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Abstract: Multilabel classification is a recently conceptualized task in machine learning. Contrary
to most of the research that has so far focused on classification machinery, we take a data-centric
approach and provide an integrative framework that blends qualitative and quantitative descriptions
of multilabel data sources. By combining lattice theory, in the form of formal concept analysis, and
entropy triangles, obtained from information theory, we explain from first principles the fundamental
issues of multilabel datasets such as the dependencies of the labels, their imbalances, or the effects
of the presence of hapaxes. This allows us to provide guidelines for resampling and new data
collection and their relationship with broad modelling approaches. We have empirically validated
our framework using 56 open datasets, challenging previous characterizations that prove that our
formalization brings useful insights into the task of multilabel classification. Further work will
consider the extension of this formalization to understand the relationship between the data sources,
the classification methods, and ways to assess their performance.

Keywords: multilabel classification; multilabel datasets; information sources; formal concept analysis;
entropy balances; meta-analysis
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1. Introduction

Multilabel classification (MLC) is a relatively recently-formalized task in machine
learning [1] with applications in text categorization [2], medicine [3], or remote sensing [4],
among others. A recent, extensive evaluation provides a catalogue of technical issues and
concerns in solving the MLC task [5], while more dated tutorials explain the progress in
methods and concerns [6,7] or with special emphasis on software tools [8]. Finally, Ref. [9]
sets MLC in the broader task of multi-target prediction.

1.1. Formalization

Let L be a set of l = |L| labels any of whose subsets is a labelset. We may assign to
each of the labels a certain “meaning” but this is outside of this mathematical model for
now. Consider a space Y ≡ 2l , whose elements are also called labelsets y⃗ ∈ Y via the
isomorphism with their characteristic vectors. Suppose that we can only access the result
of an observation process on the labelsets in terms of visible instances, observations, or feature
vectors in a feature space X ≡ Rm. Then, the multilabel classification problem is to tag any
(feature) vector x⃗ ∈ X with a labelset y⃗ ∈ Y .

Note that the problems of supervised machine classification or regression in Statistical
Machine Learning (SML) can be solved with predictive inference [10]. This is a very general
metaphor for statistical investigation of random vectors: consider a categorical random
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variable Y ∼ PY. Suppose that this variable is hidden and we can only access random
vectors X ∼ PX , acting as observations x⃗ ∈ X of the y ∈ Y. In predictive inference we want to
recover y ∈ Y by applying an inference function to a new observation x⃗ ∈ X.

Metaphor 1 (PREDICTIVE INFERENCE IS TRANSMITTING INFORMATION THROUGH A CHAN-
NEL). Figure 1 depicts a communication channel where:

• Variable Y represents a partially hidden source of information;
• The random vector X represents an encoding of that partially inaccessible information in the

form favoured by an (unknown) observation process;
• The recovered Ŷ is the result of decoding the information in x⃗.

S encode
PY

Y
decode

PX

X
P

PŶ

Ŷ

Figure 1. Basic scheme for predictive inference as a communication channel. S = Source and
P = Presentation, standing for the origin and the purpose or destination, respectively, of the data to
be inferred.

We use here “metaphor” in the sense of Metaphor Theory [11] as applied to Mathe-
matics whereby conceptual metaphors preserve inferences and calculations encode those
inferences [12]. This metaphor suggests that MLC datasets are actually partially observed
multivariate binary sources of information, and that the MLC task should be assessed as a
process that transports this information to a destination or target for further (unspecified) use.

Since MLC is a supervised task, we describe in Figure 2 its solution using predictive
inference (compare with the solution proposed in Section 3.4).

The engineering part of SML consists, then, in filling the details of this pseudo-algorithm.
In this paper, however, we propose a new mathematical framework to improve the mathe-
matical models of SML to better guide and help in the filling of those details and in particular,
it will become apparent why a first step is missing and how should it be completed.

2. Data collection. Collect a set of samples, D = {(⃗y(j), x⃗(j))}n
j=1 of observed feature

vectors and their labelsets. This is called from now on the (MLC) dataset.
3. Classifier design. Choose a classifier type with parameter vector θ⃗ and

an induction scheme to obtain a function from observations to labelsets
h

θ⃗
: X → Y, x⃗ 7→ ŷ = h

θ⃗
(x⃗). As inherited wisdom recommends, it were

better to split this function into the composition of a data-transformation function
g : X → Z, x⃗ 7→ z⃗ = g(x⃗), and a classifier function f

θ⃗
: Z → Y, z⃗ 7→ ŷ = f

θ⃗
(⃗z).

The typical transformation requires the transformed representation z⃗ to be a
vector, hence the notation.

4. Performance assessment. In order to assess the classifier, choose adequate
performance measures, and implement a scheme of sampling of the data into
a set of training examples DT = {(⃗y(j), x⃗(j))}nT

j=1 and a set of test examples

DE = {(⃗y(j), x⃗(j))}nE
j=1 so that the training data are used to induce the clas-

sifiers and the test data to assess these results on the performance measures.
Furthermore, embed the former into a scheme of iterated sampling—e.g., k-fold
cross-validation—to obtain measures of centrality and dispersion on the perfor-
mance measures.

Figure 2. Pseudo-algorithm for MLC under the predictive inference metaphor.

1.2. Some Fundamental Issues in MLC
1.2.1. Classifier Design for MLC

Since the MLC task can be considered a strict generalization of the binary and multiclass
classification tasks in that instances may have more than one label (class) assigned to them,
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most of the techniques for classifier design have been imported therefrom: performance
measure selection, data preparation, and classifier evaluation have required extensions to
cater for the peculiarities of MLC.

In particular, since the theory of statistical machine learning is traditionally grounded
on the binary or mutually-exclusive labelling cases, dealing with label sets poses a challenge
usually solved by means of problem transformation. The extreme cases of these transforma-
tions are [13]:

• Binary relevance (BR) [14], a problem transformation method that learns L binary
classifiers—one for each different label in L—and then transforms the original data
set into L data sets Dlj

; j = 1 . . . L that contain all examples of the original data set,
labelled positively if the label set of the original example contained lj and negatively
otherwise. To classify a new instance BR outputs the union of the labels lj that are
positively predicted by the L classifiers.

• Classifier Chains (CC) [15,16], a transformation method that orders the labels by their
decreasing predictive power on later labels and trains classifiers for each of these in order:
all previous labels are used as inputs to predict later labels. Other hierarchical approaches,
use lattice-based methods to define the labelset hierarchy, for example [17].

• Label Powerset (LP) [1], a simple but effective problem transformation method that
considers each unique set of labels in a multilabel training set as one of the classes of a
new single-label classification task. Given a new instance, the single-label classifier
of LP outputs the most probable class, which is actually a set of labels. Bad initial
performance results suggested the Rakel [13] variant.

In this paper, we concentrate on analysing the datasets that pre-form the possible
solutions to the MLC problem, rather than the solutions themselves. Hence, issues that are
nuclear in traditional MLC concerns—e.g., algorithm adaptation, stacking, etc.—play no
part herein but will be re-taken in future work (see Section 3.5).

1.2.2. Modelling Label Dependencies

It was early on hinted that performance measures presuppose one model of de-
pendence or another [18]; hence, explicit modelling of dependences quickly became an
issue to understand the task. Few solutions to the MLC try to model explicitly such
dependencies—a notable exception to this is CC [19] (Chap. 7) and its derivatives, consis-
tently showing better performance results than LP but not BR.

Note that, from a purely theoretical machine learning perspective, while for BR it is
important that labels be actually independent, for CC it is important to order the labels in
decreasing dependence order. Likewise, it is important to reduce the cardinality of Y for
LP and that the appearance of labelsets be balanced.

Actually, whether one method will outperform the other is presently believed to
correlate with the degree of dependence on labels among themselves: if labels are mostly
non-dependent, then the BR method is superior to LP, while the contrary is expected to
hold when dependence between labels is commonplace [13,19]. Recent theoretical work
supports this hypothesis [5].

1.2.3. Label Imbalance in MLC Datasets

Here, we take “label imbalance” as the deviation from the equiprobability distribution
on a label, whether it be binary or multiclass. Label imbalance seems to impinge on the
results of MLC rather heavily. In the single label classification case, extreme imbalance
makes the task resemble a detection task, rather than a classification task, whereas, arguably,
balancedness makes it harder for any classification technique to improve its performance
by concentrating in majority classes [20].

In MLC these phenomena are compounded with the appearance of labelsets that
are rare combinations of labels. In the domain of language modelling, rare sequences of
particular words are called hapaxes (apparently from ancient Gr. hapax legomenon, “single
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word”). Since in MLC labels are mostly textual, and labelsets are typically represented in a
conventional ordering of the labels, the category is applicable too.

A review of the methods applicable to imbalanced MLC stresses the importance of
taking into account this phenomenon but focuses on the taxonomies of data resampling
and classifier adaptation methods [21]. However, we know of no study that provides
a framework to characterise the datasets in this regard, or guidelines to deal with the
phenomenon, except for early attempts to heuristically measure the imbalanceness using
the so-called imbalance ratio [22] employed for example in [2,23]. Yet, label independence
may allow us to split up a MLC task into several independent ones ameliorating the
problem of labelsets that are hapaxes. This is one more reason to detect or model label
independence correctly.

1.2.4. Types of MLC Datasets

In our opinion, the consideration of the intrinsic characteristics of the features as
lending themselves to MLC has not been properly explored in traditional MLC reviews.
For instance, a recent—otherwise very thorough—strategy- and classifier-based analysis
of MLC architectures [5], deals with dataset characteristics by describing what (media)
modality they refer to and, perhaps, making a statistical analysis of label and labelset
measures. It should be clarified, by the way, that multi-modality datasets are being called
multi-view in recent years which brings to the table all the traditional concerns of multi-
modality: fusion, decision, etc. [24]

In another paper, the same group of authors carry out a more extensive meta-exploration
of a set of MLC datasets whose main results is a dataset clustering with an overall structure
of eight different clusters [25]. Some measurements on these datasets relevant to our studies
are collected in Table 1.

Table 1. Measurements for some of the datasets in [25]. Only the datasets contained in R packages
mldr [26] and mldr.datasets [27] were analysed.

Dataset Name |BL(G, L, I)| d |L| n |F|
1 flags 79 54 7 194 19
2 yeast 686 198 14 2417 103
3 ng20 58 55 20 19,300 1006
4 emotions 30 27 6 593 72
5 scene 17 15 6 2407 294
6 bookmarks 150,337 18,716 208 87,856 2150
7 delicious 9,343,385 15,806 983 16,105 500
8 enron 1595 753 53 1702 1001
9 bibtex 6298 2856 159 7395 1836

10 corel5k 5702 3175 374 5000 499
11 corel16k002 6498 4868 164 13,761 500
12 corel16k003 6354 4812 154 13,760 500
13 corel16k010 6245 4692 144 13,618 500
14 corel16k004 6547 4860 162 13,837 500
15 corel16k001 6478 4803 153 13,766 500
16 corel16k006 6649 5009 162 13,859 500
17 corel16k007 7017 5158 174 13,915 500
18 corel16k005 6841 5034 160 13,847 500
19 corel16k008 6479 4956 168 13,864 500
20 corel16k009 6972 5175 173 13,884 500
21 genbase 39 32 27 662 1186
22 tmc2007 2072 1341 22 28,596 49,060
23 medical 98 94 45 978 1449
24 tmc2007_500 1820 1172 22 28,596 500
25 eurlexev 54,479 16,467 3993 19,348 5000
26 eurlexdc 1712 1615 412 19,348 5000
27 birds 154 133 19 645 260
28 foodtruck 250 116 12 407 21
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Table 1. Cont.

Dataset Name |BL(G, L, I)| d |L| n |F|
29 langlog 337 304 75 1460 1004
30 cal500 2,560,365 502 174 502 68
31 mediamill 20,013 6555 101 43,907 120
32 stackex_coffee 207 174 123 225 1763
33 stackex_cooking 8070 6386 400 10,491 577
34 stackex_cs 6528 4749 274 9270 635
35 stackex_chess 1573 1078 227 1675 585
36 stackex_chemistry 3890 3032 175 6961 540
37 stackex_philosophy 3168 2249 233 3971 842
38 rcv1sub4 1429 816 101 6000 47,229
39 rcv1sub1 2012 1028 101 6000 47,236
40 rcv1sub5 1828 946 101 6000 47,235
41 rcv1sub3 1645 939 101 6000 47,236
42 rcv1sub2 1781 954 101 6000 47,236
43 yahoo_reference 327 275 33 8027 39,679
44 yahoo_business 335 233 30 11,214 21,924
45 yahoo_social 479 361 39 12,111 52,350
46 yahoo_health 510 335 32 9205 30,605
47 yahoo_education 663 511 33 12,030 27,534
48 imdb 7273 4503 28 120,919 1001
49 ohsumed 1335 1147 23 13,929 1002
50 yahoo_recreation 1120 530 22 12,828 30,324
51 yahoo_science 601 457 40 6428 37,187
52 yahoo_society 2418 1054 27 14,512 31,802
53 yahoo_entertainment 490 337 21 12,730 32,001
54 reutersk500 956 811 103 6000 500
55 slashdot 159 156 22 3782 1079
56 yahoo_arts 1071 599 26 7484 23,146

For each dataset we collected: |BL(G, L, I)| the size of the lattice of intents of the
labelling context (see Section 3.1.1), d the number of distinct labelsets, |L| the number of
labels, n that of observations, and |F| that of features.

A facet of this exploration that is so far missing is the consideration of the structure
of the set of labelsets. We try to prove in Section 3.1 that such structure, indeed an order
lattice [28], is crucial to understand the nature of the dataset in question. It may also be
relevant for strategy selection (see Section 3.5).

1.3. Research Goals

In trying to solve an instance of an MLC task two questions are immediately apparent:

1. What is an “easy” or “hard” dataset to carry out MLC on?
This in turn involves answering two questions:

(a) How “difficult” is the set of labels to learn of its own?
(b) How “difficult” is it to predict the labels from the observations?

2. Given the answers to the previous question, what is the most appropriate way to
address the MLC problem?

Most works on the MLC task address the second question following the guidelines
stated in Section 1.2—see, e.g., ref. [8] and references therein.

However, a few works try to answer question number 1. Perhaps the most developed
set of methods at present is meta-analysis, e.g., as carried by [25,29,30], where insights
obtained in experimental conditions are put in relation to dataset descriptions. This is a
post hoc, indirect method to measure features of MLC datasets that make them “difficult”
or “easy”.

In this paper, we want to put forward a mathematical modelling approach based
on lattice theory [28,31] and information theory [32] to solve problem 1 above, that is, to
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ascertain from first principles how difficult an MLC task is. For this purpose we exploit the
model or metaphor of supervised ML tasks as information communication channels.

Our use of “information” is not the usual and trite “intelligence is the adequate use
of information”, but the tangible application of three measures of information as related
by a balance equation that allows us to explore the compromise between independence,
correlation, and maximal randomness in stochastic, binary sources of information [33].

We claim that MLC datasets can be effectively modelled as special formal contexts in
the framework of formal concept analysis [34]. Specifically, we look through the lens of
information theory at the encoding of information in scales as used in data modelling to
transform non-binary into binary data.

1.4. Reading Guide

For that purpose we first discuss in full the CLASSIFICATION IS INFORMATION TRANS-
MISSION metaphor in Section 2.1. This sets the backdrop to introduce methods to measure the
information content of sources both quantitatively and qualitatively in Sections 2.2 and 2.3,
respectively.

We describe our results in Section 3. First we carry out an analysis of the information
content of multilabel sources in Section 3.1, starting with a theoretical development for sources
that resemble multiclass sources in the context of prototypical degrees of dependency
between labels (Section 3.1.1), following with a data-driven analysis of insights obtained
from qualitative (Section 3.1.2) and quantitative (Section 3.1.3) information in MLC datasets.

Then we develop an improved strategy for stratified sampling in MLC tasks in
Section 3.2, and provide experimental validation for our findings in Section 3.3—first
by re-assessing the validity of the clustering in [25,29,30] (Sections 3.3.1 and 3.3.2) and then
by validating the feasibility of our stratified re-sampling strategy (Section 3.3.3).

We close our results, by extending the CLASSIFICATION IS INFORMATION TRANSMIS-
SION for MLC and suggesting a new methodology for dealing with MLC tasks in Section 3.4
and a discussion in Section 3.5. We finish with some conclusions regarding our results, as
well as future developments.

2. Theoretical Methods
2.1. The CLASSIFICATION IS INFORMATION TRANSMISSION Metaphor

Building on Metaphor 1, we have elsewhere [20] posited the following:

Metaphor 2 (SUPERVISED CLASSIFICATION TASKS ARE INFORMATION CHANNELS). Multi-
class classification is an information channel where

• Y serves as a source of information in the form of classes;
• X is a type of encoding of that (hidden, inaccessible) information in the forms of observations;
• The transformed Z are the result of conformed, noisy transmission vectors;
• The classified Ŷ is the result of decoding the received information through the classifier.

as depicted in Figure 3.

S observe
PY

transform
PX classify

PZ
P

PŶ

Figure 3. Basic scheme for multiclass classification. Y and Ŷ are categorical variables.

This metaphor was posited in [35] for the multiclass classification task and later
explored in [20]. The tools used therein were later generalised to enable measuring the
quantity of information provided by multivariate sources in [33].

Note that the extra transformation whereby the observations become transformed
into another set of preprocessed observations {⃗z(j)}n

j=1, could be part of a deterministic
procedure—for instance, data-normalization, feature selection, and transformation,
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etc.—and then seen as Exploratory Data Analysis (EDA [36]), a procedure we will not follow
in this paper. Rather, it can also be considered part of predictive modelling in Confirmatory
Data Analysis (CDA [37])—e.g., as the representational step in a deep neural network,
Autoencoder, etc.—in which case it can be considered covered in the framework for assess-
ment we present.

Finally, note that the use of information in the metaphor is not a hand-waving trick
such as “Artificial Intelligence deals with information”. Rather, we refer to the kind of
Information-Theoretic measures of quantitative, transported information first developed
for communication theory [32], that allows us to gather evidence and intuitions in the EDA
phase later to be confirmed in the CDA phase, as instantiated in Section 2.2.

2.2. The Source Multivariate Entropy Triangle

Here we introduce an Exploratory Data Analysis (EDA) tool to quantify the informa-
tion content of multivariate, stochastic sources, that we call the Source Multivariate Entropy
Triangle (SMET) [33]. (Some paragraphs in this section are reprinted or rewritten from [33],
Copyright (2017), with permission from Elsevier.)

In the context of the random vector X ∼ PX, let ΠX = ∏n
i=1 PXi be the (jointly)

independent distribution with similar marginals to PX and UX = ∏n
i=1 UXi be the uniform

distribution with identical support. And, consider, for example, the trivariate distribution
of Figure 4 from [33].

HPX1 |X2X3
HPX2 |X1X3

HPX3 |X1X2

DPX1X2X3

CPX1X2X3

∆HPX1 ·PX2 ·PX3

HUX1 ·UX2 ·UX3

HPX1X2X3

HPX1 ·PX2 ·PX3
HPX1

HPX2

HPX3

Figure 4. (Colour online) Extended entropy diagram of a trivariate distribution. The bounding
rectangle is the joint entropy of uniform (hence independent) distributions UXi of the same cardinality
as distribution PXi . The green area is the sum of the multi-information (total correlation) CPX

and the
dual total correlation DPX

. Reprinted from [33], Copyright (2017), with permission from Elsevier.

As a matter of principle, we consider that every random variable has a residual entropy
which might not be explained away by the information provided by the other variables,
HPXi |X

c
i

where Xc
i = X \ {Xi} . We call (multivariate) variation of information [38]—or residual

information [39]—a generalization of the same quantity in the bivariate case, the sum of
these quantities across the set of random variables—the red area in Figure 4:

VIPX
=

n

∑
i=1

HPXi |X
c
i

. (1)

Consider also the divergence with respect to uniformity of each Xi

∆HPXi
= HUXi

− HPXi
(2)
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with ∆HΠX
= ∑n

i=1 ∆HPXi
whereby we can prove:

∆HΠX
= HUX

− HΠX
(3)

that we interpret as the overall divergence with respect to uniformity UX of the distribution
of the random vector. This is the yellow area in Figure 4.

MPX
may be written in terms of the component entropies:

MPX
=

n

∑
i=1

HPXi
−

n

∑
i=1

HPXi |X
c
i
=

n

∑
i=1

(HPXi
− HPXi |X

c
i
) (4)

and let us call MPXi
= HPXi

− HPXi |X
c
i
, the bound information (of Xi), the amount of entropy

of PXi that is bound through dependences to the marginal distributions of different orders
of PXc

i
. Therefore, all the previously considered quantities are reducible to those about their

component variables, a situation that is not too clear in Figure 4.
It proves very useful later to consider the following conditions for a given variable Xi

in the context of X :

• Uniformity, PXi = UXi , whence HPXi
= HUXi

is maximal with ∆HPXi
= 0 . The opposite of

this property is determinacy whereby PXi(x) = δai(x), in which case there is no uncertainty
about the outcome of Xi, HPXi

= 0, and ∆HPXi
= HUXi

whence we may conclude:

0 = ∆HPXi |PXi
=UXi

≤ ∆HPXi
≤ HUXi

= ∆HPXi |PXi
=δai

(5)

• Orthogonality, Xi ⊥ Xc
i , defined by PX = PXi PXc

i
, whence HPX

= HPXc
i
+HPXi

. In such case,

since HPX
= HPXc

i
+ HPXi |X

c
i
, we conclude that HPXi |X

c
i
= HPXi

and MPXi
= 0 by definition.

• Redundancy, Xi ⊆ Xc
i if the value of Xi is completely determined by the value of Xc

i .
This entails that HPXi |X

c
i
= 0 .

As a result, we see that there are bounded continua for the values of HPXi |X
c
i

and MPXi

HPXi |X
c
i |Xi⊆Xc

i

≡ 0 ≤ HPXi |X
c
i
≤ HPXi

≡ HPXi |X
c
i |Xi⊥Xc

i

(6)

MPXi |Xi⊥Xc
i
≡ 0 ≤ MPXi

≤ HPXi
≡ MPXi |Xi⊆Xc

i
(7)

Theorem 1 (Multisplit source multivariate balance equations). Let PX be an arbitrary discrete
distribution over the set of random variables X = {Xi}n

i=1 . Then, with the definitions above,

• The following split balance equation holds for each variable individually:

HUXi
= ∆HPXi

+ MPXi
+ HPXi |X

c
i
, 1 ≤ i ≤ n (8)

0 ≤ ∆HPXi
, MPXi

, HPXi |X
c
i
≤ HUi , 1 ≤ i ≤ n

• The aggregate balance equation holds:

HUX
= ∆HΠX

+ MPX
+ VIPX

(9)

0 ≤ ∆HΠX
, MPX

, VIPX
≤ HUX

We may normalize either (8) or (9) by the total sum, for instance by HUX
,

1 = ∆H′
ΠX

+ M′
PX

+ VI′PX
(10)

0 ≤ ∆H′
ΠX

, M′
PX

, VI′PX
≤ 1
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in which case the composition F(PX) = [∆H′
PX

, M ′
PX

, VI ′PX
] suggests a representation in

terms of a ternary diagram that we call the aggregate Source Multivariate Entropy Triangle,
(aggregate) SMET for short, with meanings:

• If PX = ΠX = Πn
i=1PXi then F(PX) = [·, 0, ·], is the geometric locus of distributions

with independent marginals and has a high residual entropy.
• If PXi = UXi , 1 ≤ i ≤ n then F(PX) = [0, ·, ·] is the geometric locus of distributions

with uniform marginals.
• If PXi = PXj , i ̸= j then F(PX) = [·, ·, 0] is the locus of distributions with identical

marginals and in general high bound information.

Notice that:

• The multivariate residual entropy VIPX
is actually the sum of amounts of information

singularly captured by each variable. Nowhere else can it be found and any later pro-
cessing that ignores this quantity will incur in the deletion of that information, e.g., for
transmission purposes.

• Likewise, the total bound information is highly redundant in that every portion of
it resides in (at least two) different variables. Once the entropy of one feature has
been processed, the part of the bound information that lies in it is redundant for
further processing.

• Somewhat similar to the original interpretation, the divergence from uniformity is not
available for processing. It is a potentiality—maximal randomness—of the source of
information that has not been realized and therefore is not available for later processing,
unlike the other entropies.

Since this latter quantity is deleterious to information transmission, a different rep-
resentation to that of the usual 2-simplex suggests itself: the simplex should be rotated so
that the divergence from uniformity is represented as a down-growing quantity. The rationale for
this is that the lower a distribution is plotted, the less information it has at its disposal to be
transmitted. Figure 5 shows a conceptual version of the SMET annotated with these intuitions.

020406080100

0

20

40

60

80

100 0

20

40

60

80

100

almost redundant

almost deterministic

almost irredundant

MPX

VIPX

∆HPX

redundant
irredundant
deterministic

Figure 5. Conceptually annotated Source Multivariate Entropy Triangle (from [33]). Notice that this is
valid both for aggregate and individual entropic decomposition with analogue meanings. Reprinted
from [33], Copyright (2017), with permission from Elsevier.

The finer, disaggregate analysis and visualization tool is introduced by the normal-
ization of (8). Then for each multivariate X = {Xi}n

i=1 we may write for each marginal
PXi the coordinates in a de Finetti diagram as F(PXi ) = [∆H′

PXi
, M ′

PXi
, H′

PXi |X
c
i
] , with similar

interpretation as above, but regarding the content of a single variable. We refer to this common
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representation as the multisplit Source Multivariate Entropy triangle (multisplit SMET). With
this new arrangement in place, the upper right-hand angle of the inverted triangle rep-
resents the locus of highly redundant variables, whereas the left-hand angle represents that
of highly irredundant variables with an extensive amount of information that only pertains
to them. Finally, the lower angle in the triangle represents almost deterministic variables,
conveying very little information in general.

These downward-pointing SMETs solve the problem of representing the information
content of a multivariate random source—using the aggregate SMET—and its individual
labels—using the multisplit SMET. An R package for representing such diagrams based on
the ggtern [40] package is available as [41].

2.3. A Brief Introduction to Formal Concept Analysis

In the interest of self-containment, we briefly introduce here the fundamental concepts
of Formal Concept Analysis (FCA [34,42,43]). A better motivated introduction to it can be
found by reading the several related chapters of [31].

2.3.1. Formal Contextualization

FCA is a procedure to render lattice theory more concrete and manipulative [34]
and its use is well attested in an EDA framework both in its original and generalized
extensions [44–47]. It stems from the realization that a binary relation between two sets
I ∈ 2G×M—where G and M are conventionally called the sets of formal objects and attributes,
respectively—defines a Galois connection between the powersets X ≡ 2G and Y ≡ 2M

endowed with the inclusion order [48].
The triple K = (G, M, I) is called a formal context and the pair of maps that build the

connection are called the polars (of the context):

∀A ∈ 2G, A↑ = {m ∈ M | ∀g ∈ A, gIm} (11)

∀B ∈ 2M, B↓ = {g ∈ G | ∀m ∈ B, gIm} .

Figure 6 represents a paradigmatic example in FCA. The table in Figure 6a represents
the formal context, i.e., a contextualization of the knowledge contained therein.

(a) Formal context K = (G, M, I) (b) The labelling lattice B(G, M, I)

Figure 6. Reproduction of the example of [34], p. 18, using CONEXP. In the lattice, meet irreducibles
are half-filled in blue, and join irreducibles in black.

2.3.2. Analysing a Formal Context into Its Formal Concepts

Pairs of sets of formal objects and attributes that map to each other are called formal
concepts and the set of formal concepts is denoted by

B(G, M, I) = {(A, B) ∈ 2G × 2M | A↑ = B ∧ A = B↓} .
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The set of objects of a concept is called its extent while the set of attributes is called its
intent, in the Fregean tradition.

The set of extents (respectively, intents) is denoted as BG(G, M, I) ∈ 2G, and called the
system of extents, (respectively, BM(G, M, I) ∈ 2M, the system of intents.) Formal concepts
are partially ordered by the inclusion (resp. reverse inclusion) of extents (resp. intents)

c1 = (A1, B1), c2 = (A2, B2) ∈ B(G, M, I) c1 ≤ c2 ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2 (12)

With the concept order, the set of formal concepts ⟨B(G, M, I),≤⟩ is actually a com-
plete lattice called the concept lattice B(G, M, I) of the formal context (G, M, I) where meets,
or infima, and joins, or suprema, are given by:

∧
t∈T

(xt, yt) =

(⋃
t∈T

y↓t ,
( ⋂

t∈T
y↓↑t

)) ∨
t∈T

(xt, yt) =

(( ⋂
t∈T

x↑↓t

)
,
⋃
t∈T

x↑t

)
(13)

For instance, the lattice in Figure 6b is the concept lattice of the formal context
in Figure 6a.

By the previous definition of the order and (13) we have:

Corollary 1. The systems of extents is isomorphic to the concept lattice, while the system of intents
is (order-) dually isomorphic to the concept lattice, therefore the systems of extents and intents are,
themselves, (order-) dually isomorphic.

The sets of formal objects and attributes can be embedded into these lattices by means
of the concept-inducing mappings:

γI : G → B(G, M, I) µI : M → B(G, M, I) (14)

g 7→ γI(g) = ({g}↓↑, {g}↓) m 7→ µI(g) = ({m}↑, {m}↑↓)

obtaining the sets of object- and attribute-concepts γI(G) ⊆ B(G, M, I), µI(M) ⊆ B(G, M, I).
For instance, for object corn and attribute breast-feeds we have:

γI(corn) = ({corn}, {needs water, lives on land, needs clorophyll, monocotyledon})
µI(breast feeds) = ({dog}, {breast-feeds})

Note that these characterizations are contextualised with respect to the particular con-
text of Figure 6a, that is, with more breast-feeding mammals in the set G, the concept
for µI′(breast feeds) would have those extra objects.

2.3.3. Interpreting Concept Lattices

Most concept lattice-building algorithms available output order (Hasse) diagrams devel-
oped to easily describe partial orders. Concept lattices can profitably be represented and
grasped in such form: nodes in the diagram represent concepts, and the links between them
the hierarchical partial order between immediate neighbours. A more gentle introduction
to this is ([31], Chapter 3.)

For the purpose of reading extents and intents off the order diagram, concepts could
be annotated graphically with a complete labelling, by listing for each concept the set of
object labels in the concept extent and the set of attribute labels in the concept intent. But
since this implies repeating many times each object and attribute throughout the lattice the
following, reduced labelling is preferred, as in Figure 6: we put the label of each attribute
only in the highest (most abstract) concept it appears, and the label of each object only in
the lowest (most specific) concept it appears.

This is performed using the concept inducing mappings: we write each object just
below the corresponding object–concept and each attribute just above its attribute-concept.
This is the type of labelling shown throughout the paper—for instance, in Figure 6b for
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γI(corn) and µI(breast feeds)—and the most usual, though different lattice-building tools
use variations of it.

2.3.4. Synthesising a Context for a Complete Lattice

In fact, the concept-forming maps allows us to discover the relation I within B(G, M, I).
For that purpose, recall that a subset Q of an ordered set ⟨L,≤⟩ is called join-dense is every
element of L is the join of a subset of Q, and order-dually for being meet-dense.

Proposition 1. Let (G, M, I) be a formal context and B(G, M, I) be its concept lattice. Then:
γI(G) is join-dense in B(G, M, I), µI(M) meet-dense in B(G, M, I) and for g ∈ G, m ∈ M,

gIm ⇐⇒ γI(g) ≤ µI(m).

Proof. See, e.g., ref. [31], 3.7 and 3.8.

By analogy with this procedure, we may state no less than a universal representation
theorem for complete lattices in terms of FCA:

Theorem 2 (Synthesis Theorem of FCA). Let ⟨L,≤⟩ be a complete (order-)lattice and assume
there exists two mappings γ : G → L and µ : M → L such that γ(G) is join-dense in L
and µ(M) is meet-dense in l. Define I ⊆ G × M by gIm ⇐⇒ γ(g) ≤ µ(m), then L and
B(G, M, I) are isomorphic, L ∼= B(G, M, I). In particular L ∼= B(L, L,≤).

Proof. See, e.g., ref. [31], 3.9.

For practical purposes, this means that the information in the formal context of Figure 6a
can be filled from the relative positions of object- and attribute-concepts in the lattice
of Figure 6b.

The quotient sets of the sets of formal objects and attributes through the concept-inducing
mappings are important to reduce the workload: given (G, M, I), we may define its reduced
context as Ko = (G/γI, M/µI, Io) where, using standard notation for quotient relations,

([g]ker γI
, [m]ker µI

) ∈ Io ⇐⇒ gIm.

Proposition 2. If (G, M, I) is a formal context, then its concept lattice and that of its reduced
context are isomorphic:

B(G, M, I) ∼= B(G/γI , M/µI , Io).

Proof. This is an easy corollary of Theorem 2.

Due to the corollary we can, essentially, work with a single representative per block.
However, rather that being in this extremely reduced form, typically contexts are clarified
when they are both row-clarified—no two rows are identical—and column clarified—no
two columns are identical.

For finite contexts, the type that appears mostly in data analysis, the reduction actually
has to be understood in terms of the join- and meet-irreducibles of complete lattices. Recall
from order theory that a subset Q is join-dense in a complete lattice L = ⟨L,≤⟩ if it
includes all the join-irreducibles of the lattice L, J (L) ⊆ Q, those elements that cannot
be obtained by joins of other elements. Likewise, a meet-dense subset must include the
meet-irreducibles M(L) ⊆ Q. Then a simple corollary of the synthesis theorem is:

Corollary 2. Let L = ⟨L,≤⟩ be a complete finite lattice. Then L ∼= B(J (L),M(L),≤).
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3. Results

This paper contributes to the metaphor of SUPERVISED CLASSIFICATION TASKS ARE

INFORMATION CHANNELS of Section 2.1 by expanding its use for the modelling and EDA
of MLC tasks. For that purpose we bring to bear two types of tools:

• lattice theory in the form of Formal Concept Analysis (FCA [34,42]), as described in
Section 2.3, to extract the qualitative information in MLC data.

• Compositional Data Analysis (CoDa [49,50]) specifically as it applies to the entropic
compositions of joint distributions [33,35] described in Section 2.2, to measure the
quantitative information in MLC data.

Note that we leave the formalization of classifier evaluation for future work.

3.1. An Analysis of Information Content of MLC Task Data

The crucial affordance of the enriched metaphor is to realise that the labels are logically
prior to the observation features and that we can use the technique of FCA to analyse
labelsets. Specifically, recall that FCA is an unsupervised data mining technique.

Definition 1 (Formal Contexts of a MLC task). Let L be a set of labels, and D = {(⃗yj, x⃗j)}n
j=1

be a MLC dataset as described in the introduction. Then:

• The formal context DL = (G, L, I) is the labelling context (of samples) of D, built using the
set of labels L as formal attributes, with |L| = l, each sample index as a formal object i ∈ G,
with |G| = n, and each bitvector-encoded sample labelset{y⃗i}n

i=1, y⃗i ∈ 2l as the i-indexed row
of the incidence matrix Ii· = y⃗i.

• The formal context DF = (G, F, R) is the observation context (of samples) of D built with
F a set of features, |F| = m, the same set of formal objects G and each observation vector
{x⃗i}n

i=1 is the i-indexed row of the incidence Ri· = x⃗i.

We call their corresponding concept lattices,

• The labelling lattice B(G, L, I), short for “the concept lattice of the labelling context”;
• The observation lattice B(G, F, R), analogously.

Figure 7 represents a part of the labelling context DL of the emotions dataset and its
labelling lattice.

obs./labels a − s h − p r − c q − s s − l a − a

O1 × ×
O2 × ×
O3 × ×
O4 ×
O5 ×
. . . . . . . . . . . . . . . . . . . . .

O589 × × ×
O590 × ×
O591 × × ×
O592 × ×
O593 ×

(a) DL = (G, L, I) (b) B(G, L, I)

Figure 7. Labelling context DL = (G, L, I) and its lattice B(G, L, I) for emotions. Observations are
formal objects, labels are formal attributes, and label names are abbreviated to their initials in the
context representation. Node size is proportional to the cardinal of its extent.

Note that while the labelling context is boolean and the labelling lattice is supported by
standard FCA, the observation context is real-valued, or at least multi-valued, and is only
lattice-forming under stringent algebraic conditions [51–53]. For that reason the analysis
of the information content of the observations and transformed observations will be left
for future work. However the following lemma is self-evident—recall that the context
apposition is the row-by-row concatenation of formal contexts:



Mathematics 2024, 12, 346 14 of 31

Lemma 1. Let D = {(⃗yj, x⃗j)}n
j=1 be a MLC dataset. Then, the apposition of the labelling and

observation contexts D = DL | DF contains all and nothing but the data in the dataset.

In the following we develop the trope that although the data are the same, the information
gleaned/issuing from the formal context is much richer. In this paper, we concentrate on the
labelling context.

3.1.1. Information Content of MLC Sources: A First Theoretical Analysis

Clearly with the previous modelling, the labelling context captures the information in
the stochastic source Y, and providing the affordances of FCA as an EDA technique [45,54]:

Hypothesis 1. Relevant notions in an MLC dataset labelling correspond to relevant notions in the
FCA of the labelling context DL and vice versa.

For instance, the following are affordances of using formal contexts to analyse the
MLC source:

• Labelsets are object intents of DL and they can be found through the polar of observations. As
a consequence we have:

Corollary 3. The labels in L are hierarchically ordered in exactly the order of the systems of
intents prescribed by B(G, L, I), that is, the dual order, and the object concepts of observations
γI(G) are a set of join-dense elements of the lattice, and they generate the lattice of intents by
means of intent (labelset) intersection.

Proof. Recall that for an observation i ∈ G its labelset is y⃗i = {i}↑I which is precisely its
intent, so the intents of γI(G) are the labelsets in the task. By the synthesis Theorem 2
γI(G) are a set of join-dense elements of B(G, L, I) and after Equation (13) their intents
generate BL(G, L, I), the system of intents, by intersection.

• FCA is capable of providing previously unknown information on the set of labels through the
concept lattice construction.
As an example, recall that the set of intents of the labelling context is BL(G, L, I) ∈ 2L.
Then we have:

Proposition 3. The LP transformation and its derivatives only need to provide classifiers for
the intents of the join-irreducibles of B(G, L, I).

Proof. We know that only labelsets are used by the LP transformation and its derivatives
so the general setup for this task is addressed by Corollary 3. But, due to Proposition 2, to
reconstruct the information we only need one of the representatives of each block of the
partition. Finally, due to Corollary 2 we only need the labelsets of the join-irreducible
blocks in order to reconstruct B(G, L, I).

Several remarks are in order here. First, depending on the dataset, this may or may
not be a good reduction in the modelling effort. Also, note that the information about
occurrence counts is lost, therefore:

Guideline 1. Naive information fusion strategies would only work in the 100% accuracy
case—e.g., for a given observation use the classifiers for the intents of the meet-irreducibles to
obtain individual characterizations and then intersect them.

3.1.2. Qualitative Information Content of MLC Sources: An Exploration

Since the first result of this re-framing of the MLC task in terms of FCA is a broad-
ened view of issues, in order to further investigate the labelling contexts or multilabel
sources, we analyse three types of standard scales, that is, prototypical formal contexts [34]
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(Sections 1.3–4), each of which shows in its concept lattice some type of ordering relationship
between the attributes.

We use the reduced labelling to annotate lattices, that is, for each formal concept:

• The set of labels it represents is the union of all labels in the order filter of the concept,
that is, looking upwards in the lattice.

• The set of instances covered is the union of all instances in the order ideal of the
concept, that is, looking downwards in the lattice.

Figure 8 shows these types of contexts and the relationship they generate among its
labels in the form of concept lattices for order n = 3.

N3 l1 l2 l3

1 ×
2 ×
3 ×

(a) Nominal scale: N3

Nc
3 l1 l2 l3

1 × ×
2 × ×
3 × ×

(b) Contra-nominal scale: Nc
3

O3 l1 l2 l3

1 × × ×
2 × ×
3 ×

(c) Ordinal scale: O3

(d) Concept lattice B(N3) (e) Concept lattice B(Nc
3) (f) Concept lattice of B(O3)

Figure 8. Nominal, contra-nominal, and ordinal scales of order 3 (3 labels). Drawing conventions as
for Figure 6.

• Nominal scales of varying order—e.g., in Figure 8a,d. Note that the nodes in the concept
lattice annotated with the labels is an antichain, that is a set with no ordering between
its elements [31], whence we take them to express (mutual) incompatibility between
labels.

• Contra-nominal scales of varying order—e.g., in Figure 8b,e for order 3. Like the
previous case nodes in the concept lattice annotated with the labels is also an antichain.
They are traditionally associated with incompatibility and partition [34].

• Ordinal scales of varying order—e.g., in Figure 8c,f. The set of formal concepts anno-
tated with the labels is a total chain, a set with a total ordering between its elements [31],
traditionally related to rank order.

True to the hypothesis stated above, we can develop intuitions with respect to MLC
tasks whose labelling context belonged in some of these tasks:

• We would expect BR-like transformations to be good for a nominal labelling context.
• We would expect CC-based strategies to be good for ordinal labelling contexts, pro-

vided the implication order between labels, as manifested in the concept lattice, was
known at training time and, somehow, profited from.

• It is difficult to know what strategy could be good for a contra-nominal labelling
context. As a first intuition, considering that it is the contrary context to the nominal
scale of the same order, we would expect BR to be also effective.

Note that the important formal concepts are those with blue upper halves, in the case
of the standard scales of Figure 8, the meet-irreducibles of the labelling context. We further
posit that:

Hypothesis 2. The suborder of the meet irreducibles of labelling lattice B(G, L, I) may help predict
the performance of the different problem transformation strategies in MLC for a particular dataset.
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We will try to experimentally support our hypotheses next.

3.1.3. Quantitative Information Content of Boolean Contexts: A Theoretical Analysis

Statistical processing of labelling contexts as multivariate sources is based upon the
following proposition, where labelling contexts (G, L, I) behave as if they were multivariate
distributions of their labels—acting as random variables—and their instances—acting as
(empirical) occurrences.

Proposition 4. Labelling contexts (G, L, I) are the result of sampling random stochastic sources of
labelsets by means of observations.

Proof. Retaking the quantitative reasoning from the previous section, recall that the
concept-forming function γI induces a partition ker γI on G by equality of labelsets:
(i1, i2) ∈ ker γI ⇐⇒ {i1}↑I = {i2}↑I . By an abuse of notation, denote the subset of
labelsets obtained by the polar of intents acting on the observations by G↑ ⊆ BL(G, L, I).
Define a measure on the labelsets of the observations concepts as n(⃗y) = |[⃗y]ker γI

|, that is,
n(⃗y) is the occurrence count of the labelset y⃗, in the data so that

n = ∑
y⃗∈G↑

n(⃗y).

Then we may estimate the probability of each labelset, taken as a boolean vector, as:

PY (⃗y) ≈
{

n(⃗y)/n ∃i ∈ G, y⃗ = {i}↑

0 otherwise
. (15)

Note that the actual form of the probability estimator—relative frequency as in the
example or another, smoothed, estimator, etc.—does not invalidate the conclusion.

By means of Proposition 4, we can reason about the sampling of the stochastic variables Y
and X—the dataset—in terms of the contexts above, and vice versa.

• For instance, we expect the sampling to be good enough l ≪ n so it is safe to suppose
that no two identical labels are predicated of the same set of objects.

Guideline 2. MLC datasets should be label-clarified, that is, no two labels should describe the
instances in the same way.

Notably, this holds on standard testing datasets (e.g., those in [8] and Table 1), so Therefore
we expect the partition on labels induced by µI to be ker µI = ιL where ιL is the identity
on L.

• Regarding the equivalence in γI , in [55] we introduced a general framework to inter-
pret the structure of the set of labels in terms of FCA and used it to improve a standard
resampling technique in ML: n-fold validation. The rationale of this technique and an
experiment demonstrating it can be found in Section 3.2.

• Finally, the existence of ker γI and the probability measure introduced in (15) on its
blocks warrants the validity of the source multivariate entropy decompositions of la-
belling contexts and their Source Multivariate Entropy Triangles (SMET) of Section 2.2.

Corollary 4. The quantitative information content of a labelling context can be accurately repre-
sented using SMETs.

Proof. Specifically, (8) on the distribution of (15) allows us to observe the information
balance on the individual labels, while (9) on the same distribution allows us to observe
the aggregate information of the dataset.

Leveraging the previous results we may study sources of labelsets with the SMET.
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Hypothesis 3. Instantiating the procedure of building SMETS in Section 2.2 on standard scales
we expect nominal and contra-nominal scales to have the same quantitative information—since they
are contrary scales while it has to be very different for ordinal scales, given the symmetry properties
of entropies.

To test this hypothesis, Figure 9 shows the aggregate information content of several
nominal, contra-nominal, and ordinal scales of different order, where this order equals the
number of labels of the scale.

Figure 9. Comparison of average information content of nominal, contra-nominal, and ordinal
scales for orders ranging in 2l where l ∈ {1, 2, 3, 4, 5, 7, 8}. The information content of nominal and
contra-nominal scales is the same for identical order, while that of ordinal scales is more nuanced
(explanation in the text).

The examples show:

• As expected, nominal and contra-nominal scales have the same, totally redundant, average
information content—since they lie on the HPXi |X

c
i
= 0 line in Figure 9—and both show

a tendency to a decreasing average information content as the order of the scale increases,
from an initial high average information content, but still redundant.

• However, ordinal scales start from an intermediate level of irredundant information and
50% randomness and slowly mount towards higher but more correlated average information
contents. By the time the order reaches 28 = 256 the information is totally redundant
with high degree of randomness.

Regardless, the previous behaviour is only on average and we should wonder what
the individual content of the labels in each case actually is. Figure 10 shows the information
content of all labels for standard scales of ordinal, nominal and contra-nominal type for
orders 2l , l ∈ {2, 3, 4, 5, 6, 7, 8}.

Note that:

• For nominal and contra-nominal scales, all the labels have exactly the average information
content. This is immediate for nominal labels, and would be expected to follow by the
relation between nominal and contra-nominal scales and the symmetry properties of
entropy. Note that one singular label can, in principle, be perfectly predicted from the
rest since each is completely redundant, that is, they lie in the line HPXi |X

c
i
= 0. Note

also that labels belonging to high order scales have very little information content:
that is, they resemble detection phenomena—one majority vs. one minority class.
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• For ordinal scales, for the same order, there is a rough line for the label information parallel
to the left-hand side of the triangle, ending in the bottom vertex. The information is the
more correlated the higher the order 2l . Note that some pairs of labels have the same
information content—e.g., those with complementary distributions of 0 and 1. Clearly,
the higher the proportions of 1 (respectively 0) the less information a label bears, and
this reaches the bottom apex since the last label is a deterministic signal (always on).

Figure 10. Comparison of individual label information content of nominal, contra-nominal, and
ordinal scales for orders ranging in 2l where l ∈ {1, 2, 3, 4, 5, 7, 8}. For nominal and contra-nominal
scales every label has the same information so they lie atop each other in the left-hand side of the
triangle. However, labels in ordinal scales lie along a rough line from left to right with increasing
order, typically in overlying pairs—a variable and its complementary.

3.2. FCA-Induced Stratified Sampling

For reasons of completion, we include here some results which support our main
Hypothesis 1. They have previously been introduced to a reduced audience in [55].

Consider the MLC induction and assessment procedures in step 4 of the pseudo-
algorithm in Section 3.4: To generate train and test divisions of the original data we may
split the original context D into two subposed subcontexts of training DT and testing DE

data so that D = DT/DE [55,56]. Note that:

1. Since the samples are supposed to be independent and identically distributed, the
order of these contexts in the subposition, as indeed the reordering of the rows in the
incidence, is irrelevant.

2. The resampling of the labelset context DL is tied to the resampling of the obser-
vation context DF: we decide on the labelset information and this carries over to
the observations.

Since the data are a formal context, FCA suggests that an important part of the
information contained in it comes from the concept lattice, hence we state the following:

Hypothesis 4. FCA allows us to spot possible problems with the classifier induction and validation
schemes using resampling.

1. (Qualitative intuition) A necessary condition for the resampling of the data D into training
part DT and testing part DE to be meaningful for the MLC task, is that the concept lattice of
all of the induced labelling subcontexts DT

L and DE
L be isomorphic:

B(DL) ∼= B(DT
L)

∼= B(DE
L)
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2. (Quantitative intuition) The frequencies of occurrence of the different labelsets in the blocks of
ker γI are also important.

The rationale for this hypothesis is straightforward. Due to the identification of object
intents and labelsets, we know that to respect the complexity of the labelset samples in
each subcontext, one sufficient condition is that one of the labelsets associated with each
block in the partition ker γI is accorded to each of the subcontexts.

If this is the case, then the sampled subcontexts being join- and meet-dense, will
generate isomorphic concept lattices. Since they each are a clarification of the original
context DL, their concept lattices are all isomorphic.

However, if we only retained the meet- and join-irreducibles to obtain these concept
lattices, then the labelsets of reducible attributes would be lost and this would change the
relative importance of the samples (both labels and observations, remember), which will
therefore impact the induction scheme of the classifiers. Hence not only the labelsets but also
their frequencies of occurrence are important.

The above hypothesis suggests the following guideline:

Guideline 3 (Stratified resampling of MLC tasks). Resampling of MLC data should be carried
out modulo ker γI so that the concept lattices of the training and testing folds are isomorphic to that
of the original context.

Note that this amounts to standard stratified sampling on single-label classification tasks.
Following this guideline, however, comes at a price, when there are hapaxes—under-

represented cases—in the data. If we choose, for instance, to maintain 80% of the data for
training and 20% for testing, regardless of these proportions, stratified sampling will force
us to include all hapaxes with the following deleterious consequences:

• The relative frequency of the hapaxes will be distorted (overrepresented) with respect
to other labelsets.

• We will be using some data (the hapaxes) both for training and testing, which is known
to obtain too optimistic performance results in whichever measure.

Furthermore, if we use, e.g., k-fold validation we have to repeat this procedure and
ensure that the resampling is somehow different. A usual procedure is to distribute the
original dataset into k blocks in order to aggregate k − 1 of them into the training dataset DT

and use the leftover as the testing dataset DE. This can only compound the previous
problem, therefore the following guideline suggests itself:

Guideline 4 (Dealing with hapaxes). When using k-fold validation and stratified resampling
on MLC tasks we should have a procedure to deal with hapaxes of up to k − 1 counts.

In the following sections we will suggest one such procedure, namely thresholding and
reassignment of labelsets to the closest one in some distance. Note that other practitioners
do not deal with this problem [17].

3.3. Experimental Validation

To try and test our hypotheses, guidelines, and tools, we carried a number of EDA
tasks on MLC data.

3.3.1. Exploring a Clustering Proposal on MLC Datasets

Recall that Table 1 shows a summary table of measures of many MLC datasets. The
authors of [25] proposed a clustering hypothesis for some of those datasets obtained through a
miscellanea of criteria. Roughly, it consists of eight clusters of differing sizes and affinities, and
is, to our knowledge, the only clustering proposal based on objective criteria for MLC datasets.
Interestingly, neither the entropic decomposition visible in the SMETs or any measures related
to the concept lattice of the labelling context were used in this clustering.
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Figure 11 shows the results of showing that clustering in the SMET by plotting the
aggregate measure across labels.

Figure 11. Zoomable plot of the average source entropy decomposition of the datasets considered
from [25] by cluster, with details of the lowest, almost deterministic zone.

We can see that this clustering hypothesis of [25] is clearly not sustained by the entropic
analysis, as the aggregate SMET shows:

• Limited clustering: except for cluster D7—and perhaps D3—the rest of the clusters show
great entropic dispersion.

• Overlapping: sometimes, exemplars of one cluster lie beside an immediate neighbour
or another—e.g., instances of D1 and D2.
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• Extreme dispersion: it does not seem to be justified calling D5—or perhaps even D8–a
cluster from the entropic point of view.

Note that no dataset is visible for cluster D6, since none of the datasets in the cluster
was available in the mldr repository where the data were accessed.

3.3.2. Exploring the Clustering Hypothesis at the Dataset Level

To probe further, Table 2 shows a selection of low- to middle-complexity datasets from
the clustering described in [25].

Table 2. A selection of multilabel classification databases by Cluster—from [25]—and Name—flags,
emotions(musicout) [57], enron, birds [58] rcv1sub1, and slashdot. |BL(G, L, I)| is the size of the
lattice of intents of the labelling context, actual refers to the actual count of distinct labelsets in the
label context, while |L| is the cardinality of labels, n that of observations, and |F| that of features in
each dataset.

Cluster Name |BL(G, L, I)| Actual |L| n |F|
1 flags 79 54 7 194 19
2 emotions 30 27 6 593 72
3 enron 1595 753 53 1702 1001
4 eurlexdc 1712 1615 412 19,348 5000
5 birds 154 133 19 645 260
7 rcv1sub1 2012 1028 101 6000 47,236
8 slashdot 159 156 22 3782 1079

The multisplit SMETS for the selected datasets are shown in Figure 12.
Recall from Section 2.2 that the multisplit SMET conveys not only how deterministic

the individual labels are, but also how redundant with respect to the rest of the set of labels.
Despite the fact that each of these datasets belongs to a different cluster we can already

see some common traits:

• eurelexev is an extreme case of a dataset with many redundant features most of which
are heavily imbalanced. This is a dataset of multilabel detection, not classification. Further-
more, its average and the coordinates of the individual labels suggest that it resembles
either a nominal or a contra-nominal scale, that is, labels appear in any possible combina-
tion (contra-nominal scale) or mutually exclusively (nominal scale, cfr. Figure 9).

• To a certain extent, this is also the classification for rcv1sub1, although the slight
separation of many values may suggest that there are substructures in the form of
ordinal scales.

• birds, enron and slashdot are eminently label detection tasks with a minority of
labels—the ones with higher bound information—which might be subject to classifica-
tion. The distinction between them is in the amount of bound information overall: the
more bound information the farther to the right the cloud of points is.

• Specifically, the birds task clearly has mostly detection labels. Not only is the empty
labelset the majority class, but also, there are many hapaxes for the individual labels.
Some labelsets may be distilled for poorly balance detection tasks disguising as binary
classification tasks.

• flags and emotions [57] seem to be purely MLC tasks with fairly uniform label dis-
tributions and some degree of bound information between them. As per the previous
discussion on the whole set of labels, they might even be considered in the same cluster.
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(a) Cluster D1: flags (b) Cluster D2: emotions

(c) Cluster D3: enron (d) Cluster D4: eurlexdc

(e) Cluster D5: birds (f) Cluster D7: rcv1sub1

(g) Cluster D8: slashdot

Figure 12. Individual (dots) and aggregated (crosshairs) label information content for the selected
datasets of Table 2, coloured by cluster. emotions and flags are more similar in appearance, as are,
on the one hand, eurlexdc and rcv1sub1, and birds and slashdot, on the other. Perhaps enron is a
subclass of its own.
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3.3.3. Stratified Sampling in MLC Tasks

The following analysis is carried out on the emotions dataset [57], as pre-processed
and presented by the mldr R package [26]. It was also presented to a reduced audience
in [55] and reproduced here to strengthen our case.

Basic EDA of the labels. Since we are only considering the set of labels Y, we extracted
the histogram of the labelsets {y⃗j, n(⃗yj)}j∈J from the dataset and considered a set of minimal
frequencies of occurrence nT ∈ {0, 1, 4, 9, 16, 25} acting as thresholds based on it. The case
nT = 0 actually represents the original dataset in Figure 12b, and shows the information
balance of each of the six labels of emotions as well as the average balance for them all.

We see that most labels are rather random, with ‘relaxing-calm’ completely so. No
label is completely specified by the rest of them, nor is any totally independent. This in
essence means that the dataset is truly multilabel.

Disposing of hapaxes to improve stratified sampling. Previous analyses of the histogram of
labelsets made us realize that this dataset is not adequate for resampling due to hapaxes
and in general low-counts of many labelsets [56]. This applies to most MLC datasets used
at present [8].

Guideline 5. To dispose of hapaxes without disposing of samples we must re-assign each to a more
frequent labelset.

The rationale for this decision is because we consider hapaxes errors in label codification,
and assume that the “real” labelset is the closest non-hapax in Hamming distance—recall that
the Hamming distance between two sequences of bits of identical length is the number of
positions in which they differ. However, this re-assignment changes the histogram of labelsets
resulting in a decrease in the information independence of the labels and the dataset in general.

To explore this trade-off, at each threshold nT , a labelset y⃗ was considered a generalized
hapax if ny⃗ < nT . For each threshold nT we calculated the Hamming distance between each
generalized hapax y⃗nT and the non-hapaxes, and found the set of those closest to it. Then
we re-assigned y⃗nT to one of them uniformly at random (allowing for repetitions). Note
that an alternative strategy would have been a scheme considering the original frequencies
in the histogram, to simulate a rich-get-richer phenomenon. But such a procedure would
decrease the source entropy more than the one we have chosen.

This reassignment defined a new dataset whose information balance was represented
by the multisplit SMET whence Figure 13 ensued.

Figure 13. SMET for emotions in several thresholds.Colour of the glyphs reflects the square of the
threshold value (explanation in the text.)
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What we can see is a general tendency to the increment of the total correlation as
the thresholds increase manifested in a right-shift. But this entails that the individual
distinctiveness of each label is diminished. See, for instance, the case for ‘angry-aggressive’
that can actually be predicted from the other labels when n = 25, confirming that too
aggressive a threshold will substantively change the relative information content of the
labels in the dataset.

Choosing the adequate threshold. Note that a threshold of n is needed to request an
(n + 1)-fold cross-validation of any magnitude about the dataset, since all labelset will
have at least (n + 1) representatives for the stratified sampling requested by the cross
validation procedure. Next we explore whether it is possible to balance the identical
sampling property on train and test, yet avoid too much loss of information content.

Figure 14 depicts a choice of thresholds typically used in validation—1, 4 and 9, cor-
responding to 2-, 5-, and 10-fold validation—for three differently behaving labels—‘angry-
aggressive’, ‘quiet-still’, and ‘relaxing-calm’—and the average of the dataset, both for the
ensembles of training and testing folds.

Figure 14. Multisplit SMET for emotions for the ‘angry-aggresive’, ‘quite-still’ and ‘relaxing-calm’
labels with cross-validated entropies, following the guidelines developed in this paper. Test set
entropies in red, train in blue. Notice how the entropies of the splits almost overlap.

• As applied to the estimation of the entropies, the (n + 1)-fold validation yields the
same result in train and test, the sought-for result.

• We can see the general drift towards increased correlation in all labels, but much more
in, say, ‘angry-aggressive’ than in ‘quiet-still’.

• For this particular dataset, a threshold of nT = 4 with 5-fold validation seems to be a
good compromise for attaining statistical validity vs. dataset fidelity.

FCA confirmation. To strengthen the validity of the last two conclusions, we calculated
the number of concepts of all of the train and test label contexts using the fcaR pack-
age [59]. After creating the contexts, we clarified and obtained the lists of concepts, then
we compared the cardinality of the training and test concept lattices both for the unsplit
dataset—after reassigning the generalized hapaxes, when needed—and the (n + 1)-cross
validated versions. The results are shown in Figure 15a.

As expected, for nT = 0 the difference in number of concepts between the non-sampled
and sampled versions of the dataset make it non-adequate for appropriate sampling. Note
that it is a fluke of the dataset that both the training and test subcontexts have the same
number of concepts as some of the hapaxes are singletons.

The training and test splits had the same number of concepts for every other threshold. For
nT ∈ {1, 4, 16}, the number of concepts was constant among folds, but due to the randomness
inherent in sampling for nT ∈ {9, 25} one of the folds was different.
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(a) Number of concepts vs. threshold for different nT and splits of the dataset

(b) Concept lattice at nT = 4. Labels only shown on the meet-irreducibles

Figure 15. Effect of hapax thresholding on the number of concepts of BL(G, L, I) for emotions.

3.4. Extending the CLASSIFICATION IS INFORMATION TRANSMISSION Metaphor to MLC Tasks

With the affordances of the previous analyses from Sections 3.1–3.3 we can undertake
the improvement of the methodology for carrying out MLC tasks that is our research goal.
First we instantiate the original metaphor for MLC tasks:

Metaphor 3 (SUPERVISED MLC TASKS ARE INFORMATION CHANNELS). MLC is an informa-
tion channel—depicted in Figure 16—where:

• Y is a Source of information in the form of a partially accessible random vector of binary variables.
• X is the encoding of that information in the form of vectors of observations, x⃗ ∈ X.
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• The transformed Z are the result of conformed, noisy transmission of observation vectors.
• The classified Ŷ is a random rector, the result of decoding the received information through

the classifier, considered as a Presentation of information for downstream use.

S observe
PY

Y
transform

PX

X classify
PZ

Z
P

PŶ

Ŷ

Figure 16. Basic scheme for multilabel classification: Y and Ŷ are the source and presentation random
vectors, X the observation and Z the transformed observation random vectors.

And finally we use those results to flesh out the pseudo-algorithm Figure 2 previously
presented. The final result is shown in Figure 17.

1. Modelling. Model the source of labelsets as random label vectors Y ∼ PY and
that of the observations as the feature vectors X ∼ PX over their respective spaces
with unknown joint distribution PYX .

2. Data Collection. Collect a set of samples, D = {(⃗yj, x⃗j)}n
j=1 of observed feature

vectors and their labelsets to infer that empirical joint Y × X ∼ P̂YX . Consider the
following phases:
(a) Contextualization. Create DL and build B(DL). Find the quotient sets of

objects and attributes Do
L = (G/γI , L/µI , Io).

Guideline 2: Check that L/µI is the identity partition.
(b) Estimation. Estimate PY according to the count measure of G/γI .
(c) Quantitative Assessment of Dataset. Find out F(PY) and F(PYi ), for Yi ∈ L.

Represent these in the aggregate and multisplit SMET, respectively. Assess
whether the dataset is really multilabel.

3. Classifier Design. Choose the classifier type with parameter vector θ⃗ and
an induction scheme to obtain a function from observations to labelsets
h

θ⃗
: X → Y, x⃗ 7→ y = h

θ⃗
(x⃗). Use Guideline 1 (for future work).

4. Performance Assessment. In order to assess the classifier:
• Measure choice. Choose adequate performance measures (for future work).
• Resampling. Implement a scheme of re-sampling of the data into a set

of training examples DT = {(⃗yj, x⃗j)}nT
j=1 and a set of test examples DE =

{(⃗yk, x⃗k)}nE
k=1 so that the training data are used to induce the classifiers and

the test data to assess these results on the performance measures.
Guideline 3: Use FCA-induced stratified resampling so that

B(DL) ∼= B(DT
L)

∼= B(DE
L).

• Iterated resampling. Embed the former into a scheme of iterated resampling,
like k-fold cross-validation, to obtain a measure of centrality and dispersion
on the performance measures.
Guideline 4: Choose a method to deal with hapaxes: e.g., thresholding and

re-assignment of labelsets.

Figure 17. Interim version of MLC under the predictive inference metaphor. Further specifying step
3 is left for future work.

3.5. Discussion

The use of FCA for explicitly modelling the MLC task was first invoked, to the best of
our knowledge, in [55,56]. This work, however, presents the first instance of merging both
qualitative representations—FCA–and quantitative measures—the different SMETs—as a
model of the information sources in a particular kind of ML task, the MLC case.
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In this respect, in Section 3.1.2 “information content” has to be understood as quality of
information, whereas in Section 3.1.3 as quantity of information. But both are valid readings of
the information content of the labelling context: our approach renders feasible the study of
both facets of information, unlike each technique on its own. Specifically, we go beyond the
intent of Shannon in characterizing sources of data [32] in that we provide the model for
a type of qualitative information, the concept lattices of the labelling subcontexts. In this
respect this paper tries to go beyond the paradigm of (quantitative) Information Theory.

Specifically, in Section 3.1.1 we explored the standard scales as candidates to interpret
stereotypical qualitative behaviours of the set of labels. Later, in Section hand in hand with
quantifying techniques for the information content of MLC datasets, the aggregate and
multisplit SMETs. We concluded that three of the main types of standard scales of FCA,
nominal, contra-nominal and ordinal carry very different quantities of informations both
aggregated and on a per-label basis.

Further, using the quantitative exploratory techniques we analysed a sample of tasks of
the clustering in [25] and found evidence to challenge it: possibly, only 3 clusters are visible:

• A purely MLC dataset cluster with flags and emotions, with stochastic labels of
high irredundancy.

• A cluster of datasets of mixed detection- and classification-oriented features with
varying degrees of redundancy, as in birds, enron and slashdot, and

• A cluster of datasets of (almost purely) detection tasks with detection-oriented features,
viz. eurelexcd and rc1sub1.

This tries also to push the envelope in providing a new model for statistical sources of
data that sustain several hypotheses to further understand, support and guide statistical and
ML-related techniques, like clustering or n-fold validation, in the context of the MLC task.
Once and again the generality of the approach to qualitative description of data provided
by FCA and to quantitative measurement of information provided by the entropy balance
equations and entropy triangles allows us to state that this will be a fruitful partnership to
explore other ML tasks.

For instance, notice how the analysis carried out in the previous section acts as a guide
for further evaluation of MLC: recall that the original task is to evaluate the techniques
for transforming the MLC problem into standard classification problems. In further work,
these results will be used to pair up certain transformation strategies with certain types of
datasets so as to provide practitioners with clear guidelines as to how to proceed on new,
unseen MLC datasets. Immediate suggestions to do so are the development of factorization
algorithms for lattices of labelsets, so that the MLC problem is itself factorized in as many
subproblems. Proposition 3 is already a step in this direction.

All interactive R notebooks and code embodying the analyses described in this paper
are available from the authors upon request.

4. Conclusions

In conclusion, we have proven that the formalisation of the MLC task can profit from
using more formal backgrounds than the framework of predictive inference. In particular,
this is undistinguishable from understanding the ML training and operating pipeline as
an information communication channel, as proposed by Shannon in the last century and
illustrated in Figure 18.
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B(G, L, I)

F(PY)
observe

PY

Y
transform

PX

X classify
PZ

Z
P

PŶ

Ŷ

Figure 18. Full model for MLC Sources: Y and Ŷ are a source and a presentation of random vectors
of binary variables that can be quantitatively and qualitatively characterized using the entropy
coordinates F(PY) = [∆H′

PY
, M ′

PY
, VI ′PY

]—and related SMETs both aggregate and label-wise—and
the concept lattice of the labelling context B(G, L, I), respectively.

Fleshing out this metaphor stand the contributions of this paper:

• A refinement of a meta-model for MLC tasks: the information channel model that
includes joint but distinct characterizations of qualitative and quantitative aspects of
information sources (see Figure 18) including:

– An methodology for modelling and exploration of MLC labelling contexts
DL = (G, L, I) based on FCA.

– Novel measures and exploratory techniques for MLC dataset characterization
from first principles based on information theory—the aggregated and multisplit
SMETs—which are representations of the balance equation in three variables
F(PY) = [∆H′

PY
, M ′

PY
, VI ′PY

].

• This joint quantitative and qualitative model has allowed us to state:

– Several Propositions and Corollaries about the characterization of MLC tasks with
FCA- and entropic decomposition-related tools.

– Several Hypotheses on the inner workings of MLC tasks—e.g., Hypotheses 1–4.
– Several Guidelines for the development of “good” datasets for MLC—e.g., as

in Guidelines 1–5.

• A challenging of previous results on clustering MLC datasets on the grounds of the data
analysis carried out with the newly introduced qualitative and quantitative techniques.

All in all, our results suggest that better and more complex mathematical formalization
of datasets and tasks in ML can bring about a better understanding of them. Whether this
can be used to pave the way for better classifiers in MLC is a question for further work. For
this next enterprise, we have already obtained hypotheses and tools to match those that are
applied here to MLC sources so that in the future their integration runs more smoothly.
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The following abbreviations are used in this manuscript:

BR Binary Relevance
CC Classifier Chains
CDA Confirmatory Data Analysis
CMET Channel Multivariate Entropy Triangle
CoDa Compositional Data (Analysis)
EDA Exploratory Data Analysis
LP Label Powerset
MI Mutual Information
MLC Multilabel Classification
P Presentation (in Figures)
PCC Probabilistic Classifier Chains
S Source (in Figures)
SMET Source Multivariate Entropy Triangle
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