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Abstract: Antiangiogenic therapy (AAT) is an indirect oncological modality that is aimed at the
disruption of cancer cell nutrient supply. Invasive tumors have been shown to possess inherent
resistance to this treatment, while compactly growing benign tumors react to it by shrinking. It is
generally accepted that AAT by itself is not curative. This study presents a mathematical model of
non-invasive tumor growth with a physiologically justified account of microvasculature alteration
and the biomechanical aspects of importance during tumor growth and AAT. In the untreated setting,
the model reproduces tumor growth with saturation, where the maximum tumor volume depends
on the level of angiogenesis. The outcomes of the AAT simulations depend on the tumor size at
the moment of treatment initiation. If it is close to the stable size of an avascular tumor grown in
the absence of angiogenesis, then the tumor is rapidly stabilized by AAT. The treatment of large
tumors is accompanied by the displacement of normal tissue due to tumor shrinkage. During this,
microvasculature undergoes distortion, the degree of which depends on the displacement distance.
As it affects tumor nutrient supply, the stable size of a tumor that undergoes AAT negatively correlates
with its size at the beginning of treatment. For sufficiently large initial tumors, the long-term survival
of tumor cells is compromised by competition with normal cells for the severely limited inflow of
nutrients, which makes AAT effectively curative.

Keywords: mathematical oncology; biomechanics; partial differential equations

MSC: 34Q92; 92C05

1. Introduction
1.1. Biological Background

Cancer currently remains a major cause of morbidity and mortality worldwide [1].
New methods for its treatment, as a rule, have limited efficacy, target only a narrow range
of cancer types, and have limited availability to the general public due to their high cost.
Therefore, an important challenge in oncology is the optimization of the types of anticancer
therapy that are already introduced into clinical practice.

Standard and long-established types of anticancer treatment, such as chemotherapy
and radiotherapy, lead to the eradication of actively proliferating cells subject to therapeutic
action. The non-selectivity of these treatments inevitably leads to the damage of healthy
cells that are reached by chemotherapeutic drugs or are traversed by radiation beams.
Recently, a group of radically different anticancer modalities has emerged that perform
indirect interference with the mechanisms sustaining the existence of cancer as a complex
organ embedded in a host organism [2]. Prominent examples of such approaches are
immunotherapy and antiangiogenic therapy. Immunotherapy is an umbrella term for a
group of medical interventions aimed at the disruption of the ability of cancer cells to evade
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immune surveillance [3]. The goal of antiangiogenic therapy (AAT) is breaking the process
of tumor angiogenesis, i.e., the formation of blood vessels (in particular, capillaries that
provide nutrient exchange [4]). These therapies are not devoid of side-effects, which are,
nevertheless, usually more moderate and affect other organs than the standard treatments.

Enabling the process of tumor angiogenesis is a crucial step in cancer progression. In
its absence, tumors generally cannot grow beyond the size of 1–2 mm [5]. Further tumor
growth is restricted by limited nutrient supply from capillaries located in normal tissues
that are pushed away by a growing tumor mass. Thus, an avascular tumor eventually
reaches a stable state in which the ongoing proliferation of its cells in the tumor periphery
is compensated for by the death of nutrient-deprived cells in its core.

One way for the tumor cells to overcome nutrient deficiency is to invade nearby
tissues and co-opt existing capillaries. Enabling invasion is a crucial hallmark of malignant
tumors [6]. However, it is a complex process that requires the accumulation of a sufficient
number of cell mutations [7]. Since the overall frequency of mutations correlates with the
rate of tumor cell divisions, acquiring an invasive phenotype is a long process for small
tumors. Angiogenic switching is a faster process that generally manifests itself while a
tumor is still benign and lacks invasive properties.

In healthy tissues the process of angiogenesis takes place, e.g., during wound healing,
and it leads to an ordered vascular system, finely tuned for each organ. Tumor cells,
however, produce angiogenic molecules excessively, which results in the formation of
chaotically organized and highly permeable capillary networks. AAT neutralizes the action
of angiogenic molecules. This leads to the cessation of the formation of new capillaries,
the normalization of the structure of already formed tumor capillaries [8], the further
normalization of the density of the capillary network [9], and the alleviation of tumor-
associated edema [10].

The restriction of nutrient supply caused by AAT limits the growth of tumors and can
yield their shrinkage but generally does not lead to a tumor being cured. This provides
ground for the use of AAT in combination with other modalities. In clinical practice, AAT is
generally paired with chemotherapy (CT) [11]. There are multiple factors that influence the
efficacy of AAT by itself and in combination with CT. In particular, AAT entails the reduced
inflow of chemotherapeutic drugs into a tumor, which was observed experimentally [12,13].
This renders the problem of the optimization of AAT-based treatments in clinical practice,
which is a highly nontrivial task. Its solution is heavily compromised by the impossibility
of testing all the feasible treatment alterations due to logistical and ethical reasons.

1.2. Mathematical Background

A methodology that can point at the potential biomarkers of treatment efficacy and
that can significantly narrow down the range of potentially effective therapeutic protocols
is mechanistic mathematical modeling. It envisions the tumor and its microenvironment as
a single complex system that, contrary to a real-life situation, can be reproduced under a
broad variation of parameters and treatment approaches.

Several methods exist for modeling tumor growth when taking into account angiogen-
esis and AAT. The simplest method relies on the system of ordinary differential equations.
The models of this kind generally include an equation for the logistic growth of the tumor
volume, with its maximum value being a variable that is dependent on the concentration
of the antiangiogenic drug [14]. Although such phenomenological models can be conve-
nient for preclinical and clinical studies, they clearly represent oversimplifications that
omit spatial aspects and neglect many of the physiological processes that can influence
treatment outcomes.

The most popular approach for modeling angiogenesis and AAT is agent-based mod-
eling, which involves a detailed reproduction of capillary networks and, as is frequently the
case, explicit consideration of blood flow maps [15,16]. Such models can provide elegant
visualizations of microvasculature remodeling and can yield useful insights. However,
they require significant computational costs, which increase with tumor size. That crucially
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limits the practical use of such models. Up to date, they have not been used to simulate an
entire course of AAT.

The use of continuous, spatially distributed models based on partial differential
equations can provide a compromise between computational cost and physiological va-
lidity [17,18]. Although such models are unable to reproduce the microscopic aspects of
a capillary network, they allow for the consideration of the crucial dynamic features of
tumor microvasculature under unperturbed tumor growth and under the course of therapy.
However, the related models presented nowadays in the literature focus on invasive tumors,
and they ignore the biomechanical aspects crucial for the reproduction of tumor response
to alterations in microvasculature.

On the other hand, there exists a sufficient amount of modeling studies devoted
to the biomechanical aspects accompanying tumor growth and treatment, which do not
account for dynamically changing tumor microvasculature. In particular, consideration
of interstitial fluid dynamics and their influence on drug delivery is a well-researched
problem in the case of static tumors [19–21]. In the case of a dynamic tumor that can
both grow and shrink during therapy, a physiologically correct approach to modeling is
the simultaneous account of the stress arising in the solid phase of the tissue (cells and
extracellular matrix) along with the dynamics of the interstitial fluid since they are closely
interrelated. In particular, the deformation of the solid component of the tissue affects fluid
flow, while the outflow of fluid from the tumor leads to its shrinkage and to the alleviation
of stress exerted by the surrounding normal tissue.

The related works that account for solid stress using mathematical modeling are less
numerous. The methods used range from relatively simple to complex. The complex
methods are generally adapted from the area of solid mechanics, based on the multiplica-
tive decomposition of the tissue strain gradient tensor into components corresponding to
different physical processes [22,23]. The use of such methods is associated with great com-
putational costs but is justified, e.g., if any quantitative agreement with the experimental
results is pursued. For qualitative studies, however, a more practical approach is the use of
simpler methods that regard tumors as a liquid-like or linearly elastic medium [24,25]. Such
methods have been repeatedly proven to be able to qualitatively reproduce experimental
observations, e.g., the decrease in maximum tumor size with the increase in applied exter-
nal pressure [26] and the oozing of liquid from a large tumor due to the elevated pressure
in its core [27].

1.3. Current Study

The current study simultaneously considers both the alterations in microvasculature
and the evolution of biomechanical aspects during tumor growth and AAT. To the best of
our knowledge, this is the first work of this kind to provide simulations of the entire course
of AAT. This study is based on our previous works on the mathematical modeling of tumor
angiogenesis and AAT [28–30] and on our works focused on the biomechanical properties
of tumors and normal tissues [31–34].

Section 2 introduces the mathematical model, providing its crucial assumptions, equa-
tions, parameters, and aspects of numerical solving. The model is implemented in C++
computational code (with the use of Dev-C++, version 5.11), which can be downloaded
from the Supplementary Materials section. The results are presented in Section 3. Section 3.1
considers free tumor growth with and without angiogenesis. The model reproduced the
layered structures of proliferating, quiescent, and dead tumor cells, which are characteristic
of non-invasive tumors that yield growth when under saturation. The maximum tumor vol-
ume increases with the initiation of angiogenesis. Section 3.2 is devoted to modeling AAT
and shows that its effect depends on the tumor size at the moment of its administration.
Small tumors are quickly stabilized by AAT, while the treatment of sufficiently large tumors
is accompanied by the displacement of normal tissue due to tumor shrinkage, which causes
the rupture of capillaries and, thus, effectively provides an additional decrease in tumor
nutrient supply. To the best of our knowledge, such qualitative outcomes have not been
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shown previously in the literature. Section 3.3 is devoted to the study of the combination
of AAT with chemotherapy. Its results suggest that the delay of AAT administration within
this combination can compromise the potential curative effect of the treatment. Section 4
finalizes this study with an overview of the main results and a discussion of their clinical
significance, as well as the future scope of our work.

2. Model
2.1. Equations

The investigated model is presented in the system of Equation (1). It has nine partial
differential equations controlling the dynamics of spatially distributed variables. Each
of them depends on one spatial co-ordinate, r, and a temporal co-ordinate, t. The block
scheme of the main model interactions is presented in Figure 1. For a detailed description
of the interactions of the model, we refer the readers to our previous work [33]. The crucial
model aspects are as follows.

queis-

cent

prolife-

ra ng

Dead

tumor

cells

Viable tumor cells
Abnormal

capillaries

Normal

capillaries

Normal cells

Glucose

Inters!!al

fluid

VEGF

Figure 1. Scheme of the main interactions of the model governed by Equation (1). The green arrows
denote the stimulating interactions, the red lines show the inhibiting interactions, and the white
arrows correspond to the transitions of the variables.

The model reproduces the spherically symmetric growth of a non-invasive tumor
within a normal tissue. Under sufficient levels of glucose, g, tumor cells maintain the
proliferative state, np, in which their number grows exponentially. Cells use interstitial
fluid, f , as the mass source. In the absence of glucose, they transit reversibly to the
quiescent state, nq, under which nutrient deficiency tumor cells die; this is reflected by
their transition into the dead state, m. In this, they gradually degrade and transform into
interstitial fluid.

The tumor cells are surrounded by normal cells, h, and they collectively constitute the
porous solid phase fraction of the tissue, denoted as s = np + nq + m + h. The interstitial
fluid represents its second phase, which is capable of viscous flow through the pores within
the solid fraction. The tissue is assumed to be saturated and incompressible, which implies
that the total density of the cells and fluid together remains constant.

The rate of cell proliferation is influenced by both local glucose level and local solid
stress, denoted as σ(s). The solid stress function is built on the assumption that the volume
fraction of cells correlates with the average distance between them [35]. When the cell
fraction is at its normal value (s = s0), the interactions among cells result in zero solid stress.
Cells in close proximity tend to repel each other, while cells at a distance tend to attract.
With increasing distance, the interaction strength eventually vanishes.
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proliferating
tumor cells:

∂np

∂t
=

proliferation︷ ︸︸ ︷
Bnp · Θp(σ)

g
g + g∗

transition︷ ︸︸ ︷
−B · [1 − Θtr(g)]np + B · Θtr(g)nq

advection︷ ︸︸ ︷
− 1

r2
∂(Isnpr2)

∂r
;

(1)

quiescent
tumor cells:

∂nq

∂t
=

transition︷ ︸︸ ︷
B · [1 − Θtr(g)]np − B · Θtr(g)nq

death by starvation︷ ︸︸ ︷
−νnq · Θd(g)

advection︷ ︸︸ ︷
− 1

r2
∂(Isnqr2)

∂r
;

normal
cells:

∂h
∂t

=

advection︷ ︸︸ ︷
− 1

r2
∂(Ishr2)

∂r
;

dead
tumor cells:

∂m
∂t

=

death by starvation︷ ︸︸ ︷
νnq · Θd(g)

degradation︷ ︸︸ ︷
−Mm

advection︷ ︸︸ ︷
− 1

r2
∂(Ismr2)

∂r
;

interstitial
fluid:

∂ f
∂t

=

inflow︷ ︸︸ ︷
[Lncn + Laca] · [pc − p]

outflow︷ ︸︸ ︷
−Llh[p − pl ]

cell degradation︷ ︸︸ ︷
+Mm

cell proliferation︷ ︸︸ ︷
−Bnp · Θp(σ)

g
g + g∗

advection︷ ︸︸ ︷
− 1

r2

∂(I f f r2)

∂r
;

VEGF:

∂v
∂t

=

secretion︷︸︸︷
Svnq

internalization︷ ︸︸ ︷
−ω[cn + ca]v

degradation︷ ︸︸ ︷
−Mvv

diffusion︷ ︸︸ ︷
+Dv∆v if AAT is off,

v = 0 if AAT is on;

normal
capillaries:

∂cn

∂t
=

degradation︷ ︸︸ ︷
−Mc[nq + m]cn

normalization︷ ︸︸ ︷
+

Vnv∗

v + v∗
ca

denormalization︷ ︸︸ ︷
− Vdv

v + v∗
cn

pruning︷ ︸︸ ︷
−µ[cn − 1] · Θ(cn − 1)

advection︷ ︸︸ ︷
− 1

r2
∂(Iscnr2)

∂r
;

abnormal
capillaries:

∂ca

∂t
=

degradation︷ ︸︸ ︷
−Mc[np + kM{nq + m}]ca

angiogenesis︷ ︸︸ ︷
+

Rv
v + v∗

[cn + ca][1 −
cn + ca

cmax
]

normalization︷ ︸︸ ︷
− Vnv∗

v + v∗
ca

denormalization︷ ︸︸ ︷
+

Vdv
v + v∗

cn

active motion︷ ︸︸ ︷
+

Dc

r2
∂2(gr2)

∂r2

advection︷ ︸︸ ︷
− 1

r2
∂(Iscar2)

∂r
;

glucose:
∂g
∂t

=

inflow︷ ︸︸ ︷
[Pg

n cn + Pg
a ca] · [1 − g]

consumption︷ ︸︸ ︷
−[{νgB}npΘp(σ) + Qg

h{nq + h + np[1 − Θp(σ)]}]
g

g + g∗

diffusion︷ ︸︸ ︷
+

Dg

r2
∂2(gr2)

∂r2 ;

where s + f = 1, s = np + nq + h + m,
Θp(σ) = [1 + tanh(ϵ{σp − σ})]/2, Θtr(g) = [1 + tanh(ϵ{g − g∗})]/2,
Θd(g) = [1 + tanh(ϵ{gd − g})]/2,

f (I f − Is) = −K
∂p
∂r

,
∂p
∂r

= −∂σ

∂r
,

solid stress: σ ≡ σ(s) = k
[s − s0][s − ss]2

[1 − s]0.1 · Θ(s − ss).

Interstitial fluid enters the tissue from capillaries, two types of which are taken into
account: normal, cn, and abnormal, ca. Abnormal capillaries possess increased permeability
to fluid and glucose due to the influence of vascular endothelial growth factor (VEGF) v.
It is produced by nutrient-deprived quiescent cells. It also stimulates the formation of
new capillaries in the abnormal state. At low VEGF concentrations, capillaries normalize,
which implies a decrease in their permeability. Normalized excessive capillaries tend to
return to their basal physiological density, which reflects the process of the pruning of
microvasculature in healthy tissues. Interstitial fluid drains into the lymphatic system,
which is not considered explicitly but is assumed to have a density proportional to that of
normal cells. Consequently, the lymphatic capillaries are absent within the tumor. Blood
capillaries degrade within the tumor due to implicit factors, such as rupture caused by
their displacement and due to biochemical reasons [36].

We model the action of AAT as having the maximum theoretically possible efficacy.
When the treatment begins, all the present VEGF is implied to become immediately bound
to the antiangiogenic drug and, therefore, is neutralized. The following normalization of
microvasculature, however, is not immediate. The dynamics of the accompanying processes
happen at physiologically justified rates, as described above.

2.2. Parameters

The parameters of the model were determined based on the outcomes of the exper-
iments (of different types) presented in the literature (if available) or estimated in order
to reproduce the well-established features accompanying tumor growth. The basic set of
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parameters is provided in Table 1, where the following normalization parameters were
used to obtain their model values: 1 h for time; 10−2 cm for length; 3 · 108 cells/mL for
maximum cell density; 10−11 mol/mL for VEGF concentration; 100 cm2/cm3 for capillary
surface area density; 1 mg/mL for glucose concentration. The choice of the majority of
model parameters is justified in our work [33].

Table 1. Model parameters.

Parameter Description Value Based on

Cells:

B maximum rate of cell proliferation 0.01 [37]
σp critical stress for cell proliferation 15 [35]
ϵ smoothing parameter of Heaviside function 500 [33]
ν rate of death by starvation 0.003 [33,38]
gd critical level of glucose for survival 0.001 [33]
M rate of degradation of dead cells 0.01 [33]

Stress:

k solid stress coefficient 500 [33]
ss minimum fraction of interacting cells 0.3 [26]
s0 initial fraction of cells 0.8 [26]

Interstitial fluid:

Ln hydraulic conductivity of normal capillaries 0.1 [22]
La hydraulic conductivity of abnormal capillaries 0.22 [33]
pc fluid pressure in capillaries 4 [22]
Ll hydraulic conductivity of lymphatic capillaries 1300 [22]
pl lymph pressure 0 [22]
K tissue hydraulic conductivity 0.1 [39]

VEGF:
Sv secretion rate 1 [40]
ω internalization rate 1 [41]

Mv degradation rate 0.01 [42]
Dv diffusion coefficient 21 [42]

Capillaries:
R maximum rate of angiogenesis 0.008 [43]

cmax maximum surface area density 5 [43]
Mc characteristic degradation rate 0.03 [43,44]
kM coefficient of degradation in the tumor core 2 [43,44]
Vn normalization rate 0.1 [45]
Vd denormalization rate 0.1 [45]
µ pruning rate 0.002 [45]
v∗ Michaelis constant for VEGF action 0.001 [33]
Dc coefficient of active movement 0.03 [43,44]

Glucose:

g∗ Michaelis constant for consumption 0.01 [46]
Pg

n permeability of normal capillaries 4 [47]
Pg

a permeability of abnormal capillaries 10 [48]
νg parameter of consumption by proliferating cells 1200 [37]
Qg

h rate of consumption by normal tissue 0.5 [49]
Dg diffusion coefficient 100 [50]

2.3. Numerical Solving

During the numerical simulation of Equation (1), intercellular fluid, f , was not explic-
itly taken into account, given the conservation law f = 1 − s. The kinetic, diffusion, and
advection equations for the other variables were solved sequentially at each time step. The
explicit Euler method was employed to solve the kinetic equations. The use of this straight-
forward approach is justified by the relatively small time steps that guide the solving of
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advective equations. For the diffusion equations, the implicit Crank–Nicholson scheme
was implemented. These classical methods are described, e.g., in [51]. In order to solve the
advective equations, the conservative flux-corrected transport algorithm (incorporating
an implicit antidiffusion stage) was used [52]. However, this method introduces a minor
amount of uncorrectable diffusion, leading to the artificial invasion of normal tissue by
the tumor. A similar challenge arises in modeling the normal tissue boundary. In order to
address this issue, two additional floating points were introduced on the computational
grid, marking the positions of the tumor-normal tissue interface and the normal tissue
boundary. The co-ordinates of these points were computed by ensuring the conservation of
total cell volume when solving advection equations at each time step.

The following initial conditions were used, which represent a spherical section of
normal tissue of an initial radius of rN

0 = 3 mm, with a small spherical colony of tumor
cells that have a radius of rT

0 = 0.2 mm and are located in its center at r = 0:
np(r, 0) = sst,

h(r, 0) = 0,
g(r, 0) = 1,
cn(r, 0) = 0

f or r ≤ rT
0 ;


np(r, 0) = 0,
h(r, 0) = sst,
g(r, 0) = 1,
cn(r, 0) = 1

f or rT
0 < r ≤ rN

0 ;

∀r, nq(r, 0) = m(r, 0) = v(r, 0) = ca(r, 0) = 0.

(2)

Here, sst is the steady state value for the fraction of cells. It is only slightly smaller
than s0, which corresponds to a minor stretching of the network of interconnected cells due
to the pressure of the surrounding fluid. The following boundary conditions were used,
where rT is the changing radius of the tumor, and rN is the changing outer radius of normal
tissue:

∀t,
∂np

∂r
|0 =

∂nq

∂r
|0 =

∂m
∂r

|0 =
∂v
∂r

|0 =
∂cn

∂r
|0 =

∂ca

∂r
|0 =

∂g
∂r

|0 = 0;

∂[np + nq + m]

∂r
|rT =

∂h
∂r

|rT ;
∂g
∂r

|rN = 0;

h(rN , t) = s0; v(rN , t) = ca(rN , t) = 0, cn(rN , t) = 1.

(3)

There are two separate advective motions in this model: I f = I f (r, t) denotes the
absolute velocity of the fluid, and Is = Is(r, t) denotes the velocity of the solid phase. By
summing up the equations of the dynamics of all cells and assuming both flow velocities
to be zero at r = 0, Equation (4) is obtained. This was used to define advective velocities
during numerical solution.

Is = K
∂p
∂r

+
1
r2

∫ r

0
{[Lncn + Laca] · [pc − p]− Llh[p − pl ]}z2dz;

I f = Is −
K
f

∂p
∂r

.
(4)

3. Results
3.1. Free Tumor Growth with and without Angiogenesis

Figure 2 compares the cases of free tumor growth with and without the initiation of
angiogenesis under the same values of model parameters, as presented in Table 1. Initially,
the tumor consists entirely of proliferating cells, with their number growing exponentially.
However, within a few hours, some tumor cells start experiencing a deficiency of nutrients,
which are supplied to the tumor mass from surrounding capillaries that are pushed away
by the expanding tumor. Consequently, tumor growth slows down, and the tumor obtains
a layered structure. Its inner core becomes predominantly occupied by quiescent cells, and
the outer rim by proliferating cells. This structure is characteristic of tumor spheroids in
experimental settings and non-invasive tumors in vivo. As the total number of tumor cells
keeps increasing, the further exacerbation of nutrient deficiency results in the appearance
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of dead cells in the tumor core. Their degradation turns them into a viscous liquid, which,
from a modeling point of view, is indistinguishable from the rest of the interstitial fluid. The
decrease in the number of tumor cells in the central part of the tumor implies the stretching
of the solid phase of the tumor tissue. This, in accordance with the biomechanical terms
in Equation (1), underlies the elevated fluid pressure in the tumor core compared to the
surrounding normal tissue. Therefore, fluid oozes from the tumor mass, contributing to
a further decrease in its growth rate. When the total rates of tumor cell proliferation and
death equate, the tumor reaches a stable state.

Without angiogenesis

normal
cells

glucose

tumor cells:

interstitial fluid

VEGF

p
ro
lif
e
ra
ti
n
gqu

ies
ce
nt

dead

abnormal
capillaries

With angiogenesis
Tumor

radius, mm

days

Free growth 

with angiogenesis

Free growth 

without angiogenesis

normal
capillaries

mm mm

Figure 2. Left: tumor growth curves produced by Equations (1)–(4) with and without angiogenesis.
Middle and Right: distributions of model variables for these simulations. The values of the variables
for glucose, VEGF, and capillaries are renormalized for better visualization.

In the case without angiogenesis, the avascular tumor growth stops at ≈1 mm in
radius. This is consistent with clinical observations [5]. In the presence of angiogenesis,
the formation of new capillaries is stimulated by VEGF secreted by quiescent tumor cells.
Capillaries influenced by VEGF have greater permeability, which, along with the increase
in microvascular density, contributes to the increased inflow of glucose to the tumor. The
vascularized tumor has a larger pool of proliferating cells, which means that a greater total
rate of outflow of dead cells is required to compensate for it, yielding a stable tumor. In the
considered simulation, the corresponding maximum tumor radius is ≈5.6 mm. This model
is restricted, with consideration given to a homogeneous, nonmutating tumor. In a more
realistic scenario, further tumor growth would be ensured, in particular, by the continuous
selection of cells that proliferate faster and are more tolerant to nutrient deficiency and the
initiation of tumor cell invasion into surrounding tissue accompanied by the co-opting of
capillaries located there.

Despite the variety of considered physiological processes and the nontrivial pattern
of the distribution of the model variables produced by this model, on a higher level of
consideration, the simulations of free tumor growth provide quite classical S-shaped growth
curves [53]. Such curves by themselves can be qualitatively reproduced by much simpler
models based on a few ordinary differential equations. In the corresponding models, the
dependence of tumor growth on angiogenesis is generally reproduced via the introduction
of the dependence of maximum tumor volume on the amount of secreted proangiogenic
signals [14]. In such simpler approaches, the cessation of angiogenesis results in the gradual
decrease in tumor volume down to the value corresponding to the case of the initially
avascular tumor. The current model, however, yields a more intricate pattern of tumor
response to AAT, as discussed in further sections.

3.2. Antiangiogenic Therapy Beginning at Different Moments of Tumor Growth

Figure 3 illustrates the nontrivial nature of tumor response to AAT under the variation
in tumor radius at which the treatments begin. The elimination of VEGF for the 1 mm tumor
yields its quick growth saturation. The capillary system that undergoes degradation within
the tumor volume, normalization, and pruning is eventually stabilized with a slightly
greater total amount of capillaries than in the case of the avascular tumor. Therefore, it can
support the existence of a stable tumor slightly greater than 1 mm in radius.
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Figure 3. Left: tumor growth curves produced by Equations (1)–(4) under free tumor growth and
with antiangiogenic therapy (AAT) starting at four different moments. Middle and Right: stable
distributions of model variables for the simulations of AAT starting when the tumor reaches 1 mm
and 4 mm in radius. The values of the variables for glucose and capillaries are renormalized for
better visualization.

AAT performed for larger tumors does not result in tumor stabilization at this radius.
For a 2 mm tumor, the treatment yields a final tumor radius of 0.6 mm. For 3 mm and 4 mm
tumors, their sizes steadily decrease through the simulations, tending toward negligible
values. From the modeling point of view, although the tumor always has some finite radius,
the interpretation of such qualitative results may imply the complete cure of the tumor.

The reasons behind this nontrivial pattern of tumor response to AAT lie in the processes
accompanying tumor shrinkage and the consequent remodeling of displaced normal tissue
and microvasculature. In the case of a small vascularized tumor, the displacement of the
capillary system is only minor. Therefore, the final tumor size is almost not affected by
the physiological processes that happen along with tissue displacement. From the general
mathematical point of view, the system state right before the antiangiogenic treatment is,
by itself, close to the stable state that would be achieved in the absence of angiogenesis.
Thus, the treatment imposes only a comparably small perturbation to tumor dynamics.

In contrast, large vascularized tumors have evolved to states that are significantly
different from the stable state of an initially avascular tumor. The rapid normalization
of microvessel structure and density in response to the elimination of VEGF entails a
quick decrease in the total volume of proliferative tumor cells that can be sustained by
microvasculature. In a short period, the overall tumor cell proliferation rate becomes unable
to compensate for the rate of ongoing loss of tumor volume due to the outflow of dead cell
remnants. As the difference between the absolute rates of these processes keeps increasing,
the tumor undergoes rapid shrinkage.

The displacement of the interface between the tumor and normal tissue pulls the
normal cells and microvasculature towards the center of the tumor, which is in accordance
with the advection terms presented in Equation (1). The spherical geometry of the system
means that this forced motion of capillaries is more active in the regions with greater
curvature, i.e., near the tumor. As the normalized capillary system undergoes rupture
and pruning, its overall volume continuously decreases. Eventually, the microvasculature
system ends up in a state in which its density is close to its initial value at the outer side
of the normal tissue, but it falls down to negligible values towards the tumor surface.
The total volume of a stable microvasculature depends on the degree of its displacement
and remodeling that it has undergone in response to treatment. Therefore, initially, larger
tumors end up having smaller volumes of surrounding microvasculature.

The stable volume of a tumor that can be supported by the nutrient supply from the
resulting microvasculature depends not only on the total volume of the latter but also
on its configuration within the normal tissue. The pool of normal cells represents the
active consumers of nutrients and, therefore, the competitors of tumor cells. Large gaps
between the tumor surface and the areas with physiologically normal capillary density are
detrimental to tumor size since the nutrients that are supplied from the capillaries and that
diffuse toward the tumor undergo active consumption by normal cells. In extreme cases,
the level of glucose entering the tumor rim is, by itself, not sufficient to ensure tumor cell
survival, which results in a steady decrease in tumor volume down to negligible values.
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Overall, the complexity of the intertwined physiological processes results in the
observed hysteresis effect, in which the final state of the tumor after AAT depends on the
previous history of tumor progression.

3.3. Combining Antiangiogenic Therapy with Chemotherapy

The above-described nature of tumor response to the cessation of angiogenesis should
also affect the combined types of treatment involving AAT. Previously, we hypothesized
that in combination with chemotherapy (CT), the delay of administration of the antiangio-
genic drug can be beneficial when compared to the case of the simultaneous initiation of CT
and AAT. The rationale behind this hypothesis was that such an approach could exploit
the increased permeability of the angiogenic capillary network in the peritumoral region,
which is in contrast to the normalized network that forms as a result of AAT. Thus, it should
ensure the enhanced penetration of the cytotoxic agent into the tumor. The account for
the biomechanical properties of the tissues, however, suggests that the alternation of the
scheduling of combined AAT and CT may yield more nontrivial consequences.

In order to illustrate this idea, let’s consider an augmented version of the model ex-
pressed by Equations (1)–(4), which also considers the intravenous injections of chemother-
apeutic drugs. Equation (5) lists the additional terms introduced in the model to account
for the chemotherapeutic drug and its action. Chemotherapy is assumed to affect only pro-
liferating cells. One newly introduced partial differential equation governs the distribution
of chemotherapeutic agents in the tissue, and a new ordinary differential equation governs
its temporal dynamics in blood.

proliferating
tumor cells:

∂np

∂t
=

previously considered processes︷︸︸︷...

death by CT︷ ︸︸ ︷
−χunp ;

dead
tumor cells:

∂m
∂t

=

previously considered processes︷︸︸︷...

cell death by CT︷ ︸︸ ︷
+χunp ;

chemotherapeutic
agent in tissue:

∂u
∂t

=

advective inflow/outflow︷ ︸︸ ︷
{[Lnγu

ncn + Laγu
a ca] · [pc − p]}[ubl · Θ(pc − p) + u · Θ(p − pc)]

diffusive inflow/outflow︷ ︸︸ ︷
+[Pu

n cn + Pu
a ca] · [ubl − u]

lymphatic outflow︷ ︸︸ ︷
−Ll h[p − pl ]u

diffusion︷ ︸︸ ︷
+

Du

r2
∂2(ur2)

∂r2

advection︷ ︸︸ ︷
− 1

r2

∂(I f ur2)

∂r
;

chemotherapeutic
agent in blood:

∂ubl
∂t

=

injections︷ ︸︸ ︷
I

∑
i=1

δ(t − ti)

clearance︷ ︸︸ ︷
−Cuubl .

(5)

The term “drug injections” represents the external control that increases the concentra-
tion of a chemotherapeutic drug in the blood by a normalized unit at designated moments.
In this work, we simulate a protocol with I = 6 injections separated by 3-week intervals.
The beginning of CT takes place when a tumor achieves a 4 mm radius.

Additional model parameters are presented in Table 2. The estimation of the parame-
ters related to the chemotherapeutic agent was performed using our approach presented
previously in [33]. We refer the reader to it for the corresponding details. Here, we con-
sider a chemotherapeutic agent with a 5 nm hydrodynamic radius. It is well-known that
substances with a low-molecular weight move through the pores in capillary walls via
diffusion, while the process of advection dominates for high-molecular-weight agents [54].
The same reasoning applies to their movement through the tissue. Both diffusion and
advection physiological processes are accounted for herein. The sensitivity of cells to the
drug corresponds to a moderate CT, which, by itself, can not eradicate the tumor.
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Table 2. Additional parameters of the model, accounting for chemotherapy.

Parameter Description Value

Cells:

χ sensitivity to chemotherapeutic agent 0.05

Chemotherapeutic agent:

γu
n fraction of available pore cross-section area, normal capillaries 0.09

γu
a fraction of available pore cross-section area, abnormal capillaries 0.58

Pu
n diffusive permeability, normal capillaries 0.007

Pu
a diffusive permeability, abnormal capillaries 0.25

Du diffusion coefficient 13
Cu clearance rate 0.0015

The following initial and boundary conditions were used for the chemotherapeutic
drug:

∀r, u(r, 0) = 0, ubl = 0;

∀t,
∂u
∂r

|0 =
∂u
∂r

|rT = 0.
(6)

Figure 4 illustrates the tumor dynamics in the resulting system under the treatment of
a relatively large tumor using CT, AAT, and their combination, with AAT taking place at
different moments. Chemotherapy by itself results in significant tumor shrinkage, which,
however, is followed by tumor regrowth after the treatment is halted. The case of mono-
AAT has already been demonstrated above, and it effectively results in the eradication of
the tumor.

days

Free growth 

with angiogenesis

Influence of

antiangiogenic

therapy (AAT)

Tumor

radius, mm

Influence of

chemotherapy

(CT)

CT+AAT from 1st injection

CT+AAT from 3rd injection

CT+AAT from 5th injection

Figure 4. Tumor growth curves produced by Equations (1)–(6) under free tumor growth, antiangio-
genic therapy (AAT), chemotherapy (CT), and their combination, with AAT starting at the times of
the different injections of the chemotherapeutic drug.

The combination of CT and AAT starting simultaneously leads to the faster shrinkage
of the tumor than mono-AAT. This happens because the tumor cells, in this case, are
subject not only to a similar depletion of nutrients but also to direct cytotoxic action.
However, the case of mono-CT initially leads to even faster tumor shrinkage. This reflects
the above-mentioned fact that the normalization of capillaries results in a reduced decrease
in cytotoxic agents in the tumor. In the case of the high-molecular-weight chemotherapeutic
agent considered herein, this reduction is very well pronounced and is eventually reflected
in these high-level tumor growth curves. However, in the long term, the combination of
simultaneously initiated CT and AAT proves to be more efficient than mono-CT due to the
eventual critical shortage of nutrient supply to the tumor as their competition with normal
cells exacerbates under capillary network scarcity.

A delay to the beginning of AAT within its combination with CT ensures the faster
initial shrinkage of the tumor. The seeming benefit of such an approach, nevertheless, is
deceptive. At the moment of the third and fifth injections of the chemotherapeutic drug,
the tumors have radii of ≈1.9 mm and ≈0.7 mm, respectively. In accordance with the
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simulations presented in the previous section, the AAT initiated for such tumors results
in their stabilization at small but notable sizes. Thus, the delay in AAT administration in
combination with CT compromises the potential curative effect of the treatment.

4. Conclusions and Discussion
4.1. Overview of Main Results

This paper presented a mathematical modeling study of the non-invasive solid tumor
response to antiangiogenic therapy (AAT), taking into account the biomechanical aspects.
The tumor in the considered model represents a compact object embedded in normal
tissue. An increase in tumor volume and the displacement of normal tissue are ensured by
the gradients of solid stress that arise due to tumor cell proliferation. The tumor pushes
microvasculature away during its growth, compromising its own supply of nutrients, which
are necessary for cell proliferation and survival. The degradation and outflow of dead cells
eventually compensate for tumor proliferation, yielding tumor growth stabilization.

The initiation of angiogenesis by tumor cells experiencing metabolic stress results
in the augmentation of microvasculature permeability and surface area. The resulting
abnormal microvasculature can support the existence of larger stable tumors.

Simulations of AAT show that the outcome of the elimination of proangiogenic factors
depends on the proximity of the current tumor size to the size of the stable avascular
tumor grown without the initiation of angiogenesis. For a tumor with close size, AAT
yields a minor perturbation to its dynamics and leads to its rapid stabilization. For larger
tumors, however, the quick fall in nutrient supply significantly affects their dynamics. The
domination of outflow of dead cell mass over cell proliferation causes the displacement
of the interface between the tumor and the normal tissue, which pulls the normal cells
and microvasculature towards the core of the tumor. As the capillary system undergoes
rupture and pruning during this movement, the system eventually stabilizes at notably
decreased volumes regarding the capillary system, the density of which falls toward the
tumor surface. The degree of distortion of microvasculature depends on the distance of
its displacement. Therefore, the stable sizes of tumors that underwent AAT negatively
correlate with their sizes at the beginning of AAT. For sufficiently large initial tumors,
the destruction of microvasculature is so crucial that, eventually, it is able to support the
survival of not only normal but non-normal tumor cells. Thus, in such cases, AAT is
effectively curative as long as it blocks all the possible mechanisms of angiogenesis.

4.2. Clinical Significance

The idea that AAT can be curative is an intriguing outcome of this study; however, to
the best of our knowledge, there are no clinical cases supporting it. The very possibility of
obtaining such confirmation is significantly compromised by the fact that AAT is rarely
used in the mono regime. It is generally combined with other modalities, including the
surgical removal of the tumor after its shrinkage caused by AAT. Moreover, the model
used herein assumes compactly growing benign tumors, while invasive tumors have been
shown on numerous occasions to possess inherent resistance to AAT due to the ability of
motile cancer cells to actively escape nutrient-deficient regions [55]. Therefore, for invasive
tumors, the possibility of the curative effect of AAT seems highly unlikely. It should also be
noted that, in reality, other signaling molecules (other than VEGF) can be involved in the
stimulation of microvessel growth, although they are generally assumed to be much less
important. Further aid from experimental and clinical researchers can shed light on the
possibility of the validation of the concept of curative AAT.

4.3. Future Prospects

The designed approach considers the physiological processes accompanying the dy-
namics of a tumor and its microenvironment during AAT in detail. It largely determines
the efficacy of the delivery of concomitantly administrated drugs to the tumor. The consid-
eration of tissue as a porous biphasic media with solid and liquid components is crucial for
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a physiologically adequate reproduction of the dynamics of high-molecular-weight drugs,
which is dominated by advective motion. This study provides example simulations of
AAT combined with chemotherapy (CT). One of the qualitative outcomes of administrating
AAT simultaneously with CT, as suggested by the modeling, is the notable reduction in
the inflow of the chemotherapeutic drug into the tumor, which compromises initial tumor
shrinkage. Given these intriguing results, we will use the developed model as the basis for
future studies on the optimization of combined types of antitumor therapy with the use of
antiangiogenic drugs.

The results of this work were obtained by using simulations of a spherically symmetric
tumor, which effectively renders the model one-dimensional and, thus, drastically reduces
computational complexity. Such an approach facilitates the ability to simulate the long-term
behavior of a tumor and its microenvironment in response to treatment, thus making the
reconstruction of this behavior during the entire course of a prolonged treatment practically
feasible. The obtained qualitative results are expected to be preserved under sufficiently
moderate perturbations of spherical symmetry in a more realistic three-dimensional set-
ting. Nevertheless, conducting the three-dimensional modeling study, especially based on
patient imaging data, represents an intriguing future prospect. Such work, in particular,
would allow for exploring the limits of the applicability of the results for tumors of varying
sizes and shapes.

Supplementary Materials: The C++ computational code can be downloaded at: https://www.mdpi.
com/article/10.3390/math12020353/s1.
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