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Abstract: This paper proposes an icon-based methodology for the design of prototype aggregated
production planning software that addresses the complexity of multi-process and multi-product
production. Aggregate planning is a critical task in production management, which involves coordi-
nating the production of multiple products in different processes to meet demand efficiently. The
approach focuses on the use of visual icons to represent key elements of the production process,
such as products, processes, resources, and constraints. These icons allow an intuitive representation
of information and facilitate communication between production team members. In addition, this
paper presents a conceptual structure that defines the relationships between the icons and how they
are used to model and simulate aggregate production planning. The prototype software based on
a conceptual foundation allows planners to easily create and adjust production plans in a visual
environment. This method improves the ability to make informed and rapid decisions in response
to changes in demand or production capacity. The prototype is based on icons and programmed in
Excel spreadsheets to facilitate the planner’s planning. At the end of the document, the application of
a case study is shown.

Keywords: aggregate production planning; computational tool; visual modeling; operations research

MSC: 90-04

1. Introduction
1.1. Motivation and Topics

The production industry continuously faces planning challenges to avoid, among
other problems, stockouts, or unfulfilled orders. The motivation behind the creation of this
document is to provide productive companies with a simpler way to plan their produc-
tion for decision making, without neglecting the mathematical tools that enable optimal
planning. This motivation arises from the need to streamline the construction of the mathe-
matical model and subsequent computational model essential for production planning and
scheduling. This operation entails building a complex mathematical and computational
model, requiring highly trained and costly personnel. Therefore, a graphic method based
on icons has been conceived to allow for an intuitive and visual construction of the model.
These icons form the core of this project and have been successfully incorporated into
small-scale test software, demonstrating the achievement of the goal to simplify planning.
Another equally important motivation is to contribute to the digital transformation of
resource-constrained productive enterprises, such as small and medium-sized enterprises
(SMEs), through the use of everyday tools within business practices, such as Excel spread-
sheets. These motivations stem from the desire to enhance the productivity of the industrial
sector as a contributing factor to the economic development of the operational region. This
research proposes to address production inefficiencies through aggregated production
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planning from a simplified point of view. Production planning is a fundamental pillar
in industry; specifically, aggregate production planning (APP) allows for the determina-
tion of production, inventory, and workforce level when demand is dynamic and for a
planning horizon of up to one year [1]. By using different strategies and methodologies,
the APP solution can be utilized to control and plan production activity, with the aim of
achieving the minimum total cost and at the same time, the best allocation of resources
such as machine capacity, available storage, and worker capacity. Classical strategies for
production planning and control consider changing the size of the workforce, changing the
production rate, consolidating seasonal inventories, planning and allowing back-orders,
sub-contracting, and influencing demand [2]. This research uses the first three strategies.

The solution of APP has been classically achieved using tabular and graphical methods
and mathematical methods; an example of this approach can be seen in [3]. In this paper,
we present a conceptual framework that serves as a basis for the design of a methodology
that is applied by using a computational tool to allow a user to solve APP problems in an
optimal way that does not require knowledge of linear programming. Classical strategies
and mathematical methods from operations research are used, reducing the complexity
of the mathematical modeling of the target production system. This conceptualization is
based on icons that allow representation of the plant layout, the inventories, the available
resources of machine capacity, labor force level, the processes and the machines involved
in the production, and the forecasted demand. In this article, icons are conceived as
editable data containers where the user can emulate a target production system in an initial
spreadsheet by activating and deactivating icons. Once the data are loaded into the icons,
the APP mathematical model is automatically generated, and the exact solution of the
mixed-integer linear programming (MIP) problem with logical decisions can be obtained
by using a solver for a given time horizon.

In the literature, we can find the following classification of production systems: job
shop, batch flow, operator-paced line flow, continuous flow, just-in-time, and flexible
manufacturing system [4]. It is expected that the proposed tool can be adapted to the
six classification types. However, and as an initial scope, a case study with a batch flow
production system with multiple processes and products is presented. In addition, a solu-
tion is presented with a prototype of the proposed tool. For this purpose, a taxonomy of
icons is proposed to model an APP problem, and, as a consequence, a tool that requires
the input of the production system data was obtained, reducing the complexity of math-
ematical modeling by means of visual programming with icons and virtual figures. The
authors hope that the usefulness of this tool will mainly empower small and medium-
sized manufacturing enterprises (SMEs) and/or companies with low investment resources
and low levels of technological development, allowing the planning and control of their
production activities.

The main contributions of this work are to propose a methodology, based on an iconic
conceptualization, and to build a mathematical model that supports the scheduling of
activities associated with the aggregate planning of operations. The method can also be
employed by users without knowledge of linear programming. This is mainly relevant
in SME companies lacking the resources to invest in trained personnel or in a consulting
service to generate technological development. Through the application of a computational
tool, the methodology can visually represent the target production system with virtual
icons. In this approach, the user does not need to know the techniques of the mathematical
optimization approach, which is characterized by constraints and an objective function,
and only needs to learn the visual language of the icons and pictures of the proposed tool
to represent the production process as if it were a flowchart. In other words, the icons can
reproduce the plant layout to build the APP model.

To validate the methodology and its conceptualization, a small-scale prototype was
built within a spreadsheet, so that any company including SMEs can use it. This prototype
has the basic functions to solve an APP problem. In the following, the literature review
and problem definition sections are presented, then the definitions and structure of the



Mathematics 2024, 12, 336 3 of 23

proposed methodology section are introduced, and then we proceed to the section in which
a case study is presented. Finally, the results and conclusions are presented.

1.2. Literature Review
1.2.1. Aggregate Production Planning

The literature on APP is abundant. In 1975, Eilon published an early short review
demonstrating five solution approaches for APP problems [5]. More recently in 2019,
Cheraghalikhani et al. published a review of the last 27 years, classifying APP models
into two groups, deterministic models and uncertain models [6]. Of those falling into
the uncertain model classification, Jamalnia et al. [7] reviewed the uncertainty handling
methods in depth. For the deterministic model’s classification, a comprehensive review of
the APP problem from a circular economy and sustainability perspective was published
in early 2022 by Aydin et al. [8]. The authors emphasized that in order to meet the
environmental and social sustainability criteria in the planning period, the principles of the
circular economy can be used; their work is the first systematic review of the last 50 years
of APP research and offers a classification of the papers by the type of objective function.
Table 1 shows the most recent studies and research where the criterion used for the search
was the aggregate production planning problem and scheduling problem.

Table 1. Recent research on aggregate production planning.

Authors Year Contribution

Werner, F. 2023 A special issue that includes comparative analysis and performance evaluations
of scheduling algorithms and applications of recent papers [9].

Elidrissi, A.; Benmansour, R.;
Hasani, K.; Werner, F. 2023

The authors propose two MILP formulations and polynomial-time solvable
cases for the scheduling problem on two identical parallel machines with a

single server [10].

Yazd, S.; Salamirad, A.;
Kheybari, S.; Ishizaka, A. 2023

APP for multi-line manufacturing systems based on line efficiency calculated
based on pollution rate, defective product rate, production capacity, downtime,

and electricity consumption [11].

Özelkan, E.; Torabzadeh, S.;
Demirel, E.; Lim, C.

2023 Bi-objective APP where, in addition to cost, the stability of the plan is considered
as an objective, and it is compared with other classic APP models [12].

Tirkolaee, E.B.; Aydin, N.S.;
Mahdavi, I. 2022 The authors propose a hybrid multi-objective model for the APP problem that

presents a continuous Markov chain for inventory [13].

Gomez-Rocha, J.E.;
Hernandez-Gress, E.S. 2022 The authors propose a stochastic programming model for multi-product APP

that is more efficient in terms of CPU iterations and sensitivity analysis [14].

Islam, S.R.; Novoa, C.; Jin, T.D. 2022
The authors propose an APP model that incorporates renewable energies,

optimizing energy, production, and cost decisions under uncertainty conditions,
with practical applications in the United States [15].

Singh, N.K.;
Kuthambalayan, T.S. 2022

A planning study in a production system for perishable products with demand-
and shelf-life-dependent costs. Proposal of efficient heuristics for

large problems [16].

Matos, C.; Sola, A.V.H.;
Matias, G.D.; Lermen, F.H.;

Ribeiro, J.L.D.; Siqueira, H.V.
2022

The authors propose a model that integrates electric power demand into
production planning, with positive results in cost reduction in the

food industry [17].

Galankashi, M.R.; Madadi, N.;
Helmi, S.A.; Rahim, A.A.;

Rafiei, F.M.
2022

Integration of lean manufacturing and the APP problem. The proposed model is
multi-objective and seeks to minimize cost, lead time, and waste, in addition to

maximizing quality [18].

Yu, V.F.; Kao, H.C.; Chiang,
F.Y.; Lin, S.W. 2022

The authors propose a technique to address multi-objective production planning
problems (PPPs) as if they were bi-objectives using order preferences with the

TOPSIS approach [19].

Liu, L.F.; Yang, X.F. 2022 The authors propose a method to evaluate early and late delivery losses in an
APP problem [20].
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Table 1. Cont.

Authors Year Contribution

Dohale, V.; Ambilkar, P.;
Gunasekaran, A.; Bilolikar, V. 2022

The authors propose an integrated fuzzy analytic hierarchy process to select
essential objectives for the enterprise, which are the objectives of the PPP

problem [21].

Yaghin, R.G.; Darvishi, F. 2022 The authors propose a multi-objective scheduling model for integrated materials
and production management in the supply chain [22].

Liu, L.F.; Yang, X.F. 2021 This study proposes an efficient genetic algorithm for APP in manufacturing,
considering stability and costs [23].

Khalili, J.; Alinezhad, A. 2021
The authors propose an APP performance evaluation model, using the Grey
APP method with SWARA and RED, to improve decision making in the auto

parts manufacturing industry [24].

Tuang, D.H.; Chiadamrong, N. 2021 A hybrid model is developed to solve a multi-objective APP problem in a supply
chain under uncertainty conditions [25].

Rehman, H.U.; Ahmad, A.;
Ali, Z.; Baig, S.A.; Manzoor, U. 2021

The authors propose the inclusion of productivity loss in the aggregate
production plan using linear programming to assess its impact on the hiring and

firing of the labor force [26].

Krajcovic, M.; Furmannova, B.;
Grznar, P.; Furmann, R.; Plinta,

D.; Svitek, R.; Antoniuk, I.
2021

The article presents a data structure and planning methodology for labor
utilization in production based on a parametric model and object-oriented

analysis [27].

Ning, Y.F.; Pang, N.; Wang, S.;
Chen, X.M. 2021 An APP model for vegetable production in volatile and uncertain markets and

considering the level of service [28].

Rahmani, D.; Zandi, A.;
Behdad, S.; Entezaminia, A. 2021

A multi-product, multi-period aggregate production planning model with
environmental considerations and robust optimization under uncertainty

conditions [29].

Torabzadeh, S.; Ozelkan, E.C. 2021
The authors propose a fuzzy aggregate production planning technique with a

flexible requirements profile, which shows stability and cost effectiveness
compared to traditional models [30].

Sutthibutr, N.;
Chiadamrong, N. 2020

The authors propose an improved fuzzy programming approach to optimize
APP in uncertain environments, with results superior to traditional

defuzzification methods [31].

Darvishi, F.; Yaghin, R.G.;
Sadeghi, A. 2020

The authors address inbound logistics and APP in the textile industry under
uncertainty conditions. A mathematical model and an efficient algorithm for its

solution are proposed [32].

Jang, J.; Chung, B.D. 2020 The authors propose a robust optimization approach for the APP problem,
addressing uncertainty in employee hiring and firing [33].

Rasmi, S.A.B.; Kazan, C.;
Turkay, M. 2019

A multi-objective APP model including sustainability, applied to a manufacturer
of household appliances. An exact solution method for mixed multi-objective

programs is provided [34].

Zaidan, A.A.; Atiya, B.; Abu
Bakar, M.R.; Zaidan, B.B. 2019 The authors propose a hybrid fuzzy programming approach to solve APP

problems, which is more efficient and effective than other methods [35].

Goli, A.; Tirkolaee, E.B.;
Malmir, B.; Bian, G.B.;

Sangaiah, A.K.
2019 The authors propose a robust multi-objective APP approach, using genetic and

optimization algorithms, to address uncertain seasonal demand [1].

Jamalnia, A.; Yang, J.B.; Xu,
D.L.; Feili, A.; Jamali, G. 2019

The study evaluates different APP strategies in the presence of uncertainty,
using multi-objective optimization and simulation models, with validation on

real data from the beverage industry [36].

Yuliastuti, G.E.; Rizki, A.M.;
Mahmudy, W.F.; Tama, I.P. 2019

The authors propose a hybrid approach of a genetic algorithm and simulated
annealing to improve aggregate production planning in a multi-product

company [37].

Aazami, A.A.;
Saidi-Mehrabad, M. 2019 A robust bi-level programming model in APP using the Stackelberg game and

Bender’s decomposition algorithm. It was validated with real data [38].
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Table 1. Cont.

Authors Year Contribution

Ning, Y.F.; Pang, N.; Wang, X. 2019 The authors propose an APP model for vegetables that considers uncertainty
and investment in preservation technology [39].

Djordjevic, I.; Petrovic, D.;
Stojic, G. 2019

An APP model based on fuzzy logic is proposed to consider uncertainty in
demand, production, and inventory times. Improved operational efficiency with

real data is demonstrated [40].

In the literature reviewed, no methodologies were found to reduce the complexity of
mathematical modeling in APP problems.

1.2.2. Computational Tools

Penlesky and Srivastava (2007) published software that solves APP problems using
a spreadsheet; however, unlike the optimal solution proposed by the prototype of this
research, they solved the problem with the “trial and error” method [41]. More recently, in
2021, Rehman et al. published a work on optimizing APP problems with two models: with
and without productivity loss. Their work was programmed in Python, and the code can
be read in the publication [26]. Regarding software testing in real cases, we will mention
some cases. In 2001, Brown et al. described the application of planning software for the
Kellogg’s Company; according to the authors, the production and inventory costs were
markedly reduced, in addition to facilitating decision making in the short and medium
term [42]. In 2015, Zago and Mezquita implemented a production planning and scheduling
software for a Brazilian dairy company. The results were promising; they managed to
increase control over inventory levels and reduce costs associated with the process [43].

Another study published in 2015 by Jonsson and Ivert warns that, at least in the Swedish
industry, only a small number of companies use a sophisticated method to plan production
and concludes that the use of advanced methods allows for more feasible plans [44]. It is
worth mentioning that not everything is conducive to the prototype proposed in this research,
since it has been designed with Excel spreadsheets. In 2011, Vlckova and Patak examined
the planning practices of four food industries using Excel spreadsheets; they concluded that
effective planning can only be achieved with an integrated information system [45]. On the
web, commercial software is available that offers APP among other services. Table 2 shows
some examples of this software with the pages where they can be purchased.

Table 2. Some commercial production planning software examples.

Software Description Strengths Weaknesses Web Page

Solvoyo

Offers optimization of
production plans in

different time horizons
with

artificial intelligence.

Solvoyo offers an end-to-end
supply chain planning and
analytics platform, with AI,

machine learning, and
optimization technology.

Aimed at large companies
such as Unilever and
others, which have

technical personnel who
understand AI-type tools.

https://www.solvoyo.
com/production-

planning-software/
(accessed on 10 July 2023)

Odoo

Can manage production
orders, repair orders, work
orders, barcodes, unbilled
orders, among others, and
also plan manufacturing.

It provides support for South
America and Central America in
Spanish and English and allows
developments to be added via

the API.

It is an ERP; therefore, it
requires global

implementation, which is
not always convenient for

SMEs.

https://www.odoo.com/
es_ES/app/

manufacturing-features
(accessed on 10 July 2023)

Siemens m-plant

Offers to digitize
production and create 3D

models of facilities and
work lines using an

object-oriented
architecture.

Improves the productivity of
existing production facilities and

reduces investment and the
inventory and production time via
optimizing system dimensions,

including buffer sizes,
reducing risks from the

beginning.

It is not strictly a
production planning

software; rather, it is plant
and facility design

software.

https:
//www.plm.automation.
siemens.com/global/en/
(accessed on 10 July 2023)

https://www.solvoyo.com/production-planning-software/
https://www.solvoyo.com/production-planning-software/
https://www.solvoyo.com/production-planning-software/
https://www.odoo.com/es_ES/app/manufacturing-features
https://www.odoo.com/es_ES/app/manufacturing-features
https://www.odoo.com/es_ES/app/manufacturing-features
https://www.plm.automation.siemens.com/global/en/
https://www.plm.automation.siemens.com/global/en/
https://www.plm.automation.siemens.com/global/en/
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Table 2. Cont.

Software Description Strengths Weaknesses Web Page

Infor

Specifically designed to
handle formula or recipe
processing and automate

calculations with
integrated product
development tools.

It has an ERP LN suite for
discrete operations and has

advanced analysis tools. It has
an ERP module for

manufacturing processes, which
is an ERP solution designed
specifically to manage the

processing of formulas or recipes
and automate calculations with

integrated product
development tools.

The main weakness Is the
same as that of other

highly complex ERPs: it
must be implemented and
integrated into operations,

which is difficult to
achieve in an SME.

https:
//www.infor.com/es-la/
manufacturing-industries
(accessed on 17 October

2023)

PlanetTogether APS

APS is offered as a
program that performs

fast and flexible capacity
planning and also offers

MRP solutions.

It has built-in artificial
intelligence that calculates

complex production plans in
seconds, seamlessly connecting
production data from the user’s

ERP or MES system with
priorities set by production

planners. Built-in AI reacts to
continuous changes in

production and keeps it
optimized, in the same way a

GPS navigator calculates a route.

It does not have a specific
operations programming

module; it is an integrated
system that plans the

entire factory as a
complete system.

https://www.
planettogether.com/

(accessed on 12 October
2023)

iGromi

Has three different
solutions: industrial

product and raw material
manufacturing, consumer

goods and packaging
manufacturing, and

assembly and contract
manufacturing.

It is an advanced manufacturing
platform that helps to transform

the plant into a smart factory,
integrating hardware and

software with artificial
intelligence solutions and IoT
connectivity, to analyze large
amounts of production data.

It is not particularly
oriented towards process
production or resource

control.
It is not customizable to
adapt to the particular
needs of the company.

https://igromi.com/
(accessed on 17 October

2023)

Chronos

Software that offers
production scheduling

optimization and
planning, as well as

production order
execution time reduction.

All users work on the same data
repository, with the advantage
that all information is available

and synchronized.
Data exchange between the

server and the client is achieved
using network software.

Within the software, extensive
use is made of workflows

(workflow model) that can be
integrated with its
different modules.

Like other comprehensive
ERPs, it is an application

that requires global
implementation in the

company and specialized
IT personnel, something

that usually does not exist
in SMEs.

https:
//www.chronosps.com/
(accessed on 18 October

2023)

QAD

Comprehensive software
that, among other

functions, offers optimal
production planning to
reduce manufacturing

costs, minimize shop floor
interruptions, limit
product waste, and
improve customer

satisfaction.

Flexible, cloud-based enterprise
resource software for global
manufacturing companies.
In the area of production

planning, it uses
constraint-based optimization to

comprehensively synchronize
material flow and resource
utilization in multi-stage,

multi-site production
environments while respecting

all required constraints.

QAD is an extremely
specialized ERP suite that
is designed primarily for
manufacturers. It mainly
focuses on six industries:
cars, consumer products,

food and drink,
high technology,

industrial, and life
sciences. This means that
QAD can be a great option
if the user’s company fits

into one of these
industries. If not, other

options may be
more suitable.

https://www.qad.com/
(accessed on 18 October

2023)

1.3. Problems and Contributions

The Latin American region faces the challenge of increasing the productivity of its
industries to generate economic and social development, and this challenge is particularly
difficult for micro, small, and medium-sized enterprises (MSMEs). In the region, 99% of

https://www.infor.com/es-la/manufacturing-industries
https://www.infor.com/es-la/manufacturing-industries
https://www.infor.com/es-la/manufacturing-industries
https://www.planettogether.com/
https://www.planettogether.com/
https://igromi.com/
https://www.chronosps.com/
https://www.chronosps.com/
https://www.qad.com/


Mathematics 2024, 12, 336 7 of 23

formal companies are MSMEs, and 61% of jobs are generated by them. Despite the above,
the contribution to GDP observed in 2020 is only 25%, a far cry from the 56% contribution
observed in the European Union [46]. Between 2000 and 2019, the world’s large and
dynamic economies such as China and the United States experienced economic growth in
which productivity contributed 96% and 64%, respectively. In Latin America, only 24% of
economic growth was contributed by productivity in the same years [47]. In particular, the
manufacturing industry provides employment to 12.8% of the population of Latin America
and the Caribbean. The sector’s contribution to GDP is 12.6% on average, considering
differences between countries [48].

In part, the region has not been able to take advantage of the information and telecom-
munications technology (ICT) revolution and is behind in the implementation of Industry
4.0 methodologies. On the other hand, business legislative regulation is different in Latin
America than in the countries and regions compared above [49]. In production companies
in Latin America, the lack of efficient planning is a recurrent problem and it affects the
productivity of machines and workers, the use of raw materials, and the achievement of
economic goals, among other negative effects. It also leads to stockouts, which affects
the relationship with the distribution channels and affects costs and therefore the entire
business. In addition, most small and medium-sized companies in Latin America do not
have technically and professionally trained personnel capable of operating operations
scheduling methods and software.

Evidence of the weaknesses above is the information provided in a study by the
Chilean Association of Engineers, whose president, Mr. Fernando Agüero, indicates that
less than 3% of companies have an engineer and that the only sector where 4% of compa-
nies have engineers is the food industry [50]. The situation is similar in Mexico, where
about 24,000 engineers graduate each year, while in developed countries there are about
60,000 graduates [51]. For this reason, the aim of this work was to provide a conceptu-
alization that facilitates the construction of the APP mathematical computational model
without necessarily being operated by an experienced engineer. This conceptualization
is intended to allow a technician without a specialty in operations research and/or com-
puter science to generate the production program. The idea is that from the knowledge
of the production process, using the definition of process icons, sub-processes, resources,
parameters, and layout, the user can generate the mathematical model implicitly. That is,
without realizing that they are writing a mathematical model, just following the logic of
the visual planning methodology, the user can be able to generate the appropriate model
for the specific situation.

Associated with this methodology and conceptualization, a simple prototype has been
developed to illustrate the application and demonstrate its function with this new approach.
The prototype is a DSS that follows the methodology, and it is implemented on an Excel
spreadsheet, which has three sheets. In the first one, the general layout of the plant is
defined, and the process parameters are entered, such as costs, demand, inventories, and
resources. In the second sheet, the information is summarized, and in the third one, the
solver is executed delivering the aggregated production plan.

The main contributions of this research are as follows:

• Proposing a methodology based on icons to obtain optimal aggregate production
plans without the need to perform mathematical modeling;

• Suggesting a prototype that applies the icon-based methodology to achieve optimal
production planning based on the flowchart representation of a target production
system and its information;

• Providing companies without sufficient resources to invest in ICT, a tool to improve
their productivity;

• Noting that visual modeling using icons can be used to implement different engineer-
ing methodologies, simplifying their application.
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2. Definitions and Structure of the Methodology
2.1. Icon-Based Methodology

In industrial production, it is necessary to plan how much and when to produce in
order to meet the demand, considering limitations in available resources such as labor force,
machine capacity, and inventory space.

When the production plan is generated by using an operations research tool, then it is
optimal and allows the objective to be achieved at a minimum total cost.

This study proposes an optimal aggregate production planning tool for production
systems with multiple products and multiple processes, based on icons. The editable figure
containing the data matrix to be entered is represented by a virtual icon. A prototype
implemented on an Excel spreadsheet is presented. With this methodology, the complexity
of the mathematical modeling process involving the formulation of the objective function
and constraints is reduced.

The tool is a DSS called Icons-Based Methodology for Aggregate Production Planning
(hereinafter IBPlanner) and has been designed to be applied in steps as described below:

Step 1 (S1): Introduce in an Initial Diagram the distribution and physical arrangement
of the machines, stages, and/or workstations, which we will henceforth understand as the
sub-processes of the different working lines of the production process. This corresponds to
the first stage of the methodology as shown in Figure 1. The spatial configuration of the
factory is obtained from a flowchart of the production process or directly from the layout
of the plant; the important issue is that the user knows their production process well and
ideally is able to make a flow diagram, thus facilitating the visual modeling. By activating
and deactivating specific cells of the Initial Diagram spreadsheet, it is possible to enable or
disable work lines to reproduce the plant layout, which allows IBPlanner to be adaptable
for multiple companies. We understand the work lines as parallel processes that can deliver
the various products independently.
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Step 2 (S2): Enter the data of the production process in the Initial Diagram. The
following data are required:

a. For each product in each desired planning period, the following are required:

i. Demand in units;
ii. Unit cost to inventory and available inventory capacity.
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b. For each sub-process of each work line, in each planning period and for each product,
the following are required:

i. Unit cost of production;
ii. Machine hours required per unit;
iii. Worker hours required per unit.

c. Machine hours and worker hours available for all planning periods and for each work
line, as applicable. This is understood as the number of hours operated by a machine
or worker in a sub-process for the manufacture of a unit of the product.

Step 3 (S3): Solve the model by obtaining the optimal production and inventory
planning by product and by period using the Excel OpenSolver add-in.

Step 4 (S4): Analyze the detailed information for each work line regarding the use
of its resources and capacities for decision making by performing sensitivity analysis for
different scenarios to facilitate decision making.

Once the stages of the methodology have been completed, it is possible to introduce
improvements in the Initial Diagram that respond to changes in the conditions of the
productive environment, for example, an investment in capacity, or changes suggested
by the analysis of Step 4. This allows the use of IBPlanner to be iterative in the search for
optimal planning.

2.2. Mathematical Model and Icons of the Initial Diagram

Before presenting the icons of the diagram and the model, we will define the following
indexes, variables, and parameters with which the icons work:

Indexes

• t = 1, 2, . . ., T index of planning periods;
• i = 1, 2, . . ., N index of products;
• j = 1, 2, . . ., J index of work lines;
• k = 1, 2 index of Resources, k = 1 (machine hours), k = 2 (worker hours);
• l = 1, 2, . . ., L index of serial sub-processes;
• p = 1, 2, . . ., P index of parallel sub-processes.

Variables

â Xijt—Number of product units i manufactured by work line j in period t;
â Iit—Number of product units i in inventory at the end of period t.

Parameters

â Dit—Forecast of units demanded of the product i in a period t;
â Hit—Inventory cost for a product unit i in period t;
â Cijt—Cost of producing a unit of product i in process j and period t;
â ccijlt—Cost of producing a unit of product i in process j, stage l, and period t;
â cccijplt Cost of producing a unit of product i, process j, stage l, parallel machine p, and

period t;
â Rkjt—Amount available of resource k for work line j in period t;
â rkij—Required amount of resource k per unit of product i if processed in j;
â rrkilj—Required amount of resource k for a product unit i processed in stage l of

process j;
â rrrkiplj—Required amount of resource k for a unit of product i processed in stage l of

process j on the parallel machine p.

The model used in the planning tool is multi-process and multi-product. Figure 2
shows the methodology icons and a summary of the equations used, graphically repre-
senting the idea that each virtual icon contributes with variables and parameters to the
model configuration. The model has an objective function that minimizes the total cost
of production and inventory in the desired planning horizon and capacity constraints of



Mathematics 2024, 12, 336 10 of 23

the resources machine hours and worker hours; it also has inventory and demand con-
straints that apply to each product in each time period. The cost constraints collect unit
information for each serial or parallel sub-process. The model allows the different products
to be manufactured in all work lines or only in a subset of them. It does not consider the
possibility of a product changing work line in the middle of manufacturing execution. Each
work line can have multiple stages, where there can be serial and parallel configurations
for the machines. As initial research, it does not consider setup costs, but this is not ruled
out in future implementations. Some logical decisions are not shown in Figure 2, but in the
prototype tool, there are switches that activate and deactivate the work lines.
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Figure 2. Virtual icons of the IBPlanner tool and its contribution of variables and parameters to the
main constraints and objective function of the mathematical model that solves the APP problem.

The unit cost parameter (Cijt) is modeled with an if–then cycle; in the spreadsheet, the
formula “=IF(logical_test; value_if_true; value_if_false)” is employed, where the logical
test is whether the work line is active or not. The true value (work line active) is the Cijt
equation represented in Figure 2, and the false value (work line inactive) gives an extremely
high penalty cost so that those cells are not considered and therefore are not assigned a
production quantity. In the case of the required resource parameter for machine hours r1ij,
the same logical test holds for the unit cost, where the true value is the equation of rkij
shown in Figure 2 and the false value is 1.

Figure 3 depicts the virtual icons of the methodology in the Initial Diagram. On the left
are the available resources, in the center are the work lines, and on the right are the finished
product inventories. Depending on the spatial configuration of the target production plant,
the work lines are activated or deactivated and sub-processes used or not in series or
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parallel. Next, we will review in detail each of these virtual icons and how they work to
build the model.
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2.2.1. Sub-Processes Icon

The sub-process icon represents single machines, stages, or workstations that are part
of a work line, as shown in Figure 4. The user must enter the parameters of the sub-process
previously defined, in the matrices contained.
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In the Initial Diagram, we can observe for each work line the sub-process icons placed
in series and parallel configurations, as shown on the right side of Figure 5. If one or more
sub-processes are not part of the target production system, it is acceptable to leave the
editable data matrices of those icons blank. That is, the user will enter the required data
only in the icons that represent machines, stages, or workstations effectively arranged in
the plant layout.
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Three editable data matrices are embedded in each sub-process:

1. Unit cost: matrix designed to enter the unit cost of production of the sub-process for
the different products in the different planning periods;

2. Machine hours: matrix designed to enter the machine hours required for one unit of
the different products;

3. Worker hours: matrix designed to enter the worker hours required for one unit of the
different products.

Figure 5 shows the editable data matrices and the parameter of the mathematical
model to which they correspond. As long as the number of products and the number of
periods is lower than this limit capacity, the unused boxes remain blank, which applies to
the three matrices.

Once the data per product and per period have been entered in the “EnterValue”
column, the parameters will be automatically recognized in the model depending on
the matrix:

1. Unit cost will generate the parameter cccijplt;
2. Machine hours will generate the parameter rrrkiplj with k = 1;
3. Worker hours will generate the parameter rrrkiplj with k = 2.

The assignment of the parameter in the p and l index domain is automatically generated
according to the position of the sub-process icon in the diagram.

2.2.2. Work Line Icon

In the Initial Diagram, the user will observe work lines that contain the sub-process
icons; if one or more sub-processes do not correspond to the target production system,
it is sufficient to leave their data matrices blank. However, if one or more work lines
do not correspond to the target production system, they must be deactivated with a



Mathematics 2024, 12, 336 13 of 23

button, as shown in Figure 6. Within each work line icon, each column of sub-process
icons corresponds in the model to the index of sub-processes in series L, while each row
corresponds in the model to the index of sub-processes in parallel P. On the other hand,
activating a work line implies adding one more value to the index of the j-th work line. As
shown in Figure 6, the sub-process icons are previously configured in all serial and parallel
combinations, and it is enough to fill in the data matrices of those corresponding to the
target production system to configure the work line.
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2.2.3. Available Resources Icons

In the Initial Diagram, we can observe, to the left of the work lines, the icons repre-
senting the available machine hours and worker hours resources as shown in Figure 7.

In both cases, the user can edit a data matrix as shown in Figure 8. The resources
available depend on the planning period and the work line.

The matrix of available machine hours will generate the parameter Rkjt for k = 1,
while the available worker hours matrix will generate the parameter Rkjt for k = 2 in the
mathematical model.

The user must consider the calculation of available machine hours according to the
time that the machines can effectively operate in each work line. When a stage has multiple
sub-processes operating in parallel, the user must consider the time of the sub-process
that takes the longest and not the algebraic sum of all of them, unlike the available worker
hours that depend exclusively on the duration of the shift and the number of operators for
each planning period.
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2.2.4. Demand and Available Inventory Icons

In the Initial Diagram, the user can observe, to the right of the work lines, the icons for
demand and available inventory per product. If the diagram has more icons than necessary,
it will be sufficient to leave the surplus demands at zero. Figure 9 shows the icons for N
different products.

The demand matrix by product will generate the parameter Dit in the mathematical
model, while the available inventory matrix must be activated with a button. If acti-
vated, the user can enter data such as the unit cost of inventory per period and the units
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available at the beginning, generating the parameters CIit and Ii0, respectively, in the
mathematical model.
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Once all the target system data have been entered into the matrices, and once it has
been defined which work lines need to be active, the optimal solution to the APP problem
can be requested, resulting in the planning of the quantity and timing of production and
inventory management over the desired planning horizon. The following section presents
a case study to test the prototype based on the proposed methodology.

3. Prototype and Case Study: Sausage Products Factory

A theoretical case has been selected to test the tool. It should be noted that the
prototype is in its initial stage; however, it is functional.

The prototype has been designed in Excel spreadsheets, and it currently has a capacity
of four products, four planning periods, and four work lines, each with four serial sub-
processes, where each serial sub-process has room for four parallel machines. The solution
was obtained using the Excel OpenSolver add-in, and it has been tested on Windows 10
with an Intel(R) Core(TM) i5-10300H CPU @ 2.50 GHz, 2496 Mhz; four main processors;
and eight logical processors.
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A flow shop case of a fictitious plant that produces three types of sausages in two
working lines is proposed. The process starts with the sausage dough mixers, which supply
parallel fillers to be precooked in industrial ovens and finally packaged in parallel packers.

Work line 1 has one mixer, four stuffers, one oven and three packers as shown in
Figure 11, while work line 2 has two mixers, four stuffers, two ovens and four packers as
shown in Figure 11.
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In addition, it should be considered that work line 1 can only process sausages 1 and
3, while work line 2 can only process sausages 1 and 2.

We assume that 100 finished units of sausage 1, 50 units of sausage 2, and 40 units of
sausage 3 are currently available.

The forecasted demand for the next 4 weeks is 1000, 1050, 1100, and 950 units of
sausage 1; 500, 600, 550, and 500 units of sausage 2; and 750, 800, 650, and 500 units of
sausage 3, respectively.

Inventory unit costs and available capacities in hours per week and per line are shown
in Table 3, for a 4-week planning horizon.

Table 3. Availability in hours per line and inventory cost per product.

Availability Line 1 Availability Line 2 Inventory Cost

Week Machine h. Worker h. Machine h. Worker h. Sausage 1 Sausage 2 Sausage 3

1 5000 * 7500 5000 13,000 5 ** 6 3
2 5000 7500 5000 13,000 6 7 4
3 5000 7500 5000 13,000 5 7 5
4 5000 7500 5000 13,000 6 8 6

* Availability in hours; ** Costs in monetary units.

The unit production costs and the requirements for machine hours and worker hours
per work line and per product are shown in Table 4.
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Table 4. Unit production costs per sausage, per line, per week.

Line 1 Unit production cost for Sausage 1

Week Mixer 1 Stuffer 1 Stuffer 2 Stuffer 3 Stuffer 4 Oven Packing 1 Packing 2 Packing 3

1 98 * 46 77 85 96 77 72 95 60
2 84 87 47 61 55 58 68 53 60
3 57 96 93 78 54 46 95 61 48
4 72 90 45 90 85 98 96 93 48

M. H. required 1 ** 0.5 0.5 0.5 0.5 1.5 0.2 0.2 0.2
W. H. required 2 *** 0.5 0.5 0.5 0.5 1.5 0.2 0.2 0.2

Line 1 Unit production cost for Sausage 3

Week Mixer 1 Stuffer 1 Stuffer 2 Stuffer 3 Stuffer 4 Oven Packing 1 Packing 2 Packing 3

1 60 98 42 60 86 62 52 63 97
2 89 71 72 87 49 62 60 40 61
3 54 71 51 86 68 70 57 89 46
4 71 68 96 88 48 65 68 55 96

M. H. required 1 0.5 0.5 0.5 0.5 1.5 0.2 0.2 0.2
W. H. required 2 0.5 0.5 0.5 0.5 1.5 0.2 0.2 0.2

Line 2 Unit production cost for Sausage 1

Week Mixer 1 Mixer 2 Stuffer 1 Stuffer 2 Stuffer 3 Stuffer 4 Oven 1 Oven 2 Packing 1 Packing 2 Packing 3 Packing 4

1 54 90 87 81 65 47 79 78 94 85 65 43
2 71 85 86 54 66 61 79 56 45 91 68 56
3 92 73 46 48 53 50 96 91 42 62 76 47
4 77 61 68 45 64 58 90 43 69 85 56 46

M. H. req. 1 1 0.5 0.5 0.5 0.5 2 2 0.2 0.2 0.2 0.2
W. H. req. 2 2 0.5 0.5 0.5 0.5 2.5 2.5 0.2 0.2 0.2 0.2

Line 2 Unit production cost for Sausage 2

Week Mixer 1 Mixer 2 Stuffer 1 Stuffer 2 Stuffer 3 Stuffer 4 Oven 1 Oven 2 Packing 1 Packing 2 Packing 3 Packing 4

1 91 58 52 96 84 67 85 81 105 87 107 78
2 74 82 61 88 87 82 71 72 92 85 78 59
3 101 73 66 57 81 99 60 95 79 91 70 56
4 106 108 74 68 100 79 104 93 67 56 71 91

M. H. req. 1 1 0.5 0.5 0.5 0.5 2 2 0.2 0.2 0.2 0.2
W. H. req. 2 2 0.5 0.5 0.5 0.5 2.5 2.5 0.2 0.2 0.2 0.2

* Costs in monetary units; ** Machine hours required; *** Working hours required

In Appendix A are attached images of the case proposed in the prototype. To show the
solution of this problem, APP should be considered in that, to activate a work line, the user
must activate a manual switch in a cell of the icon of each line. In addition, obtaining a product
to be produced on one line and not on another is achieved by penalizing with high costs.

Figure 12 shows the optimal solution for the case of study in the prototype interface.
The solution of the production variable can be observed on Xijt table, being the quantity of
sausages to be produced for each line in each of the four weeks.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 25 
 

 

It is important to note that, although it is an initial prototype, in the solution spread-
sheet, it is also possible to observe the slack in machine hours and worker hours. With this 
information, it is possible to make decisions, for example, to level the workforce or invest 
in machine capacity. The slack of the constraints in this case can be seen in Appendix B. 

 
Figure 12. Sausage case solution with the IBPlanner prototype. 

4. Discussion of Results 
IBPlanner provides the solution to a classical APP problem, with the objective of min-

imizing the total cost associated with planning. It is noteworthy that there are currently 
numerous variations of this problem, and many authors have ventured into presenting 
multi-objective models with different approaches. Examples include Rasmi et al. (2019) 
[34] and Aydin et al. (2022) [8], who propose models incorporating sustainability aspects. 
Darvishi et al. (2020) [32] investigated APP in the textile industry under uncertainty con-
ditions, while Jamalnia et al. (2019) [36] worked on comparing APP strategies under un-
certainty conditions. Genetic algorithms have also been a focus of analysis in APP prob-
lems for researchers such as Goli et al. (2019) [1] and Yuliastuti et al. (2019) [37]. The fuzzy 
logic approach has been a recurrent focus for authors like Zaidan et al. (2019) [35] and 
Djordjevic et al. (2019), [40]. As authors, we align with their approaches in recognizing the 
need to diversify the possibilities of APP problems to have a broad range of methods that 
can adapt to the productive system we aim to enhance. The authors declare that this trend 
is necessary for the development of knowledge, and the complexity of associated mathe-
matical modeling will continue to increase. 

Therefore, the authors believe it is important to advance approaches that simplify the 
application of these advancements in productive industries; otherwise, it will be increas-
ingly difficult for companies with li le investment capacity to use these methodologies. 

The authors agree with Jonsson and Ivert (2015) [44] that a company that plans its 
production with a tool, such as IBPlanner, obtains be er and more feasible plans; we also 
disagree with Vlckova and Patak (2011) [45], who indicate that effective production plan-
ning can only be carried out through an integrated information system and not with 
spreadsheet-based methods, although this discrepancy lies in the fact that the prototype 
proposed by this research is not a conventional spreadsheet that applies a trial-and-error 
method but one that applies linear programming. 

Although there are other examples of commercial production planning software, 
what makes IBPlanner unique is the reduction in resources that must be invested in to 
model the APP problem to meet an optimal solution. Starting from a process flow diagram 
or a plant layout, a user who is not necessarily a professional qualified to model 
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The number of units of sausages to be stored in inventory each week is also shown,
and the value of the total cost of the APP operation in this case is 6,531,640 currency units.

It is important to note that, although it is an initial prototype, in the solution spread-
sheet, it is also possible to observe the slack in machine hours and worker hours. With this
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information, it is possible to make decisions, for example, to level the workforce or invest
in machine capacity. The slack of the constraints in this case can be seen in Appendix B.

4. Discussion of Results

IBPlanner provides the solution to a classical APP problem, with the objective of
minimizing the total cost associated with planning. It is noteworthy that there are currently
numerous variations of this problem, and many authors have ventured into presenting
multi-objective models with different approaches. Examples include Rasmi et al. (2019) [34]
and Aydin et al. (2022) [8], who propose models incorporating sustainability aspects.
Darvishi et al. (2020) [32] investigated APP in the textile industry under uncertainty
conditions, while Jamalnia et al. (2019) [36] worked on comparing APP strategies under
uncertainty conditions. Genetic algorithms have also been a focus of analysis in APP
problems for researchers such as Goli et al. (2019) [1] and Yuliastuti et al. (2019) [37]. The
fuzzy logic approach has been a recurrent focus for authors like Zaidan et al. (2019) [35]
and Djordjevic et al. (2019), [40]. As authors, we align with their approaches in recognizing
the need to diversify the possibilities of APP problems to have a broad range of methods
that can adapt to the productive system we aim to enhance. The authors declare that this
trend is necessary for the development of knowledge, and the complexity of associated
mathematical modeling will continue to increase.

Therefore, the authors believe it is important to advance approaches that simplify the
application of these advancements in productive industries; otherwise, it will be increas-
ingly difficult for companies with little investment capacity to use these methodologies.

The authors agree with Jonsson and Ivert (2015) [44] that a company that plans its
production with a tool, such as IBPlanner, obtains better and more feasible plans; we
also disagree with Vlckova and Patak (2011) [45], who indicate that effective production
planning can only be carried out through an integrated information system and not with
spreadsheet-based methods, although this discrepancy lies in the fact that the prototype
proposed by this research is not a conventional spreadsheet that applies a trial-and-error
method but one that applies linear programming.

Although there are other examples of commercial production planning software, what
makes IBPlanner unique is the reduction in resources that must be invested in to model the
APP problem to meet an optimal solution. Starting from a process flow diagram or a plant
layout, a user who is not necessarily a professional qualified to model mathematically a
manufacturing situation can use the proposed conceptualization of icons to represent the
elements of the production plant such as machines, work lines, or the resources involved.

Our approach is much more specific than software such as QAD, which offers a wide
range of services and solutions for at least six different types of industries, or Solvoyo, that
offers supply chain planning using artificial intelligence and machine learning. However,
our methodology and tool are adapted to other types of needs and companies with a low
level of investment and digital development, with few qualified personnel in operations
management, such as SMEs. However, the potential of the proposed methodology can
scale to be useful to any productive company, as, in agreement with Peter C. Bell (1988),
interactive visual modeling benefits the development of operations research [52].

5. Conclusions

In this paper, a methodology based on icons was introduced for performing aggregate
production planning without the need for the mathematical modeling inherent in linear
programming problems. To apply this methodology, a software prototype named IBPlanner
was presented. IBPlanner, based on Excel spreadsheets, is capable of solving multi-process
and multi-product aggregate production planning problems with the objective of mini-
mizing the total cost of production and inventory over a desired planning horizon. Based
on the results from a case study, the authors conclude that this approach is particularly
valuable for small and medium-sized enterprises or companies lacking qualified personnel
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for modeling or financial resources for research and development, although they must
know the parameters and data of their production system.

The authors agree that the optimal solution of the case study is a good signal to
implement the prototype in a real case and measure productive performance to test the
hypothesis that IBPlanner improves productivity.

The authors anticipate that the use of the proposed tool will enhance company produc-
tivity. This tool offers a systematic approach to optimizing aggregate production planning,
enabling companies to strategically plan production quantities for each product across
various processes throughout predefined time periods. Additionally, the tool facilitates
inventory planning by allowing companies to determine the optimal storage quantity per
period, provided that storage space is available. Importantly, these benefits are achieved at
a significantly lower total cost compared to current commercial programs in the market.
This cost reduction is attributed to the tool’s user-friendly operation by company personnel
and the straightforward nature of the prototype.

This conclusion holds both academic and managerial implications.
The icon-based methodology has the theoretical potential to be extended to more

complex APP models, incorporating multiple objectives such as maximizing quality
while minimizing costs (Galankashi et al. 2022, [18]). It could also be applied to models
using genetic algorithms to address seasonal demands under uncertainty conditions
(Goli et al. 2019, [1]), the optimization of renewable energy under uncertainty conditions
(Islam et al. 2022, [15]), fuzzy programming (Sutthibutr et al. 2020), [31], or workforce
leveling considerations (Jang et al. 2020, [33]). Exploring this potential would involve
developing new icons to represent the desired implementations.

IBPlanner holds the potential to evolve into an integrated management tool for de-
cision making. The authors conclude that its utility lies in the widespread accessibility
of Excel within companies. However, being an initial prototype, the authors do not rule
out the future possibility of programming it in another language to enhance its usability,
interface, or modeling capabilities. Furthermore, the authors assert that IBPlanner can be
adapted to solve other supply chain optimization problems, such as procurement, trans-
portation, and distribution, as known linear programming models exist to address these
issues. This conclusion motivates further research to make the icon-based methodology and
IBPlanner a practical solution for integrated supply chain management while preserving
the essence of simplifying modeling through icon usage.

The researchers conclude that the tool simplifies the intricacies of mathematical mod-
eling in aggregate production plans. Designing a model that accurately represents the
production plant typically demands a comprehensive understanding of linear program-
ming. In this context, the tool offers the advantage of dispensing with the need for such
specialized knowledge. Instead, users can operate the tool using editable virtual icons,
simulating the target production system and deriving optimal aggregate production plans
for a specified time horizon. This feature is particularly valuable for companies lacking
the resources for extensive research and development in their production processes, with
small and medium-sized enterprises (SMEs) being the archetypal entities falling within
this category. However, it is crucial to note that while the methodology streamlines the
modeling process, it does not alleviate the complexities associated with data collection,
classification, and simulation for decision making.

In conclusion, the authors hope that the use of this tool and methodology will con-
tribute to the development of the global industrial manufacturing sector, with a particular
emphasis on the Latin American region. Their aspiration is that it may foster economic and
social growth in a region aspiring to compete with major world economies.
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