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Abstract: The paper concerns a nonlinear second-order parabolic evolution equation, one of the well-
known objects of mathematical physics, which describes the processes of high-temperature thermal
conductivity, nonlinear diffusion, filtration of liquid in a porous medium and some other processes in
continuum mechanics. A particular case of it is the well-known porous medium equation. Unlike
previous studies, we consider the case of several spatial variables. We construct and study solutions
that describe disturbances propagating over a zero background with a finite speed, usually called
‘diffusion-wave-type solutions’. Such effects are atypical for parabolic equations and appear since
the equation degenerates on manifolds where the desired function vanishes. The paper pays special
attention to exact solutions of the required type, which can be expressed as either explicit or implicit
formulas, as well as a reduction of the partial differential equation to an ordinary differential equation
that cannot be integrated in quadratures. In this connection, Cauchy problems for second-order
ordinary differential equations arise, inheriting the singularities of the original formulation. We prove
the existence of continuously differentiable solutions for them. A new example, an analog of the
classic example by S.V. Kovalevskaya for the considered case, is constructed. We also proved a new
existence and uniqueness theorem of heat-wave-type solutions in the class of piece-wise analytic
functions, generalizing previous ones. During the proof, we transit to the hodograph plane, which
allows us to overcome the analytical difficulties.

Keywords: nonlinear parabolic equation; porous medium equation; diffusion wave; exact solu-
tion; singular ordinary differential equation; existence theorem; analytical solution; power series;
majorant method

MSC: 35K57

1. Introduction

Let us consider the second-order nonlinear evolutionary equation

Ut = ∆Ψ1(U) + Ψ2(U), (1)

where t is time; ∆ is Laplacian in spatial variables x1, x2, . . . , xN ; U(t, x1, . . . , xN) is an
unknown function. The given functions Ψ1(U), Ψ2(U) are assumed to be sufficiently
smooth. If Ψ′

1(U) ̸= 0, Equation (1) is parabolic [1].
The most known version of Equation (1) is the porous medium equation [2] also

called ‘nonlinear heat equation’ [3]. It corresponds to the case Ψ1(U) = Uσ, Ψ2(U) ≡ 0.
Meanwhile, there are other versions [4]. Furthermore, some scientists often deal with
such a form of Equation (1), which incorporates terms with the first derivatives of spa-
tial variables—convective terms. This type of equation is called a ‘diffusion–convection
equation’ [5].

These equations and systems have been studied for over a century [6] and continue to
be crucial and urgent problems in the modern theory of partial differential equations [7]
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and mathematical physics [8]. Apparently, the reason lies both in interesting mathematical
properties and in connection with important physical [3], mechanical [9], and biologi-
cal [10] applications.

It was the famous French mathematician and physicist J.V. Boussinesque who first
obtained the porous medium equation when studying groundwater filtration [6]. This equa-
tion is derived from the physical Darcy’s law and Fourier’s law of heat conduction when the
diffusion coefficient (thermal conductivity coefficient) depends on density (temperature). It
is often used as a simplified mathematical model in the theory of flame propagation theory
and the stellar theory [11], as well as to describe an ideal gas filtration in porous media [12].
One can find a more detailed review on applications of nonlinear parabolic equations in
monographs [2,5].

Nonlinear parabolic equations and systems with degeneracy are particularly interest-
ing for modern mathematical modeling [13]. For example, it takes place in Equation (1) if
Ψ′

1(0) = 0. The porous medium equation also has a similar property if σ > 1. It appears
impossible to describe the processes of high-temperature thermal conductivity and filtra-
tion of liquids and gases in porous media, where disturbances propagate over a stationary
background with a finite velocity, using traditional linear parabolic models. An alternative
approach is to use hyperbolic equations [14], but they may not provide required accuracy
in modeling [15].

Another way is to apply nonlinear parabolic equations having solutions with the
required properties. As far as we know, Ya.B. Zeldovich [11] and G.Ya. Barenblatt [12] are
the first who consider such solutions in connection with high-temperature processes in
plasma physics and filtration of liquids and gases in porous media, respectively. Note that
here we refer not to original articles published in Russian and inaccessible to most readers
but to the translated monographs by the same authors.

Later, the term heat [3] (diffusion or filtration [16]) wave, depending on the physical
interpretation of the problem, is introduced. Further, we will use the term ’heat wave’
since the equation considered does not include the convective component. A heat wave is
defined as a solution to a nonlinear parabolic equation that consists of two parts: positive
and zero, joined along a certain surface (line), which is called the ‘wave front’ or ‘zero front’.

So, we are interested in solutions to the generalized porous medium equation with a
zero front. They must satisfy both Equation (1) and the condition

u| f (t,x1,...,xN)=0 = 0, (2)

where the manifold f (t, x1, . . . , xN) = 0 (zero front) can be given, leading to the problem of
constructing a heat wave with a prescribed zero front, or we can determine it via additional
conditions. At the zero front, the trivial and nontrivial solutions are continuously joined,
and the derivatives, generally speaking, have a discontinuity. Figure 1 shows a geometric
illustration of a heat-wave-type solution. The appearance of solutions with nonlinear
properties in parabolic equations is seemingly caused by degeneracy at the wave front,
leading to so-called ‘locally hyperbolic’ properties.

Since the last quarter of the 20th century, the scientific school of A.F. Sidorov has
studied heat-wave-type solutions [16]. A crucial result of these studies is the use of the
characteristic series method [8], originally proposed as a tool for studying hyperbolic
equations and systems, to solve the problem of heat wave initiation [17,18]. In this case,
the coefficients of the series are calculated recursively. The paper [19] concerns methods for
constructing exact solutions of the nonlinear heat equation.

The most significant problem for nonlinear parabolic equations and systems is the
search for exact solutions [20] with given properties. Much attention is paid to its study at
the scientific school of A.A. Samarskii [3]. Thus, N.A. Kudryashov and his disciples study
evolutionary equations applied for describing heat conduction processes [21], as well as
in the biological Fisher model [22], and the “predator-prey” model [23]. In this regard,
a reduction to ordinary differential equations (ODEs) of the Lienard type is often used [24].
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Figure 1. Heat wave.

Papers [25–29] consider the Cauchy problems for quasilinear parabolic equations.
Here, the authors focus on proving the existence of solutions and studying their properties
(asymptotic stability, blow-up, localization, etc.).

In [30,31], the authors deal with evolutionary quasilinear parabolic equations with
singularities and study various initial-boundary value problems. They prove the existence
and uniqueness theorems for weak solutions and investigate blow-up and localization
effects in various function spaces.

One of the most prominent specialists in parabolic PDEs is the Spanish mathematician
J.L. Vazquez. His research considers the Cauchy problem for quasilinear degenerate
parabolic equations, such as the equation with the p-Laplacian operator [32], the fast
diffusion equation [33], as well as the porous medium equation [34]. The power-law
nature of nonlinearity and the appearance of degeneracy unite all of them. Near the points
of degeneracy, as a rule, they observe a finite velocity of propagation of perturbations.
The research focuses on abstract functional spaces, proving the existence of a solution and
examining asymptotic behavior and blow-up [35], etc. But as a rule, it neither presents
explicit formulas of the solution nor constructs solutions as series. Note that, recently, J.L.
Vasquez has concentrated on equations with fractional derivatives.

One can find a detailed review of studies of the porous medium equation and its gener-
alizations up to 2007 in the fundamental monograph [2]. Also, our previous articles [36,37]
give detailed bibliographic reviews.

We have repeatedly examined zero-front solutions in the context of constructing exact
solutions [36,38,39], proving the existence and uniqueness theorems for initial boundary
problems that initiate a heat wave [36,38,39], and developing numerical algorithms [37,40].
Moreover, the article [38] provides the immediate background for this study in terms of
problem formulation, while the research methods draw from [36,39] to address a higher-
dimensional problem.

In this article, we apply more advanced research methods to the previously considered
problem, which allows us to obtain new scientific results. In particular, we determine
new classes of exact solutions to Equation (1) and either represent them in explicit form
or reduce to the integration of ODEs having singularities in the multiplier of the higher
derivative. For the ODEs, the existence and uniqueness theorems for classical (smooth)
solutions are proven. We also prove a theorem for the existence of analytical solutions
to the boundary problem for Equation (1). Unlike [36,38,39], we perform the hodograph
transformation in order to overcome analytical difficulties. A new example is constructed,
which is an analog of the classic example by S.V. Kovalevskaya [41] and generalizes the
earlier result [36].
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2. Formulation

Provided that the function K(U) = Ψ′
1(U) is sufficiently smooth and monotonous,

it is possible to transform Equation (1) to the following form applying the substitution
u = K(U)

ut = u∆u + F(u)(∇u)2 + Φ(u). (3)

Here, F(u) = uϕ′′(u)/ϕ′(u) + 1, Φ(u) = Ψ2(ϕ(u))/ϕ′(u), K(ϕ(u)) = u, in other
words, ϕ(u) is the inverse function to K(U).

In the presence of spatial symmetries, Equation (3) can be written as

ut = uuρρ + F(u)u2
ρ +

νuuρ

ρ
+ Φ(u). (4)

Here, ρ =

(
N

∑
i=1

x2
i

)1/2

is a new spatial variable, ν = N − 1. The most natural cases

are ν = 0 (plane symmetry), ν = 1 (cylindrical symmetry), and ν = 2 (spherical symmetry).
A relatively common assumption in the literature is that Ψ1(U) and Ψ2(U) are power

functions. Then, F(u) = 1/σ, Φ(u) = αuβ, where α, β > 0, σ > 0, are constants, and
Equation (4) arrives to the form

ut = uuρρ +
u2

ρ

σ
+

νuuρ

ρ
+ αuβ. (5)

The purpose of our study is to obtain solutions to Equation (5), whose construction,
as a rule, is reduced to the integration of ordinary differential equations.

The principal (but not the only) interest for us is those solutions that satisfy the condition

u|ρ= f (t) = 0 (6)

since they can be considered as a component of a heat wave.
Obviously, problems (5) and (6) have a trivial solution u ≡ 0, but there may be non-

trivial ones. The reason for the uniqueness breaking is that Equation (5) degenerates at
u = 0 since the factor of the second (higher) derivative vanishes.

The line ρ = f (t), on which the unknown function vanishes, is a zero front.
Looking ahead, we note that solutions with a zero front (if exist) arise as a special case

of constructions of a more general type.

3. Heat-Wave-Type Solutions

In this section, we construct exact solutions to (5) and then select those that satisfy
condition (6), using various approaches. Speaking about an exact solution, we mean not
only explicit or implicit formulas but also the reduction of a partial differential equation
to an ordinary differential one, which may not be integrated in quadratures. Of course,
not all of the numerous known techniques for constructing exact solutions to equations
of mathematical physics [20] are effective in this case, but the range of methods we use is
quite wide. Let us look at them successively.

3.1. Polynomial in Powers of ρ

Let us seek a solution to Equation (5) as the following polynomial:

u(t, ρ) =
n

∑
k=0

ak(t)ρk. (7)

We do not specify the value of n ≥ 2 yet. Let us substitute (7) into (5) and equate the
coefficients at the same powers of ρ.
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Analyzing these equalities, we obtain that they can be consistent only if α = 0 or
β = 1. Moreover, a1(t) = a3(t) = . . . = an(t) = 0, and a0(t), a2(t) are determined from the
ODE system {

a′0(t) = 2(1 + ν)a0(t)a2(t) + αa0(t),

a′2(t) = 2
(

1 + ν + 2
σ

)
a2

2(t) + αa2(t).
(8)

The initial conditions for system (8) can be set arbitrarily (i.e., there is arbitrariness in
two constants). The second equation contains only one unknown function a2(t) and allows
separation of variables.

Let us consider two possible cases
1. If α ̸= 0, then β = 1, and the second equation of (8) has the following solution:

a2(t) = − ασeαt

2(2 + νσ + σ)(A2 + eαt)
,

where A2 is an arbitrary constant.
Note, if A2 = 0, then a2 = −ασ/(4 + 2νσ + 2σ) = const.
Substituting a2(t) obtained into the first equation of (8), we obtain another equation

with separable variables, which has the solution

a0(t) =
A0eαt

(A2 + eαt)σ(ν+1)/(σν+σ+2)
,

where A0 is an arbitrary constant.
Thus, we have the following solution to Equation (5):

u =
A0eαt

(A2 + eαt)σ(ν+1)/(σν+σ+2)
− ασeαt

2(2 + νσ + σ)(A2 + eαt)
ρ2. (9)

Next, let us distinguish such partial solutions (9) that satisfy condition (6) with an
unknown zero front ρ = f (t). To carry this out, rewrite (9) as

u =
ασeαt

2(2 + νσ + σ)(A2 + eαt)

[
R2(A2 + eαt) 2

νσ+σ+2 − ρ2
]

,

where R2 = 2A0(2 + νσ + σ)/(ασ) > 0, and then

f (t) = R(A2 + eαt)1/(νσ+σ+2).

One can see that for α > 0, the zero front moves away from the origin with exponential
speed, and lim

t→+∞
u(t, ρ) = +∞ for all admissible ρ.

If α < 0, then the zero front moves to the origin, but cannot reach the point
ρ = RA1/(νσ+σ+2)

2 , to which it asymptotically approaches. The solution u(t, ρ) is bounded
in t for all admissible ρ.

The most interesting picture is at A2 = 0, when the zero front asymptotically ap-
proaches the point ρ = 0, at which Equation (5) has a singularity.

2. When α = 0 (i.e., no need to choose β), system (8) has a completely different solution
a0(t) =

A0[
A2+2

(
1+ν+ 2

σ

)
t
]σ(ν+1)/(σν+σ+2) ,

a2(t) = − 1

A2+2
(

1+ν+ 2
σ

)
t
.

The solution to problem (5), (6) is

u =
1

A2 + 2
(

1 + ν + 2
σ

)
t

{
R2
[

A2 + 2
(

1 + ν +
2
σ

)
t
] 2

νσ+σ+2
− ρ2

}
, (10)
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where R2 = A0 > 0. Then, f (t) = R
[

A2 + 2
(

1 + ν + 2
σ

)
t
]1/(νσ+σ+2)

.

Since 0 < 1/(νσ + σ + 2) < 1/2, the zero front moves rather slowly. Nevertheless,
lim

t→+∞
f (t) = +∞ and u(t, ρ) is also bounded in t for all admissible ρ.

3.2. Series in Powers of t

An attempt to construct a solution to Equation (5) as a polynomial in powers of t leads
to an inconsistent system of equations. So, let us consider the Taylor series

u(t, ρ) =
n

∑
k=0

uk(ρ)tk

k!
, uk(ρ) =

∂ku
∂tk

∣∣∣∣∣
t=0

. (11)

If the initial condition is given as

u|t=0 = u0(ρ), (12)

where u0(ρ) is a sufficiently smooth function, the coefficients of the series can be uniquely
determined by using the following recurrence formulas:

uk+1(ρ) =
k
∑

i=0

k!
i!(k−i)!

(
u′′

i uk−i +
1
σ u′

ku′
k−i +

ν
ρ u′

iuk−i

)
+ Fk,

Fk(ρ) =
∂k(αuβ)

∂tk

∣∣∣
t=0

.
(13)

To calculate Fk(t), we differentiate the source function αuβ as a composite function.
The right-hand side of (13) includes ui only for i ≤ k, which ensures that uk+1 is uniquely
determined if β ∈ N.

The issue of convergence of series (11) requires a separate discussion. The example by
S.V. Kovalevskaya for the linear heat equation, known since the 19th century, shows that
the solution to the initial problem, which has the form of a power series, can be constructed,
but the series is divergent. Similar examples can be given in the nonlinear case.

Previously, we have considered problem (5), (12) for ν = 0, α = 0, and u0 = ρn, n ∈ N
and figured out that series (13) ends if n = 1, converges for n = 2, and diverges if n ≥ 3 [36].

Let us now consider the case ν > 0, α = 0, u0 = ρn.
1. First, let n ≥ 3. Then, in the formula (13) additional non-negative terms appear,

which obviously cannot turn divergent series into convergent ones. Thus, series (13) when
ν > 0 is divergent, as well as for ν = 0.

2. Next, let n = 2. By induction of k, it can be shown that

uk(t) = k!
(

2 + 2ν +
4
σ

)
ρ2,

which leads to

u = ρ2
∞

∑
k=0

(
2 + 2ν +

4
σ

)k
tk =

ρ2

1 − 2
(
1 + ν + 2

σ

)
t
.

This solution is a particular case of (10) when A2 = −1, A0 = 0. In turn, for ν = 0 we
have previously obtained a solution (see (22) from [36]).

3. Finally, let n = 1, i.e., u0 = ρ. We sequentially calculate the coefficients uk.
Obviously, u′

0 = 1, u′′
0 = 0, and from (13) we obtain

u1 = u0u′′
0 +

(u′
0)

2

σ
+

νu0u′
0

ρ
=

1
σ
+ ν = const, u′

1 = 0,

u2 = u1u′′
0 + u0u′′

1 +
2
σ
(u′

1)
2 +

ν

ρ
(u′

0u1 + u′
1u0) =

ν

ρ
u′

0u1 =
ν(σν + 1)

σρ
.
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Thus, u2(ρ) ̸= 0 for ν > 0 and the series does not end (unlike for ν = 0). The next
coefficient is

u3 = u0u′′
2 + 2u′′

1 u1 + u′′
0 u2 +

2
σ
(u′

0u′
2 + u′

1u′
1) +

ν

ρ
(u′

0u2 + 2u′
1u1 + u0u′

2) =

2ν(σν + 1)(σ − 1)
σ2ρ2 .

By induction of k, it can be shown that

uk+1 = νBkρ−k, Bk = const, k ≥ 2.

This means that the solution to Equation (5) in this case admits the following form

u(t, ρ) = ρw(ξ), ξ =
t
ρ

. (14)

3.3. Series in Powers of t/ρ

Let us substitute (14) into (5). Expressing the derivatives and collecting the like terms,
we obtain the following problem for the ODE:

w′ = ξ2
[

ww′′ +
(w′)2

σ

]
− ξ

(
2
σ
+ ν

)
ww′ +

(
ν +

1
σ

)
w2, w(0) = 1. (15)

The initial condition follows from (12).
The solution to problem (15) is constructed as a series in powers of ξ:

w(ξ) =
∞

∑
k=0

wkξk

k!
, wk =

dkw
dξk

∣∣∣∣∣
ξ=0

. (16)

From the initial condition, we have that w0 = 1. Next, from the equation and the
initial condition (15), we have that

w1 =

(
ν +

1
σ

)
w2

0 = ν +
1
σ

.

We determine the rest coefficients by sequentially differentiating Equation (15) and
setting ξ = 0. As a result, we have that

w2 = −
(

ν +
2
σ

)
w0w1 + 2

(
ν +

1
σ

)
w0w1 = νw0w1 = ν

(
ν +

1
σ

)
,

w3 = 2w0w2 +
2
σ

w2
1 − 2

(
ν +

2
σ

)
(w0w2 − w2

1) +

(
ν +

1
σ

)
(2w0w2 + 2w2

1) =

2ν

(
ν +

1
σ

)(
1 − 1

σ

)
.

One can see that at each step the coefficients found earlier appear on the right side.
Moreover, despite the fact that only one initial condition is specified for the second-order
equation, the coefficients are determined uniquely. Note that the resulting formulas corre-
spond (up to substitution) to u1, u2, u3.

Assume the coefficients of the series (16) up to k ≥ 3 have been found. In order to find
wk+1, we differentiate Equation (15) k times and set ξ = 0:

wk+1 =
[
k2 −

(
ν + 2

σ + 1
)
k + 2

(
ν + 1

σ

)]
w0wk+

k[(k − ν − 2)(k − 1) + ν]w1wk−1 + Gk,
(17)

where G3 = 0, and the next values are calculated using the formula
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Gk = k(k − 1)

[
k−2

∑
i=2

(
Ci

k−2 +
1
σ

Ci−1
k−2

)]
wiwk−i−(

ν +
2
σ

)
k

k−2

∑
i=2

Ci
k−1wiwk−i +

(
ν +

1
σ

) k−2

∑
i=2

Ci
kwiwk−i =

=
k−2

∑
i=2

k!
i!(k − i)!

[
(k − i)(k − i − 1) +

1
σ

i(k − i)−
(

ν +
2
σ

)
(k − i) + ν +

1
σ

]
wiwk−i, k ≥ 4.

Thus, the formal solution to problem (15) in the form of the Maclaurin series at the
point ξ = 0 is uniquely determined.

The question of the convergence of the constructed series does not generally have a
definite answer.

At ν = 0, as already noted, the series ends and the solution has the form of a linear
polynomial. On the other side, let ν = 1, σ ≥ 1. Then, w0 > 0, w1 > 0, w2 > 0, w3 ≥ 0.

Let us consider equality (17). The factor multiplying w0wn has the following lower
estimate

k2 −
(
ν + 2

σ + 1
)
k + 2

(
ν + 1

σ

)
=

k2 − 2
(

1
σ + 1

)
k + 2

(
1
σ + 1

)
≥
(

k − 1
σ − 1

)2
≥ (k − 2)2,

since 1 ≥ 1/σ.
The factor multiplying w1wk−1 is positive for k ≥ 3.
Finally, in Gk, the factor in square brackets can be represented as

(k − i)
(

k − i − 2 +
i − 2

σ

)
+ 1 +

1
σ
> 0,

since 2 ≤ i ≤ k − 2. Hence, wk ≥ 0. Moreover, if k ≥ 3, then wk > 0. Therefore,

wk+1 ≥ (k − 2)2wk > 0, k ≥ 3. (18)

According to d’Alembert’s criterion, and taking into account (18), the radius of con-
vergence of the power series (16) is determined as

R = lim
k→+∞

|vk|
k!

:
|vk+1|
(k + 1)!

≤ lim
k→+∞

|vk|(k + 1)!
|vk|k!(k − 2)2 = lim

k→+∞

(k + 1)
(k − 2)2 = 0.

Thus, the series converges only at the point ξ = 0.
The above is justified by the following example.

Example 1. The problem

ut = uuρρ +
u2

ρ

σ
+

νuuρ

ρ
, u|t=0 = ρ, (19)

has a unique solution in the form of a series in powers of ρ which, for ν = 1, σ ≥ 1, diverges
everywhere except the point ξ = 0.

Example 1 is an analog of the classic example by S.V. Kovalevskaya and complements
the previously proven statement for the plane-symmetric case [36].

Remark 1. Problem (18) for ν = 2, σ ≥ 1 has a similar property, but the proof requires more subtle
and cumbersome estimates.

If we consider for Equation (15) the Cauchy conditions u(ξ0) = u0 ̸= 0, u′(ξ0) =
u1, ξ0 ̸= 0, then, according to the classical existence and uniqueness theorems for ODEs,
the problem is uniquely solvable in the class of twice continuously differentiable functions.
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However, there is a case that does not obey the known theorems, but also leads to the
classical solution. Consider the condition w(ξ0) = 0. If ξ ̸= 0, without losing the generality,
we can set ξ = 1, i.e., deal with the problem

w′ = ξ2
[

ww′′ +
(w′)2

σ

]
− ξ

(
2
σ
+ ν

)
ww′ +

(
ν +

1
σ

)
w2, w(1) = 0. (20)

Theorem 1. Problem (20) has the following classical (twice continuously differentiable) solutions:

1. If w′(1) = 0, there is a trivial solution w ≡ 0.
2. If w′(1) = σ, there is a non-trivial solution having the Taylor series form.

The problem has no other continuously differentiable solutions.

Proof. The justification for the first part of the theorem is obvious. Let us prove that the
second is also true. We construct a solution as the series

w(ξ) =
∞

∑
k=0

wk(ξ − 1)k

k!
, wk =

dkw
dξk

∣∣∣∣∣
ξ=1

. (21)

From the initial condition, we obtain w0 = 0. Substituting ξ = 1, w(1) = 0 into Equation (20),
we obtain w1 = w2

1/σ. Therefore, either w1 = 0 and then we arrive at case 1 since
w1 = w2 = . . . = 0 or w1 = σ. For all other values of w1, the Cauchy problem turns out to
be inconsistent, which implies the absence of a classical solution.

Let w1 = σ > 0. Due to determining w2, we differentiate Equation (20) with respect to
ξ and set ξ = 1. Taking into account the previously found derivatives, we find that

w2 = 2
w2

1
σ

+ w1w2 + 2
w1w2

σ
−
(

2
σ
+ ν

)
w2

1.

Collecting the like terms and expressing w2, we have that

w2 =
νσ2

σ + 1
.

Continuing to sequentially differentiate Equation (20) and setting ξ = 1, we obtain

wk+1 = − 1
1 + kσ

Hk, (22)

where Hk is a polynomial in variables w1, w2, . . . , wk, the explicit form of which is not given
here because of the bulkiness. Thus, if derivatives up to order k inclusive are known,
the derivative of order k + 1 is uniquely determined by Formula (22). So, a formal solution
in the form of a series has been found.

The convergence of series (21) is proved by constructing a majorant problem of Ko-
valevskaya type. The construction procedure is also not given because it is cumbersome,
since it requires a deep analysis of Hk.

Remark 2. Since w(1) = 0, w′(1) > 0, then w(ξ) > 0 on the interval (1; 1 + δ). This,
in particular, means that it is possible to construct a heat-wave-type solution to Equation (5) for
α = 0 as

u(t, ρ) =

{
0, ρ ≥ t;
ρw(t/ρ), ρ ≤ t,

where w(ξ) is series (21).
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4. Separation of Variables

Let us now perform in Equation (5) separation of variables according to the following
general formula

u(t, ρ) = φ(t)ψ(ρ)v(z), z = ln
a(t)

ρ
. (23)

In fact, we could not use the logarithm, but the chosen method of specifying z allows
us to vastly simplify the final form of the equation for v. Similar, though less general,
substitutions were applied earlier [36,38].

After substitution (23), the derivatives take the form

ut = φ′(t)ψ(ρ)v(z) +
φ(t)a′(t)ψ(ρ)

a(t)
v′(z), uρ = φ(t)ψ′(ρ)v(z)− φ(t)ψ(ρ)

ρ
v′(z),

uρρ = φ(t)ψ′(ρ)v(z)− 2φ(t)ψ(ρ)ψ′(ρ)
ρ

v′(z) +
φ(t)ψ(ρ)

ρ2 v′(z) +
φ(t)ψ(ρ)

ρ2 v′′(z).

Substitute the obtained formulas into Equation (5). Collecting the like terms and
multiplying by ρ2/[φ2(t)ψ2(ρ)] bring us to the equation

vv′′ +
1
σ
−
[

2ρψ′(ρ)
ψ(ρ)

(
2 +

2
σ

)
− 1 + ν

]
vv′ +

[
ρ2ψ′′(ρ)

ψ(ρ)
+

ρ2(ψ′(ρ))2

σψ2(ρ)
+

νρψ′(ρ)
ψ(ρ)

]
v2−

− a′(t)ρ2

φ(t)a(t)ψ(ρ)
v′ − φ′(t)ρ2

φ2(t)ψ(ρ)
v + αρ2 φβ−2(t)ψβ−2(ρ)vβ = 0,

which becomes ODE if the following conditions hold:

ρψ′(ρ)
ψ(ρ)

= const,
ρ2ψ′′(ρ)

ψ(ρ)
= const,

ρ2(ψ′(ρ))2

ψ2(ρ)
= const,

ρ2

ψ(ρ)
= const, αψβ−2(ρ)ρ2 = const,

a′(t)
φ(t)a(t)

= const,
φ′(t)
φ2(t)

= const, αφβ−2(t) = const.

From the above, we immediately obtain that ψ(ρ) = Aρ2. Without losing the generality,
we can assume A = 1. At the same time, it is again necessary to require that either α = 0 or
β = 1. Let us consider both cases.

1. Let β = 1. Then, φ = const = C1, a(t) = C2eC1t, and the ODE for v(z) has the form

vv′′ +
1
σ
(v′)2 −

(
3 +

4
σ
+ ν

)
vv′ +

(
2 +

4
σ
+ 2ν

)
v2 − v′ + αv = 0. (24)

Along with it, α can be arbitrary, including zero.
2. Let α = 0, φ ̸= const. Then, a(t) = (C3t + C4)

γ, and φ(t) = γ/(t + C∗). Here,
C∗ = C4/C3, γ ̸= 0 is a real number. In this case, the ODE for v(z) turns out to be
rather similar:

vv′′ +
1
σ
(v′)2 −

(
3 +

4
σ
+ ν

)
vv′ +

(
2 +

4
σ
+ 2ν

)
v2 − v′ − 1

γ
v = 0. (25)

One can see that only the last terms on the left side differ, more in form than in essence.
Equations (24) and (25) can be written jointly as

vv′′ +
1
σ
(v′)2 −

(
3 +

4
σ
+ ν

)
vv′ +

(
2 +

4
σ
+ 2ν

)
v2 − v′ + µv = 0, v(0) = 0. (26)

where µ can be either α or −1/γ (in the latter case µ ̸= 0).
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Theorem 2. Equation (26) in case of v(0) = 0 it has the following classical (twice continuously
differentiable) solutions:

1. If v′(0) = 0, there is a trivial solution v ≡ 0.
2. If v′(0) = −σ, there is a non-trivial solution in the Maclaurin series form.

The problem has no other continuously differentiable solutions.

Theorem 2 is proven in the same way as Theorem 1.

Remark 3. Item 2 of Theorem 2, taking into account v(0) = 0, v′(0) < 0, allows to construct the
heat-wave-type solution to Equation (5) as

u(t, ρ) =

{
0, ρ ≤ a(t);

ρ2 φ(t)v
(

ln(a(t)/ρ)
)

, ρ ≥ a(t).
(27)

Here v(z) is determined by solving Equation (26) with Cauchy conditions v(0) = 0, v′(0) = −σ,
a(t) = C2eC1t or a(t) = (C3t + C4)

γ, φ(t) = a′(t)/a(t).

5. Qualitative Analysis

Theorem 2 is local and does not allow us to explore global properties of solutions to
Equation (26). In order to solve this problem, we perform an analysis of solutions using
one of the classical methods of the qualitative theory of differential equations [42]. It helps
to study the properties of solution (27) outside a small neighborhood of (t = 0, ρ = 0).

5.1. Analysis of Singular Points

Let us perform some auxiliary transformations. First, we carry out a linear substitution
of the independent variable z̃ = −(3 + 4/σ + ν)z.

Then, (26) takes the form

vv′′ +
1
σ
(v′)2 + vv′ + ηv2 + v′ + µv = 0. (28)

Here, η = 2(1 + 2/σ + ν)/(3 + 4/σ + ν)2 > 0, µ̃ = µ/(3 + 4/σ + ν)2. Here, and
further, we omit the sign ˜ to simplify notation.

Second, since (28) is autonomous, we can lower its order by moving to the phase plane.
We consider p = v′(z) to be a new unknown function, and v to be an independent variable.
Then, (28) becomes

pv
dp
dv

+
p2

σ
+ pv + ηv2 + p + µv = 0, (29)

to which the following dynamic system corresponds to

dv
dζ

= vp,
dp
dζ

= − p2

σ
− pv − ηv2 − p − µv, (30)

where dz = v dζ.
Let us now investigate the equilibrium states (singular points) of system (30). There

are three such points: (0,−σ), (0, 0) and (−µ/η, 0). If µ = 0, then the second and third
points coincide.

Let us introduce the following notation:

R(v, p) = vp, Q(v, p) = −p2/σ − pv − ηv2 − p − µv,

M(v, v) =
(

Rv Rp
Qv Qp

)
=

(
p v

−p − 2ηv − µ −2p/σ − v − 1

)
,
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∆(v, p) = det M(v, p) = −2p2

σ
− p + 2ηv2 + µv,

δ(v, p) = Tr M(v, p) =
(

1 − 2
σ

)
p − v − 1.

Let us figure out the type of each singular point.
1. Consider the point (0,−σ). Since ∆(0,−σ) = −σ ̸= 0, it is a simple equilibrium

point; det(M− λE)|v=0,p=−σ = (λ+ σ)(λ− 1) gives the roots of the characteristic equation
λ1 = −σ and λ2 = 1. Whereas ∆ < 0, λ1, λ2 ∈ R, and λ1λ2 < 0, the point (0,−σ) is the
topological saddle.

2. Consider the point (0, 0). Since ∆(0, 0) = 0, this is a compound equilibrium point.
Here, δ(0, 0) = −1 ̸= 0; therefore, (29) can be written as:

vpdp −
(
ℓp − p2

σ
− vp − ηv2 − µv

)
dv = 0,

where ℓ = −1. Two options are possible µ ̸= 0 and µ = 0.
2.1. Let µ ̸= 0. We construct the solution to the equation

−lp + p2/σ + pv + ηv2 + µv = 0,

as a series in powers of v, which we substitute into pv. As a result, we obtain

p = χ1(v) = −µv + . . . , θ1(v) = (vp)|p=χ1(v) = −µv2 + . . .

Since the lowest power of v in the expansion θ1(v) equals two, the point (0, 0) is a saddle-
node with one nodal and two saddle sectors. The nodal sector is stable because ℓ < 0.
Moreover, if µ < 0, then the trajectories of the nodal sector approach (0, 0) when ζ → −∞
on the left of the Op axis. If µ > 0, the trajectories of the nodal sector approach (0, 0) when
ζ → +∞ on the right of the Op axis.

2.2. Let µ = 0, then we have following expansions:

p = χ2(v) = −ηv2 + . . . , θ2(v) = (vp)|p=χ2(v) = −ηv3 + . . .

Since the lowest power of v in the expansion θ2(v) equals three (odd) and η > 0, hence the
point (0, 0) is a stable compound node.

5.2. Phase Portrait

Construction and study of a complete phase portrait of dynamic system (30) is a
separate and complex issue. In the special case when η = 0, it is considered in [37]. Here,
we consider its meaningful case µ = 0, ν = 1. Recall that this means the presence of
cylindrical symmetry and the absence of a source.

In the case under consideration, η = σ/[4(1 + σ)] and there are two singular points.
The phase trajectories change the direction of motion when passing through the Ov axis,
as well as when crossing the quadric p2/σ+ p+ pv+ ηv2 = 0, which, in particular, singular
points belong to.

Let us determine the properties of the second-order curve

p2

σ
+ p + pv +

σ

4(1 + σ)
v2 = 0.

Bringing it to the canonical form, we obtain:

σ

4(1 + σ)
(σv + σ + 1)2 −

(
p +

σv
2

+
σ

2

)2
=

σ

4
. (31)

One can make sure that this is a hyperbola having the asymptotes
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p±(v) = −σ

2

(
1 ±

√
σ

σ + 1

)
(v + 1)∓ 1

2

√
σ

σ + 1
.

The left half-hyperbola lies entirely in the second quadrant, and the right one is located in
the first and third quadrants, passing through singular points.

From the physical point of view, v cannot be negative. Therefore, we consider only the
right half-plane of the phase portrait, which is shown in Figure 2.

Figure 2. Phase portrait.

The key element is the separatrix S passing through the point (0,−σ) and bounding
the nodal sector (blue curve). Along S, v and p vary non-monotonically and have extremum
points. For v, there is a maximum located at the intersection with the v-axis. For p, there is
a minimum, which lies at the intersection with the hyperbola. Trajectories above the sepa-
ratrix (i.e., in the nodal sector) approach the origin when ζ → +∞. The others, below the
separatrix, have the property lim

ζ→+∞
v = 0, lim

ζ→+∞
p = −∞. Moreover, the approaching is

non-monotonic; the trajectories form a large bend, appearing due to a double intersection
with the right half-hyperbola (31).

Returning to the plane of variables v, z, we obtain that the separatrix S generates
the solution v = v∗(z) to (26), shown in Figure 3, that satisfies the condition v′(0) = σ.
The independent variable z here has its original meaning. The function v∗(z) initially
increases with its first derivative, then the second derivative changes its sign at the point
z = z∗. Afterwards, v∗(z) reaches the maximum vmax at the point z = zmax > z∗, and v′(z)
changes its sign. Finally, at the point z∗ > zmax v again equals zero, and v′(z∗) = ∞.

From the point of view of the original problem, the above means that solution (27) has
two zero fronts, i.e., it is a function with finite support and geometrically represents a soli-
tary wave. Moreover, the properties of the constructed solution differ from the previously
obtained ones for the plane-symmetric case [36,37]. In particular, the first derivative for the
studied solution to the ODE unexpectedly turned out to be non-monotonic.
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Figure 3. Solution corresponding to S.

6. Existence and Uniqueness Theorem

In this section, we formulate and prove the existence and uniqueness theorem for
heat-wave-type solutions to Equation (4). Let us set the following boundary condition

u|ρ= f (t) = g(t). (32)

Note that we considered the particular case g(t) ≡ 0, i.e., for a given zero front, and proved
the existence and uniqueness theorem for a solution in the class of analytical functions [38].

Before formulating and proving the theorem, let us perform some auxiliary transfor-
mations. It is necessary since, unlike the previously studied problems, in Equation (4) the
factor multiplying the square of the first derivative is not a constant, as in [37], and in (32)
g(t) ̸≡ 0, as in [36].

We assume that the functions f (t) and g(t) are monotonic in some neighborhood of
the initial time t = 0 and sufficiently smooth. Then, we can swap the unknown function u
for the independent variable ρ, i.e., ρ = ρ(t, u) becomes a new unknown function. This
procedure is a nonlinear analog of the hodograph transformation [8]. Equation (4) takes
the form

ρtρ
2
u = uρuu − F(u)ρu −

νuρ2
u

ρ
− Φ(u)ρ3

u. (33)

It is not managed to linearize the equation, but the nonlinearities become more com-
prehensible. Boundary condition (32) takes the form

ρ|u=g(t) = f (t). (34)

Previously, we applied a similar technique in the simpler case of power-law nonlinear-
ity and without sources and sinks [40].

Recall that by analytical function, we mean a function of a real variable that coincides
in some domain with its Taylor expansion.

For problem (33), (34) the following theorem of existence and uniqueness of the
solution is valid.

Theorem 3. Let

1. f (t), g(t) are analytical functions in some neighborhood of the point t = 0 and f (0) > 0,
g(0) = 0, g′(0) ≥ 0, ( f ′(0))2 + (g′(0))2 > 0.

2. F(u), Φ(u) are analytical functions in some neighborhood of the point u = 0 and F(0) > 0,
Φ(0) = 0.

Then, problem (33), (34) has at least one and no more than two analytical solutions if the direction
of the heat wave motion is chosen. The solutions are representable as multiple power series in the
variables t, u − g(t) with recurrently determined coefficients.
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Proof. The proof of Theorem 3 is divided into two stages. First, we construct a formal
solution in the form of a multiple power series. Second, we prove its convergence by the
majorant method. Let us introduce the notation

fn =
∂n f
∂nt

∣∣∣∣
t=0

, gn =
∂ng
∂nt

∣∣∣∣
t=0

, Fn =
∂nF
∂nu

∣∣∣∣
u=0

, Φn =
∂nΦ
∂nu

∣∣∣∣
u=0

.

Before constructing, we also introduce new independent variables. Let

t1 = t, s = u − g(t). (35)

The subscript will be further omitted to simplify the notation. After substitution (35),
problem (33), (34) takes the form

[ρt − g′(t)ρs]ρ
2
s = [s + g(t)]ρss − F(s + g(t))ρs −

ν[s + g(t)]ρ2
s

ρ
− Φ(s + g(t))ρ3

s , (36)

ρ|s=0 = f (t). (37)

Let us construct a solution to problem (36), (37) in the following form:

ρ =
∞

∑
i=0

∞

∑
j=0

ρi,j
tisj

i!j!
=

∞

∑
i=0

∞

∑
j=0

ρi,j
ti[u − g(t)]j

i!j!
, ρi,j =

∂i+jρ

∂it∂js

∣∣∣∣
t=0,s=0

. (38)

The coefficients of series (38) are determineed by induction of the total order of
differentiation n = i + j. We obtain ρn,0 = fn from condition (37) including ρ0,0 = f0 > 0,
ρ1,0 = f1. To find ρ0,1, we set t = 0, s = 0 in Equation (36). Taking into account the equality
g(0) = 0, we obtain the following cubic equation:

g1ρ3
0,1 − f1ρ2

0,1 − F0ρ0,1 = 0. (39)

The zero root ρ0,1 = 0 leads to the solution ρ(t, s) = f (t), which is meaningless from
the point of view of the original formulation.

Let us consider two cases.
1. Assume g1 > 0. Then, Equation (34) has the zero root ρ0,1 = 0 and two nonzero ones

ρ0,1± =
f1

2g1
∓
√

f 2
1

4g2
1
+

F0

g1
, g1 ̸= 0.

According to the conditions of the theorem, the expression under the root is positive.
2. If g1 = 0, f1 ̸= 0 (recall that f1 and g1 cannot simultaneously become zero), then

ρ0,1 = −F0/ f1,

and we have the only non-zero root.
Each non-zero root corresponds to an analytical solution, i.e., there may be two or one.

So, the base of induction is established.
Let us now make an induction hypothesis. Let all ρi,j, i + j = 0, 1, . . . , n have already

been found. Now we are going to justify that the rest coefficients ρi,j, i + j = n + 1 can be
determined uniquely. Differentiating Equation (36) n − k times with respect to t, k times
with respect to s, k = 1, . . . , n, and taking into account the induction hypothesis, we arrive
at the following system of linear algebraic equations (SLAE):

ρn+1,0 = fn+1,

ρ2
0,1ρn+1−k,k + (2 f1ρ0,1 − 3g1ρ2

0,1 + F0 − k)ρn−k,k+1 + g1(k − n)ρn−k−1,k+2 = Pn−k,k, (40)

k = 0, . . . , n.
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Pk,n−k depend only on ρi,j, gl , Fl , Φl , where i + j ≤ n, l ≤ n, i.e., they are known
by the induction hypothesis. Their explicit form is cumbersome and not essential for
further consideration.

Let us study system (40) to make sure that it is uniquely solvable. In fact, it can be
rewritten in the following matrix form:

−d0 −cn 0 0 . . . 0 0 0
b −d1 −cn−1 0 . . . 0 0 0
0 b −d2 −cn−2 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . b −dn−1 −c1
0 0 0 0 . . . 0 b −dn





ρ1,n
ρ2,n−1
ρ3,n−2

. . .
ρn,1

ρn+1,0

 =



P∗
0,n

P1,n−1
P2,n−2

. . .
Pn−1,1

Pn,0

, (41)

where b = ρ2
0,1, dk = −2 f1ρ0,1 + 3g1ρ2

0,1 − F0 + k, ck = kg1 ≥ 0, P∗
0,n = P0,n − gn+1. It is easy

to see that b > 0, ck ≥ 0. Simple calculations, albeit cumbersome ones, demonstrate that
d0 > 0, meaning dk > 0 for all positive integers k.

If g1 > 0, the matrix of system (41) is tridiagonal, but there is no the diagonal dom-
inance. If g1 = 0, then the matrix is bidiagonal. Next, we prove that its determinant is
nonzero and solve (41).

At first, following [43], we introduce two auxiliary numerical sequences:

λn,0 = 1, µn,0 = 1, λn,1 = −d0, µn,1 = −dn, λn,2 = d0d1 + bcn, µn,2 = dndn−1 + bc1, (42)

λn,k = −dk−1λn,k+1 + bcn+2−kλn,k−2, µn,k = −dn+1−kµn,k−1 + bck−1µn,k−2, k = 2, . . . n + 1.

The elements of sequences (42) are the principle minors of the matrix Ξn of system (41),
and the following equality holds

det Ξn = λn,n+1 = µn,n+1.

One can easily make sure that for all n the following inequalities hold

λn,2l > 0, µn,2l > 0, λn,2l+1 < 0, µn,2l+1 < 0.

Hence, the results show that det Ξn ̸= 0; in other words, SLAE (41) is consistent and has a
unique solution.

Having the principal minors, we can invert the matrix Ξn and solve system (41):

ρn−k,n+1 =
1

det Ξn

[
µn,n−k

(
k−1

∑
j=0

λn,j

n−j

∏
i=n−k+1

ciPn−j,j

)
+ λn,kµn,n−kPn−k,k + (43)

+ λn,k

(
n

∑
j=k+1

(−1)j−kbj−kµn,n−jPn−j,j

)]
, k = 0, . . . , n.

If the upper limit of summation (multiplication) is less than the lower one, then the
summand is considered equal to zero. Formula (43) is valid for any admissible ρ0,1, and in
the case of g1 = 0, the first sum becomes zero.

Thus, series (38) is constructed. Moreover, in the case g1 > 0, the coefficients are
determined in two ways; if g1 = 0, they are calculated uniquely.

Let us now proceed to the proof of the convergence of series (38). Two options are
possible. First, we can perform direct estimates using Formula (43), as in [44]. However, this
method is very time-consuming. Therefore, we prefer the second way and will construct
the majorant problem as in [37]. The difference is that the current formulation is more
complex and requires, as already noted, a transition to the hodograph plane.
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Let us analyze series (38) when u = 0

ρ|u=0 =
∞

∑
i=0

∞

∑
j=0

ρi,j
ti[−g(t)]j

i!j!
= h(t), h(0) = f0 > 0. (44)

Since g(t) is an analytical function in a neighborhood of t = 0 and g(0) = 0, then local
convergence of series (38) in a neighborhood of t = 0, u = 0 implies local convergence of
series (44) in a neighborhood of t = 0 and vice versa.

Let us make a substitution of the unknown function r = ρ − h(t). Then, Equation (33)
takes the form

uruu = F(u)ru + [rt + h′(t)]r2
u +

νur2
u

r + h(t)
+ Φ(u)r3

u. (45)

Since the convergence of series (44) has not yet been proven, we exclude h(t) from
Equation (45) using the condition

h(t) = f (t)− r|u=g(t), (46)

which follows from (34). Differentiating (46) with respect to t gives us h′(t) = f ′(t)− [rt +
rug′(t)]|u=g(t), which, in turn, transforms (45) into

uruu = F(u)ru + {rt + f ′(t)− [rt + rug′(t)]|u=g(t)}r2
u +

νur2
u

r − r|u=g(t) + f (t)
+ Φ(u)r3

u. (47)

For Equation (47) we consider the boundary condition

r|u=0 = 0. (48)

Problems (47) are (48) are equivalent to problems (33) and (34) due to the construction
procedure. On the other hand, (47) and (48) are problems with specified heat wave fronts,
which we have repeatedly considered earlier in simpler formulations. In this regard,
the proof below is presented, briefly highlighting only the main points.

First, we introduce a new independent variable y = u − g(t), which transform the
curve u = u(t) into a coordinate axis. Second, we conduct partial Taylor expansions of the
unknown function and the given functions included in (47):

r(u, y) = ur1(y) + u2R(u, y),

F(u) = F0 + uF1(u),

Φ(u) = uΦ1(u).

Here, r1(y), F1(u), Φ1(u) are known analytical functions of their arguments, and R(u, y)
is a new unknown function. Then, problem (47), (48) takes the form

Ψ0(y)R|y=0 + Ψ1(u, y)u(Ru|y=0) + Ψ2(u, y)u2(Ruu|y=0)+

+2(1 + F0)R + (4 + F0)uRu + u2Ruu = h0 + uh1 + u2h2 + u3h3.
(49)

Here, Ψi > 0, i = 0, 1, 2 are analytical functions of their arguments. Functions hj,
j = 0, 1, 2, 3 are also analytical have the following proprties. h0 = h0(u, y) and the rest
hj depend on u, y and derivatives of the function Z with respect to u up to j − 1 order.
The exact form of these functions is not given here, since it is not essential for the proof. Let
us only note that Ψi(u, 0) > 0. For Equation (49), we have the following initial condition:

R|u=0 =
1

2(1 + F0)

[
h0(0, y)− h0(0, 0)Ψ0(y)

Ψ0(0) + 2(1 + F0)

]
. (50)
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Problem (49), (50) does not obey Lemma 2 from [45]; therefore, it has a unique non-zero
analytical solution. The last steps are constructing a majorant problem and proving the
existence of its analytical zero-dominant solution. These steps are carried out similarly as
in [45] (see also [37]).

Corollary 1. If we consider solutions (38), constructed during the proof of Theorem 3, as implicit
functions u = u+(t, ρ) for u ≥ 0, then together with the trivial solution u ≡ 0, they form
continuous solutions to problem (4), (32). Moreover, they have a heat-wave-type, series (44) set
their fronts. The convergence of series (44) follows from the convergence of series (38).

Remark 4. We considered similar problems (see [36–38,40,45]). Nevertheless, in this paper, we
deal with problem (4), (32) for the first time.

Remark 5. The previously proven Theorems 1 and 2 are not special cases of Theorem 3.

Remark 6. Example 1, in which f (t) ≡ 0, shows that the conditions of Theorem 3 are close to
necessary ones.

7. Conclusions

Summing up, we note that the paper presents another significant step in the systematic
research of diffusion-wave-type solutions to second-order nonlinear degenerate parabolic
equations and systems. Such solutions are essential since they describe disturbances prop-
agating over a stationary background with a finite velocity. This property allows us to
describe heat, diffusion, and filtration processes occurring in physical, chemical, and bi-
ological systems. However, they differ dramatically from typical solutions to parabolic
equations known for their instantaneous disturbance propagation. Such behavior of solu-
tions is characteristic of hyperbolic equations. But in this case, it appears out of singularity
associated with the vanishing of the higher derivative multiplier.

We consider a new formulation, construct and study exact solutions. Some of them
are found in the explicit form, and the construction of the rest is reduced to the Cauchy
problems for ODEs. Furthermore, we prove two existence and uniqueness theorems for
solutions of the required type. The example we propose, an analog of Kovalevskaya’s
classical result, deserves special attention. When the initial condition is a linear function,
the properties of the solution turn out to be unexpected and emphasize the difference
between the considered equation and its plane-symmetric analog.

Thus, we expand the previous results for the plane-symmetric case to a multidimen-
sional (quasi-one-dimensional) one. The equation experiences a significant transformation.
In particular, the origin becomes a singular point, so the direct transfer of methods and ap-
proaches here seems to be impossible. Therefore, we have to noticeably alter the technique.
A new way of separating variables for constructing exact solutions is suggested. The main
theorem requires transferring to the hodograph plane as well.

Further research in this direction may be related to developing computational algo-
rithms for solving the problems considered. Since it is hardly ever possible to prove the
convergence of numerical methods for degenerate nonlinear PDEs, the exact solutions
found here, as well as segments of the series that are constructed when proving the the-
orems, can be used for verifying calculations. It is also helpful to evaluate the solution
existence domain if it is impossible to obtain explicit formulas. A weighty result would
be the weakening of the requirements for infinite smoothness of the input data, which,
although fulfilled in the most natural cases, limits the generality of the consideration.

Finally, we note that our previous article [37] outlines a research plan, which involves
considering cases when the unknown function depends on two or more spatial variables.
The goal is to use the developed mathematical apparatus for solving applied problems
related to diffusion processes modeling in Lake Baikal, which is included in the UNESCO
World Heritage List. This work is the first step in implementation these plans.
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