
Citation: Liu, B.; Zhang, L.; Liu, Z.;

Jiang, J. Developer Assignment

Method for Software Defects Based on

Related Issue Prediction. Mathematics

2024, 12, 425. https://doi.org/

10.3390/math12030425

Academic Editors: Mingbo Zhao,

Haijun Zhang, Zhou Wu and

Faheim Sufi

Received: 15 December 2023

Revised: 24 January 2024

Accepted: 26 January 2024

Published: 28 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Developer Assignment Method for Software Defects Based on
Related Issue Prediction
Baochuan Liu, Li Zhang, Zhenwei Liu and Jing Jiang *

State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China;
liubc@buaa.edu.cn (B.L.); lily@buaa.edu.cn (L.Z.); meetliuzhenwei@gmail.com (Z.L.)
* Correspondence: jiangjing@buaa.edu.cn

Abstract: The open-source software platform hosts a large number of software defects, and the
task of relying on administrators to manually assign developers is often time consuming. Thus,
it is crucial to determine how to assign software defects to appropriate developers. This paper
presents DARIP, a method for assigning developers to address software defects. First, the correlation
between software defects and issues is considered, predicting related issues for each defect and
comprehensively calculating the textual characteristics of the defect using the BERT model. Second,
a heterogeneous collaborative network is constructed based on the three development behaviors
of developers: reporting, commenting, and fixing. The meta-paths are defined based on the four
collaborative relationships between developers: report–comment, report–fix, comment–comment,
and comment–fix. The graph-embedding algorithm metapath2vec extracts developer characteristics
from the heterogeneous collaborative network. Then, a classifier based on a deep learning model
calculates the probability assigned to each developer category. Finally, the assignment list is obtained
according to the probability ranking. Experiments on a dataset of 20,280 defects from 9 popular
projects show that the DARIP method improves the average of the Recall@5, the Recall@10, and the
MRR by 31.13%, 21.40%, and 25.45%, respectively, compared to the state-of-the-art method.

Keywords: defect fixing; developer assignment; prediction of related issues; heterogeneous
collaborative network

MSC: 68M20

1. Introduction

GitHub is a web-based project-hosting platform [1–3] that provides an Issue-Tracking
System to help users manage issues that occur in their projects. In the Issue-Tracking
System [4,5], users can report software defects found during development [6–8], project
managers can assign software defects to appropriate developers, and other developers
can participate in discussions around defects of interest. However, with over 200 million
open-source projects and 1.2 billion issues hosted on the GitHub platform worldwide, there
are a large number of software defects that need to be fixed every day. Manually assigning
developers to software defects by managers alone can be a tedious and time-consuming
task [9–12]. To streamline this process, researchers have conducted studies on the task
of assigning or recommending developers [13–22]. For example, Yang et al. [13] filtered
developers from historical defects by calculating textual similarities between different soft-
ware defects, and then assigned developers to software defects based on their development
experience. Aung et al. [14] processed code snippets and text information in defect reports
separately and improved the performance of developer assignments through joint learning
of developer assignment tasks and label classification tasks.

Empirical studies have shown that some software defects may be related [23,24], and
two related software defects could involve the same source code file. Almhana and Kessen-
tini [25] define dependencies based on two software defects involving the same source code

Mathematics 2024, 12, 425. https://doi.org/10.3390/math12030425 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12030425
https://doi.org/10.3390/math12030425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12030425
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12030425?type=check_update&version=2

Mathematics 2024, 12, 425 2 of 24

file. They leverage the dependencies to help resolve the task of developer assignment on
the Mozilla platform. Jahanshahi et al. [26] discovered that some software defects may be
blocked by others during the repair process. They studied how to assign developers for
software defects based on their blocking relationships. Since there are correlations between
software defects for reasons such as involving the same source code files or blocking rela-
tionships, referring to related software defects may help assign appropriate developers to
software defects. However, most existing studies only consider the characteristics of the
current software defect itself and overlook the correlation between software defects when
automatically assigning developers to software defects.

Meanwhile, existing studies do not consider developers’ different development behav-
iors when collecting candidates and extracting their characteristics [27,28]. For example,
Xuan et al. [28] considered the commenting behavior among developers to build social net-
works and designed a model for assigning developer priorities. Considering the different
behaviors of developers can help to understand their characteristics, which can help to
assign the appropriate developer to a software defect.

This paper proposes an automated Developer Assignment method for open-source
software defects based on Related Issue Prediction, named DARIP. First, this paper extracts
the text vectors of software defects and all their historical software defects using the BERT
model, predicts the Top-N potential related software defects for each software defect from
all the historical software defects based on cosine similarity, takes the text information
of related software defects as an extension of the text information of software defects,
and takes the text information of software defects together with the text information of
related software defects as text input. The text characteristics of software defects are ob-
tained by comprehensively calculating the text vectors of software defects and related
software defects. Second, a heterogeneous collaborative network is constructed based on
the three development behaviors of developers: reporting, commenting, and fixing. The
meta-paths are defined based on the four collaborative relationships between developers:
report–comment, report–fix, comment–comment, and comment–fix. The graph-embedding
algorithm metapath2vec extracts developer characteristics from the heterogeneous collabo-
rative network. Then, a classifier based on a deep learning model calculates the probability
assigned to each developer category. Finally, the assignment list is obtained according to
the probability ranking.

In order to evaluate the effectiveness of the DARIP method, this paper collects 20,280
software defects from 9 popular open-source projects. The experimental results show that
the average values of the Recall@5, the Recall@10, and the MRR of the method DARIP in 9
projects are 0.5902, 0.7160, and 0.4136, respectively. Compared with the existing method
Multi-triage, the average values of the Recall@5, the Recall@10, and the MRR of the DARIP
method in 9 projects are increased by 31.13%, 21.40%, and 25.45%, respectively.

2. Background

In the GitHub open-source community, the Issue Tracker System supports developers
to contribute freely to open-source projects. In the Issue Tracker System, users can report
software defects or functional requirements found during the development process. For
example, managers may identify an issue as a software defect [29] by adding the label
“bug”, “defect” or other synonyms. After the issue is reported, other interested developers
participate in the issue comments to discuss the solution. In response to the reported
software defects, managers have the option of assigning appropriate developers. Moreover,
developers can create a pull request to submit fixable code for code review based on the
solution to a software defect. After passing the code review, the code is merged into the
repository, and the software defect is fixed. Therefore, this paper refers to the literature [14],
which defines the fixer of a software defect as the assignee or the creator who creates the
corresponding pull request and is successfully merged into the repository.

In this paper, we study the software defects in the Issue-Tracking System. Take the
software defect of No. 29391 (https://github.com/tensorflow/tensorflow/issues/29391,

https://github.com/tensorflow/tensorflow/issues/29391

Mathematics 2024, 12, 425 3 of 24

(accessed on 14 December 2023)) in the project tensorflow/tensorflow as an example, and its
basic structure is shown in Figure 1.

Figure 1. A sample of a software defect.

(1) Title: A brief overview of the software defect.
(2) Description: The body of the defect report, including a specific description of the

software defect.
(3) Comment: Information about developers participating in discussions about a

software defect.
(4) Label: Managers add labels to identify the category of a issue. For example, add

the label type:bug to indicate that the current issue is a software defect.
(5) Reporter: The developer who reported the current software defect.
(6) Commentator: Developers involved in the discussion of a software defect.
(7) Assignee: A developer assigned by the manager to fix the software defect.
(8) Link: A hyperlink left by a developer during the discussion of an issue, often used

to refer to other relevant information.
As shown in Figure 1, the developer pt**** reported a software defect number 29391,

which was assigned to developers ql***** and ym**** on the project tensorflow/tensorflow.
Subsequently, the developer ql***** indicated that the current software defect was related to
the historical software defect number 29187 (https://github.com/tensorflow/tensorflow/
issues/29187, (accessed on 14 December 2023)) in the same project, and the submitted code
had fixed the related software defect. By validation from the developer pt****, the current
software defect can also be fixed using the same version of the fixed code. The historically
related software defect number 29187 was reported earlier than the software defect number

https://github.com/tensorflow/tensorflow/issues/ 29187
https://github.com/tensorflow/tensorflow/issues/ 29187

Mathematics 2024, 12, 425 4 of 24

29391 and has been fixed by the developer ql*****. In particular, the assignee ql***** of
the software defect number 29391 was also the assignee of the related software defect
number 29187. Already familiar with the resolution of the historically related software
defect number 29187, the developer ql***** immediately fixed the software defect number
29391 with the same fixable code.

As a related issue, the resolution of software defect number 29391 helped to fix the
software defect number 29187. At the same time, the experience of developer ql***** in
fixing related issues helped reduce the resolution time for software defect number 29187.
Therefore, referring to the issues associated with the software defect may help to assign the
appropriate developer to the software defect.

3. Related Work
3.1. Related Issue

Due to the fact that open-source software can share or reuse code, many open-source
projects rely on the same libraries and components [12]. Dependencies between open-
source projects further affect software defects in the project, and issues in one project
may be linked to related issues from the same or other projects [30–33]. Ma et al. [30]
conducted an empirical study of software defects in seven open-source projects in the
Python ecosystem on the GitHub platform. They found that developers point to related
issues by leaving links in the text messages of software defects. Zhang et al. [31] performed
both qualitative and quantitative analysis of links in the Rails ecosystem and found that the
percentage of issues with links reached 24.8%. Of these, 82.8% were links within projects,
and 17.2% were links between different projects. Li et al. [32] analyzed 16,584 Python
projects on the GitHub platform. They classified the relationship between software defects
and related issues into six different types through qualitative analysis, and each type
of related issue could help to fix software defects. Previous studies have shown that
referencing related issues may help fix corresponding software defects.

Zhang et al. [34] stated that issue reports on GitHub are essential knowledge in
software development and proposed iLinker, a method to automatically obtain related
issues to help fix issues by sharing knowledge of related issues. The Linker method
calculated three similarity scores between query issues and candidate issues using TF-IDF,
word embedding, and document embedding, respectively. Then, the final scores of the
query issues and the candidate issues are combined, and the related issues of query issues
are recommended based on the final scores. In our previous work [35], we focused on
software defects and related issues and proposed an algorithm, CPIRecom, to predict
cross-project related issues automatically. Firstly, the pre-selecting set construction method
is proposed to filter the massive issues. Secondly, the BERT pre-training model is used to
extract text features and analyze project features. Then, the random forest algorithm is
used to calculate the probability of the pre-selecting issues and the software defects. Finally,
the recommendation list is obtained according to the ranking.

In this paper, we draw on the idea of the CPIRecom method of related issue recommen-
dation to predict potentially related issues for each software defect in order to help solve
the task of developer assignment. Our existing work and our current work are different
because they are designed to solve different research questions. Our prior work [35] aimed
at predicting relevant issues from other projects for software defects. However, the purpose
of the current work is to assign appropriate developers for software defects.

3.2. Developer Assignment

In this section, we present existing research on developer assignment and divide existing
work into four categories: information retrieval-based approaches, machine learning-based
approaches, social network-based approaches, and defect relationship-based approaches.

Mathematics 2024, 12, 425 5 of 24

3.2.1. Information Retrieval-Based Approach

Information retrieval refers to the process of finding information from a collection of
data that meets information needs. The developer assignment method based on information
retrieval assumes that developers can fix specific types of software defects because they
have some specialized knowledge. Some researchers introduced the concept of topic
model for assigning developers [13,15–17]. Among them, Yang et al. [13] proposed a
developer assignment method with a multi-feature combination, extracted topics from
historical defect reports, extracted features such as components, products, priorities, and
severity of software defects, calculated textual similarities among software defects, and
collected developers who contributed as candidates. Finally, they obtained a ranking list of
candidate developers based on development experience. Xia et al. [16] proposed a multi-
featured topic model that extends the Latent Dirichlet Allocation(LDA) to the developer
recommendation task. They considered product information and component information
of software defects and assigned appropriate developers to software defects based on the
affinity of the developer to the topics.

Most of the above information retrieval-based methods are divided into two steps:
filtering out a small number of eligible historical software defects and collecting all the
developers from them to obtain a candidate set, then extracting the characteristics of all
the candidates in the candidate set and finally assigning appropriate developers to the
software defects. If the real developers do not appear in the candidate set, it will directly
affect the effectiveness of the method.

3.2.2. Machine Learning-Based Approach

With the continuous development of machine learning technology, some researchers
utilized traditional machine-learning and deep-learning algorithms to solve the devel-
oper assignment task [14,18–22,36–39]. Jonsson et al. [19] proposed a defect assignment
method based on ensemble learner, using TF-IDF technology to extract features from
the title information and description information of defect reports and combining Naive
Bayes, Support Vector Machines, KNN, and Decision Tree classifiers to create a stacked
generalization classifier for improving the prediction accuracy of automatic developer
assignment. Lee et al. [21] propose a developer assignment method based on a CNN and
word embedding, using the word2vec model to convert each word in the summary and
description in defect reports into a word vector and then using a CNN to learn the text
features of software defects to solve the defect classification task. Mani et al. [22] proposed
a developer assignment method based on deep bidirectional recurrent neural networks,
which learns paragraph-level representations of software defects based on deep learning
algorithms, learned word order and semantic relationships from the context of defect
reports, and finally, realized defect classification using a softmax classifier. Aung et al. [14]
proposed a multi-task learning classification model using a text encoder to extract text
features from defect reports and an AST encoder to extract code features from code snippets
to improve the performance of the model by jointly learning defect assignment and label
classification tasks.

Most of the existing methods based on machine learning use various models to learn
feature representations from the text information of software defects and apply the text
classification to solve the developer assignment task. However, many of these methods
only focus on the software defects themselves and overlook the correlation between them.
Therefore, it is crucial to consider the related issues of software defects when extracting
textual characteristics, as this can aid in solving the task of developer assignment by
extending the text information of software defects.

3.2.3. Social Network-Based Approach

Some researchers utilized methods based on social network analysis to solve the task
of developer assignment [14,40–45]. For example, Banitaan and Alenezi [40] proposed
DECOBA, a developer assignment method based on developer communities. They used de-

Mathematics 2024, 12, 425 6 of 24

velopers’ commenting behavior on software defects to construct a developer social network.
Then, they detected developer communities and ranked developers by their experience in
each community to obtain a developer assignment list. Zhang et al. [41] took commentators
on software defects as potential developers. They constructed heterogeneous social net-
works based on developers, software defects, comments, components, and products. They
then calculated three types of collaborative proximity among developers in these networks
based on defects, components, and products. The researchers ranked developers according
to their comprehensive score and generated a recommended list of potential developers.
Zaidi and Lee [42] proposed a graphical representation of defect reports, extracted the title
and description information from the defect reports, took the defect report as a document,
the document and the word in a document as two types of nodes, and built a heterogeneous
network with the document-to-word and the word-to-word as two types of edges. The
Graph Convolutional Network was used to learn the graph representation of software
defects, and the task of defect classification was solved by using node classification.

The social network-based approaches mentioned above did not consider the reporting,
commenting, and fixing behavior of developers in software defects. Therefore, it is essential
to analyze the personal characteristics of developers when extracting developer character-
istics for software defects. This analysis can help in assigning appropriate developers to
software defects.

3.2.4. Defect Relationship-Based Approach

A few researchers consider the relationship between software defects in the developer
assignment task of studying software defects [12,25,26]. Almhana and Kessentini [25]
proposed a defect classification method based on the dependency between defect reports,
which defined the dependency between two defect reports as the number of shared files to
be inspected to localize the defects. Then, they adopted a multi-objective search to rank the
bug reports for developers based on both of their priorities and the dependency between
them. Jahanshahi et al. [26] introduced a defect-triaging method called DABT, which
considered the text information, the cost associated with each defect, and the dependency
among them. They leveraged natural language processing and integer programming to
assign software defects to appropriate developers.

Although the defect relationship-based methods mentioned above have proven to be
effective, they rely on platforms like Mozilla and Bugzilla that contain information such as
dependency relationships and source code files. Unfortunately, the GitHub platform lacks
this information, making it impossible to apply these methods directly to it. Therefore, it is
necessary to draw on the related issue recommendation method to predict the potential
related issues for each software defect to assist in the task of assigning developers.

4. Method

Given the difficulty of manually assigning developers to software defects in GitHub,
this paper proposes a method for automatically assigning developers to software defects.
Then, we present the design idea and the individual modules of the DARIP method.

4.1. Design Idea

After a software defect is reported, it may be assigned to different developers. This
allows us to label the type of software defect as the assignee and convert the developer
assignment task into a multi-classification task in the field of machine learning. In this
paper, we propose the automated developer assignment method, DARIP, which is divided
into two phases: the training phase and the testing phase. The overall architecture is shown
in Figure 2. The DARIP methodology consists of the following components:

(1) Collect historical software defects and developers.
(2) Predict potentially related issues for software defects based on their textual information.

Mathematics 2024, 12, 425 7 of 24

(3) The feature vectors of text information in software defects and the feature vectors
of text information in related issues are used to calculate the textual features of software
defects comprehensively.

(4) Consider the three development behaviors of developers in software defects:
reporting, commenting, and fixing. Construct a heterogeneous collaborative network with
developers and software defects as two types of nodes and three development behaviors as
three types of edges.

(5) A graph-embedding algorithm is used to extract the developer features of software
defects from heterogeneous collaborative networks.

(6) The textual features and textual features of software defects are input into the
classifier for training and learning, and the developer assignment model is obtained.

(7) Extract the text feature and developer feature for a newly reported software defect.
(8) Input the extracted text feature and developer feature into the trained developer

assignment model and output the developer assignment list.

Figure 2. Overall procedure of DARIP method.

In the training phase, this paper first collects software defects from the GitHub plat-
form and the developers. Then, potentially related issues are predicted for software defects,
and text features are calculated comprehensively. At the same time, a heterogeneous col-
laborative network is constructed based on three development behaviors of developers:
reporting, commenting, and fixing. The graph-embedding algorithm is used to learn
the feature representation of developers. Finally, the feature vectors of software defects
are input to the classifier for training and learning, and the developer assignment model
is obtained.

During the testing phase, when new software defects are reported on the GitHub
platform, the DARIP method extracts the textual and developer characteristics of the
software defects. It then calculates the probability of each candidate developer being able
to fix the software defects using the assignment model generated during the training phase.
Finally, the candidate developers are ranked based on their probability, from highest to
lowest, to create an assignment list of potential developers.

4.2. Textual Characteristic

When developers report software defects, they provide detailed information about
the problem using both the title and description. Therefore, text information is an essential
reference to help assign developers. At the same time, a software defect in open-source
software may be related to other issues, and referring to the related issues may help
fix the software defect. Therefore, the following section describes how to extract the
textual characteristic.

Mathematics 2024, 12, 425 8 of 24

To prepare the text information of software defect for analysis, we first preprocess the
text information. The pre-processing includes removing non-text information, converting
all letters to lowercase, removing stop words, segmenting the text, and lemmatization.
In our study, we remove non-text information such as phone numbers, email addresses,
and emoticons from the title and description. We then use blank spaces to separate the
remaining text into individual words, creating an array of words for analysis.

Secondly, for a software defect, the potentially related issue is predicted, and the
text information of the related issue is taken as an extension of the text information of
the software defect. The text information of the software defect and the text information
of the related issue are taken as the text input. Specifically, the DARIP method collects
all historical software defects corresponding to each software defect from the dataset.
Then, natural language processing techniques are used to extract the textual vectors of
software defects and all their historical software defects. Currently, the BERT pre-training
model [46] is an important technique in the field of natural language processing. We use
the BERT pre-training model to transform the preprocessed word arrays into text vectors
that can characterize the semantic information. Then, we use cosine similarity to calculate
the textual similarity of feature vectors between the software defect and each historical
software defect, rank all its historical software defects from highest to lowest according
to the textual similarity, and select the Top-N historical software defects with the highest
textual similarity as the potential N related issues of the software defect. Extend the text
information of related issues as the text information of software defect, and take the text
information of software defect and related issues together as text input.

Finally, the textual vectors of software defects and the textual vectors of Top-N related
issues are weighted to get the final textual characteristic of the software defect. Specifically,
the cosine similarity between the textual vector of the related issues and the textual vector
of the software defect is calculated as the correlation coefficient of the related issues. For
each related issue, the weighted value is then obtained by multiplying its textual vector
with the correlation coefficient. Next, we calculate the cumulative weighted value of N
related issues. Then, we calculate the sum of the cumulative weighted values of N related
issues and the textual vector of software defect. Finally, divide the sum by N+1 to obtain
the final textual feature of the software defect. The formula for calculating the textual
characteristic of software defect is as follows:

tFeat(i) =
1

N + 1

(
b f (i) +

N

∑
k=1

(Cosine(i)k ∗ b f (i)k)

)
(1)

where N represents the number of potentially related issues predicted by the i-th software
defect, b f (i) represents the text vector of the i-th software defect, b f (i)k represents the
text vector of the i-th software defect corresponding to the k-th related issue, Cosine(i)k
represents the cosine similarity between the i-th software defect and the corresponding
k-th related issue, and tFeat(i) represents the final textual characteristic of the i-th software
defect. According to Section 6.3, the value of N is set to 1. This means that the text
information of a software defect is used as textual input together with the text information
of the TOP-1 related issue.

4.3. Developer Characteristic

The development behaviors of developers in software defects mainly include report-
ing, commenting, and fixing, and developers can participate in the development of different
software defects based on different development behaviors according to their personal
wishes. For the newly reported software defects, the DARIP method considers the three de-
velopment behaviors of developers: reporting, commenting, and fixing. Based on the three
development behaviors of developers in a software defect and its historical software defects,
a heterogeneous collaborative network is constructed. The graph-embedding algorithm is
then used to mine the personal features of developers from the heterogeneous collaborative
network and learn the vector representations of developers. Finally, the feature vector of

Mathematics 2024, 12, 425 9 of 24

the reporter of the new software defect is used as the developer characteristic of the current
software defect.

4.3.1. Heterogeneous Collaborative Network

First, for a software defect and all corresponding historical software defects, collect
the participating developers, including reporters, commentators, and fixers. Then, based
on the three development behaviors of reporting, commenting, and fixing software defects,
a heterogeneous collaborative network is built corresponding to current software defect, all
historical software defects, and all developers involved in the above defects. In this paper,
we consider assigning appropriate developers to the software defect as soon as they are
reported, so that the only participant in newly reported software defects is the reporter.

The definition of a heterogeneous collaborative network is shown in Table 1. The
flowchart for constructing a heterogeneous collaborative network for a software defect
is shown in Figure 3. First, we collect all historical software defects. Second, we select a
software defect to be addressed from the historical software defects. Third, we collect the
developers from the software defect, including reporter, commentator, and fixer. Fourth,
we construct the reporting relationship, the commenting relationship, and the fixing re-
lationship between developers and software defects, respectively. Fifth, we determine
whether there are any software defects to be addressed. If so, go back to the second step. If
not, it indicates that all software defects have been handled and the final heterogeneous
collaborative network is output.

Figure 3. The flowchart for construct heterogeneous collaborative network.

In heterogeneous collaborative networks, the node types include software defects
and developers, and the edge types include developers’ reporting behavior, commenting
behavior, and fixing behavior. We represent a software defect as B (also known as Bug),
a Developer as D, a reporting behavior as r, a commenting behavior as c, and a fixing
behavior as f . An example of a heterogeneous collaborative network is shown in Figure 4,
where Bnew is the newly reported software defect, developer D3 is the reporter of the
software defect, B1 and B2 belong to the historical software defects, and D1 and D2 are the
developers involved. At the same time, developer D3 also participated in commenting on
historical software defect B1 and historical software defect B2. So far, the DARIP method
has obtained a heterogeneous collaborative network built for software defect Bnew.

Mathematics 2024, 12, 425 10 of 24

Figure 4. A sample of a heterogeneous collaborative network.

It should be noted that the heterogeneous collaborative network constructed by the
DARIP method is undirected, because D-c-B and B-c-D illustrate the same scenario in the
real software development process: the developer D comments on the software defect B.
Since each software defect is reported at a different time, the historical software defects
collected for each software defect are not the same. This makes the heterogeneous collabo-
rative network built by each software defect unique. Therefore, this paper needs to build a
separate heterogeneous collaborative network for each software defect.

Table 1. Definition of the heterogeneous collaborative network.

Structure Type Description

Node
Software Defect/Bug (B) Software defects in a heterogeneous collaborative network include: current software

defect and its historical software defects.

Developer (D)
Developers in a heterogeneous collaborative network include: reporters, commentators,

and fixers. Among them, the only developer involved in the current software defect is the
reporter.

Edge
Report (r) Developer report a software defect.

Comment (c) Developer comment on a software defect.
Fix (f) Developer fix a software defect.

4.3.2. Developer Characteristic Extraction

The heterogeneous collaborative network constructed for software defects is typical
non-Euclidean spatial data. Therefore, it is necessary to select a suitable graph-embedding
algorithm to extract the feature vectors of the reporter in current software defect from
the heterogeneous collaborative network. Since the heterogeneous collaborative network
constructed in this paper contains two types of nodes and three types of edges, it is
crucial to select an algorithm that can handle heterogeneous networks. Dong et al. [47]
proposed a graph-embedding algorithm, metapath2vec, which can deal with heterogeneous
information networks, support custom meta-paths to guide the random wandering of
nodes, and is able to obtain semantic and structural information between different nodes.
Therefore, the metapath2vec algorithm is used in this paper to extract the reporter’s feature
vector in the current software defect from heterogeneous collaborative networks.

Mathematics 2024, 12, 425 11 of 24

Extracting feature vectors of nodes from the network based on graph-embedding
algorithm metapath2vec usually involves three steps: (1) Customising meta-paths. Meta-
paths are paths formed by connecting different types of nodes in a heterogeneous network
in a specific way. The metapath2vec algorithm supports researchers in fixing personalized
problems by customizing meta-paths. (2) For a heterogeneous network, the metapath2vec
algorithm guides random walks of nodes and obtains all node walk sequences based on
metapath2vec. Considering the nodes in the network as words and the walk sequences of
nodes as sentences, all possible node sequences form a corpus. (3) Feature vectors of nodes
in the network are obtained by using the skip-gram model to extract word vectors in the
corpus. According to the above steps, this paper needs to propose the custom meta-paths
and then guide nodes in the heterogeneous collaborative network to walk around based on
the custom meta-paths and obtain all possible walk sequences. Finally, all walk sequences
are input into the skit-gram model, and the feature vector of the reporter in new software
defect from the heterogeneous collaborative network are output.

(1) Custom meta-paths.

This paper defines the meta-paths based on the different collaborative relationships be-
tween developers. When constructing a heterogeneous collaborative network, we consider
the three behaviors of developers: reporting, commenting, and fixing. According to the
three development behaviors of developers, we can get six kinds of collaborative relation-
ships among developers: report–report, report–comment, report–fix, comment–comment,
comment–fix, and fix–fix. In this case, the report–report collaboration does not really exist
because there is only one reporter for a software defect. Furthermore, the analysis of the
dataset in Section 5 reveals that most software defects have only one fixer, and the per-
centage of defects with multiple fixers (two or more) is less than eight percent on average.
Therefore, we ignore the collaborative relationship of fix–fix and finally obtain four types of
collaborative relationships between developers and define the meta-paths. The meta-paths
and the corresponding collaborative relationships are shown in Table 2.

Table 2. The meta-paths and collaborative relationships.

Meta-Paths Collaborative Relationships

D − f − B − r − D / D − r − B − f − D A developer fixed a software defect reported
by another developer.

D − c − B − r − D / D − r − B − c − D A developer commented on a software defect
reported by another developer.

D − c − B − f − D / D − f − B − c − D A developer commented on a software defect
fixed by another developer.

D − c − B − c − D Both developers commented on the same
software defect.

It is important to note that collaboration between developers does not take direction
into account. For example, D1 − f − B − r − D2 and D2 − r − B − f − D1 illustrate the
same scenario in the real software development process, where developer D2 reported
software defect B and developer D1 fixed it.

(2) Guide random walks.

The defined meta-paths guide the nodes to walk randomly on the heterogeneous
collaborative network, so that the node sequence containing the semantic information of
the collaborative relationship can be obtained. Then, all the node sequences containing
semantic information of collaborative relationships are inputted into the skip-gram model.

Mathematics 2024, 12, 425 12 of 24

(3) Extract feature vectors.

The skip-gram model is a kind of Word2Vec model that predicts the context based
on the central word. Specifically, it predicts other words before and after the word in the
sliding window. Among them, the number of prediction words is determined by the size
of the sliding window w. Thus, this paper essentially uses the skip-gram model to predict
the other developers in a sequence of nodes that collaborate with a developer. For example,
given a sequence of nodes as follows:

D1 − c − B1 − f − D2 − f − B2 − c − D3 − c − B3 − r − D4 − f − B4 − r − D5 (2)

Assuming that the central word is D2, when the sliding window w = 2, the model can
learn the set of developers S1 = {D1, D3} that has collaborative relationships with D2. The
collaborative distance between developer D2 and developers D1 and D3 is 0. When the
sliding window w = 4, the model can learn the set of developers S2 = {D1, D3, D4} that
has collaborative relationships with D2. Among them, the collaborative distance between
developer D2 and developers D1 and D3 is 0, the collaborative distance between developer
D2 and developers D4 is 1. When the sliding window w = 6, the model can learn the set
of developers S3 = {D1, D3, D4, D5} that has collaborative relationships with D2. Among
them, the collaborative distance between developer D2 and developers D1 and D3 is 0,
the collaborative distance between developer D2 and developers D4 is 1, the collaborative
distance between developer D2 and developers D5 is 2.

Finally, the skip-gram model outputs the feature vector of each node in the hetero-
geneous collaborative network. We take the feature vector of the reporter in the current
software defect as the developer characteristic of the current software defect. According to
the experimental results in Section 6.3, this paper sets the value of sliding window w = 4.

4.4. Classifier

In this paper, the DARIP method takes the fixers as the labels of software defects.
Therefore, the task of assigning a developer to a software defect can be transformed into a
classification task, and the developer assignment task can be solved by using the method
of classification task.

In this paper, a fully connected neural network is used to build a classifier, which
trains and learns the textual characteristics, developer characteristics, and labels input of
software defects in the classifier and uses the ReLU function as the activation function.
Since there are cases where there are multiple fixers for a software defect, i.e., multiple
labels for a single sample, our classification task belongs to multi-label classification. For
this purpose, for the last layer of full connectivity, we use the Sigmoid activation function
to calculate the probability of assigning a software defect to each developer category. The
mathematical formula of the Sigmoid function is shown in Formula (3),

σ(x) =
1

1 + e−x (3)

In the field of mathematics, the Sigmoid function is monotonically increasing, deriv-
able, and continuous. Its value domain R(s) ∈ (0, 1). When the input value tends to
negative infinity, the output value is close to 0. When the input value tends to positive
infinity, the output value is close to 1. The mathematical properties of the Sigmoid function
allow it to be used in neural networks as an activation function to normalize the output of
each neuron. In addition, since the probability also takes values in the range of 0 to 1, the
Sigmoid function is often applied to prediction probability models to solve classification
problems. This paper uses the Sigmoid function to predict the probability of each label in
the software defect separately [48], and the probability of different categories do not affect

Mathematics 2024, 12, 425 13 of 24

each other. In the classifier, the formula for calculating the probability of assigning the i-th
software defect to the j-th fixer is defined by Formulas (4)–(6),

σ
(
zj
)
=

1
1 + e−zj

(4)

σ
(
zj
)
= p

(
devj|bugi

)
(5)

p
(
devj|bugi

)
=

1
1 + e−zj

(6)

where zj is the ouput of the fully connected layer and the input of the Sigmoid function.
Formula (4) is obtained by inserting x = zj into Formula (3). In Formula (5), bugi is the i-th
software defect, and devj is the j-th fixer. σ

(
zj
)

is expressed as the probability of assigning
the i-th software defect to the j-th fixer. The final probability calculation Formula (6) can be
obtained by substituting Formula (5) with Formula (4).

In addition, the number of software defects fixed by each developer varies, making
the sample size different for different developer types, which may lead to a category
imbalance in the dataset. This paper addresses the problem of category imbalance by
using data augmentation technique [49], which extends the dataset by generating new
training data from existing data, effectively reducing model overfitting. Specifically, we
first delete the categories with a sample size of 1 in the dataset because too few samples
will affect the training effect of the model. Secondly, the sample size of the largest category
in the dataset is denoted as maxNum. Then, the formula Threshold = p ∗ maxNum for the
small number of samples is proposed by setting the parameter p = 0.8. For each category,
when the sample size of the category is less than Threshold, a sample is randomly selected
from the original dataset of the category, and the original textual content in the sample is
randomly exchanged to generate new textual content. For the newly generated text, the
same processing method is used to obtain the textual characteristic of the sample. At the
same time, we keep the developer characteristic unchanged and finally get the characteristic
vector of the new sample. When the sample size of the category is not less than Threshold,
the data augmentation process for the current category is stopped. Finally, the problem of
category imbalance in the dataset is solved by traversing and processing each category.

We evaluate the performance of the model by splitting the training set and the test set
and dividing them by a ratio of 8:2. During the training phase, we obtain the augmented
training set based on the above data-augmentation method. We construct the cross-entropy
loss function, train the classifiers based on the gradient descent optimization algorithm,
use the dropout strategy to prevent the overfitting phenomenon, and finally generate the
assignment model. During the test phase, the assignment model generated in the training
phase is used to recommend appropriate developers for each software defect based on the
data in the test set.

5. Dataset

In order to study the assignment of software defects, this paper needs to collect data
on software defects and construct a dataset.

In order to collect software defects, this paper needs to select suitable open-source
projects from the GitHub platform. First, we sorted projects in GitHub from highest to
lowest based on the number of stars in order to select some popular projects. For the Top-50
open-source projects with the highest number of stars, we further filtered out projects
that shared documentation or books and only considered projects that involved software
development work. Then, for such projects, we counted the number of software defects
in each project from inception until 2023. Since GitHub supports developers to identify
features for reported issues by adding labels, we manually checked the label described as a
bug in each software project and selected the issue with that label as a software defect. In
order to ensure that software defects do not change in the future, this paper only considers

Mathematics 2024, 12, 425 14 of 24

software defects whose status is closed. At the same time, in order to ensure that the
collected software defects can be used for the training and learning of the assignment
model, we selected the software defects with fixers. For the software defects that meet
the above conditions, we filtered out the projects with a number of software defects that
were less than 500 to ensure that there were enough software defects in each software
project. Finally, we selected the Top-9 open-source software projects with a high number
of stars and more than 500 software defects. The details of the 9 open-source projects are
shown in Table 3. In Table 3, the number of software defects in the 9 open-source projects
reached 20,280, using programming languages such as C++, C#, JavaScript, Go, and other
mainstream programming languages.

For the software defects in nine open-source projects, we used GitHub Rest API to
extract the title, body, reporter, commentator, and fixer information of each defect. At the
same time, we collected the reporting time and closing time of the software defects. We
define other software defects whose closing time is earlier than the reporting time of the
current defect as their historical software defects. Some software defects may be assigned
to virtual bots (users registered on the platform with a “bot” string in their name) instead of
real developers. Since no real developers were used, these software defects were not useful
for the training and learning the automated developer assignment task. Therefore, we
removed these software defects assigned to virtual bots based on the “bot” string contained
in the registered name. At the same time, we also removed the virtual bots when collecting
developers. In addition, there are a small number of cases where the reporters of software
defects are also their fixers. In order to better study the developer assignment method, we
treated these software defects as follows: (1) If there was only one fixer and the fixer was
also the reporter, the software defect was deleted directly. (2) If the software defect had
more than one fixer, the defect was retained, and the fixer, who was also the reporter, was
deleted from the fixer list.

Table 3. Information of nine open-source projects.

Open-Source Project Period Number of
Stars

Label of
Defects

Number of
Defects

Number of
Fixers

Main
Programming

Language

tensorflow/tensorflow 2015/11–
2022/12 170k type:bug 7208 341 C++

flutter/flutter 2015/11–
2022/12 148 k P4 741 143 Dart

electron/electron 2014/05–
2022/12 105 k bug 755 35 C++

vercel/next.js 2016/10–
2022/12 97.9 k kind: bug 592 33 JavaScript

kubernetes/kubernetes 2014/06–
2022/12 94.5 k kind/bug 3768 778 Go

microsoft/TypeScript 2014/07–
2022/12 87 k Bug 4601 51 TypeScript

microsoft/terminal 2017/10–
2022/12 86.7 k Issue-Bug 577 30 C++

microsoft/PowerToys 2019/09–
2022/12 83.7 k Issue-Bug 973 56 C#

ant-design/ant-design 2015/07–
2022/12 83.5 k Bug 1065 44 TypeScript

In addition, software defects may have one or multiple fixers. We measured the
percentage of software bugs with multiple fixers across 9 projects and found that only 7.57%

Mathematics 2024, 12, 425 15 of 24

of software defects had two or more fixers, and 92.43% of software defects had only one
fixer. Therefore, when we customized the meta-paths, we did not consider the collaboration
of two developers fixing a software defect at the same time.

6. Experimental Evaluation
6.1. Evaluation Metrics

For the developer assignment method DARIP, this paper evaluates the DARIP method
by using two metrics: Mean Reciprocal Rank(MRR) [50] and Recall@k [51].

(1) Mean Reciprocal Rank (MRR)

The Mean Reciprocal Rank is a widely used evaluation metric in recommendation
algorithms. It represents the average reciprocal ranking of the real fixers in the assignment
list. The higher the ranking of a real fixer in the assignment list, the higher the average
reciprocal ranking. If there are multiple real fixers, the one with the highest ranking is
selected for the calculation. In this paper, we denote N as the number of software defects,
and rank(i) as the rank of the real fixer in the assignment list for the i-th software defect.
The formula for calculating the Mean Reciprocal Rank is as follows:

MRR =
1
N

N

∑
i=1

1
rank(i)

(7)

(2) Recall@k

The k indicates a configurable option. The Recall@k is the number of real fixers in
the top-k ranking divided by the number of real fixers. The research goal of this paper is
to assign appropriate fixers to software defects, so we hope to find out the real fixers of
software defects as much as possible, so we use the Recall@k to evaluate the ability of the
model to predict the fixers. In this paper, we denote N as the number of software defects,
real(i)k as the number of real fixers in the top-k ranking of the assignment list for the i-th
software defect, and real(i)all as the number of all real fixers for the i-th software defect.
Finally, the average of the Recall@k of N software defects is calculated. The calculation
formula is as follows:

Recall@k =
1
N

N

∑
i=1

real(i)k
real(i)all

(8)

In addition, in order to compare the difference in the assignment effect of different
methods, this paper defines the gain value to calculate the difference in the assignment
effect of method M1 and method M2, including the gain value of MRR and the gain value
of Recall@k. The definitions are as follows:

Gain(MRR) =
MRR(M1)− MRR(M2)

MRR(M2)
(9)

Gain(Recall@k) =
Recall@k(M1)− Recall@k(M2)

Recall@k(M2)
(10)

6.2. Research Questions

This paper studies the following three questions:

RQ1: How is the performance of the DARIP method in assigning developers for
software defects?

In this paper, we compare the DARIP method with the Multi-triage method proposed
by Aung et al. [14] and validate the effect of the DARIP method of developer assignment
for software defects in the datasets of nine open-source projects, respectively.

RQ2: Does the combination of different characteristics improve the assignment
effect of the DARIP method?

Mathematics 2024, 12, 425 16 of 24

The automatic developer assignment method proposed in this paper considers the
textual and developer characteristics of software defects, respectively. In order to evaluate
the necessity of selecting the above characteristics, this paper compares the assignment
effect of different characteristic combinations and selects the appropriate characteristic
combinations to apply to the DARIP method.

RQ3: How do different parameter settings affect the assignment effect of the
DARIP method?

Different parameters are involved in the developer assignment method DARIP de-
signed in this paper. We predict Top-N potentially related issues for software defects when
extracting textual characteristics. We use the skip-gram model with a specified value of
sliding window w to learn the feature representations of developers in heterogeneous
collaborative networks. In order to evaluate the effect of different parameter settings on
the developer assignment effect, this paper compares the assignment effect under different
parameter values and selects the appropriate parameter size for the DARIP method.

6.3. Evaluation Results
6.3.1. RQ1: How Is the Performance of the DARIP Method in Assigning Developers for
Software Defects?

Aung et al. [11] proposed multi-triage, a multi-task learning multi-classification
method, which extracted the feature representation of bug descriptions and code snippets
using a text encoder and an AST encoder, and improved the performance of the model by
jointly learning the developer assignment and label classification tasks. In this paper, the
Multi-triage method is used as a comparison method.

The experimental results are shown in Table 4. The average values of the Recall@5, the
Recall@10, and the MRR of the method DARIP in 9 projects are 0.5902, 0.7160, and 0.4136,
respectively. It can be seen that the assignment method DARIP in this paper outperforms
the Multi-triage method in the Recall@5, the Recall@10, and the MRR.

Table 4. Definition of the heterogeneous collaborative network.

Project Method Recall@5 Recall@10 MRR

ant-design DARIP 0.9156 0.9778 0.6708
Multi-traige 0.7426 0.7919 0.5741

electron DARIP 0.7319 0.8795 0.5784
Multi-traige 0.7219 0.8278 0.5699

flutter DARIP 0.2000 0.3125 0.1412
Multi-traige 0.2569 0.2926 0.1306

kubernetes DARIP 0.1271 0.1766 0.1073
Multi-traige 0.1286 0.2084 0.0998

next.js DARIP 0.8202 0.9071 0.5997
Multi-traige 0.3517 0.6695 0.2397

PowerToys DARIP 0.6501 0.8347 0.4284
Multi-traige 0.5155 0.6443 0.4020

tensorflow DARIP 0.2980 0.4344 0.1770
Multi-traige 0.1446 0.3174 0.1333

terminal DARIP 0.8281 0.9676 0.5439
Multi-traige 0.5725 0.7812 0.4174

TypeScript DARIP 0.7410 0.9542 0.4757
Multi-traige 0.6163 0.7750 0.4004

Average DARIP 0.5902 0.7160 0.4136
Multi-traige 0.4501 0.5898 0.3297

Mathematics 2024, 12, 425 17 of 24

Then, the gains of the DARIP method over the Multi-triage method are calculated on
9 projects for the two evaluation metrics, as shown in Table 5. Compared with the existing
method Multi-triage, the average values of the Recall@5, the Recall@10, and the MRR of
the DARIP method in 9 projects are increased by 31.13%, 21.40%, and 25.45%, respectively.

Table 5. The gain values of the DARIP method relative to the Multi-triage method.

Project
Gain(%)

Recall@5 Recall@10 MRR

ant-design 23.30% 23.48% 16.84%

electron 1.39% 6.25% 1.49%

flutter −22.15% 6.80% 8.12%

kubernetes −1.17% −15.26% 7.52%

next.js 133.21% 35.49% 150.19%

PowerToys 26.11% 29.55% 6.57%

tensorflow 106.09% 36.86% 32.78%

terminal 44.65% 23.86% 30.31%

TypeScript 20.23% 23.12% 18.81%

Average 31.13% 21.40% 25.45%

6.3.2. RQ2: Does the Combination of Different Features Improve the Assignment Effect of
the DARIP Method?

The assignment method proposed in this paper considers the textual and developer
characteristics of software defects, respectively. In order to evaluate the necessity of
selecting the above characteristics, this paper compares the assignment effect of different
characteristic combinations and selects the appropriate characteristic combinations to apply
to the DARIP method.

We remove textual characteristics and developer characteristics, respectively, and
compare the differences in the assignment effect between the method of removing textual
characteristic, the method of removing developer characteristic, and the DARIP method, as
shown in Table 6. The results show that the DARIP method has higher Recall@5, Recall@10,
and MRR on nine projects than the methods with textual characteristic removed and
developer characteristic removed. This shows that considering both textual and developer
characteristics can help improve the effect of developer assignment.

In conclusion, compared with the method of removing textual characteristic and
the method of removing developer characteristic, the DARIP method shows a better
assignment effect on nine projects. This fully demonstrates the importance of selecting the
above characteristics in this paper.

Table 6. Comparison of different characteristics.

Project Experimental Group Recall@5 Recall@10 MRR

ant-design
DARIP 0.9156 0.9778 0.6708

Remove Text 0.8828 0.9294 0.5418
Remove Developer 0.8891 0.9682 0.6462

electron
DARIP 0.7319 0.8795 0.5784

Remove Text 0.6632 0.8160 0.5477
Remove Developer 0.6899 0.8501 0.5636

flutter
DARIP 0.2 0.3125 0.1412

Remove Text 0.1761 0.2689 0.1298
Remove Developer 0.1714 0.2642 0.1294

Mathematics 2024, 12, 425 18 of 24

Table 6. Cont.

Project Experimental Group Recall@5 Recall@10 MRR

kubernetes
DARIP 0.1271 0.1766 0.1073

Remove Text 0.1136 0.1655 0.1005
Remove Developer 0.1253 0.1725 0.0980

next.js
DARIP 0.8202 0.9071 0.5997

Remove Text 0.7598 0.8993 0.5928
Remove Developer 0.8046 0.9013 0.5961

PowerToys
DARIP 0.6501 0.8347 0.4284

Remove Text 0.6275 0.7264 0.3344
Remove Developer 0.6359 0.8002 0.4220

tensorflow
DARIP 0.2980 0.4344 0.1770

Remove Text 0.2275 0.3893 0.1402
Remove Developer 0.2764 0.4250 0.1734

terminal
DARIP 0.8281 0.9676 0.5439

Remove Text 0.7016 0.9656 0.4303
Remove Developer 0.8221 0.9656 0.5414

TypeScript
DARIP 0.7410 0.9542 0.4757

Remove Text 0.5089 0.8407 0.3271
Remove Developer 0.7304 0.9404 0.4724

6.3.3. RQ3: How Do Different Parameter Settings Affect the Assignment Effect of the
DARIP Method?

Different parameters are involved in the developer assignment method DARIP de-
signed in this paper. This section analyzes the parameter settings of the number of predicted
related issues N and the sliding window w in the skip-gram model.

When extracting the textual characteristics of software defects, we predict Top-N
potential related issues for each software defect, weight them based on the cosine similarity
between software defects and related issues, and finally get the textual characteristics
of each software defect. If the parameter N takes different values, the resulting textual
characteristics also have certain differences. We set the parameter N to 0, 1, 3, and 5,
respectively, and compare the difference in the assignment effect when N takes different
values, as shown in Table 7. Among them, N = 0 means that we do not consider the
related issues and only extract textual characteristics based on the text information of
software defects.

Table 7. Comparison of different characteristics.

Project Top-N Recall@5 Recall@10 MRR

ant-design

Without Issues 0.8989 0.9689 0.6451
Top-1 0.9156 0.9778 0.6708
Top-3 0.8891 0.9597 0.6507
Top-5 0.8859 0.9640 0.6415

electron

Without Issues 0.7064 0.8716 0.5738
Top-1 0.7319 0.8795 0.5784
Top-3 0.6914 0.8501 0.5606
Top-5 0.6751 0.8472 0.5552

flutter

Without Issues 0.1897 0.2773 0.1360
Top-1 0.2 0.3125 0.1412
Top-3 0.1811 0.3062 0.1323
Top-5 0.1748 0.3046 0.1279

Mathematics 2024, 12, 425 19 of 24

Table 7. Cont.

Project Top-N Recall@5 Recall@10 MRR

kubernetes

Without Issues 0.1261 0.1638 0.0911
Top-1 0.1271 0.1766 0.1073
Top-3 0.1015 0.1575 0.0976
Top-5 0.1184 0.1572 0.0875

next.js

Without Issues 0.7549 0.8961 0.5677
Top-1 0.8202 0.9071 0.5997
Top-3 0.7851 0.8974 0.5698
Top-5 0.7618 0.8916 0.5844

PowerToys

Without Issues 0.6376 0.8259 0.4202
Top-1 0.6501 0.8347 0.4284
Top-3 0.6085 0.7787 0.3865
Top-5 0.6049 0.7859 0.3702

tensorflow

Without Issues 0.2937 0.4025 0.1698
Top-1 0.2980 0.4344 0.1770
Top-3 0.2773 0.3899 0.1598
Top-5 0.2836 0.4105 0.1680

terminal

Without Issues 0.7916 0.9652 0.5345
Top-1 0.8281 0.9676 0.5439
Top-3 0.8221 0.9834 0.5371
Top-5 0.8004 0.9755 0.5394

TypeScript

Without Issues 0.7119 0.9535 0.4519
Top-1 0.7410 0.9542 0.4757
Top-3 0.7286 0.9487 0.4666
Top-5 0.7195 0.9509 0.4560

When considering related issues, it can be found that the Recall@5, the Recall@10,
and the MRR when N is 1 are better than the Recall@5, the Recall@10, and the MRR when
N is 3 and 5. This indicates that the method considering Top-1 related issues has better
assignment effect than the methods considering Top-3 and Top-5 related issues. Moreover,
with the increase of N, the assignment effect of the DARIP method decreases.

In the case of not considering related issues, it can be found that the Recall@5, the
Recall@10, and the MRR when N takes the value of 1 are better than the Recall@5, the
Recall@10, and the MRR without related issues on 9 projects. This suggests that considering
the text information of related issues can help to improve the developers’ assignment effect.

In conclusion, the DARIP method is the most effective when predicting the Top-1
potentially related issues for software defects. Therefore, in this paper, we set the value of
N to 1.

At the same time, this paper uses the skip-gram model to extract developer char-
acteristics from the walk sequences. The size of the sliding window w in the skip-gram
model limits the collaborative distance between developers that can be learned. When w
takes different values, the developer characteristics extracted from software defects are
also different.

We set the sliding window w to 2, 4, and 6, respectively, and compare the differences
in the assignment effect when w is set to different values, as shown in Table 8. The results
show that the Recall@5, the Recall@10, and the MRR of the DARIP method when w is set to
4 are better than that of the methods when w is set to 2 and 6. Therefore, we set the value of
w to 4 in this paper.

Mathematics 2024, 12, 425 20 of 24

Table 8. Comparison of different characteristics.

Project w Recall@5 Recall@10 MRR

ant-design
2 0.8649 0.9564 0.5979
4 0.9156 0.9778 0.6708
6 0.8992 0.9682 0.6544

electron
2 0.7018 0.8532 0.5656
4 0.7319 0.8795 0.5784
6 0.6815 0.8408 0.5476

flutter
2 0.1968 0.3043 0.1353
4 0.2 0.3125 0.1412
6 0.1841 0.2991 0.1326

kubernetes
2 0.1254 0.1188 0.0888
4 0.1271 0.1766 0.1073
6 0.1229 0.1745 0.0978

next.js
2 0.7949 0.8976 0.5645
4 0.8202 0.9071 0.5997
6 0.8194 0.8863 0.5435

PowerToys
2 0.6199 0.7878 0.3946
4 0.6501 0.8347 0.4284
6 0.6206 0.7892 0.4050

tensorflow
2 0.2860 0.4554 0.1685
4 0.2980 0.4344 0.1770
6 0.2892 0.4298 0.1625

terminal
2 0.8180 0.9660 0.5274
4 0.8281 0.9676 0.5439
6 0.8101 0.9556 0.5395

TypeScript
2 0.6930 0.8995 0.4393
4 0.7410 0.9542 0.4757
6 0.6951 0.8953 0.4348

7. Discussion

In this paper, we propose the developer assignment method DARIP, which assigns
appropriate developers to software defects by considering the prediction of related issues
and the collaborative relationship between developers. Experimental results validate the
effectiveness of the DARIP method in several ways.

The DARIP method takes into account the possible correlation between software
defects and other issues, and mines additional valuable text information for software
defects by predicting related issues. As shown in Table 7, the Recall@5, the Recall@10, and
the MRR when N is 1 are better than the Recall@5, the Recall@10, and the MRR when N is 0.
This indicates that the method considering Top-1 related issues has better assignment effect
than the method without considering related issues. However, we find that the assignment
effect of the DARIP method decreases with the increase of N. In the ant-design project,
the Recall@5, the Recall@10, and the MRR when N is 5 are lower than the Recall@5, the
Recall@10, and the MRR when N is 0. We analyze the difference of the assignment effect
when N takes different values, and find that it is optimal when predicting Top-1 related
issues for software defects.

Meanwhile, the DARIP method considers four types of collaborative relationships
between developers: report–comment, report–fix, comment–comment, and comment–fix,
and uses graph-embedding algorithm to learn collaboration between developers from the
constructed heterogeneous collaborative network. We analyze the difference in assignment
effect with different values of sliding window w, as shown in Table 8. The Recall@5, the
Recall@10, and the MRR of the DARIP method when w is set to 4 are better than that of the
method when w is set to 2. This indicates that it is not sufficient to consider collaborative

Mathematics 2024, 12, 425 21 of 24

relationships where the collaborative distance between developers is 0 (direct collaboration,
where two developers collaborate on the same software defect) but also collaborative rela-
tionships where the collaborative distance between developers is 1 (indirect collaboration,
where both developers have a direct collaborative relationship with the same developer).
However, the Recall@5, the Recall@10, and the MRR of the DARIP method when w is set
to 4 are better than that of the method when w is set to 6. This indicates that the assign-
ment effect decreases when considering collaborative relationships with greater distances.
Therefore, when assigning developers for software defects, direct and indirect collaborative
relationships between developers need to be considered, and collaborative relationships
with greater distances are not recommended.

8. Threats to Validity

Threats to construct validity is concerned with the suitability of experimental results
to the concepts or theories behind the experiments. Firstly, we selected 9 popular projects
from the GitHub platform to verify our method. The 9 open-source projects involve a
variety of common programming languages and contain 20,280 software defects, which is
representative. Future work can collect more open-source projects to validate our method.
Then, we predict related issues for a software defect from its historical software defects.
These historical software defects belong to the same project as the software defect. However,
when Li et al. [29] studied the correlation between issues, they found that the related issues
of an issue in a project may originate from other projects on the GitHub platform. In future
work, we will expand the data sources of related issues to evaluate the DARIP method.

Threats to internal validity is the degree to which research establishes a credible
causal relationship between disposition and outcome. First, we investigate the assignment
effect of the method based on the standard answer of the assignee to the software defect as
the fixer. However, the real fixer may not be the best developer to fix the software defect,
and other developers may also be capable of fixing it. Future work can manually label
the developers who are capable of fixing software defects to construct the dataset. Then,
this paper uses cosine similarity to calculate the correlation between software defects and
related issues. In future work, we try to use different text similarity calculation methods
and analyze the impact of using different similarity calculation methods on developer
assignment methods.

Threats to external validity have to do with the universality of our research. This
paper selects the GitHub platform to study the developer assignment of software defects
but is uncertain about the effect of this method on other open-source platforms. Future
work can collect data from more platforms to validate the DARIP method. Meanwhile,
this paper investigates the developer assignment method for software defects in the Issue-
Tracking System. However, the issues recorded in the Issue-Tracking System include not
only software defects but also functional requirements proposed by developers. Such issues
may also be assigned to developers to complete software development tasks. In future
work, we consider extending the DARIP method to assign developers to all issues in the
Issue-Tracking System.

9. Conclusions

In this paper, we propose a developer assignment method, DARIP, for open-source
software defects. First, the DARIP method uses the BERT model to extract the textual
vectors from software defects and all its historical software defects. Based on the cosine
similarity, Top-N potential related issues are predicted for each software defect from all the
historical software defects, and takes the text information of related issues together with the
text information of software defects as textual input. The textual characteristics of software
defects are obtained by comprehensively calculating the text vector of software defects and
related issues. Secondly, a heterogeneous collaborative network is constructed based on
the three development behaviors of developers: reporting, commenting, and fixing. The
meta-paths are defined based on the four collaboration relationships between developers:

Mathematics 2024, 12, 425 22 of 24

report–comment, report–fix, comment–comment, and comment–fix. The graph-embedding
algorithm metapath2vec is used to extract developer characteristics from the heterogeneous
collaborative network. Then, a classifier based on a deep learning model calculates the
probability assigned to each developer category. Finally, the assignment list is obtained
according to the probability ranking.

This paper verifies the performance of the DARIP method on 20,280 software defects in
9 popular projects. The experimental results show that the average values of the Recall@5,
the Recall@10, and the MRR of the DARIP method in 9 projects are 0.5902, 0.7160, and
0.4136, respectively. Compared with the existing method Multi-triage, the average values of
the Recall@5, the Recall@10, and the MRR of the DARIP method in 9 projects are increased
by 31.13%, 21.40%, and 25.45%, respectively.

Author Contributions: Conceptualization, B.L. and J.J.; methodology, B.L. and J.J.; validation,
B.L. and Z.L.; formal analysis, B.L.; investigation, B.L.; resources, L.Z. and J.J.; data curation, B.L.;
writing—original draft preparation, B.L.; writing—review and editing, J.J.; supervision, L.Z.; project
administration, J.J.; funding acquisition, L.Z. and J.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
grant No. 62177003.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This research was supported by the National Natural Science Foundation
of China.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dabbish, L.; Stuart, C.; Tsay, J.; Herbsleb, J. Social coding in GitHub: Transparency and collaboration in an open software

repository. In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, Seatle, WA, USA, 11–15
February 2012; pp. 1277–1286.

2. Lima, A.; Rossi, L.; Musolesi, M. Coding together at scale: GitHub as a collaborative social network. In Proceedings of the
International AAAI Conference on Web and Social Media, Oxford, UK, 27–29 May 2014; Volume 8, pp. 295–304.

3. Yang, B.; Yu, Q.; Zhang, W.; Wu, J.; Liu, C. Influence Factors Correlation Analysis in GitHub Open Source Software Development
Process. J. Softw. 2017, 28, 1330–1342.

4. Bissyandé, T.F.; Lo, D.; Jiang, L.; Réveillere, L.; Klein, J.; Le Traon, Y. Got issues? who cares about it? a large scale investigation of
issue trackers from github. In Proceedings of the 2013 IEEE 24th International Symposium on Software Reliability Engineering
(ISSRE), Pasadena, CA, USA, 4–7 November 2013; pp. 188–197.

5. Bertram, D.; Voida, A.; Greenberg, S.; Walker, R. Communication, collaboration, and bugs: The social nature of issue tracking in
small, collocated teams. In Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, Savannah, GA,
USA, 6–10 February 2010; pp. 291–300.

6. Xu, C.; Cheung, S.C.; Ma, X.; Cao, C.; Lu, J. Adam: Identifying defects in context-aware adaptation. J. Syst. Softw. 2012,
85, 2812–2828. [CrossRef]

7. Yan, A.; Zhong, H.; Song, D.; Jia, L. How do programmers fix bugs as workarounds? An empirical study on Apache projects.
Empir. Softw. Eng. 2023, 28, 96–120. [CrossRef]

8. Wang, Y.; Chen, X.; Huang, Y.; Zhu, H.N.; Bian, J.; Zheng, Z. An empirical study on real bug fixes from solidity smart contract
projects. J. Syst. Softw. 2023, 204, 96–120. [CrossRef]

9. Guo, S.; Zhang, X.; Yang, X.; Chen, R.; Guo, C.; Li, H.; Li, T. Developer activity motivated bug triaging: Via convolutional neural
network. Neural Process. Lett. 2020, 51, 2589–2606. [CrossRef]

10. Shokripour, R.; Anvik, J.; Kasirun, Z.M.; Zamani, S. Why so complicated? simple term filtering and weighting for location-based
bug report assignment recommendation. In Proceedings of the 2013 10th Working Conference on Mining Software Repositories
(MSR), San Francisco, CA, USA, 18–19 May 2013; pp. 2–11.

11. Jeong, G.; Kim, S.; Zimmermann, T. Improving bug triage with bug tossing graphs. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Amsterdam, The Netherlands, 24–28 August 2009; pp. 111–120.

12. Jahanshahi, H.; Cevik, M. S-DABT: Schedule and Dependency-aware Bug Triage in open-source bug tracking systems. Inf. Softw.
Technol. 2022, 151, 107025. [CrossRef]

http://doi.org/10.1016/j.jss.2012.04.078
http://dx.doi.org/10.1007/s10664-023-10318-7
http://dx.doi.org/10.1016/j.jss.2023.111787
http://dx.doi.org/10.1007/s11063-020-10213-y
http://dx.doi.org/10.1016/j.infsof.2022.107025

Mathematics 2024, 12, 425 23 of 24

13. Yang, G.; Zhang, T.; Lee, B. Towards semi-automatic bug triage and severity prediction based on topic model and multi-feature of
bug reports. In Proceedings of the 2014 IEEE 38th Annual Computer Software and Applications Conference, Vasteras, Sweden,
21–25 July 2014; pp. 97–106.

14. Aung, T.W.W.; Wan, Y.; Huo, H.; Sui, Y. Multi-triage: A multi-task learning framework for bug triage. J. Syst. Softw. 2022,
184, 111133. [CrossRef]

15. Naguib, H.; Narayan, N.; Brügge, B.; Helal, D. Bug report assignee recommendation using activity profiles. In Proceedings of the
2013 10th Working Conference on Mining Software Repositories (MSR), San Francisco, CA, USA, 18–19 May 2013; pp. 22–30.

16. Xia, X.; Lo, D.; Ding, Y.; Al-Kofahi, J.M.; Nguyen, T.N.; Wang, X. Improving automated bug triaging with specialized topic model.
IEEE Trans. Softw. Eng. 2016, 43, 272–297. [CrossRef]

17. Zhang, W.; Cui, Y.; Yoshida, T. En-lda: An novel approach to automatic bug report assignment with entropy optimized latent
dirichlet allocation. Entropy 2017, 19, 173. [CrossRef]

18. Bhattacharya, P.; Neamtiu, I. Fine-grained incremental learning and multi-feature tossing graphs to improve bug triaging. In
Proceedings of the 2010 IEEE International Conference on Software Maintenance, Timisoara, Romani, 12–18 September 2010.

19. Jonsson, L.; Borg, M.; Broman, D.; Sandahl, K.; Eldh, S.; Runeson, P. Automated bug assignment: Ensemble-based machine
learning in large scale industrial contexts. Empir. Softw. Eng. 2016, 21, 1533–1578. [CrossRef]

20. Sarkar, A.; Rigby, P.C.; Bartalos, B. Improving bug triaging with high confidence predictions at ericsson. In Proceedings of the
2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), Cleveland, OH, USA, 29 September–4
October 2019; pp. 81–91.

21. Lee, S.R.; Heo, M.J.; Lee, C.G.; Kim, M.; Jeong, G. Applying deep learning based automatic bug triager to industrial projects. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, Paderborn, Germany, 4–8 September 2017;
pp. 926–931.

22. Mani, S.; Sankaran, A.; Aralikatte, R. Deeptriage: Exploring the effectiveness of deep learning for bug triaging. In Proceedings
of the ACM India Joint International Conference on Data Science and Management of Data, Mumbai, India, 4–7 January 2019;
pp. 171–179.

23. Canfora, G.; Ceccarelli, M.; Cerulo, L.; Di Penta, M. How long does a bug survive? An empirical study. In Proceedings of the
2011 18th Working Conference on Reverse Engineering, Limerick, Ireland, 17–20 October 2011; pp. 191–200.

24. Li, Z.; Tan, L.; Wang, X.; Lu, S.; Zhou, Y.; Zhai, C. Have things changed now? An empirical study of bug characteristics in
modern open-source software. In Proceedings of the 1st Workshop on Architectural and System Support for Improving Software
Dependability, San Jose, CA, USA, 21 October 2006; pp. 25–33.

25. Almhana, R.; Kessentini, M. Considering dependencies between bug reports to improve bugs triage. Autom. Softw. Eng. 2021,
28, 1–26. [CrossRef]

26. Jahanshahi, H.; Chhabra, K.; Cevik, M.; Baþar, A. DABT: A dependency-aware bug triaging method. In Proceedings of the
Evaluation and Assessment in Software Engineering , Trondheim, Norway, 21–23 June 2021; pp. 221–230.

27. Hong, Q.; Kim, S.; Cheung, S.C.; Bird, C. Understanding a developer social network and its evolution. In Proceedings of the
2011 27th IEEE International Conference on Software Maintenance (ICSM), Williamsburg, VA, USA, 25–30 September 2011;
pp. 323–332.

28. Xuan, J.; Jiang, H.; Ren, Z.; Zou, W. Developer prioritization in bug repositories. In Proceedings of the 2012 34th International
Conference on Software Engineering (ICSE), Zurich, Switzerland, 2–9 June 2012; pp. 25–35.

29. Wang, Q.; Xu, B.; Xia, X.; Wang, T.; Li, S. Duplicate pull request detection: When time matters. In Proceedings of the 11th
Asia-Pacific Symposium on Internetware, Fukuoka, Japan, 28–29 October 2019; pp. 1–10.

30. Ma, W.; Chen, L.; Zhang, X.; Zhou, Y.; Xu, B. How do developers fix cross-project correlated bugs? a case study on the github
scientific python ecosystem. In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), Buenos Aires, Argentina, 20–28 May 2017; pp. 381–392.

31. Zhang, Y.; Yu, Y.; Wang, H.; Vasilescu, B.; Filkov, V. Within-ecosystem issue linking: A large-scale study of rails. In Proceedings of
the 7th International Workshop on Software Mining, Montpellier, France, 3 September 2018; pp. 12–19.

32. Li, L.; Ren, Z.; Li, X.; Zou, W.; Jiang, H. How are issue units linked? empirical study on the linking behavior in github.
In Proceedings of the 2018 25th Asia-Pacific Software Engineering Conference (APSEC), Nara, Japan, 4–7 December 2018;
pp. 386–395.

33. Liu, B.; Zhang, L.; Jiang, J.; Wang, L. A method for identifying references between projects in GitHub. Sci. Comput. Program. 2022,
222, 102858. [CrossRef]

34. Zhang, Y.; Wu, Y.; Wang, T.; Wang, H. iLinker: A novel approach for issue knowledge acquisition in GitHub projects. World Wide
Web 2020, 23, 1589–1619. [CrossRef]

35. Liu, B.; Zhang, L.; Liu, Z.; Jiang, J. Cross-project Issue Recommendation Method for Open-source Software Defects. J. Softw.
2023, 1–19. [CrossRef]

36. Zaidi, S.F.A.; Woo, H.; Lee, C.G. Toward an effective bug triage system using transformers to add new developers. J. Sens. 2022,
2022, 4347004 . [CrossRef]

37. Kim, M.H.; Wang, D.S.; Wang, S.T.; Park, S.H.; Lee, C.G. Improving the Robustness of the Bug Triage Model through Adversarial
Training. In Proceedings of the International Conference on Information Networking, Jeju, Republic of Korean, 12–15 January
2022; pp. 478–481.

http://dx.doi.org/10.1016/j.jss.2021.111133
http://dx.doi.org/10.1109/TSE.2016.2576454
http://dx.doi.org/10.3390/e19050173
http://dx.doi.org/10.1007/s10664-015-9401-9
http://dx.doi.org/10.1007/s10515-020-00279-2
http://dx.doi.org/10.1016/j.scico.2022.102858
http://dx.doi.org/10.1007/s11280-019-00770-1
http://dx.doi.org/10.13328/j.cnki.jos.006992
http://dx.doi.org/10.1155/2022/4347004

Mathematics 2024, 12, 425 24 of 24

38. Zhang, W.; Zhao, J.; Wang, S. SusTriage: Sustainable Bug Triage with Multi-modal Ensemble Learning. In Proceedings of the
International Conference on Web Intelligence and Intelligent Agent Technology, Melbourne, VIC, Australia, 14–17 December
2021; pp. 441–448.

39. Jahanshahi, H.; Cevik, M.; Mousavi, K.; Basar, A. ADPTriage: Approximate Dynamic Programming for Bug Triage. Trans. Softw.
Eng. 2023, 49, 4594–4609. [CrossRef]

40. Banitaan, S.; Alenezi, M. Decoba: Utilizing developers communities in bug assignment. In Proceedings of the 2013 12th
International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013; Volume 2, pp. 66–71.

41. Zhang, W.; Wang, S.; Wang, Q. KSAP: An approach to bug report assignment using KNN search and heterogeneous proximity.
Inf. Softw. Technol. 2016, 70, 68–84. [CrossRef]

42. Zaidi, S.F.A.; Lee, C.G. Learning graph representation of bug reports to triage bugs using graph convolution network. In
Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju, Republic of Korean, 13–16 January
2021; pp. 504–507.

43. Hu, H.; Zhang, H.; Xuan, J.; Sun, W. Effective bug triage based on historical bug-fix information. In Proceedings of the 2014 IEEE
25th International Symposium on Software Reliability Engineering, Naples, Italy, 3–6 November 2014; pp. 122–132.

44. Yadav, A.; Singh, S.K.; Suri, J.S. Ranking of software developers based on expertise score for bug triaging. Inf. Softw. Technol.
2019, 112, 1–17. [CrossRef]

45. Su, Y.; Xing, Z.; Peng, X.; Xia, X.; Wang, C.; Xu, X.; Zhu, L. Reducing bug triaging confusion by learning from mistakes with a
bug tossing knowledge graph. In Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Melbourne, Australia, 15–19 November 2021; pp. 191–202.

46. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

47. Dong, Y.; Chawla, N.V.; Swami, A. metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17
August 2017; pp. 135–144.

48. Goel, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc.
2020, 43, 957–991. [CrossRef]

49. Wei, J.; Zou, K. Eda: Easy data augmentation techniques for boosting performance on text classification tasks. arXiv 2019,
arXiv:1901.11196.

50. Zhao, J.; Zhou, Z.; Guan, Z.; Zhao, W.; Ning, W.; Qiu, G.; He, X. Intentgc: A scalable graph convolution framework fusing
heterogeneous information for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2347–2357.

51. Altosaar, J.; Ranganath, R.; Tansey, W. RankFromSets: Scalable set recommendation with optimal recall. Stat 2021, 10, e363.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSE.2023.3307243
http://dx.doi.org/10.1016/j.infsof.2015.10.004
http://dx.doi.org/10.1016/j.infsof.2019.03.014
http://dx.doi.org/10.1007/s40840-019-00784-y
http://dx.doi.org/10.1002/sta4.363

	Introduction
	Background
	Related Work
	Related Issue
	Developer Assignment
	Information Retrieval-Based Approach
	Machine Learning-Based Approach
	Social Network-Based Approach
	Defect Relationship-Based Approach

	Method
	Design Idea
	Textual Characteristic
	Developer Characteristic
	Heterogeneous Collaborative Network
	Developer Characteristic Extraction

	Classifier

	Dataset
	Experimental Evaluation
	Evaluation Metrics
	Research Questions
	Evaluation Results
	RQ1: How Is the Performance of the DARIP Method in Assigning Developers for Software Defects?
	RQ2: Does the Combination of Different Features Improve the Assignment Effect of the DARIP Method?
	RQ3: How Do Different Parameter Settings Affect the Assignment Effect of the DARIP Method?

	Discussion
	Threats to Validity
	Conclusions
	References

