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Abstract: The phenomenon of missing data can be seen everywhere in reality. Most typical attribute
reduction models are only suitable for complete systems. But for incomplete systems, we cannot
obtain the effective reduction rules. Even if there are a few reduction approaches, the classification
accuracy of their reduction sets still needs to be improved. In order to overcome these shortcomings,
this paper first defines the similarities of intra-cluster objects and inter-cluster objects based on the
tolerance principle and the mechanism of knowledge granularity. Secondly, attributes are selected on
the principle that the similarity of inter-cluster objects is small and the similarity of intra-cluster objects
is large, and then the knowledge granularity attribute model is proposed under the background
of clustering; then, the IKAR algorithm program is designed. Finally, a series of comparative
experiments about reduction size, running time, and classification accuracy are conducted with
twelve UCI datasets to evaluate the performance of IKAR algorithms; then, the stability of the
Friedman test and Bonferroni–Dunn tests are conducted. The experimental results indicate that the
proposed algorithms are efficient and feasible.

Keywords: attribute reduction; knowledge granularity; clustering; similarity

MSC: 74H10

1. Introduction

Rough set theory (RST) [1], initiated by Pawlak, is an effectively mathematical tool
to deal with imprecise, fuzzy, and incomplete data. RST has been successfully applied
in machine learning [2–4], knowledge discovery [5,6], expert system [7], disease diagnos-
tics [8–10], decision support [11–13], and other areas [14,15]. Attribute reduction is one of
the research hotspots in RST. As an important technology in the process of data prepro-
cessing, attribute reduction has captured researchers’ attention in big data and knowledge
discovery [16–18]. The main objective of attribute reduction is to remove some irrelevant
or non-important attributes while keeping the original distinguishing ability unchanged.
In this way, the effect of data dimension reduction can be achieved, and a lot of time and
space resources can be saved for the process of knowledge discovery and rule extraction.

With the rapid development of network and information technology, we have gradu-
ally entered the era of big data. The datasets have the characteristics of large volume, rapid
change, and diverse data forms [19]. At the same time, due to the influence of the collection
method and environment during the data collection process, there are a large number of
missing data or wrong data in the datasets. The existence of these disturbed data will
seriously affect the decision making and judgement of big data, and even mislead decision
makers. After a long period of unremitting endeavor, scholars have achieved outstanding
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results in attribute reduction [20–26]. For example, Dai [20] proposed a semi-supervised
attribute reduction based on attribute indiscernibility. Cao [21] put forward a three-way
approximate reduction approach by using information-theoretic measure. Yang [22] pre-
sented a novel incremental attribute reduction method via quantitative dominance-based
neighborhood self-information. Lin [16] et al. developed a feature selection way by using
neighborhood multi-granulation fusion. In a variable precision rough set model, Yu [24]
et al. raised a novel attribute reduction based on local attribute significance. In the litera-
ture [27], Devi proposed a new dimension reduce technology by considering the picture of
fuzzy soft matrices in the decision-making process. Wen [28] et al. raised an unsupervised
attribute reduction algorithm for mixed data based on fuzzy optimal approximation set.
These above-mentioned classic reduction models are suitable only for complete systems.

As with most of the datasets in various real-world applications, the classical rough
set model defined with equivalence relation leads to the limitation in handling data in
incomplete systems. The important attributes cannot be selected correctly, which leads
to a decrease in the classification accuracy of the reduction set. In order to reduce the
incomplete system, Zhang and Chen proposed a lambda-reduction approach based on
the similarity degree respect to a conditional attribute subset for incomplete set-valued
information systems [25]. For incomplete interval-valued information systems, Li [29]
proposed the concept of similarity degree and tolerance relation between two information
values of a given attribute. Then, three reduction algorithms based on theta-discernibility
matrix, theta-information entropy, and theta-significance were designed. Liu introduced a
new attribute reduction approach by using conditional entropy based on the fuzzy alpha-
similarity relation [30]. Subsequently, Dai [31] proposed interval-valued fuzzy min–max
similarity relations and designed two attribute reduction algorithms based on interval-
valued fuzzy discernibility pairs model. Song [32] put forward the similarity degree
between information values on each attribute and an attribute reduction method was
designed by using information granulation and information entropy. Zhou presented
a heuristic attribute reduction algorithm with a binary similarity matrix and attribute
significance as heuristic knowledge under incomplete information systems [33]. Zhang [34]
presented a novel approach for knowledge reduction by using the discernibility techniques
in multi-granulation rough set model. He and Qu [35] put forward the fuzzy-rough iterative
computation model based on symmetry relations for an incomplete categorical decision
information system. Srirekha et al. proposed an attribute reduction in SE-ISI concept
lattice based on the concept of object ranking for incomplete information systems [36].
Cornelis et al. put forward a generalized model of attribute reduction using fuzzy tolerance
relation within the context of fuzzy rough set theory [37]. Liu applied the concept of
accurate reduction and reduced invariant matrix for reducing attribute under information
systems [38]. To reduce unnecessary tolerance classes for the original cover, Nguyen [39]
introduced a new concept of stripped neighborhood covers and proposed an efficient
heuristic algorithm in mixed and incomplete decision tables.

Although the above reduction algorithms can effectively reduce incomplete informa-
tion systems, the classification accuracy of the reduction set is not ideal. The main reason
is that only the importance of attributes is considered when selecting attributes, and the
impact of attributes on classification is not considered. Usually, people take the best result
of clustering as a reference standard for classification work and classify similar samples
into the same cluster. In order to solve the problems mentioned above, this paper proposes
an attribute reduction method from the perspective of clustering.

At present, the studies of attribute reduction on using the clustering idea to construct
a feature selection model are relatively infrequent. In order to avoid or reduce the loss
of some original information after discretizing continuous values, Zhang [40] proposed
a feature selection method based on fuzzy clustering, but this method has no reliable
theoretical support. Jia [41] proposed a spectral clustering method based on neighborhood
information entropy feature selection, which uses a feature selection method to remove
redundant features before clustering. In order to take the classification effect of the dataset
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into consideration when selecting features, Zhao proposed a fuzzy C-Means clustering
fuzzy rough feature selection method [42], which can improve the classification accuracy of
the reduction set to a certain degree, but the effect is not obvious. Jia proposed a similarity
attribute reduction in the context of clustering in the literature [43], which can greatly
improve the classification accuracy of the reduction set but needs to continuously adjust the
parameters to achieve the best classification effect. Such a feature set has certain random
limitations and increases the time consumption of the system. Therefore, it is necessary to
design a stable model with high classification accuracy for data preprocessing.

Although these existing approaches can effectively reduce incomplete systems, they
only consider the importance of the attributes themselves, and do not consider the correla-
tion between attributes. The influence of conditional attributes on decision classification is
not considered. In order to improve the classification accuracy of a reduction set, we apply
the idea of clustering.

Based on the principle that the similarity of samples within a cluster is as large
as possible and the similarity of samples between clusters is as small as possible, an
attribute reduction algorithm for an incomplete system is designed under the background
of clustering. First, according to the principle of tolerance and the theory of knowledge
granularity, we define the similarity of intra-cluster and inter-cluster for an incomplete
system. Secondly, a formula for calculating the similarity of intra-cluster and inter-cluster
objects is designed. After normalizing the two similarities, we define the similarity of
objects. Then, according to the corresponding similarity mechanism, a new attribute
reduction algorithm for an incomplete system is proposed. Finally, a series of experiments
have verified that the proposed algorithm in this paper is significantly better than other
similar algorithms in terms of running time, accuracy, and the stability of algorithm was
analyzed by using Friedman test and Bonferroni–Dunn test in statistics.

The contribution of this paper is embodied in the following four aspects:

(1) A tolerance class calculation in incomplete information systems is proposed and
applied to knowledge granularity calculation.

(2) Knowledge granules are used as a measure of sample similarity to measure the
similarity of inter-cluster samples and intra-cluster samples.

(3) A knowledge granularity reduction algorithm based on clustering context is designed
in incomplete information systems.

(4) Lots of experiments are conducted to verify the validity of the algorithm proposed in
this paper, and the stability of the algorithm is verified by mathematical statistics.

The other parts of this paper are constructed as follows. The principle of tolerance and
related concepts of knowledge granularity are recalled in Section 2. In Section 3, we propose
a similarity measure of intra-cluster and inter-cluster objects and discuss the reduction
mechanism according to the clustering background for missing dataset. We normalize the
similarity of inter-cluster and intra-cluster, and then design the corresponding reduction
model in Section 4. In Section 5, a series of experiments are conducted and the performance
of the algorithm is evaluated from the reduction size, running time, classification accuracy,
and stability. Then, the feasibility and effectiveness of the algorithm are verified. Finally,
the advantages and disadvantages of the algorithm proposed in this paper are concluded
and unfolded in the future work.

2. Preliminaries

In this section, we review some basic concepts in rough set theory, the definitions of
tolerance class, knowledge granularity, clustering metrics, and the significance of attribute
for incomplete decision systems.

2.1. Basic Concept of RST

A decision information system is a quadruple DS = (U, A, V, f ), where U is a non-
empty finite set of objects and A is a finite nonempty attribute sets; if A = C ∪ D, where C
is the conditional attribute sets and D is the decision attribute set; then, V is the union of
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attribute domains, V = ∪a∈AVa, Va is the value set of attribute a, called the domain of a;
f : U× A → V is an information function with f (x, a) = Va for each a ∈ A and x ∈ U. For
every attribute subset B ⊆ C, a indiscernibility relation is defined as follows:

IND(B) = {(x, y) ∈ U × U|∀a ∈ B, f (x, a) = f (y, a)}. (1)

By the relation IND(B), we can obtain the partition of U denoted by U/IND(B) or
U/B. If B ⊆ A ∧ X ⊆ U, the upper approximation is denoted as

B(X) = {x ∈ U|[x]P ∩ X ̸= ∅}. (2)

The lower approximation of X can be denoted as

B(X) = {x ∈ U|[x]P ⊂ X} (3)

where the objects in B(X) may belong to X, while the objects in B(X) must belong to X.

Definition 1. In a decision system DS = (U, C, D, V, f ), if ∃a ∈ C and ∃x ∈ U that f (x, a) = ∗,
then we call the decision system an incomplete system (IDS). In an incomplete decision system, if
P ⊆ C ∪ D the tolerance relation is as follows:

T(P) = {(x, y) ∈ U × U|∀a ∈ P, f(x, a) = f(y, a) ∨ f(x, a) = ∗ ∨ f(y, a) = ∗} (4)

where * represents missing value. T(P) is symmetric and reflexive, but not transitive.

Definition 2. Given an incomplete decision system IDS = (U, C ∪ D, V, f ), ∀P ⊆ C ∪ D,
T(P) = ∩

a∈B
T(a), and TP(o) is the tolerance class determined by o with respect to P, which is

defined as follows:
TP(o) = {y ∈ U|(o, y) ∈ T(P)}. (5)

Let U/T(P) denote the family set of TP(o), which is the classification included by P. If P ⊆ B,
then TB(o) ⊆ TP(o), which is the monotonicity of the tolerance class.

2.2. Basic Concept of Knowledge Granularity

Definition 3. Suppose IDS = (U, C ∪ D, V, f ) is an incomplete decision system, ∀P ⊆ C.
TP(oi) is the tolerance class of object oi with respect to P. The knowledge granularity of P on U is
defined as follows:

GKU(P) =
1

|U|2
|U|

∑
i=1

|TP(oi) | (6)

where |U| represents the number of objects in dataset U. Since the reflexivity and symmetry of

TP(oi), there are lot of repeated calculations when calculating
|U|
∑

i=1
|TP(oi) |. In order to reduce the

amount of calculation, we propose Definition 4 as follows:

Definition 4. Suppose IDS = (U, C ∪ D, V, f ) is an incomplete decision system, ∀P ⊆ C.
CTP(oi) is the simplified tolerance relation of object oi with respect to P, which is defined as follows:

CTP(oi) =
{

oj|∀a ∈ P , ( f (a, oi) = f (a, oj) ∨ ( f (a, oi)
= ∗ ∧ f (a, oj) = ∗) ∧ (i < j)) ∨ ( f (a, oi) = ∗ ∧ f (a, oj) ̸= ∗)

} . (7)

Definition 5. Given an incomplete decision system IDS=(U, C ∪ D, V, f ), ∀P ⊆ C and o ∈ U,
the simplified tolerance class of object o with respect to attribute P is defined as follows:

CTP(o) = {y|(o, y) ∈ CT(P)}. (8)
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We can delete the symmetric element pair and reflexive element pair from Definition 3
and obtain Definition 5, so that Definition 5 does not have the characteristics of symmetry
and reflexivity.

Definition 6. Given an incomplete decision system IDS =(U, C ∪ D, V, f ), ∀P ⊆ C,
o ∈ U,CTP(o), is the simplified tolerance class of object o with respect to attribute P. The equal
knowledge granularity of P on U is defined as follows:

EGKU(P) =
1

|U|2 ∑
o∈U

|CTP(o)|. (9)

Theorem 1. Given an incomplete decision system IDS =(U, C ∪ D, V, f ),∀P ⊆ C. Let U/P =
{X1, X2, · · · , Xl}, Xi ⊆ U/P, |Xi| = ni where 1 ≺ i ≺ l. All objects in subdivision Xl are
missing a value on attribute P, |Xl | = n∗. For the convenience of the following description, we
mark Xl as X∗. Objects with all non-missing values on attribute P are marked with X∗. EGKU(P)
represents the equal knowledge granularity of P on U, we have:

EGKU(P) =
1

|U|2

(
l

∑
i=1

C2
ni
+ |X∗|

∣∣X∗
∣∣) (10)

where C2
n = n(n−1)

2 .

Proof. Suppose that ∀o ∈ Xi and ∀o∗ ∈ X∗. According to Definition 4, we can obtain ∑
o∈Xi

|CTP(o)|=

ni(ni−1)
2 +nin∗ and ∑

o∗∈X∗
|CTP(o∗)| = n∗(n∗−1)

2 . Suppose ∀o ∈ U, according to Definition 5, then we

can obtain EGKU(P) = 1
|U|2 ∑

o∈U
|CTP(o)| = 1

|U|2

(
l−1
∑

i=1
∑

o∈Xi

|CTP(o)|

+ ∑
o∗∈X∗

|CTP(o∗)|
)
= 1

|U|2
·
(

l−1
∑

i=1

ni(ni−1)
2 +n∗

l−1
∑

i=1
ni +

n∗(n∗−1)
2

)
= 1

|U|2

(
l

∑
i=1

ni(ni−1)
2 +n∗(|U|−n∗)

)
.

Since C2
ni

= ni(ni−1)
2 , C2

n∗ = n∗(n∗−1)
2 and

∣∣X∗
∣∣ = |U| − n∗, we can obtain EGKU(P) ==

1
|U|2

(
l

∑
i=1

C2
ni
+ |X∗|

∣∣X∗
∣∣)). □

Property 1. Given an incomplete decision system IDS= (U, C ∪ D, V, f ), ∀P ⊆ C. If the
knowledge granularity of P is GKU(P) on U and the equal knowledge granularity of P is EGKU(P),
then we have:

EGKU(P) = (GKU(P)− 1
|U| )/2. (11)

Proof. Let U/P = {X1, X2, · · · , Xl−1, X∗}, |Xi| = ni, |X∗| = n∗ where Xi is the i-th
subdivision of U/P and X∗ stands for the subdivision of missing values on attribute P,

|Xi| stands for the number of object in subdivision Xi. We can obtain |U| −
l−1
∑

i=1
|Xi| = |X∗|.

According to Definition 2, suppose that ∀o ∈ Xi and TP(o) = {x|x ∈ Xi ∨ x ∈ X∗}, we
can obtain |TP(o)| = ni + n∗. Since the |TP(o)| value of each object in Xi is ni + n∗, we can
obtain ∑

o∈Xi

|TP(o)| = ni(ni + n∗). In the same way, we can obtain ∑
o∈X∗

|TP(x)| = n∗|U|.

According to Definition 3, we can obtain GKU(P) = 1
|U|2

(
l−1
∑

i=1
∑

o∈Xi

|TP(o)|+ ∑
o∈X∗

|TP(o)|) = 1
|U|2

·[
l−1
∑

i=1
ni(ni + n∗) + n∗|U|

]
, then GKU(P)− 1

|U| =
1

|U|2
(

l−1
∑

i=1
(n2

i − ni) +
l−1
∑

i=1
ni + n∗

l−1
∑

i=1
ni + n∗|U| −

|U|) = 1
|U|2

(
l−1
∑

i=1
(n2

i − ni)− n2
∗ − n∗ + 2n∗ |U|) = 2

|U|2

(
l−1
∑

i=1

(n2
i −ni)

2 + n2
∗−n∗

2 + n∗(|U| − n∗)
)

=
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2EGKU(P). Let |Xl| = |X∗|, we can obtain GKU(P)− 1
|U| = 2

|U|2

(
l

∑
i=1

(n2
i −ni)

2 + n∗(|U| − n∗)
)

=

2EGKU(P). □

Due to the time complexity of calculating TP(o) is |U|, we know that the time com-
plexity of calculating GKU(P) is |U|2. However, the time complexity of CTP(o) is |U/P|,
the time complexity of calculating EGKU(P) is |U/P|2, and |U/P|2 ≪ |U|2. In addition,
in the process of calculating EGKU(P), the sub-division with a cardinality of 1 is con-
stantly pruned, which further speeds up the calculation. Therefore, the time of calculating
EGKU(P) is less than GKU(P) for the same data set.

Example 1. Example of computing equivalent knowledgegranularity. Let IDS = (U, C ∪ D, V, f ),
U = {o1, o2, o3, o4, o5, o6, o7, o8, o9}, C = {a, b, c, e}, D = {d}. The detailed data are shown in
Table 1. Let P = {a, b}, we can obtain f (o6, P) = ∗, f (o9, P) = ∗. We use the following two
methods to calculate EGKU(P).

(1) According to Definition 5, we obtain that CTP(o1) = {o2, o6, o9}, CTP(o2) = {o6, o9},
CTP(o3) = {o4, o5, o6, o9}, CTP(o4) = {o5, o6, o9}, CTP(o5) = {o6, o9}, CTP(o6) =
{o9}, CTP(o7) = {o6, o8, o9}, CTP(o8)= {o6, o9}, CTP(o9) = {∅}. According to

Definition 6, we can obtain EGKU(P) = 1
|U|2

·
9
∑

i=1
|CTP(oi)| 1

92 (3 + 2 + 4 + 3 + 2 + 3 +

2 + 1 + 0) = 20
81 .

(2) Since U/P = {{o1, o2}, {o3, o4, o5}, {o7, o8}, {o6, o9}}, let X1 = {o1, o2}, X2 = {o3, o4, o5},
X3 ={o7, o8}, X∗ ={o6, o9}, then |X∗| = 2,

∣∣X∗
∣∣ = |U| − 2 = 7. According to Theorem 1,

we can obtain EGKU(P) = 1
92 ·[C2

2 + C2
3 + C2

2 + C2
2 + 2·(9− 2)] = 20

81 .

Table 1. Incomplete information system.

U a b c e d

o1 0 0 0 1 0
o2 0 0 1 * 1
o3 0 1 0 1 0
o4 0 1 * 0 1
o5 0 1 0 * 1
o6 * * 1 1 1
o7 1 0 * 0 2
o8 1 0 1 0 2
o9 * * 0 1 2

‘*’ represents the missing value about some attributes.

Although the above two methods achieve the same results, the calculation time is
different. Since method 1 needs to scan the dataset multiple times, it consumes more
time. However, method 2 only needs to scan the dataset one time and obtains each
subdivision of U/P. According to the number of objects in each subdivision, we can acquire
the combination value quickly, and then the value of equivalent knowledge granularity
is calculated.

3. The Mechanism of Knowledge Granularity Attribute Reduction in the Background
of Clustering

Most traditional attribute reduction models use equivalence class relation to compute
the importance of conditional attributes. Although these methods can effectively deal with
complete decision-making information systems, they cannot obtain correct reduction rules
in incomplete ones. In order to deal with the loss of information effectively, this paper
focuses on the reduction in incomplete decision systems.

The traditional reduction model does not consider the impact on the classification
of the dataset when deleting redundant attributes. If there are inconsistent objects in the
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dataset, the classification accuracy of the reduced set will be affected. In order to improve
the data quality, this paper uses the idea of clustering. Clustering is to divide all objects in
the dataset into different clusters according to a certain standard when the target category
is unknown. Objects within a cluster are as similar as possible, and objects between clusters
are as dissimilar as possible. Classification is to classify all objects in the dataset according
to a certain nature and level when the object category is known. Good clustering results can
be used as a reference standard for accurate classification. The desired results of clustering
involve the objects of the same class being gathered in intra-clustering, otherwise they
will be gathered in different inter-clustering. This paper studies the labeled data objects
decision information system. Therefore, we use the results of the classification to guide
the process of clustering the data objects. When the data objects are clustered, they follow
the principle that the objects of intra-clustering are as close as possible and the objects of
inter-clustering are as far away as possible. Next, we discuss how to measure the distance
of intra-clustering and inter-clustering objects.

3.1. The Intra-Cluster Similarity for Incomplete Systems

Generally, there are two approaches for clustering calculations: distance and similarity.
The closer the distance between two different objects is, the weaker their ability to distin-
guish is. On the contrary, the farther the distance is, the stronger the ability to distinguish
is. In this paper, the similarity method is used to measure the distinguishing ability of
objects. Since the knowledge granularity can measure the similarity between objects, the
coarser the knowledge granularity is, the stronger the distinguishing ability is. The better
the knowledge granularity is, the weaker the distinguishing ability is. Next, we discuss
how to use knowledge granularity information to measure the similarity of objects in an
incomplete system.

Definition 7 (The similarity of intra-cluster objects). Given an incomplete decision sys-
tem IDS = (U, C ∪ D, V, f ), U/D = {D1, D2, · · · , Dn}. For the sake of convenience, let
U/D = πD, Di ⊆ πD, P ⊆ C. Suppose the equivalence division relationship of Di under attribute
set P is RP = {X1, X2, · · · , Xm}; then, the similarity of objects in the cluster of Di about attribute
P is defined as follows (where o ∈ Di):

SIntraDi (P) = EGKDi (P) =
1

|Di|2 ∑
o∈Di

|CTP(o)|. (12)

Definition 8 (The average similarity of intra-cluster objects). Given an incomplete decision
system IDS = (U, C ∪ D, V, f ), U/D = {D1, D2, · · · , Dn}. P ⊆ C, o ∈ Di. The knowledge
granularity similarity of intra-clustering objects for subdivision Di with respect to attribute P is
SIntraDi (P), then the average intra-clustering similarity is defined as follows:

ASIntraπD (P) =
1
n

n

∑
i=1

SIntraDi (P). (13)

The desired effect of clustering is that the similarity of intra-clustering is high, and the
similarity of inter-clustering is low.

Property 2. Given an incomplete system IDS = (U, C∪D, V, f ), U/D = πD, Di ⊆ πD, P, Q ⊆
C. If P ⊆ Q, and we have

ASIntraπD (P) ≥ ASIntraπD (Q). (14)

Proof. Let Di/P = {X1, X2, · · · , Xk ∪ Xk+1, Xk+2, · · · , Xn, X∗ ∪ Y}, where X∗, Y repre-
sents the object sets with missing values on attribute set P. Since P ⊆ Q, we can obtain
Di/Q ⊆ Di/P. This to say, each subdivision of Di/Q is a subset of some subdivision
of Di/P. Let Di/Q = {X1, X2, · · · , Xk, Xk+1, Xk+2, · · · , Xn, Y, X∗}. According to The-



Mathematics 2024, 12, 333 8 of 24

orem 1 and Definition 7, we can obtain: SIntraDi (P) = 2
|Di |2

(
k−1
∑

j=1
C2
|Xj |

+ C2
|Xk |+|Xk+1|

+

n
∑

j=k+2
C2
|Xj |

+ C2
|X∗ |+|Y|+(|X∗|+ |Y|)(|Di| − |X∗| − |Y|)) = 2

|Di |2
(

k−1
∑

j=1
C2
|Xj |

+C2
|Xk |

+C2
|Xk+1|

+

|Xk||Xk+1| +
n
∑

j=k+2
C2
|Xj |

+C2
|X∗ | + C2

|Y| + |X∗||Y| + (|X∗| + |Y|)(|Di| − |X∗| −|Y|)) =

2
|Di |2

(
n
∑

j=1
C2
|Xj |

+ |Xk||Xk+1|+C2
|X∗ |+C2

|Y| +|X∗||Y|+(|X∗|+ |Y|)(|Di| − |X∗| − |Y|)). Since

SIntraDi (Q) = 2
|Di |2

(
n
∑

j=1
C2
|Xj |

+ C2
|X∗ | + C2

|Y| + |X∗|(|Di| − |X∗|)), then 2
|Di |2

(|Xk||Xk+1| +

|Y||Di|− |X∗||Y| − |Y|2) = 2
|Di |2

(|Xk||Xk+1| + |Y|(|Di| − |X∗| − |Y|)). Since |Di| >=

|X∗| + |Y| , |Xk||Xk+1| ≥ 0; therefore, the results of SIntraDi (P) ≥ SIntraDi (Q) and
n
∑

i=1
SIntraDi (P) ≥

n
∑

i=1
SIntraDi (Q) are obtained. Above all, we can obtain ASIntraπD (P) ≥

ASIntraπD (Q). □

According to Property 2, we conclude that the intra-cluster similarity is monotonic
when the conditional attribute set changes.

Example 2. In Table 1, let P = {a, b}; we have D1 = {o1, o3}, D2 = {o2, o4, o5, o6}, D3 =

{o7, o8, o9},SIntraD1(P) = 0,SIntraD2(P) =
0+C2

2+1×3
42 = 1

4 , SIntraD3(P) =
C2

2+1×2
32 = 1

3 ,

ASIntraπD (P) = 1
3

3
∑

i=1
SIntraDi (P) = 7

36 .

3.2. The Inter-Cluster Similarity for Incomplete Systems

Definition 9 (The inter-cluster similarity for incomplete systems). Given IDS = (U, C ∪
D, V, f ) is an incomplete decision system, let πD = {D1, D2, · · · , Dn}. Suppose P ⊆ C, Di, Dj ⊂
U/D, then the inter-cluster similarity of Di and Dj with respect to attribute set P for incomplete
systems is defined as the following:

SInterDi ,Dj(P) =
1

(|Di|+
∣∣Dj
∣∣)2

 ∑
o∈Di∪Dj

|CTP(o)|− ∑
o∈Di

|CTP(o)| − ∑
o∈∪Dj

|CTP(o)|

. (15)

Assuming that Di and Dj are objects of two different clusters, the inter-cluster sim-
ilarity between Di and Dj is calculated in two steps. The first step is to calculate the
similarity after the two clusters are merged, and the second step is to remove the similarity
information of the same cluster. The rest is the similarity information between objects in
different clusters.

Property 3. Given an incomplete decision system IDS = (U, C ∪ D, V, f ), πD = {D1, D2, · · · ,
Dn} P ⊆ C. Let Di/P= {X1, X2, · · · , Xk, Xk+1, · · · , Xm, X∗}, X∗ = Di − X∗, Dj/P =

{Y1, Y2, · · · , Yk, Yk+1, · · · ,Yn, Y∗}, Y∗ = Dj − Y∗, Di ∪ Dj/P = {X1 ∪ Y1, X2 ∪ Y2, · · · ,
Xk ∪ Yk, X∗ ∪ Y∗, Xk+1, · · · , Xm, Yk+1, · · · , Yn}, where ∀o ∈ X∗ ∪ Y∗, f (o, P) = ∗, ‘*’ is the
flag of missing value. We have:

SInterDi ,Dj(P) =
1

(|Di|+
∣∣Dj
∣∣)2

(
k

∑
l=1

|Xl ||Yl |++|X∗||Y∗|+ |X∗|
∣∣Y∗
∣∣+ ∣∣X∗

∣∣|Y∗|
)

. (16)
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Proof. According to Definition 5 and Theorem 1, we can obtain ∑
o∈Di∪Dj

|CTP(o)| =

k
∑

l=1
C2
|Xl |+|Yl |

+ C2
|X∗ |+|Y∗ |+

m
∑

l=k+1
C2
|Xi |

+
n
∑

l=k+1
C2
|Yi |

+(|X∗|+ |Y∗|)(
∣∣Y∗
∣∣+ ∣∣X∗

∣∣), ∑
o∈Di

|CTP(o)|

=
m
∑

l=1
C2
|Xl |

+C2
|X∗ |+ |X∗|

∣∣X∗
∣∣ , ∑

o∈Dj

|CTP(o)| =
n
∑

l=1
C2
|Yl |

+C2
|Y∗ |+ |Y∗|

∣∣Y∗
∣∣. Since

k
∑

l=1
C2
|Xl |+|Yl |

=
k
∑

l=1

(
|Xl |2−|Xl |+|Yl |2−|Yl |

2 + |Xl ||Yl |
)

=
k
∑

l=1
C2
|Xl |

+
k
∑

l=1
C2
|Yl |

+
k
∑

l=1
|Xl ||Yl |, according to

Definition 9, we can conclude that (|Di|+
∣∣Dj
∣∣)2 SInterDi ,Dj(P) = ∑

o∈Di∪Dj

|CTP(o)| −

∑
o∈Di

|CTP(o)|− ∑
o∈∪Dj

|CTP(o)| =
k
∑

l=1
|Xl ||Yl |+ |X∗||Y∗|+ |X∗|

∣∣Y∗
∣∣+∣∣X∗

∣∣|Y∗|. Then, we have:

SInterDi ,Dj(P) =
1

(|Di|+
∣∣Dj
∣∣)2

(
k

∑
l=1

|Xl ||Yl |+ |X∗||Y∗|+ |X∗|
∣∣Y∗
∣∣+ ∣∣X∗

∣∣|Y∗|
)
.□

Property 4. Given an incomplete decision system IDS =(U, C∪D, V, f ), πD = {D1, D2, · · · , Dn},
P ⊆ Q ⊆ C, Di, Dj ⊂ U/D, then we have SInterDi,Dj(P) ≥ SInterDi,Dj(Q).

Proof. Let Di/Q =
{

X1, X2, · · · , Xk, Xk+1, · · · , Xm, X△, X∗ − X△
}

, X∗ − X△ = Di −
X∗ + X△, Dj/Q = {Y1, Y2, · · · , Yk, Yk+1, · · · , Yn, Y△, Y∗ − Y△

}
, Y∗ − Y△ = Dj − Y∗ + Y△.

Since P ⊆ Q ⊆ C, then Di/Q is a refinement of Di/P, Dj/Q is a refinement of Dj/P. Let
Di/P = {X1, X2, · · · , Xk ∪ Xk+1, · · · , Xm, X∗}, X∗ = Di − X∗, Dj/P = {Y1, Y2, · · · , Yk ∪
Yk+1, · · · , Yn, Y∗}, Y∗ = Dj − Y∗. Suppose Di ∪ Dj/Q = { X1 ∪ Y1, X2 ∪ Y2, · · · , Xk ∪
Yk, Xk+1 ∪Yk+1, X∆ ∪Y∆, (X∗−X∆)∪ (Y∗−Y∆), Xk+2, · · · , Xm, Yk+2, · · · , Yn}, Di ∪Dj/P =
{X1 ∪ Y1, X2 ∪ Y2, · · · , Xk ∪ Yk, Xk+1 ∪ Yk+1, X∗ ∪ Y∗, Xk+2, · · · , Xm, Yk+2, · · · , Yn}, then

SInterDi,Dj(P) =
k−1
∑

l=1
|Xl||Yl|+(|Xk|+ |Xk+1|)(|Yk|+ |Yk+1|)+ |X∗||Y∗|+ |X∗|

∣∣Y∗
∣∣+ ∣∣X∗

∣∣|Y∗|,

SInterDi ,Dj (Q) =
k−1
∑

l=1
|Xl ||Yl | + |Xk||Yk| + |Xk+1||Yk+1| + |X∆||Y∆| + |X − X∆||Y − Y∆| +

|X∗ − X∆|
∣∣Y∗ − Y∆

∣∣+ ∣∣X∗ − X∆
∣∣ |Y∗ − Y∆|. SInterDi ,Dj(P)−SInterDi ,Dj(Q) = |Xk||Yk+1|+

|Xk+1||Yk| + |X∗||Y∗| + |X∗|
∣∣Y∗
∣∣ + ∣∣X∗

∣∣|Y∗| − |X∆| |Y∆| − |X− X∆| |Y − Y∆| − |X∗−X∆|∣∣Y∗ − Y∆
∣∣+ ∣∣X∗ − X∆

∣∣|Y∗ − Y∆|. Since
∣∣X∗
∣∣ = |Di| − |X∗|,

∣∣Y∗
∣∣ = ∣∣Dj

∣∣− |Y∗|,
∣∣X∗ − X∆

∣∣ =
|Di| − |X∗| + |X∆|,

∣∣Y∗ − Y∆
∣∣ =

∣∣Dj
∣∣ − |Y∗| + |Y∆|, |Xk||Yk+1| + |Xk+1||Yk| ≥ 0, then

SInterDi ,Dj(P) −SInterDi ,Dj(Q) ≥ |X∗||Y∗| + |X∗|
∣∣Y∗
∣∣ + ∣∣X∗

∣∣|Y∗| − |X∆||Y∆| − |X− X∆|
|Y − Y∆| − |X∗ − X∆|

∣∣Y∗ − Y∆
∣∣+ ∣∣X∗ − X∆

∣∣|Y∗− Y∆| =
∣∣X△

∣∣·∣∣Dj
∣∣+ |Y∆||Di| − |X∗||Y∆| −

|X∆||Y∗| = |X∆|(
∣∣Dj
∣∣− |Y∗|) + |Y∆|·(|Di| − |X∗|). Since

∣∣Dj
∣∣ ≥ |Y∗|, |Di| ≥ |X∗|, then we

have SInterDi ,Dj(P)− SInterDi ,Dj(Q) ≥ 0. □

From Property 4, it can be concluded that the similarity of inter-clusters has mono-
tonicity with the change in conditional attributes.

Definition 10 (The average similarity of inter-cluster objects). Given an incomplete decision
system IDS = (U, C ∪ D, V, f ),πD = {D1, D2, · · · , Dn}, P ⊆ C. In n different clusters, the
inter-cluster similarity is calculated between every two clusters and the time of comparisons is
1
2 n(n − 1), then the average knowledge granularity similarity of inter-cluster in dataset U respect
of attribute set P is defined as the following:

ASInterπD (P) =
2

n(n − 1)

n−1

∑
i=1

n

∑
j=i+1

SInterDi ,Dj(P). (17)
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Example 3. In Table 1, with the same conditions as Example 2, let P = {a, b}, we have
D1 = {o1, o3}, D2 = {o2, o4, o5, o6}, D3 = {o7, o8, o9}, SInterD1,D2(P) = 1×1+1×2+2×1

(2+4)2 =

5
36 , SInterD1,D3(P) = 0+0+1×2

(2+3)2 = 2
25 , SInterD2,D3(P) = 0+1×2+3×1

(4+3)2 = 5
49 , ASInterπD (P) =

1
3

2
∑

i=1

3
∑

j=i+1
SInterDi ,Dj(P)= 14153

132300 .

4. Attribute Reduction of Knowledge Granularity for Incomplete Systems

Traditional attribute reduction methods are mostly aimed at datasets with no missing
data. Various datasets in reality are often incomplete due to various subjective or objective
factors. Therefore, we researched information systems with missing data and propose
corresponding algorithms to improve the data quality of incomplete system reduction sets.

This paper discusses how to design a reduction method with the idea of clustering.
For an ideal clustering effect, the objects of inter-cluster should be far away, and the objects
of intra-cluster should be close together. Here, similarity is used to measure the distance
between two different objects. The higher the similarity is, the closer the objects are.
Conversely, the lower the similarity is, the farther the objects are. Based on the above
analysis, we designed a formula to measure the importance of attributes as the following:

SIMR = SAIntra + λ·(1 − ASInter) (18)

where λ is the weight, and 1 − ASIntra is the dissimilarity of intra-cluster objects. We can
set the importance of the intra-cluster similarity and inter-cluster similarity by using the size
of the parameter λ. This method requires the adjustment of the parameters continuously,
which consumes a lot of time. To this end, we first normalize ASIntra and ASInter. Then,
the two similarity calculations can be measured within a unified range, avoiding the
parameter adjustment process.

4.1. Normalization of Inter-Cluster Similarity and Intra-Cluster Similarity

Given an incomplete decision system IDS = (U, C ∪ D, V, f ), πD = {D1, D2, · · · , Dn},
P ⊆ C, Di, Dj ⊂ U/D. Since the number of elements in each sub-division may be different,
then the value range of its equivalent knowledge granularity may also be different. To
calculate the average similarity of all subdivisions, they must be calculated in the same
domain. For the sake of generality, we normalize the inter-cluster similarity and intra-
cluster similarity. According to Definition 7 and Theorem 1, we can obtain SIntraDi (P) =
EGKDi (P). When all data objects in the subdivision Di are indistinguishable with respect
to the attribute set P, EGKDi (P) = 1

2 (1 −
1

|Di |
) takes the maximum value.

When all data objects in Di can be distinguished from each other, EGKDi (P) = 0 takes

the minimum value. So, the result of EGKDi (P) ∈
[
0, |Di |−1

2|Di |

]
is obtained. If the value of

EGKDi (P) is mapped to the range [0,1], the correction formula of SIntraDi (P) is defined as

SIntraDi (P)′ = EGKDi (P)/
(
|Di| − 1

2|Di|

)
= EGKDi (P)

2|Di|
|Di| − 1

. (19)

The average similarity of intra-cluster objects is corrected as follows:

ASIntraπD (P) =
1
n

n

∑
i=1

SIntraDi (P)′ (20)

Di and Dj are two object sets of different clusters. Suppose Di/P = {X1, X2, · · · , Xn, X∗},
Dj/P = {Y1, Y2, · · · , Ym, Y∗}. If f (Xl , P) = f (Yl , P)(1 ≤ l ≤ k), then Di ∪ Dj/P =
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{X1 ∪ Y1, X2 ∪ Y2, · · · , Xk ∪ Yk, · · · , Xk+1, · · · , Xn, Yk+1, · · · , Ym, X∗, Y∗}. According to
Property 3, the similarity of inter-cluster respect to Di and Dj is denoted as

SInterDi ,Dj(P) =
1

(|Di|+
∣∣Dj
∣∣)2

(
k

∑
l=1

|Xl ||Yl |+ |X∗|
∣∣Y∗
∣∣+ ∣∣X∗

∣∣|Y∗|
)

.

When ∪k
i=1Xi ∪ Yi = ∅, X∗ = ∅, Y∗ = ∅}, SInterDi ,Dj(P) = 0, takes the minimum

value. When all data objects in Di and Dj are indistinguishable, SInterDi ,Dj(P) =
|Di ||Dj|

(|Di |+|Dj|)2

takes the maximum value. Then, we can obtain SInterDi ,Dj(P) ∈
[

0,
|Di ||Dj|

(|Di |+|Dj|)2

]
. The nor-

malized formula of SInterDi ,Dj(P) is as follows:

SInterDi ,Dj(P)′ = SInterDi ,Dj(P)
(|Di|+

∣∣Dj
∣∣)2

|Di|
∣∣Dj
∣∣ . (21)

The definition of the average similarity of inter-cluster objects is revised as follows:

ASInterπD (P) =
n(n − 1)

2

n−1

∑
i=1

n

∑
j=i+1

SInterDi ,Dj(P)′. (22)

After the similarities of inter-cluster and intra-cluster objects are normalized, SIMR =
ASInter + λ·(1 − ASIntra) is revised as follows:

SIMR = AIntraπD (P) + 1 − AInterπD (P). (23)

Since ASInterπD (P) represents the similarity of intra-cluster objects, then the dis-
similarity is 1−ASInterπD (P). If you use the formula of SIMR to measure the effect of
clustering, the larger the value of SIMR is, the better the effect is.

4.2. The Knowledge Granularity Attribute Reduction Algorithm for Incomplete Systems (IKAR)

In Section 4.1, we discussed the similarities of inter-cluster and intra-cluster objects
from the perspective of clustering, which provided a clear goal for the next step of at-
tribute selection.

Definition 11 (Equal knowledge granularity attribute reduction). Given an incomplete
decision system IDS = (U, C ∪ D, V, f ), an attribute subset R ⊆ C is an equal know-ledge
granularity attribute reduction if and only if:

(1)R = min
P⊆C

{SIMP}

(2)∀R′ ⊂ R, SIMR′ > SIMR
(24)

In Definition 11, condition (1) is the jointly sufficient condition that guarantees that the
equal knowledge granularity value induced from the reduction is minimal, and condition (2)
is the individual necessary condition that guarantees the reduction is minimal.

According to Definition 11, we can find a smaller reduction set with an ideal clas-
sification effect. Property 2 proves that when the attribute decreases, the similarity of
intra-cluster increases monotonically. Property 4 proves that the similarity of inter-cluster
also increases when decreasing the attribute, so that the dissimilarity will decrease. Obvi-
ously, the formula SIMR cannot determine its monotonicity. To find the R when the SIMR
is the largest in the conditional attribute, which is a combinatorial optimization problem,
and trying the methods one by one is not the best way to solve the problem. So, we use
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a heuristic method to find the smallest reduced set. For any attribute a ∈ C, its inner
significance is defined as follows:

Siga
C = SIMC − SIMC−a (25)

The bigger the value of Siga
C is, the more important the attribute is.

In order to obtain the optimal reduction set quickly, we adopt the deletion strategy.
Firstly, the importance Siga

C of attribute a is defined by the formula of SIM; then, sort
the different Siga

C. Secondly, let R = C. The value of SIMC is used as the initial condition,
which ensures that the clustering effect after reduction is better than the raw dataset. Then,
remove the unimportant attribute a from the remaining attributes C − R and calculate
the value of SIMR−a. If SIMR−a ≥ SIMR, delete attribute a and continue; otherwise, the
algorithm terminates. The details of the IKAR algorithm are shown in Figure 1.
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Example 4. In Table 1, since D1 = {o1, o3}, D2 = {o2, o4, o5, o6}, D3 = {o7, o8, o9}. Let R = C,
according to the definition of SIMR, we can obtain SIMR = 72

75 , SIMC−a =
71
72 , SIMC−b = 100

72 ,
SIMC−c = 60

72 and SIMC−e = 80
72 , then Siga

C = 4
72 , Sigb

C = − 25
72 , Sigc

C = 15
72 , Sige

C = − 5
72 .

Since SIMC−b = 100
72 > SIMR, we delete the attribute b from R and let R = R − b, SIMR = 100

72 .
In the same way, we obtain that SIMR−a=

94
72 , SIMR−c = 92

72 , SIMR−e = 108
72 , Siga

R = 6
72 ,

Sigc
R = 8

72 and Sige
R = − 8

72 . Since SIMR−e =
108
72 > SIMR, we delete the attribute e from R and

let R = R − e. We calculate the value of SIMR−a, SIMR−c, obtain the results of SIMR−a = 82
72

and SIMR−c =
100
72 . Now, we have Siga

R = 18
72 and Sigc

R = 8
72 . If attribute c is deleted SIMR−c =

100
72 < SIMR, and the algorithm is terminated. We have R = {a, c}.

4.3. Time Complexity Analysis

The time complexity of Step 1 is O(1). In Step 2, we calculate the value of SIMC
which include ASIntraπD (C) and ASInterπD (C). The computational time complexity of
intra-cluster SIntraDi (C) similarity is O(|C||Di|), then the time complexity of calculat-
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ing ASIntraπD (C) is O(|U||C|). Since the time complexity of calculating the similarity
SInterDi ,Dj(C) about inter-cluster Di and Dj is O((|Di|+

∣∣Dj
∣∣)|C|), then time complexity

of ASInterπD (C) is O(
|U/D|−1

∑
i=1

|U/D|
∑

j=i+1
(|Di|+

∣∣Dj
∣∣)|C|) = O((|U/D| − 1)|U||C|). We can

obtain the time complexity of Step 2 is O(|U/D||U||C|). In Step 3, the consume time is
O(|U/D||U||C|). Since Step 4 utilizes the results of Step 3, the time complexity is O(1).
Step 5 is to sort the importance Siga

R of each attribute, and the time complexity is O( 1
2 |C|

2).
Since the time complexity of calculating Siga

R is O(|U/D||U||R|), then the time complex-
ity of Step 5 is O(|U/D||U||R|)+O( 1

2 |C|
2). In Step 6, the time complexity of deleting a

redundant attribute is O(|U/D||U||R|), and Step 6 needs to be executed |C| − |R| times,
R ⊆ C, then the time complexity of Step 6 is O(|U/D||U|(|C|2 − |R|2). In summary, the
time complexity of IKAR is O(|U/D||U|(|C|2 − |R|2) + 1

2 |C|
2).

5. Experiments Results Analysis

In order to evaluate the feasibility and effectiveness of the proposed algorithm in this
paper, the complete dataset was preprocessed to obtain incomplete information systems,
and many different attribute reduction algorithms were used for reduction. The reduction
set obtained in the previous stage was classified and analyzed by multiple classifiers in the
Weka Tool. It was compared with three other existing algorithms in terms of reduction set
size, running time, accuracy, and algorithm stability. The specific experimental framework
is shown in Figure 2.
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Figure 2. The framework chart of experiments.

All of the datasets are displayed in Table 2. The twelve datasets selected were down-
loaded from UCI. In Table 2, |U|, |C| and |D| represent the number of objects, conditional
attributes, and the categories of the decision attribute, respectively. In order to generate
an incomplete information system, we deleted 12% attribute values from the raw datasets,
and the missing values were randomly and uniformly distributed. The missing value of
each attribute was removed with equal probability, which eliminated the impact of the later
reduction set on the classification accuracy due to different attribute selection. During data
preprocessing prior to the experiment, we kept the discrete data unchanged and discretized
the continuous value data. The two classifiers, RF (random forest) and SMO of the Weka
v3.8 software platform, were used to demonstrate the classification effect of the reduction
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set. In subsequent experiments, the reduced sets of each dataset were analyzed for accuracy
using the cross method. All the objects in the reduced set were randomly divided into
10 equal parts, one of which was used as the test set, and the remaining 9 were used as the
training set. During the classification and analysis process, the default settings of the Weka
tool were used for all parameters. In this way, each reduction set was repeated 10 times for
the cross experiment. Finally, the size of the reduction set, running time, and classification
accuracy obtained by the 10 experiments were averaged. We executed all experiments on a
PC with Windows 10, Intel(R) Core(TM) i7-10710U CPU @ 1.10 GHz, 1.61 GHz and 8 GB
memory. Algorithms were coded in python and the software that was used is PyCharm
Community Edition 2020.2.3 x64.

Table 2. Description of twelve datasets.

ID Datasets Abbreviation |U| |C| |D|

1 Promoters Prom 106 57 2
2 Heart-statlog Hear 270 13 2
3 Hepatitis Hepa 155 19 2
4 HandWritten Hand 5620 64 10
5 Chess kr-kp Ches 3196 36 2
6 Splice Spli 3190 61 3
7 Letters Lett 20,000 17 26
8 Vote Vote 435 16 2
9 Mushroom Mush 8124 22 2
10 Qsar Qsar 1055 42 2
11 Shuttle Shut 43,500 9 7
12 Satimage Sati 6435 36 6

5.1. Reduction Set Size and Running Time Analysis

This section mainly verifies the feasibility of IKAR for dataset reduction from the
perspective of reduction size and calculation time. Here, we have selected three other
representative incomplete system attribute reduction approaches. For the convenience of
the following description, these three methods are referred to as NGLE [44], IEAR [45], and
PARA [46], respectively. NGLE is the neighborhood multi-granulation rough sets-based
attribute reduction using Lebesque and entropy, and the method considers both algebraic
view and information view. IEAR is the information entropy attribute reduction for in-
complete set-valued data using the similarity degree function and proposed λ-information
entropy. PARA is the positive region attribute reduction using indiscernibility and discerni-
bility relation.

The attribute reduction size of four algorithms is shown in Table 3. Table 4 shows the
time consumed by the reduction process of the four algorithms in seconds. Ave represents
the average value, Best in Table 3 represents the number of minimum reduction sets
obtained, and Best in Table 4 stands for the number of times which the running time was
the shortest. From Table 3, it can be seen that the average reduction set size of the IKAR
algorithm is 11.833, and the average reduction set size obtained by the NGLE, IEAR, and
PARA algorithms are 11.917, 11.00, and 12.083, respectively. IKAR obtained the minimum
reduction set on the Ches, Spli, Mush, and Shut datasets, and the reduction effect was
slightly better than the NGLE and PARA, but not as ideal as the IEAR algorithm. In the
12 datasets in Table 2, the IEAR algorithm obtains the minimum reduction set in 11 datasets.
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Table 3. The attribute reduction size with the four methods on the twelve UCI datasets.

Datasets IKAR NGLE IEAR PARA

Prom 5 4 5 5
Hear 10 10 9 10
Hepa 9 10 7 10
Hand 12 11 10 11
Ches 29 30 29 30
Spli 9 10 9 9
Lett 9 9 8 9
Vote 10 9 8 10

Mush 4 5 5 5
Qsar 31 30 29 31
Shut 4 5 4 5
Sati 10 10 9 11

Ave 11.833 11.917 11.00 12.083

Best 4 1 11 1

Table 4. The run time with the four methods on the twelve UCI datasets.

Datasets IKAR NGLE IEAR PARA

Prom 0.98 2.042 3.231 1.553
Hear 0.03 0.16 2.09 0.33
Hepa 0.06 0.11 2.13 0.25
Hand 92.93 81.61 3222.89 91.28
Ches 6.35 140.98 3075.25 590.79
Spli 35.43 205.86 6557.61 309.79
Lett 3.98 6.93 117.87 8.47
Vote 0.06 0.38 6.09 1.01

Mush 4.45 411.09 4544.04 827.16
Qsar 3.84 4.97 98.76 6.61
Shut 8.98 886.08 3974.70 1133.25
Sati 25.30 125.61 2322.02 154.04

Ave 15.20 155.49 1993.89 260.38

Best 11 1 0 0

From the consumption time of Table 4, we can find that the reduction advantage
obtained by the IKAR algorithm is not obvious, but that the IKAR algorithm is obviously
better than the other three algorithms. When calculating the reduction set of 12 datasets,
the average time required by IKAR is 15.20 s, whilst the average times consumed by the
other three algorithms are (155.40, 2003.56, and 260.38) seconds, respectively. From the
experimental results in Table 4, it can also be found that the IKAR algorithm only needs
25.30 s to reduce the Shut dataset, and the running time of the other three algorithms of
NGLE, IEAR, and PARA is (886.08, 3974.02, and 133.25) seconds. When reducing the Mush
dataset, IKAR takes 4.45 s, and the other three algorithms take (411.09, 4544.04, and 827.16)
seconds. Of course, the IKAR algorithm also has shortcomings, and when the number
of sample categories is higher, the algorithm is more time-consuming. For example, if
there are 10 different categories of samples in the Hand dataset, the calculation time of
the IKAR algorithm takes 92.93 s. At this time, the time consumption of the NGLE and
PARA algorithms is (81.61 and 91.28) seconds, respectively. It takes less time than that of
the IKAR algorithm.

From the above analysis, we can obtain that the IKAR algorithm can effectively reduce
the dataset, it is obviously better than similar algorithms in terms of reduction speed.
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5.2. Changes of the Classification Accuracy When Missing Value

It is not enough to evaluate the overall performance of a reduction algorithm only from
the size and running time of the reduction set. Here, we further analyze the performance
of the above four algorithms from the perspective of the classification accuracy of the
reduction set. In order to find out the influence of missing values on the IKAR algorithm,
we selected four datasets in Table 2, including Heas, Prom, Hepa, and Stai. During the
experiment, we divided the missing values into 5 different levels, 2%, 4%, 6%, 8%, and 10%.
First, 2% of the data objects in the original dataset were randomly selected, and random
deletion is conducted in these data objects of attribute values for different attributes to
generate an incomplete dataset. In order to reduce the bias of attribute selection that may
be caused by random deletion, we used the 2% data just obtained as a basis, then selected
attributes with the same probability, and then deleted the 2% data, which generated an
incomplete dataset with a missing value of 4% and so on, generating a dataset with a
missing value of 6%, 8%, and 10%, respectively. After the incomplete dataset was ready,
we used IKAR, NGLE, IEAR, and PARA algorithms for reduction and used SMO and
RF classifiers to analyze the classification accuracy. The specific results are shown in
Figures 3 and 4. The horizontal axis in Figures 3 and 4 represent the proportion of deletion
data objects in the dataset, and the vertical axis represents the classification accuracy.
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Figure 3. Variation in classification accuracy for different percentages of missing values with classi-
fiers SMO.

Figures 3 and 4 show the change trend diagrams obtained by using the SMO and RF
classifiers to analyze the accuracy of the reduced dataset. From the results of Figures 3 and 4,
it can be seen that when increasing the missing data, the classification accuracy of the above
four algorithms has a downward trend. For example, under the SMO classifier, when
the proportion of missing values in the dataset Heas changes from 2% to 4%, the accu-
racy changes in IKAR and other NGLE, IEAR and PARA algorithms are (84.01→83.69),
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(80.32→79.69), (77.01→76.86), and (79.24→78.92). Under the RF classifier, when the propor-
tion of missing values in the dataset Heas changes from 2% to 4%, in the IKAR and other
NGLE, IEAR, and PARA algorithms, the accuracy changes are (81.43→80.94), (77.85→76.28),
(74.79→73.33), and (76.24→74.86), respectively. The main reason for this phenomenon is
that as the proportion of missing data increases, more and more data objects cannot be
distinguished, resulting in a decrease in classification accuracy. From the trend diagrams
in Figures 3 and 4, it can be seen that the IKAR algorithm changes smoothly. The other
three algorithms have a greater impact on the classification accuracy of the reduced set as
the proportion of missing data increases. For example, under the RF classifier, when the
missing proportion of the Hepa dataset changes from 2% to 10%, the accuracy of IKAR
changes to 2.09, while the accuracy changes of the NGLE, IEAR, and PARA algorithms are
3.2, 3.19, and 4.49, respectively. Under the SMO classifier, on the classification accuracy
of the Heas dataset, the IKAR algorithm changes value is 1.12, and for the other three
algorithms is 3.37, 2.28, and 2.93, respectively.
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Figure 4. Variation in classification accuracy for different percentages of missing values with classi-
fiers RF.

5.3. Classification Accuracy Analysis

The previous experiments have compared the changes in the classification accuracy
when missing value exist. With the change in the proportion of missing values, the
accuracy of the IKAR algorithm can not only change smoothly but can also obtain a better
classification effect on multiple datasets. We used the SMO and RF classifiers to analyze the
accuracy of the previous reduction set, and the detailed content is shown in Figures 5 and 6,
respectively. In Figures 5 and 6, missing values represent the incomplete raw dataset and
Ave denotes the average accuracy for the different datasets. Under the classifier SMO,
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the IKAR algorithm obtained an average accuracy of 85.31%, and the average accuracy
obtained by the other three algorithms NGLE, IEAR, PARA, and raw datasets were only
78.72, 78.78, 78.81, 84.49(%), respectively. Among the 12 datasets in Table 2, the IKAR
algorithm was the highest 11 times. The classification accuracy of IKAR is higher than that
of the raw set.
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For example, the classification accuracy of IKAR is (94.76, 99.68, 93.86)% in the datasets
of Hand, Shut, and Spli. The classification accuracy of IEAR is (81.59, 85.93, 81.53)% and the
average accuracy is 10 percentage points lower than IKAR. Similarly, on the RF classifier,
the average classification accuracy of the IKAR (86.24%) is higher than the raw dataset
(85.09%) and those obtained by the other three algorithms obtained (80.79, 79.77, 81.14)%,
respectively.

From the results shown in Figures 5 and 6, we can obtain three conclusions as follows:
(1) The classification accuracies obtained by the above four attribute algorithms are closer
to those of the raw dataset, which indicates that all four algorithms are able to effectively
reduce the incomplete dataset. (2) The algorithm has better overall performance. The
main reason is that the IKAR algorithm considers both the correlation between attributes
and the influence of attributes on the classification two factors, so it obtains a more ideal
classification accuracy. (3) The classification accuracy of the IKAR algorithm is higher than
the original dataset, and the main reason for this is that the IKAR algorithm effectively
eliminates redundant attributes and reduces the influence of noisy data on classification.
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5.4. Lgorithm Stability Analysis

To indicate the statistical significance of classification results, the non-parametric
Friedman test and Bonferroni–Dunn test methods were used to the analyze classification
accuracy of each classifier with different methods in Section 5.2, where the Friedman test
is a statistical test that uses the ranking of each method on each dataset. The Friedman
statistic is described as follows:

χ2
F =

12N
t(t + 1)

s

∑
i=1

R2
i − 3t(t + 1) (26)

FF =
(N − 1)χ2

F
N(t − 1)− χ2

F
(27)

where N is the number of datasets, and t is the categories of algorithms. Ri represents the
average rank of the classification effect ranking of the i-th algorithm on all datasets, and the
statistics FF obey the Fisher distribution with t − 1 and (t − 1)(N − 1) degrees of freedom.
If the value of FF is bigger than Fα(t − 1, N − 1), then the original hypothesis does not hold.

The FF test value can judge where these algorithms are different, but it cannot indicate
the superiority of the algorithm. In order to explore which algorithm is better, we used the
Bonferroni–Dunn test to calculate the critical value range of the average sequence value
difference, which is defined as follows:

CDα = qα

√
t(t + 1)

6N
. (28)

If the difference between the average ranking values of the two algorithms exceeds
the critical region CDα, the hypothesis that ‘the performance of the two algorithms is the
same’ will be rejected with the corresponding confidence. Otherwise, the two algorithms
perform differently, and the algorithm with the higher average rank is statistically better
than the algorithm with the lower average rank. Generally, we set α = 0.05.

In order to compare the stability of the IKAR algorithm in this paper, we chose three
other similar algorithms, NGLE, LEAR, and PARA, to reduce the datasets in Table 2. Then,
the previous reduction results were analyzed by the classifiers SMO and RF using the Weka
tool. The classification accuracy was detected by the Friedman test and Bonferroni–Dunn
test. When t = 4 and N = 12, then χ2

F = 23.4 and FF = 20.429. Under the classifier SMO,
the classification accuracy of the four algorithm reduction sets is sorted, and the number
1 represents the most ideal. The details of the sorting results are shown in Table 5. The
average ranking of IKAR, NGLE, IEAR, and PARA algorithms are 1.08, 2.75, 3.58, and 2.58
in turn.

Table 5. Ranking and standard of classification accuracy under SMO classifier.

Datasets
IKAR NGLE IEAR PARA

STD Rank STD Rank STD Rank STD Rank

Prom ±0.031 1 ±1.362 2 ±2.019 4 ±1.294 3
Heas ±0.015 1 ±1.455 3 ±2.318 4 ±1.521 2
Hepa ±0.038 1 ±2.483 4 ±1.985 4 ±1.984 3
Hand ±0.125 1 ±2.784 2 ±2.537 4 ±2.183 3
Krkp ±0.247 2 ±1.561 4 ±1.783 1 ±3.420 3
Spli ±0.035 1 ±2.489 2 ±3.015 4 ±3.019 3
Lett ±0.512 1 ±3.016 3 ±1.985 4 ±2.184 2
Vote ±0.187 1 ±1.392 2 ±2.417 4 ±2.478 3

Mush ±0.261 1 ±2.765 3 ±2.581 4 ±2.104 2
Qsar ±0.382 1 ±2.054 3 ±2.932 4 ±3.013 2
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Table 5. Cont.

Datasets
IKAR NGLE IEAR PARA

STD Rank STD Rank STD Rank STD Rank

Shut ±0.049 1 ±1.937 3 ±1.995 4 ±1.329 2
Sati ±0.536 1 ±2.349 3 ±3.246 4 ±2.586 3

AveRank 1.08 2.75 3.58 2.58

Since the critical value of F0.05(3, 33) is 2.892 and FF ≻ 2.892, we can reject the original
hypothesis at α = 0.05 under the Friedman test. So, there are statistical differences in classi-
fication accuracy among the above four algorithms. Next, q0.05 = 2.569 and CD0.05 = 1.354,
and the results of Bonferroni–Dunn test for these four algorithms at α = 0.05 is shown in
Figure 7. The accuracy of the algorithm on the left side of the coordinate axis is relatively
high in Figure 7. From Figure 7, we know that the average accuracy ranking of IKAR is
s1 = 1.08. Among the other three algorithms, the better-ranking algorithm, PARA, has an
average ranking value of s2 = 2.58. Since |s1 − s2| = 1.5 and |s1 − s2| ≻ CD0.05, we can find
that the IKAR algorithm is significantly superior to the PARA. In the same way, the IKAR
is better on accuracy than NGLE and LEAR. However, there is no obvious difference in the
ranking of the NGLE, LEAR, and PARA algorithms.
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For the same reason, under the RF classifier, the average ranking values of the clas-
sification accuracy of the above four algorithms are 1.00, 2.83, 3.67, and 2.50 as shown in
Table 6. Since χ2

F = 26.8 and FF = 32.043, then FF ≻ F0.05. We can see that the classification
accuracy of these four algorithms is significantly different in the statistical sense under
the RF classifier. From Figure 8, we can ascertain that the IKAR algorithm is significantly
different from the NGLE classification, while the ranking of the NGLE, LEAR, and PARA
algorithms have no obvious differences among each other.

Table 6. Ranking and standard of classification accuracy under RF classifier.

Datasets
IKAR NGLE IEAR PARA

STD Rank STD Rank STD Rank STD Rank

Prom ±0.181 1 ±1.673 2 ±2.829 4 ±2.639 3
Heas ±0.273 1 ±2.442 3 ±2.719 4 ±2.521 2
Hepa ±0.357 1 ±2.873 4 ±2.683 2 ±3.038 3
Hand ±0.362 1 ±2.361 2 ±3.731 4 ±2.359 3
Krkp ±0.652 1 ±2.048 3 ±1.984 3 ±2.763 2
Spli ±0.248 1 ±1.994 2 ±3.565 4 ±3.558 3
Lett ±0.583 1 ±3.246 3 ±2.783 4 ±3.160 2
Vote ±0.652 1 ±1.817 2 ±3.015 4 ±2.629 3

Mush ±0.393 1 ±3.092 3 ±2.928 4 ±1.972 2
Qsar ±0.488 1 ±2.636 2 ±1.997 4 ±3.215 3
Shut ±0.391 1 ±2.743 4 ±2.963 3 ±2.388 2
Sati ±0.475 1 ±1.982 4 ±2.837 3 ±3.086 3

AveRank 1 2.83 3.67 2.5
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In Tables 5 and 6, the STD represents the standard deviation of the classification
accuracy of different algorithms’ reduction datasets. From Tables 5 and 6, we know that
the STD of the IKAR algorithm is smallest among the four algorithms. The STD of the
classification accuracy of algorithm IKAR is less than 1 for both SMO and RF classifiers,
while the STD values of the other algorithms are bigger than 1, and some are even greater
than 3. For example, the STD of IKAR in the Heas dataset is ±0.015 under the SMO, but
the STD values of NGLE, LEAR, and PARA are ±1.455, ±2.318, and ±1.521, respectively.
On RF classifiers, the IKAR algorithm has the same stability in classification accuracy. In
the dataset Spli, the STD of IKAR’s classification accuracy is ±0.248; meanwhile, the STD
values of the other three algorithms are ±1.994, ±3.565 and ±3.558, respectively.

Therefore, all the test results demonstrate that there is no consistent evidence to denote
statistical differences between any two of the four approaches under the SMO and RF
classifier. In general, the IKAR model is better than the other models in stability.

6. Conclusions

In the face of incomplete systems, most of the traditional attribute reduction models
cannot obtain effective reduction rules and affect the classification accuracy of the reduced
set. Therefore, we propose a new attribute reduction method, IKAR, based on the clustering
background for incomplete system. IKAR uses the tolerance principle to calculate the
information of knowledge granularity and to measure the similarity of data objects. When
selecting attributes, the similarity of intra-cluster objects should be as large as possible, and
the similarity of inter-cluster objects should be as small as possible. The innovations of
this paper are manifested in the following four aspects: (1) Use of the tolerance principle
to quickly calculate knowledge granularity; (2) Use of knowledge granularity to calculate
the similarity of inter-cluster and intra-cluster objects; (3) Use of the idea of clustering
to calculate the importance of attributes; (4) In addition to conventional time, space, and
precision analysis, it also analyzes the stability of datasets with different percent missing
value. All the experiments show that the IKAR algorithm is not only superior in reducing
time compared to the other three algorithms, but it also has an excellent performance in
terms of accuracy and stability. Of course, the IKAR algorithm also has some shortcomings.
For example, it is unsuitable for datasets with multiple decision values, and complex data
types and the dynamical changing of the datasets are not considered.

In our future research endeavors, we intend to work in the following four aspects.
(1) We focus on attribute reduction of incomplete systems with mixed data types, especially
on how to deal with missing data. (2) In addition, we will integrate the incremental
learning method into the knowledge granularity reduction model in the background of
clustering. (3) To address even big datasets more efficiently, applying GPU and MapReduce
technologies to design parallel attribute reduction models or acceleration strategy is a very
popular research topic.
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RST Rough set theory
DS Decision system
EGK Equal knowledge granularity
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SInterDi(P) The similarity of objects in the clustering of Di under attribute set P
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SInter The inter-cluster similarity
AInter The average inter-cluster similarity
SIM The importance of attribute
Sig The inner significance
IKAR The knowledge granularity attribute reduction for incomplete systems
NGLE Neighborhood multi-granulation attribute reduction using Lebesque and Entropy
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