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Abstract: In the present work we provide a signature-based framework for delivering the estimated
mean lifetime along with the variance of the continuous distribution of a coherent system consisting of
exchangeable components. The dependency of the components is modelled by the aid of well-known
Archimedean multivariate copulas. The estimated results are calculated under two different copulas,
namely the so-called Frank copula and the Joe copula. A numerical experimentation is carried out for
illustrating the proposed procedure under all possible coherent systems with three components.
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1. Introduction

In the field of Statistical Reliability Modeling, several studies have been carried out
under the assumption that the components of the underlying structures are independent.
However, this condition is not always fulfilled in real-life problems. Therefore, it is of some
research interest to investigate reliability systems consisting of exchangeable components,
namely components which are identically distributed but are (possibly) dependent to each
other. For instance, [1] delivered a signature-based analysis of m-consecutive k-out-of-n:
F systems with exchangeable components. Moreover, [2] proved that the lifetime of any
coherent system with dependent components can be expressed as generalized mixture of
series (or parallel) subsystem lifetime distributions.

For a reliability coherent system with n exchangeable components, the dependency
between them can be well modelled by the aid of appropriately chosen copulas. It is
noteworthy that copulas have been proved to be a useful tool for studying the joint distri-
bution of the random lifetimes of the components of a reliability model (see, e.g., [3–5]).
For example, a copula-based approach can be applied in order to evaluate the reliabil-
ity characteristics such as availability, reliability, and mean time to failure of a coherent
system [4,5].

In addition, the parameter’s estimation for the common continuous distribution of the
components of the underlying reliability system is of high importance. Having at hand a
point or interval estimation of the distributional parameter, one may readily deduce several
results and conclusions concerning the behavior not only of the components, but also of
the whole structure (see, e.g., [4]).

In the present paper, we provide a theoretical framework for providing the estimated
mean lifetime (along with its variance) for a reliability structure and also for establishing
the moment estimator of the parameter of the common continuous distribution of its
components. However, the present work focuses on the reliability study of coherent
systems with exchangeable components. More precisely, it aims to draw conclusions about
their expected lifetimes and the respective variances. Thereof, we provide just a short

Mathematics 2024, 12, 334. https://doi.org/10.3390/math12020334 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020334
https://doi.org/10.3390/math12020334
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7512-5217
https://doi.org/10.3390/math12020334
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020334?type=check_update&version=2


Mathematics 2024, 12, 334 2 of 14

discussion about the parameter’s estimation of the common continuous distribution of its
components at the end of Section 3. All necessary notions and formulae about the copulas
which shall be used later on are presented in Section 2. A short introduction referring to
the maximal signature of a coherent reliability system is also provided.

In Section 3, the proposed procedure is described in detail. The main results of
the paper refer to the lifetime of a reliability system having exchangeable components
and the parameter’s estimation of the underlying components’ distribution. This goal is
fulfilled by the aid of explicit expressions, which are introduced and proved under different
Archimedean copulas-based models. More precisely, the Frank copula model and the Joe
copula model are considered and studied in some detail. It is evident that the shapes of
these two copulas are quite similar, but the Frank Archimedean copula lacks an asymptote
at −∞, whereas the Joe Archimedean copula does not. In addition, it is known that Joe
Archimedean copulas have an exponential functional form, while Frank Archimedean
copulas have a logarithmic functional form. Among other reasons, we chose to consider
the specific models due to their wide applicability in several fields. For instance, one may
refer to the utilization of Frank Archimedean copulas for studying the linked risk factors,
while Joe Archimedean copulas are frequently employed to model negatively related risk
factors. For more details about the Archimedean copulas, the interested reader is referred
to [6–11] and the references therein.

In Section 4, an extensive numerical experimentation is carried out and the implemen-
tation of the proposed estimation procedure is illustrated. In order to provide adequate
numerical evidence about the ability of the proposed technique to estimate the desired
quantities, all possible coherent systems with three components are taken into account. In
addition, Monte Carlo simulations are also realized for studying the distribution of the
resulting moment estimator. Finally, the Discussion section summarizes the contribution of
the present paper, while some practical concluding remarks are also highlighted therein.

2. General Notions and Notations

In this section, we present the necessary notions and notations for establishing the
proposed estimation procedure. In what follows, some basic results referring to the copula
models and maximal signatures shall be discussed in order to pave the way for delivering
the main results of the paper in the next section.

Let us first consider a coherent system consisting of n exchangeable components with
common continuous distribution function F. The dependence between the components
could be readily modelled by the aid of appropriate Archimedean copulas. A sufficient
incentive to choose Archimedean copulas over other types of copulas is their simple form
and ease with which they can be constructed. Moreover, the great variety of families
of copulas which belong to this class gives the Archimedean copulas a central role and
great applicability.

Generally speaking, the copulas are useful tools for determining the joint distribution
of random variables, since they are functions that join (or couple) multivariate distribution
functions to their one-dimensional marginal distribution functions. For recent advances
and applications of the Archimedean copulas, one may refer to [12–17].

The main findings of the present work refer to the expected lifetime of a coherent
system consisting of n exchangeable components under the assumption that the depen-
dence of the components is modelled by the aid of specific copula models. In most of
real-life engineering systems, such as transportation systems, communication networks,
aerospace systems, healthcare delivery systems, and manufacturing processes, the depen-
dence among the components is inevitable due to the common random production and
operating environments.

Let us first denote by T1, T2, . . . , Tn, the lifetimes of the components of underlying
reliability structure. If Gj(tj) = P(Tj ≤ tj) corresponds to the cumulative distribution func-
tion of the variable Tj, j = 1, 2, . . . , n, then H(t1, . . . , tn) = P(T1 ≤ t1, T2 ≤ t2, . . . , Tn ≤ tn)
is simply the joint distribution function of the lifetimes of the components of the system.
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Each vector (t1, t2, . . . , tn) of real numbers leads to a point (G1(t1), G2(t2), . . . , Gn(tn))
in the unit region [0, 1]n, while these ordered coordinates correspond to a number
H(t1, . . . , tn) in [0, 1]. The aforementioned correspondence, which assigns the value of the
joint distribution function to each ordered vector of values of the individual distribution
functions, is actually the copula function C. Generally speaking, note that the probability
density function of the copulas can be derived from the corresponding cumulative density
function by the aid of appropriate derivatives of the copula function.

Due to the exchangeability of the components of the underlying reliability structure,
the following holds true

Gj(t) = G(t), j = 1, 2, . . . , n. (1)

Therefore, if C(u1, . . . , un) is the copula function related to H(t1, . . . , tn), we deduce
that

H(t1, . . . , tn) = C(G(t1), G(t2), . . . , G(tn)). (2)

An Archimedean copula behaves like a binary operation on the interval [0, 1]. In
other words, the copula function C assigns to each pair (u, v) in [0, 1] a number C(u, v) in
[0, 1]. In addition, the function C is commutative, associative, and preserves order, e.g.,
u1 ≤ u2 and v1 ≤ v2 implies C(u1, v1) ≤ C(u2, v2 ).

Throughout the course of the present work, we shall consider two different copula
functions for modeling the dependence of the components in the underlying reliability
system. Both models implemented in the next lines are members of the well-known class of
Archimedean copulas (see, e.g., [3,18,19] and references therein). Kindly note that under the
assumption of exchangeability, these models have never been studied before for modeling
the dependency of the components of a system. More precisely, we shall consider the
following multivariate Archimedean copulas:

• The Frank family of n-copulas.

The generator function of the bivariate Frank copulas is given by

φθ(t) = −ln
[

e−θt − 1
e−θ − 1

]
. (3)

For θ > 0 and n ≥ 2, the copula function of the multivariate Frank class of n-copulas
is expressed as

Cn
θ (u1, u2, . . . , un) = −1

θ
ln

(
1 +

(
e−θu1 − 1

)
·
(
e−θu2 − 1

)
· · ·
(
e−θun − 1

)(
e−θ − 1)n−1

)
. (4)

• The Joe family of n-copulas.

The generator function of the bivariate Joe copulas is given by

φθ(t) = −ln
[
1 − (1 − t)θ

]
, θ ≥ 1. (5)

For θ ≥ 1 and n ≥ 2, the copula function of the multivariate Joe class of n-copulas is
written as

Cn
∗,θ(u1, u2, . . . , un) = n − 1 −

[
n

∑
i=1

(1 − u i)
θ −

n

∏
i=1

(1 − u i)
θ

]1/θ

. (6)

If T corresponds to the lifetime of a coherent system with n exchangeable components
and Ti:n, i = 1, 2, . . . , n is the i-th ordered component’s lifetime, then the reliability function
of the system is expressed as

P(T > t) = ∑n
i=1 βiP(Ti:i > t) = ∑n

i=1 βi(1 − P(T1 ≤ t, T2 ≤ t, . . . , Ti ≤ t)), (7)
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where βi, i = 1, 2, . . . , n satisfy the condition ∑n
i=1 βi = 1. Note that the vector (β1, β2, . . . , βn)

is the maximal signature of the coherent system (see, e.g., [2,20]). It is worth mentioning that,
under specified reliability models, several general results have been proved in the literature
for determining the βi′s. For instance, one may refer to the exact closed formulae for the
maximal signatures of an m-consecutive-k-out-of-n: F system, which have been delivered
in [1]. Throughout the lines of the next sections, we shall focus on specific models of coherent
systems, such as parallel structures, series structures, or consecutive-type systems. For the
latter ones, it is known that a consecutive k-out-of-n: F system is a structure made up of n
components ordered sequentially and fails if and only if at least k consecutive components fail
(see, e.g., [1]).

3. Main Results

In this section, we study the lifetime of a reliability structure consisting of n exchange-
able components. The dependency between the components is modelled by the aid of
two specific copula models. More precisely, the Frank and the Joe copulas are considered.
Generally speaking, Frank Archimedean copulas are more sensitive to positive association
than Joe Archimedean copulas in terms of association sensitivity.

The main result refers to the expected lifetime of such a structure, while the corre-
sponding variance is determined. Based on these outcomes, the estimation of the parameter
of the underlying components’ distribution can also be achieved.

Let us next consider a reliability system consisting of n exchangeable components with
a common continuous distribution G. We denote by T1, T2, . . . , Tn the lifetimes of the com-
ponents, while T = φ(T1, T2, . . . , Tn) corresponds to the lifetime of the resulting structure.

The next proposition offers expressions for determining the expected lifetime and its
corresponding variance for a system under the Frank copula-based dependency.

Proposition 1. Let us consider a reliability system with n exchangeable and exponentially dis-
tributed components with parameter λ. If the dependency of the components is described by the
Frank copula model, the following ensue,

(i) The expected lifetime of the system is given by

E(T) =
n

∑
i=1

βi·
i
λ
×
∫ ∞

0

t·e−t/λ−θ·(1−e−t/λ)·
(
e−θ − 1

)1−i·(e−θ·(1−e−t/λ) − 1)i−1

1 +
(
e−θ − 1

)1−i·(e−θ·(1−e−t/λ) − 1)i
dt, (8)

(ii) The variance of the lifetime of the system is given by

Var(T) =
n
∑

i=1
βi· i

λ ·
∫ ∞

0
t2·e−

t
λ
−θ·(1−e

− t
λ ) ·(e−θ−1)

1−i ·Aθ,λ(t,i−1)

1+(e−θ−1)
1−i ·Aθ,λ(t,i)

dt

−
(

n
∑

i=1
βi· i

λ ·
∫ ∞

0

t·e−t/λ−θ·(1−e−t/λ) ·(e−θ−1)
1−i ·

(
e−θ·(1−e−t/λ)−1)i−1

1+(e−θ−1)
1−i ·

(
e−θ·(1−e−t/λ)−1)i

dt

)2

.

(9)

Proof. (i) Given that the components of the system are exponentially distributed with
parameter λ, e.g., G(t) = 1 − e−t/λ, t > 0, the joint distribution function of their lifetimes
under the Frank copula model can be written as (see (2) and (4))

H(t1, . . . , tn) = −1
θ

ln

(
1 +

(e−θ·(1−e−t1/λ) − 1)·(e−θ·(1−e−t2/λ) − 1) · · · (e−θ·(1−e−tn/λ) − 1)(
e−θ − 1)n−1

)
. (10)
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It is known that the expected value of the lifetime T of a reliability system can be
determined by the aid of the following formula:

E(T) =
∫ ∞

0
tdP(T ≤ t). (11)

Recalling (7), the last expression can be rewritten as

E(T) =
n

∑
i=1

βi

∫ ∞

0
tdP(Ti:i ≤ t) =

n

∑
i=1

βi·E(Ti:i) (12)

where the vector (β1, β2, . . . , βn) is the maximal signature of the system. Moreover, the event
{Ti:i ≤ t} practically means that the maximum of the components’ lifetimes T1, T2, . . . , Ti,
i = 1, 2, . . . , n, does not exceed the value t, while no restriction is stated for the n− i remaining
lifetimes. Therefore, we may readily deduce that

P(Ti:i ≤ t) = P(T1 ≤ t, T2 ≤ t, . . . , Ti ≤ t) = Cn
θ (1 − e−t/λ, . . . , 1 − e−t/λ︸ ︷︷ ︸

i

, 1, . . . , 1︸ ︷︷ ︸)
n−i

(13)

where the copula function Cn
θ is defined in (4). Combining Formulae (4) and (13), we

conclude that

P(Ti:i ≤ t) = −1
θ

ln

(
1 +

(e−θ·(1−e−t/λ) − 1)i(
e−θ − 1)i−1

)
(14)

and the expected value of the random variable Ti:i is now determined as

E(Ti:i) =
∫ ∞

0
tdP(Ti:i ≤ t) =

i
λ
·
∫ ∞

0

t·e−t/λ−θ·(1−e−t/λ)·
(
e−θ − 1

)1−i·
(

e−θ·(1−e−t/λ) − 1)i−1

1 +
(
e−θ − 1

)1−i·(e−θ·(1−e−t/λ) − 1)i
dt, (15)

The result we are chasing for is effortlessly derived by replacing the last expression
in (12).

(ii) The variance of the system’s lifetime T shall be determined by applying the well-
known identity

Var(T) = E
(

T2
)
− [E(T)]2 (16)

where the expected value of T is given by (8). In addition, the 2nd moment of T can be
expressed as

E
(

T2
)
=
∫ ∞

0
t2dP(T ≤ t) =

n

∑
i=1

βi·E
(

T2
i:i

)
=

n

∑
i=1

βi·
∫ ∞

0
t2dP(Ti:i ≤ t). (17)

Following a parallel argumentation with the one implemented at part (i), the integral
expression in (18) leads, by the aid of (7) and (14), to the desired result. □

The following proposition offers expressions for determining the expected lifetime
and its corresponding variance for a system under the Joe copula-based dependency.

Proposition 2. Let us consider a reliability system with n exchangeable and exponentially dis-
tributed components with parameter λ. If the dependency of the components is described by the Joe
copula model, the following ensue,

(i) The expected lifetime of the system is given by

E(T) = λ·
n

∑
i=1

βi·i1/θ , (18)
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(ii) The variance of the lifetime of the system is given by

Var(T) = 2·λ2·
n

∑
i=1

βi·i1/θ −
(

λ·
n

∑
i=1

βi·i1/θ

)2

. (19)

Proof. (i) Given that the components of the system are exponentially distributed with
parameter λ, e.g., G(t) = 1 − e−t/λ, t > 0, the joint distribution function of their lifetimes
under the Joe copula model can be written as (see (2) and (6))

H(t1, . . . , tn) = n − 1 −
[
e−θ·t1/λ + · · ·+ e−θ·tn/λ − e−θ·t1/λ · · · e−θ·tn/λ

]1/θ

= n − 1 −

 n
∑

j=1
e−θ·tj/λ − e

−θ·
n
∑

j=1
tj/λ
1/θ

(20)

Since the copula function for the Joe model is given by (6), the following ensues (see
also (13)),

P(Ti:i ≤ t) = n − 1 −
(

i

∑
j=1

e−θ·t/λ

)1/θ

. (21)

The expected value of the random variable Ti:i is now determined as

E(Ti:i) =
∫ ∞

0
tdP(Ti:i ≤ t) =

i1/θ

λ
·
∫ ∞

0
t·e−t/λdt = λ·i1/θ . (22)

We next combine (12) and (22) and the desired result is straightforward.
(ii) The variance of the system’s lifetime T shall be determined by applying the well-

known identity (16). The 2nd moment of T can be expressed as

E
(

T2
)
=
∫ ∞

0
t2dP(T ≤ t) =

n

∑
i=1

βi·E
(

T2
i:i

)
=

n

∑
i=1

βi·
∫ ∞

0
t2dP(Ti:i ≤ t) = 2·λ2·

n

∑
i=1

βi·i1/θ . (23)

The result we are chasing for is now immediately derived. □
It is evident that Propositions 1 and 2 of the present paper provide general results for

any coherent system consisting of n exchangeable and exponentially distributed compo-
nents. These results can be easily modified under different distributional assumptions for
the components’ lifetimes of the underlying structure.

It is noteworthy that the aforementioned results, which have been proved in Propo-
sitions 1 and 2, may contribute to deliver the estimation of the parameter of the common
distribution of the components’ lifetimes. According to the well-known moment estima-
tion procedure, the theoretical moments provided by the previous propositions should be
equated to the corresponding sample moments.

For instance, let us consider the same case with the one studied in Propositions 1 and
2, namely, we assume that the components of the system share a common exponential
distribution with parameter λ. In order to estimate the distribution’s mean λ, we need
to determine the corresponding sample mean lifetime T of the resulting system. More
precisely, if E(T) denotes the 1st moment of system’s lifetime T, then the desired estimation
of parameter λ shall be delivered by solving the equation E(T) = T with respect to λ.

Since we study reliability systems having exchangeable components, whose depen-
dency is modelled by an appropriately chosen Archimedean copula, the computation of
the sample mean lifetime of the resulting system calls for a sampling procedure from
the underlying copula. The challenge of efficiently sampling exchangeable Archimedean
copulas has been already addressed in the literature (see, e.g., [9–11]).



Mathematics 2024, 12, 334 7 of 14

One of the most powerful tools for sampling exchangeable Archimedean copulas is
provided by the algorithm of Marshall and Olkin (algorithm MO, hereafter). According
to the algorithmic procedure MO, we may simulate a random sample of size n from a
specific Archimedean copula with generator ψ and continuous joint cumulative distribution
function H(t1, . . . , tn) if we follow the next steps (see, e.g., [9]):

Step 1. Sample V ∼ F = LS−1(ψ), where LS−1(ψ) denotes the Laplace-Stieltjes transform
of ψ.

Step 2. Sample independent and identically distributed random variables Ui, i = 1, 2, . . . , n
from the Uniform distribution in [0, 1], namely Ui ∼ U[0, 1], i = 1, 2 . . . ., n.

Step 3. Determine Xi = ψ(−ln(Ui)/V), i = 1, 2, . . . , n.
Step 4. The random variables G−1(Xi),= 1, 2, . . . , n constitute a sample from the exchange-

able joint distribution function H, where G corresponds to the marginal cumulative
distribution function of H.

4. Numerical Results

In the present section, we compute the expected mean lifetime and the corresponding
variance for all possible coherent reliability structures with three exchangeable components,
which are exponentially distributed components with parameter λ. The dependency
between the components is modelled by either the Frank or the Joe copula. The numerical
results and graphical illustrations that appeared in this section are all produced by the aid
of the theoretical outcomes proved in the previous section of the present manuscript.

Let us denote by X1, X2, X3 the lifetimes of the components of a reliability structure
with three components. All possible reliability systems consisting of three exchangeable
components are listed below (see, also [6]):

• RS1: Series system. The particular system fails if and only if at least one component
fails. Thereof, the lifetime of a series system with three exchangeable components can
be expressed as S1 = min(X1, X2, X3), while the corresponding maximal signature
vector is given as (β1, β2, β3) = (3,−3, 1).

• RS2: Series-parallel system. The particular system fails if and only if either the 1st
component fails or both the other two (e.g., the 2nd and the 3rd component) compo-
nents fail. Thereof, the lifetime of a series-parallel system with three exchangeable
components can be expressed as S2 = min(X1, max(X2, X3)), while the corresponding
maximal signature vector is given as (β1, β2, β3) = (1, 1,−1).

• RS3: 2-out-of-3 system. The particular system fails if and only if at least two com-
ponents fail. Thereof, the lifetime of a 2-out-of-3 system with three exchangeable
components can be expressed as S3 = max

1≤i<j≤3
min

(
Xi, Xj

)
, while the corresponding

maximal signature vector is given as (β1, β2, β3) = (0, 3,−2).
• RS4: Parallel-Series system. The particular system fails if and only if the 1st component

fails and one of the other two (e.g., either the 2nd or the 3rd component) components
fail. Thereof, the lifetime of a parallel-series system with three exchangeable com-
ponents can be expressed as S4 = max(X1, min(X2, X3)), while the corresponding
maximal signature vector is given as (β1, β2, β3) = (0, 2,−1).

• RS5: Parallel system. The particular system fails if and only if all components fail.
Thereof, the lifetime of a parallel system with three exchangeable components can be
expressed as S5 = min(X1, X2, X3), while the corresponding maximal signature vector
is given as (β1, β2, β3) = (0, 0, 1).

We first compute the expected lifetimes and the corresponding variances for the above-
mentioned structures under the Frank and Joe copula-based dependence. The common
distribution of all components is assumed to be the exponential with parameter λ. The
numerical results provided at Table 1 have been produced by the aid of Propositions 1 and
2 (see Section 3 of the present manuscript).
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Table 1. Expected lifetime and its variance of all possible coherent systems with three exchangeable
components under Frank and Joe copula-based dependency.

Frank Copula Joe Copula

System (λ,θ)
Expected
Lifetime Variance Expected

Lifetime Variance

RS1

(1, 2)

0.448826 0.219162 0.489410 0.739298
RS2 0.720882 0.438656 0.682163 0.898979
RS3 0.856910 0.492892 0.778539 0.950955
RS4 1.136030 0.978296 1.096380 0.990712
RS5 1.694260 1.481690 1.732050 0.464102

RS1

(2, 2)

0.897652 0.876646 0.978820 2.957190
RS2 1.441760 1.754630 1.364330 3.595920
RS3 1.713820 1.971570 1.557080 3.803820
RS4 2.272050 3.913230 2.192750 3.962850
RS5 3.388530 5.926690 3.464100 1.856410

RS1

(3, 2)

1.346480 1.972450 1.468230 6.653680
RS2 2.162650 3.947880 2.046490 8.090820
RS3 2.570730 4.436030 2.335620 8.558600
RS4 3.408080 8.804730 3.289130 8.916400
RS5 5.082790 13.33510 5.196150 4.176910

RS1

(4, 2)

1.795300 3.506600 1.957640 11.82880
RS2 2.883530 7.018480 2.728650 14.38370
RS3 3.427640 7.886270 3.114160 15.21530
RS4 4.544110 15.65280 4.385510 15.85140
RS5 6.777060 23.70680 6.928200 7.535630

RS1

(1, 3)

0.501188 0.267310 0.662486 0.886085
RS2 0.747671 0.485253 0.817671 0.966756
RS3 0.870913 0.548659 0.895264 0.989030
RS4 1.123240 1.001210 1.077590 0.993979
RS5 1.627900 1.524290 1.442250 0.804415

RS1

(2, 3)

1.002380 1.069230 1.324970 3.544340
RS2 1.495340 1.941020 1.635340 3.867030
RS3 1.741830 2.194620 1.790530 3.956120
RS4 2.246480 4.004860 2.155190 3.975920
RS5 3.255800 6.097180 2.884500 3.217660

RS1

(3, 3)

1.503560 2.405800 1.987460 7.974760
RS2 2.243010 7.162340 2.453010 8.700810
RS3 2.612740 4.937920 2.685790 8.901270
RS4 3.369730 9.010870 3.232780 8.945810
RS5 4.883700 13.71860 4.326750 7.239740

RS1

(4, 3)

2.004750 4.276790 2.649950 14.17740
RS2 2.990680 7.764080 3.270690 15.46810
RS3 3.483650 8.778550 3.581060 15.82450
RS4 4.492970 16.01930 4.310370 15.90370
RS5 6.511600 24.38870 5.769000 12.87060

The upper (lower) entry of each cell corresponds to the mean lifetime (its variance) of the underlying structure.

Based on the numerical results provided in Table 1, we may readily deduce that the
expected lifetime of reliability structure with exchangeable components under either Frank
or Joe copula-based dependency increases,

• for fixed θ as the parameter λ increases
• for fixed λ as the parameter θ decreases

In addition, the numerical results displayed in Table 1, confirm, as it was expected,

• the superiority of RS5 against the structures RS1–RS4, as it has the largest expected
lifetime among all systems taken into consideration under the same designs,
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• the inferiority of RS1 against the structures RS2–RS5, as it has the smallest expected
lifetime under the same designs.

It is also evident that the parallel-series system provides a more reliable structure
compared to the 2-out-of-3 system in terms of expectation. At the same time, the 2-out-of-3
system seems to be better than the series-parallel system, which in turn overperforms the
series system consisting of three exchangeable components.

Figures 1–4 provide some illustration for the behavior of the expected lifetime and the
corresponding variance under the Frank copula-based dependency. More precisely, the
mean lifetimes (along with their estimated variances) of systems RS2 and RS3 are depicted
in Figures 1–4 for different values of the design parameter θ.
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It is also of some interest to investigate the impact of parameter λ on the lifetime of the
resulting reliability schemes. For this reason, we next construct some relative illustrations
(see Figures 5–8), where the systems RS2 and RS3 have been taken into consideration
once again.
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Based on Figures 5–8, it is easily observed that the expected lifetime of the resulting
reliability system increases in a linear way in terms of the parameter λ under the assumption
that θ remains unchanged.
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In addition, Figures 9–16 provide some illustration for the behavior of the expected
lifetime and the corresponding variance under the Joe copula-based dependency. More
precisely, we focus now on the RS1 and RS5 cases, and the respective mean lifetimes (along
with their estimated variances) are displayed at Figures 9–12 for different values of the
design parameter θ.
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Figure 15. Expected lifetime of RS5 system versus parameter λ under Joe copula (θ = 2).
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Figure 16. Variance of lifetime of RS5 system versus parameter λ under Joe copula (θ = 2).

It goes without saying that systems RS1 and RS5 do not share a common behavior
in terms of parameter θ under Joe copula-based dependency of their components. More
specifically, we observe that,

• the expected lifetime of RS1 system becomes larger as θ increases, while
• the expected lifetime of RS5 system becomes larger as θ decreases.

The impact of parameter λ on the lifetime of the resulting reliability schemes is taken
into consideration in Figures 13–16.

Based on Figures 13–16, it is deduced that the expected lifetime of the resulting
reliability system increases in a linear way in terms of λ under the assumption that θ
remains unchanged.

According to the numerical results provided previously, it is evident in both copulas
that the expected lifetime of the underlying structure becomes larger as the corresponding
parameter θ increases. More precisely, it seems that under the Frank copula the increase is
more pronounced in comparison with the one observed under Joe copula. On the other
hand, the numerical results do not point out that the Frank copula results in larger lifetimes
than the Joe copula under the same reliability structure. In fact, there are cases where
the Frank copula seems to formulate a structure with a larger expected lifetime than the
corresponding one under Joe copula, while in other cases it holds the opposite conclusion.
In other words, the numerical results seem to be quite robust under these two models.

5. Discussion

In the present article, a signature-based framework is provided for delivering the
estimated mean lifetime (along with its variance) for a reliability structure with exchange-
able components under the assumption that their dependency is modelled by the aid of
well-known Archimedean copulas. The theoretical results contribute to the reliability study
of such structures, while their usefulness can be also extended to the estimation of the pa-
rameter of the corresponding (common) distribution of their components. It is noteworthy
that, since the present work deals with two specific copulas, the applicability of the results
requires that the connection between the components of the underlying system can be
described well by the copulas, which have been taken into consideration. It is noteworthy
that the proposed framework does not strongly depend on the specific structure of the
underlying reliability model. Therefore, similar steps could be followed in order to deliver
respective results for any coherent systems with exchangeable components.

Moreover, the proposed framework seems to result in simple explicit integral expres-
sions for the expected lifetime of the system and its corresponding variance. This conclusion
seems to be evident under the assumption that the common distribution of the components
has a quite simple form (as the exponential does). Therefore, in such cases, which are
the most common in practice, the computational effort of the proposed methodology is
manageable.

However, several bivariate copulas cannot (or at least are difficult to) be extended
to multivariate models and therefore their applicability remains low. It is clear that this
limitation deprives the implementation of the proposed approach to reliability structures
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consisting of more than two exchangeable components if the dependency among them is
modeled by the aid of such copulas. For future research, it is of some interest to investigate
different Archimedean copulas for modeling the dependency of the components of the
underlying structure.

Funding: This research received no external funding.
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