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Abstract: This study introduces a framework to improve upper extremity motion-based telema-
nipulation by component-wise rescaling (CWR) of spatial twist. This method allows for separate
adjustments of linear and angular scaling parameters, significantly improving precision and dexter-
ity even when the operator’s heading direction changes. By finely controlling both the linear and
angular velocities independently, the CWR method enables more accurate telemanipulation in tasks
requiring diverse speed and accuracy based on personal preferences or task-specific demands. The
study conducted experiments confirming that operators could precisely control the robot gripper
with a steady, controlled motion even in confined spaces, irrespective of changes in the subject’s
body-heading direction. The performance evaluation of the proposed motion-scaling-based telema-
nipulation leveraged Optitrack’s motion-capture system, comparing the trajectories of the operator’s
hand and the manipulator’s end effector (EEF). This verification process solidified the efficacy of the
developed framework in enhancing telemanipulation performance.

Keywords: telemanipulation; teleoperation; human–robot interaction; markerless gesture tracking;
wearable IMU sensor

MSC: 68T01; 68T05

1. Introduction

Recently, as the demand for more sophisticated automated manipulation by accelerat-
ing the spread of smart factories has gradually increased, motion-capture-based teleoper-
ation technology has begun to attract attention [1]. In the case of gesture tracking-based
telemanipulation, a primary research interest of this study, significantly satisfying gesture-
intention estimation and user-friendly telemanipulation protocol should be essential as
the underlying element technology for accurate control of a manipulator. The sensors for
tracking the operator’s gestures can be categorized into vision, electromyography (EMG),
and inertial measurement unit (IMU) sensors.

We look at related studies using vision sensors such as Kinect. Pajor et al. [2] have
remotely controlled the Fanuc S-420F using the operator’s hand position and gesture mode
acquired through the Kinect and its software development kit (SDK) and developer toolkit
library. In another study using Kinect [3], hand motions were recognized with 98.9%
accuracy using the convolutional neural network (CNN), and the robot arm was controlled
by mapping each hand motion to the degree of freedom of the robot arm. In addition, by
recognizing the hand’s position based on the skeleton information provided by Kinect, there
have been cases where the speed and steering control of a mobile robot was performed [4],
or the position control of a five-axis manipulator was performed [5]. In addition, vision-
sensor-based gesture-recognition research is also used in the field of rehabilitation training.
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Maria Lopes et al. [6] conducted a feasibility assessment of rehabilitation training based
on smartphones and used 3D motion-capture data as the comparison data. A total of
12 reflective markers were used to measure movements of the upper extremities (shoulder,
forearm, wrist, head, and torso), and the feasibility of rehabilitation training based on the 2D
system was shown through a similarity comparison with the 2D system. In addition, Ameur
Latreche et al. [7] conducted a study on joint-angle estimation based on 2D RGB video on the
website for remote rehabilitation training. Joint angles were estimated using the mediapipe
algorithm, and actual remote rehabilitation was performed using the proposed method.
However, both experiments had the limitation of having a narrow field of view (FOV) and
were noted to be vulnerable to environmental disturbances, such as light reflection and
marker occlusion. However, problems in performance and usability due to limited FOV,
light reflection, occlusion, and illumination are commonly reported in all research cases
using such vision sensors. Thus, it is considered that the vision-based method cannot be
used in fields of industry, such as a person having to sit and perform gestures while looking
directly at the screen.

In the case of the surface electromyography (sEMG) sensor, due to the low controllable
degree of freedom (DOF) of motion and the necessity of a skeletal kinematic model of the
human subject, it is often used only for recognizing a limited number of predefined gesture
modes. Thus, it is rarely used alone for the telemanipulation of spatial manipulators.
Vogel et al. [8] combined sEMG and the Vicon motion-capture camera system, recorded
the EMG signal and the pose of the wrist part at that time while the user was operating
the arm, trained the machine-learning (ML) model, and, then, used it for remote control of
the DLR light-weight robot (LWR)-III manipulator. In addition, there are cases in which
sEMG and IMU sensors are combined to solve the occlusion problem that can occur during
Kinect-only gesture-based telemanipulation [9]. Michael T. Wolf et al. used BioSleeve,
which packages dry-contact surface EMG and an IMU into a sleeve worn on the forearm, to
recognize sixteen respective hand gestures that estimate the continuous orientation of the
forearm. With the BioSleeve, the manipulator was controlled by mapping the recognized
gestures and the estimated orientation to predefined robot commands. There is another
case of combining the hand pose recognition approach based on sEMG-based biofeedback
information [10]. In a study using IMU and EMG sensors [11], six static hand gestures
were successfully recognized, and the robot arm was controlled by mapping the movement
of the robot arm for each motion. However, in the case of such a method using sEMG,
it is not suitable for seamless, complete DOF control of the manipulator due to its low
generalizability, as mentioned before, and it is not intuitive through a predefined limited
dynamic hand-gesture mode, requiring a lot of the human operator’s proficiency.

Now, we look at studies directly related to the IMU sensor used in this study. In
the study of IMU-based gesture recognition [12], the six hand gestures were recognized
with an average of 81.6%, and the robot arm was controlled only with the predefined
motion mapped for each hand gesture. However, since it was impossible to control in all
directions, and the subsequent robot motion could only be started after the mapped motion
finished, achieving smooth telemanipulation to the final target pose was very difficult. In
the skeletal kinematic model-based study [13], omnidirectional control of the robot arm
was implemented by estimating the hand-gesture mode based on the IMU sensor and the
skeletal kinematic model of one arm. However, uncertainty in pose estimation and control
intention estimation performance was raised as a problem.

Škulj [14] has performed remote control of an industrial robot using five wearable IMU
sensors and six physical buttons. Using the kinematics of an operator’s arms, they tried to
control the position with the right arm and the orientation with the left arm. However, IMU
sensor-based studies have a problem in that most of the operator’s specific body alignment
must be maintained at the initial state obtained right after the sensor calibration [15] or
cannot be applied during the dynamic movement of the operator. In other words, in the
case of motion recognition and telemanipulation based on the IMU sensor, there is no FOV
restriction, it is convenient to wear, and there are no problems such as inconsistent output



Mathematics 2024, 12, 358 3 of 18

sensitivities for each user of sEMG. However, for gesture-recognition studies using only
IMU sensors, the following problems still exist. (1) A low-accuracy problem may occur
due to the uncertainty of the user’s skeletal kinematic parameters. (2) As a characteristic of
wearable inertial sensors, there is an issue of low reproducibility of the sensor-attachment
pose, which can adversely affect gesture mode recognition accuracy. Therefore, there is a
problem in that IMU sensor-based approaches must be attached to the trunk, arm, forearm,
and hand [16–18] for spatial motion control of the 6-DOF manipulator.

To overcome these limitations of single-sensor-based gesture-recognition research, a
recently proposed method is a hybrid method that uses different types of sensors together.
S. Carrino et al. [19] proposed a two-arm motion-recognition method based on a hybrid
method using an IMU sensor and a vision sensor. Chen, Pei-Jam, et al. [20] proposed
a joint-angle estimation method for online rehabilitation training and used the Kinect
sensor. At this time, IMU data were used to compensate for the falling joint-angle data.
Zhou, Shengli, et al. [21] fused IMU and vision data based on the extended Kalman filter
(EKF) algorithm and showed an accuracy of 92.3% for recognizing 10 Arabic numeral
trajectories. Yoo, Minjeong, et al. [22] proposed a UAV remote-control method through
hybrid sensor-based gesture recognition. After selecting the mode using the vision sensor,
dynamic gesture recognition was performed using the IMU sensor and showed an average
accuracy of 96.8%. M. Moradi et al. [23] performed interaction with a 6-DOF Kinova virtual
arm and control of a real robot arm based on a hybrid method, and attempted recognition
of a total of nine static gestures. Among hybrid methods, there are also cases where two
types of wearable sensors are used together. H. Zhou et al. [24] investigated a wearable
sensor-based hybrid method for human–machine interaction (HMI). It was revealed that
the wearable hybrid method combining IMU and sEMG sensors has advantages, such
as the possibility of arm-posture estimation based on the arm’s mechanical position and
muscle-activity data, the convenience of wearing the sensor, and low price. Colli Alfaro, J.G,
et al. [25] showed an average gesture-classification accuracy of up to 84.6% for 22 subjects
using the Myo armband sensor that combines IMU and sEMG. Shahzad, Waseem, et al. [26]
confirmed the impact of IMU sensor data on sEMG sensor-based gesture-recognition and
revealed the effectiveness of the hybrid method by showing that the mechanical position of
the arm measured by the IMU sensor affects accuracy.

Hybrid methods showed complementary aspects, such as compensating for vision
sensors that are sensitive to environmental factors with IMU sensor data or using image
data to supplement IMU sensors that have difficulty estimating the subject’s intent. In
addition, there is an advantage in that both intent estimations using the sEMG sensor and
dynamic position estimation and dynamic gesture recognition based on the IMU sensor
are possible. However, there were limitations, such as poor real-time performance due
to the large amount of signal processing occurring in the feedback part of the hybrid
method. In addition, most studies used machine learning or deep-learning-model-based
gesture recognition and control implementation mapped to specific gestures; it is difficult
to implement natural remote control that reflects the subject’s intention.

We compare gesture-recognition-based robot control research for each sensor from
various perspectives and present them in Table 1. Therefore, in this study, we propose an
intuitive, continuous, real-time omnidirectional telemanipulation method based on a single
IMU sensor that is robust to environmental conditions. This is effective in implementing
control with high precision and reproducibility, which is essential in nonholonomic en-
vironments where complex and dynamic obstacles exist [27,28]. In addition, we propose
a remote operation method, like motion tracking, using only IMU sensors rather than
a data-learning model-based control method. The main contributions of this study are
summarized as follows.
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Table 1. Comparison of research cases of robot control based on gesture recognition by sensor.

Article Sensors Gesture
Type

Gesture
Recognition Robot Control Advantage and Disadvantage

Pajor et al. [2] vision dynamic motion
tracking # A: gesture recognition with precise intent

D: high computational cost

Mazhar et al. [3] vision static data learning # A: high applicability
D: limited range of depth data

Zhou et al. [4] vision both both # A: speed control possibility
D: limited FOV and occlusion

Vogel et al. [8] wearable dynamic motion
tracking # A: continuous omnidirectional control possible

D: low control speed, occlusion

Kulkarni et al. [12] wearable dynamic data learning # A: toughness to light conditions
D: low control speed and response

Choi, Haegyeom
et al. [13] wearable dynamic data learning # A: no kinematics model is required

D: continuous control is impossible

Yoo, Minjeong,
et al. [22] hybrid both data learning #

A: intent estimation and omnidirectional
control possible

D: continuous control is impossible

M.Moradi
et al. [23] hybrid static data learning #

A: reduced real-time performance due to
processing large amounts of data

D: high computational cost, poor real-time
performance

Colli Alfaro
et al. [25] hybrid static data learning × A: generality, high accuracy

D: continuous control is impossible

Proposed method wearable dynamic motion
tracking # A: continuous and intuitive control possible

D: Sensor drift due to bias error

1. The method CWR proposed in this study uses the three wearable IMU sensors and
a parameter-invariant 5-DOF skeletal kinematic model of the upper extremity part
for all human operators. The term parameter invariant means that all kinematic
parameters in the skeletal kinematic model are fixed to unit length and identical to all
human operators;

2. The CWR of spatial twist, which is calculated with the skeletal kinematics and three
IMU sensor measurements, is proposed to improve telemanipulation performances in
tasks requiring diverse speed and accuracy by adjusting the operator’s motion scale
in terms of linear and angular, respectively;

3. Then, the CWR allows the user to directly adjust the scale difference between actual
and estimated hand motion that inevitably occurs when mimicking human motion
with inaccurate human factors;

4. Therefore, what this study pursues is to develop a framework that allows the operator
to decide the desired motion scale through their visual feedback with the help of
intuitive scaling guidance between accuracy and responsiveness;

5. In addition to the CWR framework, the heading direction of both the manipulator
and the operator can be identically maintained with the floating body fixed frame [29],
even during the time-varying heading direction of the operator.

The rest of this paper is composed as follows. In Section 2, we present details about
the proposed method for the hand-guiding gesture-based telemanipulation method. In
Section 3, we describe experimental results based on the testbench-based validations. In
Section 4, we conclude the paper.

2. Method

In this chapter, as shown in Figure 1, we explain the kinematic analysis of the human
upper limb, which is the subject of this study, and the mathematical content for calculating
the spatial velocity of the distal part of the human upper limb. Additionally, we describe
the definition of the CWR parameters required to implement a robot EEF trajectory like the
subject upper limb distal trajectory.
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Figure 1. Overview of the proposed upper extremity motion-based telemanipulation framework.

1. Sensor calibration for creating and updating a floating body-fixed frame;
2. Forward kinematics of the upper right extremity part;
3. Velocity kinematics of the upper extremity part;
4. CWR of spatial twist for the scaling adjustment of the upper extremity motion.

2.1. Method for Creating and Updating a Floating Body-Fixed Frame

Figure 2 shows a procedure for creating a body-fixed frame {Bf} through a stand–stoop
calibration motion. Since the direction of movements and orientations within the human
body can be described with respect to the anatomical reference of the frontal, sagittal, and
transverse plane, it is assumed that the initial {Bf} is aligned to the anatomical axes of
an anteroposterior, mediolateral, and longitudinal axis. After calculating the difference
in orientation between the sensor-fixed frame of the IMU sensors, which are arbitrarily
attached to the upper extremity part, and the frame {Bf}, the orientation of the IMU sensor
is calibrated to be the same orientation with the frame {Bf}. The detailed {Bf} generation
method is described in our previous study [29].
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The operator’s body-heading direction is aligned to the longitudinal axis, which is the
initially created positive x-axis of {Bf}. The z-axis of {Bf} is always vertically upward with
respect to the inertial frame and aligned to the mediolateral axis. Using the orientation of
the pelvic IMU, {Bf} is continuously updated so that the operator’s current body-heading
direction can be aligned with this x-axis of {Bf}. The following, Equation (1), is a formula
for creating the frame {FBf}.

G
FB f

R = G
S f ,pelvic

R · G
S f ,pelvic,stand

RT · G
B f

R

∴ just a f ter calibration : {Sc} →
{

B f

}
, R ∈ SO(3)

(1)

where G denotes the inertial frame, FBf denotes the floating body-fixed frame, and Bf
denotes the initial body-fixed frame, which is the initial one of the {FBf}. Sf, pelvic denotes the
sensor-fixed frame at the pelvic IMU; Sf, arm and Sf, forearm denotes the sensor-fixed frame
at the arm- and forearm-mounted IMUs. Stand and stoop are additionally written in
the subscript to indicate the operator’s posture at the time when the orientation of the
corresponding sensor is stored. Sc means a calibrated sensor-fixed frame. Then, Equation
(2) is used to convert the orientation of the IMU sensors with respect to the inertial frame
into orientation with respect to the frame {FBf}. Similarly, the acceleration and angular
velocity are expressed with respect to the frame {FBf} through Equations (3) and (4). Here,
let us consider a set, P := {a, f }, and the subscript i in Equations (2) and (3) holds i ∈ P .

FB f
Sc,i

R = G
FB f

RT · G
S f ,i

R · S f ,i,stand
Sc,i

R (2)

FB f a
S f ,i

= G
FB f

RT · G
S f ,i

R ·S f ,i a (3)

FB f ω
S f ,i

= G
FB f

RT · G
S f ,i

R ·S f ,i ω (4)

2.2. Forward Kinematics of the Upper Right Extremity Part

In this section, the forward kinematic model, whose screw parameters are represented
in Table 2, is derived to calculate the hand’s spatial velocity through the body Jacobian
described in Table 3, and Figure 3 illustrates the skeletal kinematic model of the right upper
extremity part as a 5R serial open chain composed of two links. It is composed of a 3R right
shoulder joint, 2R right elbow joint, and two links (one for serially connecting the shoulder
joint and elbow joint and the other for connecting the elbow joint and wrist). In the study,
the product of the exponentials (PoE) formula is used to derive the forward kinematics.
Thus, let us first choose a fixed stationary frame {FBf} with the origin located at the center of
the shoulder joint of the subject and assume the EEF frame {T} is attached to the tip of the
second link. Here, we define M ∈ SE(3) to be the home pose of {T} when all joint angles
are set to zero. As shown in Figure 2d, the upper right extremity is in its home pose right
after sensor calibration. The subject is keeping their elbows facing the back and the inside
of the forearm facing the walking or heading direction after the attentive posture. Then,
the M can be defined as follows,

M =


1 0 0 0
0 1 0 0
0 0 1 −(L1 + L2)
0 0 0 1

 (5)
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Table 2. The values of the screw parameters Si = (ωi, vi) of the upper right extremity.

Frame i ωi qi vi=−ωi×qi

1 (0, 0, 1) (0, 0, 0) (0, 0, 0)
2 (0, 1, 0) (0, 0, 0) (0, 0, 0)
3 (1, 0, 0) (0, 0, 0) (0, 0, 0)
4 (0, 1, 0) (0, 0, −L1) (L1, 0, 0)
5 (0, 0, −1) (0, 0, −L1) (0, 0, 0)

Table 3. The screw parameters Bi of the body form.

Frame i Bi

1 (0, 0, 1, 0, 0, 0)
2 (0, 1, 0, −(L1 + L2), 0, 0)
3 (1, 0, 0, 0, L1 + L2, 0)
4 (0, 1, 0, −L2, 0, 0)
5 (0, 0, −1, 0, 0, 0)
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Figure 3. Joint configuration of the upper extremity skeletal kinematic mode: 3-DOF shoulder joint,
2-DOF elbow joint, and EEF frame at the wrist part.

With the manner of the PoE formula defined in the definitions from 1 to 3, we can
write its forward kinematics for arbitrary joint values as a following product of the matrix
exponentials in Equation (6), each corresponding to a screw motion.

FB f
T T(θ) = e[S1]θ1 e[S2]θ2 e[S3]θ3 e[S4]θ4 e[S5]θ5 M (6)

where the ith joint variable θi denotes the travel distance along the screw axis because all
joints are revolute, can be defined as a unit vector in the positive direction of the ith joint
axis, and vi = −ωi × qi with any arbitrary point on the ith joint axis, as written with respect
to the frame {FBf}.

Definition 1. Screw axis S .

For a given reference frame, a screw axis of a joint can be written as:

Si =

[
ωi
vi

]
∈ R6 (7)
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where either (i) ∥ω∥ = 1 or (ii) ω = 0 and ∥v∥ = 1. If (i) holds, then v = −ω × q + hω,
where q is a point on the axis of the screw and h is the pitch of the screw (h = 0 for a pure
rotation about the screw axis). If (ii) holds, then the pitch of the screw is infinite, and the
twist is a translation along the axis defined by v. Although we use the pair (ω, v) for both a
normalized screw axis S (where one of ∥ω∥ or ∥v∥ must be unity) and a general twist V
(where there are no constraints on ω and v), the meaning should be apparent from the
context [30].

Definition 2. A 4 × 4 matrix representation of the unit screw axis S

[S ] =
[
[ω] v
0 0

]
∈ se(3),

where [ω] =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 ∈ so(3)
(8)

Definition 3. Sixth-dimensional exponential coordinates of a homogeneous transformation T.

e[S ]θ =

[
e[ω]θ G(θ)v

0 1

]
∈ SE(3),

where
{

[S ]θ ∈ se(3)
G(θ) = Iθ + (1 − cos θ)[ω] + (θ − sin θ)[ω]2

(9)

2.3. Velocity Kinematics of the Upper Extremity Part

In this section, we derived the relationship between the joint rates and spatial twist,
FB f vT = [ωFB f ,T , vFB f ,T ] ∈ R6 in the floating body fixed frame {FBf}. In the case of the
upper extremity structure in this study, the EEF frame {T} is located l2 away from the last
joint. At this point, it is worth understanding the nature of the PoE formula method in the
body form that the body-frame representation of the screw axis for a more distal joint is not
affected by the joint displacement at a proximal joint according to Definition 4. Therefore,
to obtain the spatial velocity for {FBf} at the origin of the frame {T}, the body Jacobian
expressed for {T} should be derived first as in Equation (10). We derive the screw axis of
each joint in the frame {FBf}, Si, first and then transform it to the screw axis of each joint in
the frame {T}, Bi, through the following adjoint transformation.

VFB f ,w = AdTFB f ,w(Jw) ·
.
θ →

[
ωFB f ,T vFB f ,T

]T
∈ R6 (10)

Definition 4. Space Jacobian Js(θ).

For a given forward kinematics in Equation (11), the space Jacobian Js(θ) relates the
joint rate vector,

.
θ, to the spatial twist Vs as follows:

Vs = Js(θ)
.
θ (11)

where the ith column of Js(θ) is

Jsi(θ) = Ad
e[S1 ]θ1 ···e[Si−1 ]θi−1 (Si) (12)
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For i = 2, . . ., n, with the first column Js1 = S1, the body form of the PoE formula is as
follows. For a given reference frame, a screw axis of a joint can be written as:

Tsb(θ) = e[S1]θ1 e[S2]θ2 e[S3]θ3 e[S4]θ4 e[S5]θ5 M
= Me[B1]θ1 e[B2]θ2 e[B3]θ3 e[B4]θ4 e[B5]θ5

(13)

Then, the linear velocity of the origin of the frame {b} with respect to the frame {s}
can be obtained from the following Equation (14). It is also worth noting that the spatial
velocity in Equation (14) does not mean the linear velocity of the origin of the frame {s}.

.
qsb,h = vs,h + ωs,h × (−qsb,h) (14)

where qsb ∈ R3 denotes the position of the frame {b}’s origin with respect to the frame {s}.

2.4. Component-Wise Rescaling of Spatial Twist

Equation (15) represents a component-wise rescaling of spatial twist, FB f vT ∈ R6, to
adjust the scale of telemanipulation motion by dividing it into linear and angular motion.
Each angular velocity vector ωFBf,T ∈ R3×1 and the linear velocity vector vFBf,T ∈ R3×1,
which are the components of the spatial twist, are multiplied by the scaling parameter
εa, εl ∈ R.

Figure 4 shows the trajectory changes by adjusting the linear and angular scaling
parameters. Through (a), you can see that the linear scaling parameter affects the change in
position of the trajectory. Also, through (b), we can see that the angle scaling parameter
affects the orientation of the trajectory. The respective linear and angular scaling parameters
determine the contribution of the linear and angular motions of the upper extremity’s
telemanipulation motion to the manipulator’s motion. The rescaled spatial twist FB f v′T ∈
R6 will be transmitted to the servo pack of the manipulator via Moveit’s IK instance and
ROS controller, as shown in Figure 1. In the next section, we will experimentally explore
the effect of scaling parameters in terms of the trajectories’ shape and size of the operator’s
upper extremity motion on the manipulator’s motion.

FB f V ′
T =

[
εa I3×3 0

0 ε l I3×3

]
FB f VT

(
∴ εa, ε l ∈ R, I3×3 ∈ R3×3

)
(15)
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positions of the robot end according to linear parameters. (b) Comparison of trajectory orientation of
the robot end according to angular parameters.



Mathematics 2024, 12, 358 10 of 18

3. Experiment and Discussion
3.1. Experimental Configurations in Testbench

A testbench, shown in Figure 5, was built to validate the performance of the CWR-
based telemanipulation. The details of the testbench and measurement information are
as follows.
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Figure 5. Testbench composed of (a) six OptiTrack prim 13 motion-capture cameras, (b) reflective
markers at the manipulator’s EEF, subject’s hand, and target object, (c) UR5e-based mobile manipula-
tor equipped with 2F-85 Robotiq 2-finger gripper, (d) a target object for teleoperated pick-and-place
experiments on the table, (e) a laptop with OptiTrack Motive (Win10) installed, (f) workstation with
ROS1 (Ubuntu 20.04) installed, (g) global reference frame of motion-capture cameras, and (h Xsens
MTw 3 wearable IMU sensors.

1. Testbench: within the testbench, six Prime 13 cameras, three retro-reflective marker
sets (on manipulator’s EEF, subject’s hand, and target object), UR5e-based mobile
manipulator equipped with 2F-85 Robotiq two-finger gripper, Xsens MTw 3 wearable
IMU sensors, a target object for teleoperated pick-and-place experiments on the table,
a laptop with OptiTrack Motive (Win 10) installed, and (f) a workstation with ROS
1 (Ubuntu 20.04) installed. The size of the 3D motion-capture stage is 4 m in width,
4 m in height, and 3 m in height. {Of}, the reference frame of the Optitrack prim
13 motion-capture camera, is defined as the exact center point of the floor, which is
2 m wide and 2 m high, and (g) calibration square camera calibration was performed
using (CS-200);

2. Hand trajectory: wireless IMU sensors are attached to the back of the subject’s pelvis,
the arm, and the forearm, which is very close to the wrist part with straps. The
reflective marker sets are attached to the wrist and the top of the head to measure the
subject’s positions with respect to the frame {Of};

3. Motion state: all outputs of the wireless IMU sensor are converted to the output with
respect to the frame {FBf}. Note that the conversion relationship between {FBf} and
{Of} defined by the calibration square cannot be accurately identified. However, the
z-axis is all the same as [0 0 1], and we did our best to align the body-heading direction
with the L-square heading direction during the calibration gesture.

3.2. Effects of the CWR of Spatial Twist in Telemanipulation-Based Pick-and-Place

In this section, through the telemanipulation experiment drawing a circle-like tra-
jectory shown in Figure 6, we quantitatively evaluate the effect of the motion-rescaling
parameters, εa, ε l ∈ R, in the CWR in terms of the trajectories’ shape and size of the op-
erator’s upper extremity motion to the manipulator’s motion. First, the operator tried
to draw the circle with his/her hand, and his/her spatial velocity trajectory calculated
from the velocity kinematic model and hand trajectory are also recorded with the IMU
sensor measurement and the OptiTrack system, respectively. After recording the operator’s
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telemanipulation motion, the EEF trajectories with the rescaled operator’s spatial velocity
trajectories are recorded according to changing the rescaling parameters εa, ε l ∈ R without
the operator only using the OptiTrack motion-capture system.
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Figure 6. Experimental results showing the effect of the CWR of a spatial twist on the size and
shape of EEF’s trajectories according to the change of (a) magnitude of the scaling parameters and
(b) the ratio of linear and angular scaling parameters: (right) definition of the size and ratio of EEF
trajectory’s shape.

As shown in Figure 6a, the scaling parameters were set to be the same to find the range
of rescaling parameters for the size and shape ratio close to one before exploring the effect
of the ratio between linear and angular rescaling parameters. To calculate the size and
shape ratio between the operator’s motion and telemanipulated EEF’s motion, it is assumed
that the operator’s motion size is normalized to one, and then the size ratio and shape ratio
are obtained by changing the scaling parameters, as shown in Table 4. According to the
results presented in Table 4 and Figure 6, it was confirmed that the trajectory scale tends
to increase as the size of the scaling parameter increases, and the size and shape ratio of
5:5 was the closest to one.

Table 4. The result of comparing the scale and ratio of EEF trajectories to the operator’s hand
trajectory according to the scaling parameter from 1 to 8 with identical linear and angular scaling
parameters. Arrows indicate increase or decrease compared to the reference trajectory.

Operator 1 3 5 6 7 8

Size ratio 1 0.05 0.43 0.99 1.17(17%↑) 1.33 1.26
Shape ratio 1 0.99 1.13 1.07 1.05 0.98 0.93

↑: increase relative to operator trajectory.

As shown in Figure 6b, we conducted an additional experiment, drawing a circle-like
trajectory, the same as in Figure 6a, by changing the ratio between the linear and angular
scaling parameters based on five and six. As shown in Table 5, it was confirmed that, as
the ratio of angular scale to linear scale increases (to the left of Table 5), the size and shape
of the EEF trajectory are distorted compared to the operator trajectory. These results are
presumably the result of the difference in manipulability for linear and angular motion
in the EEF. As a result of increasing the linear scale ratio to the angular scale (to the right
of Table 5), the shape of the EEF trajectory gradually approached the original trajectory,
and the size was amplified up to 21.3% and 33.4% at five and six, respectively. It was
also confirmed that the smoothest EEF motions were shown in the ratios of 5:2 and 6:3.
However, when the size ratio increased too much, the EEF oscillated even with the slightest
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operator gestures. Therefore, it was decided to conduct the pick-and-place experiment in
the next section for six cases of 5:3~5:5 and 6:4~6:6.

Table 5. The result of comparing scaling and ratio of EEF trajectories to the operator’s motion
trajectory according to the changes of the ratio between linear and angular scaling parameters for
5 and 6.

Operator 3:5 4:5 5:5 5:4 5:3

Size ratio 1 0.32 0.57 1.00 1.16 1.21
Shape ratio 1 1.30 1.23 1.19 1.14 1.11

Operator 4:6 5:6 6:6 6:5 6:4

Size ratio 1 0.47 0.79 1.21 1.35 1.56
Shape ratio 1 1.29 1.26 1.25 1.17 1.11

3.3. Effects Validation of the Proposed Dynamic Upper Extremity Motion-Based Telemanipulation
through Pick and Place Task

After carrying out pick-and-place experiments for six scaling parameter sets of 5:3~5:5
and 6:4~6:6, we analyze the performances (picking touch violation, pick-and-place bound-
ary violation, and total time) of telemanipulation in terms of the three indices presented
in Table 6. This experiment was conducted with six subjects (two females and four males)
inexperienced in telemanipulation. After assigning different rescaling conditions, each
subject tried the UR5e to pick up objects in the start area and place them in the goal area
without any violations, as shown in Figure 7. For each subject, the initial two exercises were
performed first, and then the main experiment was performed four times. All experimen-
tal processes were video-recorded, and their positions were measured through reflective
markers attached to the wrist part, EEF, target object, and operator’s head. In addition,
Table 6 presents whether there was unnecessary contact while holding the object, whether
the object was placed within the area’s boundary when putting it down, and how long
it took.

Table 6. Experimental results of the teleoperated pick and place in terms of the pick-and-place time,
boundary violation, and picking object touch violation for each of the six scaling-parameter ratios
(5:5, 5:4, 5:3, 6:6, 6:5, and 6:4).

Scaling Ratio Trial No. Picking Touch Violation Pick-and-Place
Boundary Violation Total Time

6:6

1 Touch - 04:19
2 Touch - 02:56
3 Touch Out 02:49
4 Touch Out 02:19

6:5

1 Touch - 03:45
2 Touch Out 04:12
3 - - * 03:01
4 - - 03:04

6:4

1 - Out 05:11
2 - - 04:33
3 - - * 03:09
4 - - 03:18

5:5

1 - - 04:52
2 - - 04:03
3 - - * 04:29
4 - Out 04:01

5:4

1 - Out 03:43
2 - - 05:20
3 - - * 03:18
4 Touch - 03:46

5:3

1 - - * 05:07
2 Touch - 05:10
3 Touch - 05:05
4 Touch - 05:15

*: Shortest mission execution time among 4 experiments.
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Figure 7. Comparative experimental results of EEF’s and object’s trajectory in performing the pick
place of different subjects for each of the six scaling parameter ratios: (a) 6:6, (b) 6:5, (c) 6:4, (d) 5:5,
(e) 5:4, (f) 5:3.

We show the experimental configuration and the trajectory of the shortest mission
achievement record for each subject as shown in Figure 8. In the case of the scaling
parameter set 5:5~5:3 and 6:6~6:4, it was confirmed that it took an average of 4.18 s
and 3.04 s, respectively, except for the case where the total time was the largest in each
case. The average pick-and-place time decreased as the linear motion scaling parameter
increased. But, in the case of 6:6, picking-touch violations occurred in all trials, and
pick-and-place boundary violations occurred in 50% of trials. Meanwhile, even in the
case of 5:3, it was confirmed that picking touch violations occurred in 3/4 of the cases.
However, considering that the boundary margin of the start and goal areas to the target
object diameter was set very tight, the pick and place performed by the proposed method
showed good performance. In addition, it is expected to improve further as the operator’s
proficiency increases, and it was confirmed that the obstruction of the operator’s vision
also affected the occurrence of violations.

Moreover, to validate the robustness against the body-heading direction change of the
operator, which is one of the main contributions of this study, an experiment, as shown
in Figure 9, was additionally executed. The operator performs a cross-shaped motion
in different body-heading directions, namely, left, front, and right, for the subject in one
take. As a result, even performing almost the same motions in different directions, the
manipulator’s EEF successfully kept its heading direction with respect to the robot’s base
frame {B}. At this point, it should be noted that the slight difference in the robot’s heading
direction is an inevitable phenomenon that occurs because the operator cannot perfectly
maintain the exact pose of the arm and forearm for the frame {FBf} in this experiment.
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Figure 9. Experimental validation of the proposed telemanipulation method is robust against the
dynamic change of the operator’s body-heading direction by performing a cross-shaped hand motion
in different body-heading directions (a–c).
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3.4. Discussion of Experiment Results

As shown in Table 6 and Figure 10, when comparing the time taken to complete the
pick-and-place task across several experiments for each subject, it was observed that four
subjects demonstrated a decrease in the time taken in the final experiment compared to
the first. Meanwhile, two subjects showed a slight increase in time, less than 0.1 s. Based
on these results, it can be concluded that the subjects’ proficiency in telemanipulation
significantly influences the outcomes. Consequently, a key objective is to investigate how
this proficiency in telemanipulation affects performance in executing more complex and
challenging movements, especially in the context of future implementations of the proposed
telemanipulation method.
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Figure 10. Record the pick-and-place time required for each subject and the number of experiments.

Additionally, a survey conducted on subjects who either contacted the target object
during the picking process or exited the designated area during the placing process in-
dicated control difficulties. These difficulties arose particularly when the manipulator
obscured the target object or designated area. Acknowledging this issue, we plan to under-
take additional research aimed at resolving this visual obstruction problem. The objective
is to enable operators to have a clear view of the worksite from a remote location, which
we intend to achieve by soon integrating with the cyber–physical system (CPS) platform.

Although the control method proposed in this study successfully performed real-time
omnidirectional control of a 6-DOF manipulator in a real environment, there are still some
limitations that have not been resolved. First, drift occurs due to bias-error accumulation,
which is a traditional problem with IMU sensors. The telemanipulation method proposed
in this study controls the pose of the manipulator EEF based on the spatial velocity of the
upper extremity of the human body. Therefore, it is less affected by bias-error accumulation
compared to kinematic model-based position-control methods that map joint data between
robots and humans. However, because IMU orientation data is used in the spatial velocity
calculation process, it is not completely unaffected by sensor bias error. Therefore, when
used for a long time, control performance decreases and a midprocess recalibration process
is required. The following are problems caused by differences in the joint configuration
and degrees of freedom of the actual subject’s right upper limb of the human body and the
kinematic model of the human right upper limb used in the study. The telemanipulation
method proposed in this study controls the manipulator EEF based on spatial velocity,
so there is no difficulty in omnidirectional control. However, due to the difference in
degrees of freedom between the two models, it is impossible to implement movements that
precisely resemble the extremities of the subject’s human upper limbs, and the subject may
feel unnatural during the control movement process. Therefore, in future research, there is a
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need for a real-time omnidirectional telemanipulation method based on a kinematic model
complemented by an increase in the number of DOFs and similarity in joint configuration.

4. Conclusions

This study introduces a framework to improve upper extremity motion-based tele-
manipulation by component-wise rescaling (CWR) of spatial twist. This method allows
for separate adjustments of the linear and angular scaling parameters, significantly im-
proving precision and dexterity. Through testbench experiments, the significant range of
rescaling parameters has been successfully identified in terms of the size and shape ratio
of EEF’s trajectory to the operator’s hand trajectory. The effect of ratio change between
the linear and angular scaling parameters has been explored regarding the controllability
and manipulability of telemanipulation. First, the linear and angular parameters were
changed so that the trajectory of the robot EEF could be output like the trajectory of the
distal end of the subject’s upper limb. At first, the linear and angular parameters were set
to the same value and then changed, and trajectories with similar shapes and sizes were
output for parameters 5 and 6. Afterward, the trajectory was analyzed by changing the
linear and angular parameters at different rates based on parameters 5 and 6. As a result,
we determined six optimal parameters with similar shapes and trajectories. To evaluate
the operating performance of the proposed telemanipulation method, we conducted a
pick-and-place experiment with six subjects with no control experience in different physical
conditions. All six subjects successfully performed the pick-and-place experiment, and it
was confirmed that the experiment time shortened as the number of experiments increased.
Through this, we were able to confirm that the subject’s operating experience affects control
performance. In addition, it was confirmed that visual feedback through the subject’s naked
eyes was limited due to unintentional contact with the target object, and the need for future
visual feedback research that shares the view of the robot EEF through CPS was suggested.

Finally, this study makes the following research contributions. Through experiments
in testbench, with the CWR of the spatial twist from the parameter-invariant skeletal
kinematic model, it was confirmed that all the subjects could successfully perform the
pick and place of an object into a very narrow area with tight margins regardless of the
operator’s proficiency and different human factors.

From the perspective of intuitiveness and motion similarity in telemanipulation, we
believe that the desirable motion rescaling should have a wide range of controllable size
ratios while maintaining a shape ratio close to one. Thus, as future works to this study, we
will focus on developing a method to independently adjust the size ratio while maintaining
the size ratio.
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Nomenclature

CWR Component-wise rescaling
EEF End effector
FOV Field of view
CNN Convolutional neural network
EMG Electromyography
sEMG Surface electromyography
IMU Inertial measurement unit
DOF Degrees of Freedom
ML Machine learning
PoE Product of exponentials
ROS Robot operating system
CPS Cyber–physical system
R Rotation matrix
{G} Global reference frame{

S f , f ,stand

}
Sensor-fixed frame at initial standing posture{

S f , f ,stoop

}
Sensor-fixed frame at initial stooping posture{

B f

}
Body-fixed frame{

FB f

}
Floating body-fixed frame{

S f

}
Sensor-fixed frame

{Sc} Sensor-calibrated frame
{T} End-effector frame of upper extremity
{Bm} Manipulator base frame{

O f

}
Optical camera reference frame

→
a Acceleration
→
ω Angular rate
SO(3) Three-dimensional special orthogonal group
SE(3) Three-dimensional special Euclidean group
ε l , εa Rescaling parameter (linear and angular velocity)

References
1. Kumar, N.; Lee, S.C. Human-machine interface in smart factory: A systematic literature review. Technol. Forecast. Soc. Change

2022, 174, 121284. [CrossRef]
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