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Abstract: This paper aims to develop a new family of bivariate distributions for modelling differ-
ent types of claims and their associated costs jointly in a flexible manner. The proposed bivariate
distributions can be viewed as a continuous copula distribution paired with two marginals based
on composite distributions. For expository purposes, the details of one of the proposed bivarite
composite distributions is provided. The dependence measures for the resulting bivariate copula-
based composite distribution are studied, and its fitting is compared with other bivariate composite
distributions and existing bivariate distributions. The parameters of the proposed bivariate composite
model are estimated via the inference functions for margins (IFM) method. The suitability of the
proposed bivariate distribution is examined using two real-world insurance datasets, namely the
motor third-party liability (MTPL) insurance dataset and Danish fire insurance dataset.

Keywords: copulas; dependence parameter; Gumbel copula; Inverse Weibull distribution; Inverse
Burr distribution; Paralogistic distribution; Weibull distribution
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1. Introduction

During the last few decades, there has been a notable surge in actuarial research
focused on modelling the costs of different types of claims in non-life insurance, employing
a diverse range of claim severity approaches. This is due to the peculiar characteristics of
the claim severity distribution, which pose several challenges. The distribution often spans
several magnitudes, encompassing small and moderate claim sizes with high frequency, as
well as a few major ones with low frequency. Additionally, claim size data are unimodal
and heavily skewed to the right (see, for instance, Ref. [1]). As can be clearly understood,
when the data span a wide range of magnitudes, selecting a probability distribution
that can efficiently fit small, moderate, and large claims becomes crucial for insurance
pricing, reserving, and risk management. The method of composing distributions (see, for
example, Refs. [2–6]) provides a reasonable fit for such datasets.

Regarding the most recent studies on composite models, which are the main research
focus of this work, it is worth noting that Ref. [6] proposed different composite models
by considering Burr, Loglogistic, Paralogistic, and Generalized Pareto distributions for
the tail of the data and truncated densities before and after the threshold point. Ref. [7],
instead of creating single composite model, considered 256 composite models derived from
sixteen parametric distributions frequently used in actuarial science. Ref. [8] placed special
emphasis on modelling extreme claims using a variety of composite models and threshold
selection techniques, including heuristic methods, the Minimum AMSE of the Hill estimator,
the exponentiality test, and the Gertensgarbe plot. A new composite distribution known as
the composite Rayleigh–Pareto (CRP) distribution was presented by [9]. This article also
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discussed parameter estimation methods, including the method of moment and maximum
likelihood estimation method. Ref. [10] introduced a novel single-parameter composite
length-biased exponential Pareto (CLBEP) distribution to model insurance losses. The
distributional properties and other statistical characteristics of the CLBEP distribution are
mathematically determined. Authors provided a comparison study of the new CLBEP with
other composite and conventional distributions.

Ref. [11] introduced a mixture composite claim severity regression model extending
the setup of Ref. [12], which used a finite mixture distribution for the body and a Pareto-
type distribution for the tail of the distribution. This extension incorporated explanatory
variables on all three parts of the claim size distribution: clustering probabilities, body part,
and tail part. It should be noted that, even though the literature concerning composite
models in the univariate setting is abundant, their bivariate extensions have not been inves-
tigated so far. However, in non-life insurance, it is common for the actuary to observe the
existence of dependence structures between different types of claims and their associated
costs, either from the same type of coverage or from multiple types of coverage, such as
motor and home insurance bundled into one single policy.

Examining interdependent hazards is a pivotal undertaking for insurance companies.
The presence of dependence is manifested in the ability to predict the distribution of one
random variable based on the knowledge of another. Particularly in the realm of insurance,
it is imperative for companies to delve into the interconnections between various lines
of business and assess the repercussions of a catastrophic event, such as an earthquake
or hurricane, impacting multiple lines simultaneously. Copulas emerge as a prominent
model-based approach for scrutinizing dependencies in risks, and the tail dependence
coefficient serves as a metric for measuring dependence concerning extreme losses. The
rising popularity of utilizing copulas to compute joint distributions for two or more random
variables, depicting extreme losses, and capturing tail dependence is evident in the fields
of actuarial science and finance Refs. ([13,14]). The copula technique is distinctive for
partitioning the joint distribution into two components: individual marginal distributions
for each random variable and a copula function that amalgamates the marginals to form
a joint distribution explaining the dependence structure. Though direct modeling with
multivariate distributions is generally preferred for joint risks, complexity in specification
and limited applications can pose challenges. Copulas provide an alternative, allowing a
focus on effective independent marginal risk modeling before uniting them using a copula
framework. This approach gains prominence due to the wealth of literature available for
univariate modeling, making it a practical choice in various scenarios.

Copula functions offer an efficient method to quantify dependence between hazards
by fully specifying the dependence structure among random variables. Understanding tail
dependence across diverse business lines is vital for insurance and reinsurance. Unlike
multivariate distributions, copulas simplify summarizing tail dependence with diverse de-
pendency structures achievable through various parameter settings. Archimedean copulas
like Gumbel and Joe focus on modeling right tail extremes, Clayton on left tail extremes,
and symmetric copulas like Frank, Gaussian, and t copulas distribute equal weight to both
tails. Considering this fact, in the present study, we introduce a Gumbel copula-based
bivariate distribution having composite marginal distributions for modelling heavy right-
tailed claim severity jointly from multiple types of claims, which are often encountered in
high-dimensional non-life insurance datasets. The motivation behind the development of
the bivariate composite models mainly lies in the following factors:

1. Insurance portfolios often involve multiple risks that may be correlated. A bivariate
distribution allows for modeling the joint behavior of two variables, capturing the
dependence structure between them. This is crucial for accurately assessing the overall
risk in a portfolio.

2. In insurance, the occurrence of extreme events is of particular interest. Bivariate
composite distributions can better capture tail dependence, which is essential for
estimating the joint probability of simultaneous extreme events.
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Bivariate composite distributions are being developed in order to describe insurance
heavy-tailed datasets. This is because more realistic and accurate representations of joint
risk structures in complicated insurance portfolios are required. In particular, we make the
following contributions:

1. The bivariate distributions are constructed using a suitable copula distribution consist-
ing of two marginal composite distributions.

2. A general framework for constructing the copula-based bivariate composite distribu-
tion is discussed. For expository purposes, a specific bivariate composite distribution
is presented.

3. This distribution aims to describe the behavior of bivariate data with a predominance
of small and medium values but includes a few extreme values.

4. Dependence measures associated with the proposed bivariate composite distribution
based on the copula distribution are derived.

5. The parameters of the distributions are estimated using the IFM method, which
consists of estimating univariate parameters by separately maximizing the marginal
composite distribution and then estimating the dependence parameters from the
bivariate likelihoods derived based on the copula.

The rest of the paper is structured as follows. In Section 2, we derive alternative
marginal composite distributions based on the Classical Composition (CC) technique.
Section 3 presents the construction of the bivariate composite distributions based on the
copula distribution. Parameter estimation of the bivariate composite distribution via the
IFM method is discussed. The computational aspects of fitting the bivariate composite
distributions are discussed in Section 4. Section 5 demonstrates a data generation algorithm
and results based on a simulation experiment. In Section 6, we describe the MTPL and
Danish fire loss datasets used for our empirical analysis and comparison of the bivariate
composite distributions with existing bivarite distributions. Finally, concluding remarks
can be found in Section 7.

2. Modelling Framework
2.1. The Univariate Composite Distribution Obtained through the Traditional Composition Method

Ref. [1] proposed various composite distributions using an unrestricted mixing weight
(r), the right-truncated and left-truncated densities truncated at thresholds (θ) for the head
and tail distributions, respectively. The resulting probability density function (pdf) of the
composite distribution can be written as

f (x) =

{
r f ∗1 (x|Ξ1, θ) for 0 < x ≤ θ,
(1 − r) f ∗2 (x|Ξ2, θ) for θ < x < ∞,

(1)

where Ξ1 and Ξ2 are the parameter spaces for the head and tail parts of the composite
distribution, and the mixing weight r ∈ [0, 1] and θ > 0. The functions f ∗1 (x|Ξ1, θ) = f1(x|Ξ1)

F1(θ|Ξ1)

and f ∗2 (x|Ξ2, θ) = f2(x|Ξ2)
1−F2(θ|Ξ2)

are the adequate truncations of the pdfs f1 and f2 up to and
after an unknown threshold value θ, respectively.

• The value of the weight parameter r is obtained by the continuity condition imposed
at the threshold θ, i.e., r f ∗1 (θ|Ξ1, θ) = (1 − r) f ∗2 (θ|Ξ2, θ). Hence, we obtain

r = r(θ, Ξ1, Ξ2) =
f2(θ|Ξ2)F1(θ|Ξ1)

f2(θ|Ξ2)F1(θ|Ξ1) + f1(θ|Ξ1)(1 − F2(θ|Ξ2))
. (2)

• Further, imposing the differentiability condition at the threshold value θ, i.e., r f ∗
′

1
(θ|Ξ1, θ) = (1 − r) f ∗

′
2 (θ|Ξ2, θ), makes the density smooth.
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These above conditions reduce the number of parameters and make the resulting
density continuous and differentiable. We henceforth refer to this technique as the Classical
Composition (CC) technique.

2.2. The Copula

A copula C(u1, u2) is a bivariate cumulative distribution function (cdf) with uniform
marginals (u1, u2) on the interval (0, 1) Ref. ([15,16]). If Fj(yj) is the cdf of a univariate r.v.

Yj, then C(F1(y
(1)
i ), F2(y

(2)
i )) is a bivariate distribution for Y = (Y(1), Y(2)) with marginal

distributions Fj, where i = 1, 2, · · · , n and j = 1, 2.
The dependence of Yi among the claim types is modelled using the copula, with the

joint distribution of Yi given by

π(yi) = C(u1, u2) = Cϕ

(
F1

(
y(1)i

)
, F2

(
y(2)i

))
, (3)

where yi = (y(1)i , y(2)i ) are the realizations of the Y = (Y(1), Y(2)), Cϕ is a copula function,
and ϕ := {ϕ(j,j′)}j,j′=1,2 is the copula parameter that explains the association between the
two random variables, say (Y(1), Y(2)).

2.3. Modelling Dependence via the Gumbel Copula

Many insurance datasets exhibit strong correlation at high values of claim amounts
but less correlation at low values of claim amounts. Hence, to jointly model the two types
of claims having high tail dependence, the Gumbel copula will be an appropriate choice to
model such a dataset (see Ref. [17]). The dependency between two types of claims y(1)i , y(2)i
can be modelled through the Gumbel copula as

C(u1, u2) = Cϕ

(
F1(y

(1)
i ), F2(y

(2)
i )
)
= exp

{
−
[(

− log F1(y
(1)
i )
)ϕ

+
(
− log F2(y

(2)
i )
)ϕ
] 1

ϕ

}
, (4)

where ϕ := {ϕ(j,j′)}j,j′=1,2 ∈ [1, ∞) is the asymmetric copula parameter influencing the
correlations among (Y(1), Y(2)). Fj(yj) is the cdf of a univariate r.v. Yj for j = 1, 2. We
present two dependence measures associated with the Gumbel copula as:

• Kendall’s tau: Kendall’s tau, denoted by τ, is a bivariate measure of dependence for
continuous variables that measures the amount of concordance present in a bivariate
distribution. Kendall’s tau for the Gumbel copula in terms of the copula parameter ϕ
can be written as:

τ =
ϕ − 1

ϕ
.

• Tail dependence property: The amount of dependency in the upper or lower quadrant
tail of a bivariate distribution is referred to as bivariate tail dependence. The expression
for the upper tail dependence parameter λU for the Gumbel copula is given by:

λU = 2 − 2
1
ϕ .

3. The Bivariate Composite H-Inverse Weibull Distribution

Let Y = (Y(1), Y(2)) and yi = (y(1)i , y(2)i ), respectively, be the claims vector and its

corresponding realizations of the two types of claims. Suppose that Y(j)
i , j = 1, 2 follows

the composite H-Inverse Weibull (IW) distribution, where H stands for the head part
distribution of the bivariate composite distribution with pdf given by
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f j(y
(j)
i ) =



r(j)
H,IW f ∗H(y

(j)
i ; Ξ(j)) for 0 < y(j)

i ≤ θ(j),

(1 − r(j)
H,IW)

α(j)

y(j)
i

(
γ(j)

y(j)
i

)α(j)

exp

−
(

γ(j)

y(j)
i

)α(j)


1−exp

−
(

γ(j)

θ(j)

)α(j)


for θ(j) < y(j)
i < ∞.

(5)

The cdf of composite H-Inverse Weibull distribution may be written as

Fj(y
(j)
i ) =



r(j)
H,IW

FH(y(j)
i ;Ξ(j))

FH(θ(j);Ξ(j))
for 0 < y(j)

i ≤ θ(j),

r(j)
H,IW + (1 − r(j)

H,IW)

exp

−
(

γ(j)

y(j)
i

)α(j)
−exp

−
(

γ(j)

θ(j)

)α(j)


1−exp

−
(

γ(j)

θ(j)

)α(j)


for θ(j) < y(j)
i < ∞,

(6)

where i = 1, 2, · · · , n and j = 1, 2. Ξ(j) and r(j)
H,IW ∈ [0, 1] are the parameter space and mixing

weight for the head part of the jth marginal composite H-Inverse Weibull distribution,
α(j) > 0, threshold point associated with jth marginal composite distribution θ(j) > 0, and
scale parameter γ(j) > 0. FH(y(j)) and FH(θ

(j)) are the cdf of the H (head) distribution
at y(j) and the threshold point θ(j), respectively. fH(.) is the density of the head part of

the marginal composite H-Inverse Weibull distribution. f ∗H(y
(j); Ξ(j)) = fH(y(j);Ξ(j))

FH(θ(j);Ξ(j))
is the

adequate right-truncated density of the head part of the marginal composite H-Inverse
Weibull distribution truncated at the threshold point θ(j). The expression for the mixing
weight r(j)

H,IW can be obtained using (2). The dependency among the two types of claims,

say (y(1)i , y(2)i ), can be studied using the Gumbel copula as follows:

Cϕ

(
F1

(
y(1)i

)
, F2

(
y(2)i

))
= exp

{
−
[(

− log F1

(
y(1)i

))ϕ
+
(
− log F2

(
y(2)i

))ϕ
] 1

ϕ

}
, (7)

where y(1)i and y(2)i are the realizations for the two types of claims Y(1) and Y(2). F1

(
y(1)i

)
and F2

(
y(2)i

)
are the cdfs of composite H-Inverse Weibull models evaluated at y(1)i and y(2)i ,

respectively. ϕ is the asymmetric parameter controlling the correlations among (Y(1), Y(2)).
We use three different parametric distributions for the H (head) part of the bivariate
composite models, namely the Weibull distribution, the Paralogistic distribution, and the
inverse Burr distribution. In this paper, for expository purposes, the development of the
bivariate composite Weibull-Inverse Weibull (W-IW) distribution is presented.

Particular Case: The Bivariate Composite Weibull–Inverse Weibull (W-IW) Distribution

Let Y(j)
i be a random variable (r.v.) obtained by considering the Weibull distribution

for the head and the Inverse Weibull distribution for the tail part of the marginal composite
model. The pdf of the r.v. Y(j)

i can be written as
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f j(y
(j)
i ) =



r(j)
W,IW

µ(j)

σ(j) exp

−
(

y(j)
i

σ(j)

)µ(j)

(

y(j)
i

σ(j)

)µ(j)−1

1−exp

−
(

θ(j)

σ(j)

)µ(j)


for 0 < y(j)
i ≤ θ(j),

(1 − r(j)
H,IW)

α(j)

y(j)
i

(
γ(j)

y(j)
i

)α(j)

exp

−
(

γ(j)

y(j)
i

)α(j)


1−exp

−
(

γ(j)

θ(j)

)α(j)


for θ(j) < y(j)
i < ∞.

(8)

For i = 1, 2, · · · , n and j = 1, 2, where µ(j) > 0, σ(j) > 0, the scale parameter γ(j) > 0,
α(j) > 0, threshold point θ(j) > 0, and r(j)

W,IW ∈ [0, 1] is the mixing weight of the composite

model. The analytical expression for the mixing weight r(j)
W,IW can be easily obtained

using (2).
The cdf of the composite W-IW distribution is

Fj(y
(j)
i ) =



r(j)
W,IW

1−exp

−
(

y(j)
i

σ(j)

)µ(j)


1−exp

−
(

θ(j)

σ(j)

)µ(j)


for 0 < y(j)
i ≤ θ(j),

r(j)
W,IW + (1 − r(j)

W,IW)

exp

−
(

γ(j)

y(j)
i

)α(j)
−exp

−
(

γ(j)

θ(j)

)α(j)


1−exp

−
(

γ(j)

θ(j)

)α(j)


for θ(j) < y(j)
i < ∞.

(9)

The joint cdf of the bivariate composite W-IW distribution can be obtained by coupling
two marginal W-IW cdfs using the Gumbel copula, as shown in (4). Similarly, the joint
cdf of the bivariate composite Paralogistic–Inverse Weibull (P-IW) distribution and the
bivariate composite Inverse Burr–Inverse Weibull (IB-IW) distribution can also be obtained
by coupling two marginal P-IW and IB-IW cdfs using the Gumbel copula given in (4).

4. Parameter Estimation via the IFM Method

The objective of this section is to explain how to use the maximum likelihood (ML)
method to estimate the parameters related to both the marginals and the copula. Ref. [15]
discussed a method known as the IFM for parameter estimation of the copula density,
which is dependent on the knowledge of the marginals. This method involves two steps;
first, the parameters of the marginal cdfs are estimated, and then the copula parameters are
obtained by maximizing the likelihood function of the copula, with the marginal parameters
replaced by estimators obtained in the first step. The steps involved in the IFM method
for the estimation of the marginal model parameters as well as the copula parameter are
given below.

• Step 1: Let Y(j)
1 , Y(j)

2 , . . . , Y(j)
n for j = 1, 2 be a random sample of two types of claims

from the marginal composite H-Inverse Weibull distribution described in (5). Here, Θ

is the parameter vector for the two marginal composite H-Inverse Weibull models. We
utilize the ML estimation procedure to estimate the marginal distribution parameters.
The goal of the ML estimation procedure is to find the parameter values that maximize:

l(Θ(j)|y(j)
i ) =

n

∑
i=1

ln( f j(y
(j)
i |Θ))
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l(Θ(j)|y(j)
i ) =

n

∑
i=1

ln

[
r(j)

H,IW
fH(y

(j)
i ; Ξ(j))

FH(θ; Ξ(j))
I[yi < θ(j)]

+(1 − r(j)
H,IW)

α(j)

y(j)
i

(
γ(j)

y(j)
i

)α(j)

exp

{
−
(

γ(j)

y(j)
i

)α(j)}

1 − exp

{
−
(

γ(j)

θ(j)

)α(j)
} I[y(j)

i ≥ θ(j))]


l(Θ(j)|y(j)

i ) = ∑n
i=1

[
ln r(j)

H,IWI[y(j)
i < θ(j)] + ln fH(y

(j)
i ; Ξ(j))I[y(j)

i < θ(j)]

− ln FH(θ
(j); Ξ(j))I[y(j)

i < θ(j)] + ln(1 − r(j)
H,IW)I[y(j)

i ≥ θ(j)]

+ ln α(j) − ln y(j)
i + α(j)(ln γ(j) − ln y(j)

i )−
(

γ(j)

y(j)
i

)α(j)

I[y(j)
i ≥ θ(j)]

− ln

(
1 − exp

{
−
(

γ(j)

θ(j)

)α(j)
})

I[y(j)
i ≥ θ(j)]

] (10)

For j = 1, 2, the non-overlapping density parts between the body and tail of a compos-
ite distribution make parameter estimation typically straightforward, allowing one to
factor out the likelihood function and independently estimate the three components
of the distribution—mixing weight, body, and tail. All parameters of the two marginal
composite H-Inverse Weibull distributions are estimated using the numerical opti-
mization tool optim(), included in the stats package of the R programming language.

• Step 2: The estimated parameters of the marginal df’s are used to estimate the Gumbel
copula parameter and to compute the value of the likelihood function associated with
the dependence structure. To ease the process of finding the estimate of the copula
parameter, we use the rvinecopula package of the R software 4.1.2 by passing the
argument gumbel as the family.

5. Simulation Study

In this section, we present a simulation study for the proposed bivariate composite
W-IW distribution using the Gumbel copula. Initially, we detail the generation of random
samples from the bivariate composite W-IW distribution. The process involves employ-
ing the conditional procedure for random sample generation, as outlined in [16]. We
consider Y1, Y2 be the random sample from bivariate composite W-IW distribution de-
rived using Gumbel cupula C(u1, u2) (see (4)). The conditional distribution of the (U, V) is
P(V ≤ v|U = u) = ∂

∂u C(u1, u2). Utilizing this conditional distribution method, we gener-
ate the random numbers (y1, y2) from the proposed bivariate composite W-IW distribution.
The detailed algorithm to generate the random numbers from the bivariate composite
W-IW distribution is as follows:

Step Random Numbers from Bivariate Composite W-IW Distribution

1. Generate two independent samples, say u1 and s from U(0, 1).

2. Set s = ∂
∂u C(u1, u2) and solve for u2.

3. Find y1 = F−1
1 (u1; Θ(1)) and y2 = F−1

2 (u2; Θ(2))
where F−1

1 and F−1
2 are the quantile functions of the composite W-IW

distribution having parameter space Θ(1) and Θ(2) at u1 and u2, respectively.

4. Finally, the required random sample is (y1, y2).

Based on the following data obtained from the bivariate composite W-IW distribution, a
simulation study was conducted and replicated 1000 times. We employed the IFM approach
to estimate the parameters. The values of the parameters Θ(1) = (µ(1), σ(1), α(1), γ(1), θ(1)),
Θ(2) = (µ(2), σ(2), α(2), γ(2), θ(2)) and Gumbel copula parameter ϕ are chosen for different
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sample sizes n = 50, 100, 200, 500. In particular, we choose Θ(1) = (2.5, 0.8, 3.8, 0.8, 2.3),
Θ(2) = (0.6, 0.5, 2.5, 0.5, 15) and ϕ = 1.5. Figures 1 and 2 represent the box plots of bias and
estimates of bivariate composite W-IW distribution for the sample sizes n = 50, 100, 200, 500.
As the sample size increases, the estimators approach the true values, with smaller bias.
Table 1 contains the Average Absolute Bias (AAB) and Root Mean Square Error (RMSE) of
the parameter estimates of the bivariate composite W-IW distribution for the sample sizes
n = 50, 100, 200, 500. It can be observed that the simulated AAB and RMSE decreases as
sample size increases.
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Figure 1. Box plot of bias of the parameter estimates of bivariate composite W-IW distribution with
ϕ = 1.5 obtained for different sample sizes n = 50, 100, 200, 500.

Table 1. Average Absolute Bias (AAB) and Root Mean Square Error (RMSE) of parameter estimates
for bivariate composite W-IW distribution.

n

50 100 200 500

Parameters AAB RMSE AAB RMSE AAB RMSE AAB RMSE

µ(1) 0.030 0.521 0.020 0.472 0.009 0.451 0.006 0.388
σ(1) 0.201 2.890 0.085 0.086 0.067 0.079 0.034 0.058
α(1) 5.698 14.515 6.057 14.507 5.350 11.043 5.142 9.779
γ(1) 0.450 0.744 0.399 0.756 0.337 0.765 0.106 0.758
θ(1) 0.888 1.023 0.806 0.982 0.720 0.957 0.513 0.931
µ(2) 0.081 0.079 0.072 0.054 0.048 0.037 0.039 0.023
σ(2) 0.087 0.170 0.058 0.169 0.015 0.090 0.013 0.041
α(2) 5.853 6.189 5.380 5.945 4.988 5.657 4.171 5.029
γ(2) 4.627 9.982 3.568 6.798 3.029 4.945 2.565 3.579
θ(2) 29.663 40.394 27.324 36.842 24.638 33.542 17.759 28.960
ϕ 0.069 0.197 0.068 0.138 0.053 0.102 0.051 0.068
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Figure 2. Box plot of bias of the parameter estimates of bivariate composite W-IW distribution
with Θ(1) = (2.5, 0.8, 3.8, 0.8, 2.3), Θ(2) = (0.6, 0.5, 2.5, 0.5, 15) obtained for different sample sizes
n = 50, 100, 200, 500.
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6. Numerical Illustration
6.1. Dataset 1: Greece MTPL Dataset

In this section, we illustrate the proposed methodology using motor third-party
liability (MTPL) insurance policies with non-zero property claims from the years 2012 to
2019. A major insurance firm in Greece generously provided the dataset for this study. The
dataset contains 7263 motor vehicle insurance policies collected over the period from 2012
to 2019, all of which have complete records. The following section provides a detailed
description of the MTPL dataset. The variables associated with the MTPL dataset are tcost bi
and tcost pd, representing the cost of bodily injury claims and the cost of property damage
claims, respectively. They are numeric vectors showing the total amount of bodily injury
claims and property damage claims. Graphical representations of both types of claims,
namely bodily injury claims and property damage claims, are presented in Figures 3–5.
Both types of claims exhibit various peculiarities of insurance data, including positive
skewness, unimodality, and tail heaviness. Figure 6, which displays the scatter plot of
the MTPL dataset in natural logarithm scales, illustrates that the dependency is not linear.
These data reveal extreme value dependence, i.e., the heavier the costs, the stronger the
dependence. Additionally, it can be seen from Figure 6 that for small values of both claims,
the dependence is almost zero, but the shape suggests positive dependence for larger
costs of both claims. Clearly, this denotes a change in the joint distribution between the
smaller and the larger claim costs. Here, both claims are known to be strongly correlated
with high values but less correlated at low values; hence, the Gumbel copula will be an
appropriate choice.
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Figure 3. Histogram of bodily injury claims for the MTPL dataset.
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Figure 4. Histogram of property damage claims for the MTPL dataset.
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Figure 5. Histogram of bodily injury claims and property damage claims for the MTPL dataset.
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Figure 6. Scatter plot of bodily injury claims vs. property damage claims for the MTPL dataset.

6.2. Dataset 2: Danish Fire Insurance Dataset

The provided dataset describes fire insurance claims in Denmark, gathered from
the Copenhagen Reinsurance Company for the period between 1980 and 1990. The
dataset is available on the following website: https://search.r-project.org/CRAN/refmans/
fitdistrplus/html/danish.html (accessed on 18 January 2024). It consists of three main com-
ponents: loss to buildings, loss to contents, and loss to profit. However, our
specific focus in this case revolves around modeling the interdependence between the first
two components. The dataset comprises a total of 1501 observations. Our analysis specifi-

https://search.r-project.org/CRAN/refmans/fitdistrplus/html/danish.html
https://search.r-project.org/CRAN/refmans/fitdistrplus/html/danish.html
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cally concentrates on cases where both losses have non-null values. In Figures 7–9, graphi-
cal representations of these claim types are provided. Notably, both loss to buildings
and loss to contents exhibit several notable features commonly observed in insurance
data, including a positively skewed distribution, a single mode (unimodality), and heavy
tails indicating the presence of extreme values. The visual representation in Figure 10,
which showcases a scatter plot of the Danish fire loss dataset using natural logarithmic
scales, provides valuable insights into the relationship between these claims. It becomes
apparent that the dependency between these claim types is not linear. Instead, the data sug-
gest a non-linear relationship, and they reveal the existence of extreme value dependence.
In other words, as claim costs increase, the strength of their interdependence becomes more
pronounced. Moreover, a closer examination of Figure 10 reveals a fascinating pattern; for
smaller values of both loss to buildings and loss to contents, the interdependence
is nearly negligible, almost approaching zero. However, as losses grow larger, the figure
clearly indicates a positive dependence emerging. This shift in the joint distribution, from
near-zero dependence for smaller losses to a positive relationship for larger losses, repre-
sents a significant and noteworthy change in the nature of the joint distribution between
these two categories of losses.
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Figure 7. Histogram of loss to buildings for the Danish dataset.
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Figure 8. Histogram of loss to contents for the Danish dataset.
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Figure 9. Histogram of loss to buildings and loss to contents for the Danish dataset.
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Figure 10. Scatter plot of loss to buildings vs. loss to contents for the Danish dataset.

6.3. Model Fitting

The fitting of the bivariate composite distributions, namely bivariate composite
Weibull–Inverse Weibull (W-IW), the bivariate composite Paralogistic–Inverse Weibull
(P-IW) distribution, and the bivariate composite Inverse Burr–Inverse Weibull (IB-IW)
distribution, as well as other existing bivariate distributions, such as bivariate Lomax (BL),
bivariate Mardia’s Pareto Type I (BMPI), and bivariate Burr (BB) model, are examined based
on the MTPl dataset in Section 6.1 and Danish fire loss dataset in Section 6.2. In this section,
we present the results based on two model selection criteria for the proposed distribution.
Tables 2 and 3 provides the values of negative log likelihood (NLL), Akaike’s information
criterion (AIC), and Bayesian information criterion (BIC) for the MTPL and Danish fire loss
datasets, respectively. The formulas involved in the computation of the above-mentioned
model selection criteria, namely AIC and BIC, are:
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AIC = −2L(Θ̂) + 2 × df,

where L(Θ̂) is the maximum log-likelihood and Θ̂ is the vector of the estimated model
parameters.

BIC = −2L(Θ̂) + log(n)× df,

where n is the sample size of the dataset and df is the number of fitted parameters of
the distribution.

Note that for NLL, AIC, and BIC, smaller values indicate a better fit of the distribution
to the empirical data. Tables 2 and 3 show that the bivariate composite W-IW distribution
performs better than the remaining bivariate composite distributions and other existing
bivariate distributions for the MTPL dataset and bivariate composite IB-IW distribution
performs better than the remaining bivariate composite distributions and other existing
bivariate distributions for the Danish fire loss dataset. Tables 4 and 5 present the parameter
estimates (marginal model parameters and Gumbel copula parameter) of the bivariate
composite distributions as well as existing bivariate distributions for the MTPL dataset and
Danish fire loss dataset, respectively.

Table 2. Values of NLL, AIC, and BIC for the MTPL dataset for competing distributions.

Model Parameters NLL AIC BIC

W-IW 9 132, 460.65 264, 939.31 265, 001.32
P-IW 9 132,673.95 265,365.91 265,428.01
IB-IW 11 133,418.21 266,858.41 266,934.21

BL 3 134,030.91 268,067.81 268,088.47
BMPI 3 143,634.61 287,275.21 287,295.88

BB 3 146,181.11 292,368.21 292,388.88

Table 3. Values of NLL, AIC, and BIC for the Danish dataset for competing distributions.

Model Parameters NLL AIC BIC

W-IW 9 3731.75 7481.51 7531.71
P-IW 9 3738.05 7494.11 7541.94
IB-IW 11 3719.91 7461.82 7524.31

BL 3 4119.54 8245.08 8261.02
BMPI 3 4018.51 8043.02 8058.96

BB 3 4283.83 8573.66 8589.61

Table 4. Parameter estimates of competing distributions for the MTPL dataset.

Parameter W-IW P-IW IB-IW BL BMPI BB

µ(1) 0.5394 0.7953 6.8642 - - -
σ(1) - - 0.3771 - - -
α(1) 1.3949 0.8948 1.7376 - - -
γ(1) 13,518.1554 10,034.7245 27,070.5612 - - -
θ(1) 23,926.6624 25,449.2312 29,407.7415 - - -
µ(2) 0.8751 1.2554 0.5485 - - -
σ(2) - - 1.2214 - - -
α(2) 13.5462 2.4359 15.5139 - - -
γ(2) 25,843.0438 11,634.1078 11,410.9912 - - -
θ(2) 43,134.3912 16,941.3751 13,100.0011 - - -
ϕ 1.1141 1.0711 1.0161 - - -
a1 - - - 1.5467 0.1279 487.8339
a2 - - - 0.0001 1.1112 7772.1023
p - - - 0.0005 1.7805 1185.0597
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Table 5. Parameter estimates of competing distributions for the Danish fire loss dataset.

Parameter W-IW P-IW IB-IW BL BMPI BB

µ(1) 2.5648 2.6956 0.0641 - - -
σ(1) - - 34.1352 - - -
α(1) 1.7463 1.7778 1.7931 - - -
γ(1) 0.5164 0.6061 0.7825 - - -
θ(1) 1.4341 1.5201 1.0581 - - -
µ(2) 1.7291 1.8079 0.8502 - - -
σ(2) - - 1.8846 - - -
α(2) 1.0369 1.0471 1.1146 - - -
γ(2) 0.3018 0.3176 0.4047 - - -
θ(2) 0.4323 0.4765 0.1996 - - -
ϕ 1.1800 1.1766 1.1767 - - -
a1 - - - 3.0860 0.2579 0.9649
a2 - - - 0.2274 0.9874 1.3341
p - - - 0.4048 1.9874 1.3687

6.4. Analysis of Dependence

To examine the goodness of fit of the fitted distribution in terms of dependence
modelling, we provide the values of Kendall’s tau (τ), the upper-tail dependence parameter
λU for the bivariate composite distributions generated using the Gumbel copula. In the
empirical examination, the calculated τ stands at 0.099 for the MTPL dataset and 0.085 for
the Danish fire loss dataset, indicating the observed ordinal correlation in each respective
dataset. In case of the MTPL dataset, Table 6 indicates that the Kendall’s tau for the W-IW
bivariate composite distributions matches the empirical τ reasonably well, implying that
the suggested Gumbel copula model can properly reflect the dependence structure of both
types of claims in the MTPL dataset. In case of Danish fire loss dataset, the fitted values of
the Kendall’s tau for the proposed bivariate composite distributions are far away from the
empirical value of the Kendall’s tau.

Table 6 also presents the values of the upper-tail dependence parameter (λU) for both
the datasets. The empirical values of the upper-tail dependence for the MTPL dataset and
Danish fire loss dataset are 0.133 and 0.198, respectively. From Table 6, it is observed that
for the proposed distributions, upper-tail dependence parameter λU ∈ (0, 1], indicating
that bivariate composite distributions exhibit upper-tail dependence for both the datasets.
Table 6 shows the empirical upper-tail dependence for the MTPL dataset coincides with the
upper-tail dependence of the proposed bivariate composite W-IW distribution, indicating
the adequate fit of the bivariate composite W-IW distribution to the extremely large values
of the MTPL dataset. In case of Danish fire loss dataset, the fitted value of Kendall’s tau based
on proposed bivariate composite distributions lies far away from its empirical counterpart,
but the value of fitted upper-tail dependence matches the empirical value of upper-tail
dependence. It suggests a situation where the proposed bivariate distributions captures
certain aspects of dependence (specifically, tail dependence) but fails to accurately represent
the overall Kendall’s tau.

Table 6. Dependence measures of the bivariate composite distributions for the MTPL dataset and
Danish fire loss data set dataset.

MTPLMTPLMTPL DanishDanishDanish

Model τ λU τ λU

W-IW 0.102 0.137 0.153 0.199
P-IW 0.066 0.089 0.150 0.197
IB-IW 0.015 0.021 0.151 0.198



Mathematics 2024, 12, 350 16 of 17

7. Conclusions

In this paper, we presented a novel family of bivariate composite distributions for
simultaneously modelling small and/or moderate and large costs from different types of
claims. The detailed methodology involved in the development of bivariate composite
distribution is presented. A Gumbel copula is utilized to specify the correlation structure
between two types of random variables. For expository purposes, the genesis of bivariate
composite Weibull–Inverse Weibull (W-IW) distribution via Gumbel copula is exhibited.
Application of the proposed new class of distribution is illustrated using the MTPL bodily
injury and property damage dataset and Danish fire loss dataset. The numerical results
obtained show reasonably good results for the bivariate composite distributions as com-
pared to other existing bivariate distributions. This suggests that the proposed distributions
offers a competitive and potentially more accurate representation of the joint distribution
of insurance claim costs. A possible limitation of the proposed study is the choice of the
copula. The choice of the Gumbel copula may impact the results, and its appropriateness
depends on the underlying dependence structure. Sensitivity analyses or comparisons with
alternative copulas could provide insights into the robustness of the proposed distributions.
A potentially fruitful line of further research is to consider the influence of individual and
coverage-specific covariates on the parameter(s) of the proposed class of distribution by
introducing regression components into the composite marginal models.
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