24.40 6.31 III
16 3.80 20.00 3.00 0.19 6.67 1.39 I
17 4.60 20.00 3.00 0.23 6.67 1.39 I
18 73.20 120.00 5.00 0.61 24.00 5.10 III
19 46.40 100.00 4.90 0.46 20.40 2.00 II
20 46.20 105.00 5.30 0.44 19.70 2.30 II
21 35.00 133.40 9.30 0.26 14.34 2.90 II
22 29.80 132.20 7.80 0.23 16.95 4.60 I
23 109.90 128.50 9.63 0.86 13.34 8.10 IV
24 59.90 96.50 8.00 0.62 12.06 1.80 II
25 50.60 63.83 5.06 0.79 12.61 2.23 II
26 120.80 151.60 10.10 0.80 15.01 20.00 IV
27 119.32 138.60 7.74 0.86 17.91 30.00 IV
28 95.67 127.37 10.51 0.75 12.12 30.00 IV
29 114.44 174.71 14.42 0.66 12.12 10.00 IV
30 127.60 145.42 13.70 0.88 10.61 10.00 IV
31 126.41 158.03 14.32 0.80 11.04 10.00 IV
32 108.53 113.37 10.43 0.96 10.87 10.00 IV
33 47.50 86.30 15.60 0.55 5.53 6.30 III
34 77.00 86.30 15.60 0.89 5.53 6.30 IV
35 77.00 91.30 14.50 0.84 6.30 21.00 IV
36 67.18 132.20 16.40 0.51 8.06 3.97 III
37 80.04 171.30 22.60 0.47 7.58 7.27 IV
38 72.56 304.20 20.90 0.24 14.56 10.57 IV
39 52.00 117.00 4.80 0.44 24.38 3.20 II
40 42.00 117.00 4.80 0.36 24.38 3.20 II
41 57.97 96.16 3.77 0.46 16.20 2.53 II
42 57.97 70.68 4.19 0.60 25.51 2.87 II
43 98.02 148.52 6.66 0.66 22.30 3.23 III
44 43.21 116.78 3.93 0.37 29.73 3.52 II
45 45.92 109.33 3.34 0.42 32.77 2.97 II
46 38.12 100.32 3.49 0.38 28.77 3.02 II
47 102.38 142.20 5.17 0.72 27.52 4.30 III
48 110.62 160.32 9.69 0.69 16.55 5.72 IV
49 40.99 97.60 6.30 0.42 15.50 3.20 II
50 81.75 125.77 12.14 0.65 10.36 5.75 III
51 90.99 146.75 7.58 0.62 19.35 4.50 III
52 30.90 238.00 7.60 0.13 31.20 7.40 I
53 75.50 151.00 18.20 0.50 8.30 3.10 II
54 75.60 194.00 8.90 0.39 21.70 5.00 III
55 57.90 181.00 7.50 0.32 24.10 9.30 III
56 72.60 173.00 8.00 0.42 21.70 5.20 III
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Table A1. Cont.

Samples σθ σc σt σθ/σc σc/σt Wet Actual Grade

57 54.90 183.00 9.00 0.30 20.40 5.10 II
58 62.70 196.00 9.00 0.32 21.70 5.00 III
59 61.60 162.00 9.20 0.38 17.60 9.00 III
60 132.40 172.00 9.80 0.77 17.50 5.50 IV
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