
Citation: Ludkowski, S.V. Inverse

Spectrum and Structure of Topological

Metagroups. Mathematics 2024, 12, 511.

https://doi.org/10.3390/

math12040511

Academic Editor: Mario Gionfriddo

Received: 4 January 2024

Revised: 30 January 2024

Accepted: 1 February 2024

Published: 6 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Inverse Spectrum and Structure of Topological Metagroups
Sergey Victor Ludkowski

Department of Applied Mathematics, MIREA—Russian Technological University, av. Vernadsky 78,
119454 Moscow, Russia; sludkowski@mail.ru

Abstract: In this article, a structure of topological metagroups is scrutinized. Their inverse spectra
are studied. This also permits us to construct abundant families of topological metagroups and
quasigroups. Specific features of the topological quasigroups structure are found in comparison with
topological groups, and are discussed.

Keywords: inverse spectrum; structure; topological metagroup; locally compact

MSC: 46H70; 20N05; 22A30; 43-99; 54D45; 54H10

1. Introduction

A topological group structure plays very important role in mathematics, particularly in
noncommutative analysis, abstract harmonic analysis and their applications [1–5]. Topolo-
gies on groupoids, semigroups, other algebraic structures attract great attention. There are
also interesting nonassociative metagroups, which appear naturally in noncommutative
analysis, noncommutative geometry, operator theory and PDEs. Topological groups are
rather well studied, but little is known about their nonassociative analogs, such as topologi-
cal metagroups and quasigroups. In this article, specific features of topological metagroups
and quasigroups are scrutinized.

In particular, analysis of octonions and generalized Cayley–Dickson algebra developed
quickly in recent years (see [6–19] and the references therein). It appears that a multiplicative
law of their canonical bases is nonassociative and leads to a more general notion of a
metagroup instead of a group [9,20,21]. They were used in [20–24] for investigations
of partial differential operators and other unbounded operators over quaternions and
octonions, and also for automorphisms, derivations and cohomologies of generalized C∗-
algebras over R or C. They certainly have a lot of specific features in their derivations and
(co)homology theory [20,21]. It was shown in [24] that an analog of the Stone theorem for
one-parameter groups of unitary operators for the generalized C∗-algebras over quaternions
and octonions becomes more complicated and multiparameter. The generalized C∗-algebras
arise naturally, while there are decompositions of PDEs or systems of PDEs of higher orders
into PDEs or their systems of order not higher than two [11,12,25,26], which permits
integrating them subsequently or simplifying their analysis.

Recently, nonassociative algebras near to quasigroups were utilized in investigations
of slave boson decompositions in superconductors [27] and in nonassociative quantum
mechanics [28]. They were also actively used in gauge theories and Green–Schwartz
superstrings [29,30]. Nonassociative algebras of such types are connected with quasi-hopf
deformations in nonassociative quantum mechanics [31]. Nonassociative algebras near to
quasigroups served as one of the main tools during studies of De Sitter representations
of a curved space-time [32], in the great unification theory, and for studies of Yang–Mills
fields [12,33]. The family of such nonassociative algebras was utilized for an analysis of
Yang–Baxter PDEs with applications for the great unification theory (see [34–36] and the
references therein). Quasigroups have found other applications in informatics and coding
theory, because they open new opportunities in comparison to groups [37–40].
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In [41], different types of products of metagroups were studied such as smashed
products and smashed twisted wreath products. Topologies of the smashed twisted wreath
products of metagroups were studied in [42]. There conditions were investigated, providing
topological metagroups. Examples were given of large families of topological metagroups
in the articles [41–43]. That also permitted constructing of their abundant classes, which
are different from topological groups. On the other hand, topologies of metagroups and
their homomorphisms were not investigated. Their definition is recalled in Section 1.1.

Notice also that a loop in algebra (i.e., a unital quasigroup) is a quite different object
than a loop group considered in geometry or mathematical physics. Note that metagroups
are commonly nonassociative, and having many specific features in comparison with
groups and quasigroups. On the other hand, if a loop G is simple, then a subloop generated
by all elements of the form ((ab)c)/(a(bc)) for all a, b, c in G coincides with G [17,44].
Metagroups are intermediate between groups and quasigroups.

We recall that, according to Chapter 2 and Sections 4.6, 4.10, 4.13 of [4] and Section 6
of [3], the compact connected T0 topological group G can be presented as the limit of an
inverse spectrum (that is, a projective limit of a homomorphism system) G = lim{Gj, π

j
k, Ω}

of compact finite-dimensional Lie groups of manifolds over R, where Ω is a directed set,
π

j
k : Gj → Gk is a continuous homomorphism for each j > k in Ω, π

j
j is the identity map,

π
j
j(gj) = gj for each gj ∈ Gj, πk

l ◦ π
j
k = π

j
l for each l < k < j in Ω.

This raises questions for a subsequent research. Does a nonassociative analog of a
topological group have this property or not? How weak may a nonassociative structure be
that does not satisfy this property? This article answers these questions. In it, analogs of
topological groups are scrutinized with a rather mild nonassociative metagroup structure.

The methods used by Gleason, Montgomery and Zippin were based on analysis of
one-parameter subgroups. In this article, quite different approaches are used. They are
based on the previous works of the author, and use smashed twisted wreath products of
topological metagroups (see also above). With the help of them the nonassociative analog
of the Hilbert’s fifths, the problem for topological metagroups is solved in Section 2.

In this article topologies on metagroups and quasigroups are studied. They have spe-
cific features in comparison with topological groups because of nonassociativity in general
of topological metagroups or topological quasigroups. Necessary definitions are recalled.
Transversal sets are studied in smashed twisted products of topological metagroups in
Theorem 9, and Corollaries 8, 9, and 10. Their inverse spectra are investigated in Theorem
10 and Remark 4. Specific features of the topological quasigroup structures are found in
comparison with topological groups and discussed.

1.1. Basic Facts on Metagroups

Necessary facts about metagroups are recalled in this subsection, though a reader
familiar with previous works [41,42] can skip it.

Definition 1. Let G be a set with a single-valued binary operation (multiplication) G2 ∋ (a, b) 7→
ab ∈ G defined on G, and satisfying the conditions:

(i) For each a and b in G, there is a unique x ∈ G with ax = b;
(ii) A unique y ∈ G exists satisfying ya = b, which is denoted by x = a \ b = Divl(a, b) and

y = b/a = Divr(a, b), correspondingly;
(iii) There exists a neutral (i.e., unit) element eG = e ∈ G:

eg = ge = g for each g ∈ G.

If the set G with a single-valued multiplication satisfies conditions (i) and (ii), then it is called
a quasigroup. If the quasigroup G also satisfies condition (iii), then it is called an algebraic loop (or
a unital quasigroup or, more shortly, a loop).

The set of all elements h ∈ G commuting and associating with G are:

(iv) Com(G): = {a ∈ G : ∀b ∈ G, ab = ba};
(v) Nl(G): = {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)};
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(vi) Nm(G): = {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ba)c = b(ac)};
(vii) Nr(G): = {a ∈ G : ∀b ∈ G, ∀c ∈ G, (bc)a = b(ca)};
(viii) N(G): = Nl(G) ∩ Nm(G) ∩ Nr(G).

C(G): = Com(G) ∩ N(G) is called the center C(G) of G.
We call G a metagroup if a set G possesses a single-valued binary operation and satisfies

conditions (i)–(iii) and

(ix) (ab)c = t(a, b, c)a(bc)—for each a, b and c in G, where t(a, b, c) = tG(a, b, c) ∈ C(G).

Then, the metagroup G will be called a central metagroup, if it also satisfies the condition:

(x) ab = t2(a, b)ba—for each a and b in G, where t2(a, b) ∈ C(G).

If H is a submetagroup (or a unital subquasigroup) of the metagroup G (or the unital quasi-
group G) and

(xi) gH = Hg for each g ∈ G, then H will be called almost invariant (or algebraically almost
normal). If, in addition,

(xii) (gH)k = g(Hk) and k(gH) = (kg)H, for each g and k in G, then H will be called an invariant
(or algebraically normal) submetagroup (or unital subquasigroup, respectively).

Elements of a metagroup G will be denoted by small letters, and subsets of G will be denoted by
capital letters. If A and B are subsets in G, then A− B means the difference of them, A− B = {a ∈
A : a /∈ B}. Henceforward, maps and functions of metagroups are supposed to be single-valued, if
nothing else is specified.

If TG is a topology on the metagroup (or quasigroup) G such that multiplication, Divl and
Divr are (jointly) continuous from G× G into G, then (G, TG) is called a topological metagroup
(or quasigroup, respectively).

Remark 1 ([41]). Let A and B be two metagroups and let C be a commutative group such that

Cm(A) ↪→ C, Cm(B) ↪→ C, C ↪→ C(A) and C ↪→ C(B), (1)

where Cm(A) denotes a minimal subgroup in C(A) containing tA(a, b, c) for every a, b and c in A.
Using direct products, it is always possible to extend either A or B to obtain such a case.

In particular, either A or B may be a group. On A× B, an equivalence relation Ξ is considered
such that

(γv, b)Ξ(v, γb) and (γv, b)Ξγ(v, b) and (γv, b)Ξ(v, b)γ (2)

for every v in A, b in B and γ in C.

Let ϕ : A→ A(B) be a single-valued mapping, (3)

where A(B) denotes a family of all bijective surjective single-valued mappings of B onto B, subject
to conditions (4)–(7) given below. If a ∈ A and b ∈ B, then it will be written shortly as ba instead
of ϕ(a)b, where ϕ(a) : B→ B. Also let

ηA,B,ϕ : A× A× B→ C, κA,B,ϕ : A× B× B→ C

and ξA,B,ϕ : ((A× B)/Ξ)× ((A× B)/Ξ)→ C

be single-valued mappings written shortly as η, κ, and ξ, correspondingly, such that

(bu)v = bvuη(v, u, b), eu = e, be = b; (4)

η(v, u, γb) = η(v, u, b); (5)

(cb)u = cubuκ(u, c, b); (6)

κ(u, γc, b) = κ(u, c, γb) = κ(u, c, b) (7)
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and κ (u, γ ,b) = κ(u,b,γ) = e;

ξ((γu, c), (v, b)) = ξ((u, c), (γv, b)) = ξ((u, c), (v, b))

and
ξ((γ, e), (v, b)) = e and ξ((u, c), (γ, e)) = e (8)

for every u and v in A, b, c in B, γ in C, where e denotes the neutral element in C and in A and B.
We write

(a1, b1)(a2, b2) = (a1a2, ξ((a1, b1), (a2, b2))b1ba1
2 ) (9)

for each a1, a2 in A, b1 and b2 in B.
The Cartesian product A× B supplied with such a binary operation (9) will be denoted by

A
⊗ϕ,η,κ,ξ B.

Then, we write

(a1, b1) ⋆ (a2, b2) = (a1a2, ξ((a1, b1), (a2, b2))b
a1
2 b1) (10)

for each a1, a2 in A, b1 and b2 in B.
The Cartesian product A × B supplied with a binary operation (10) will be denoted by

A ⋆ϕ,η,κ,ξ B.

Theorem 1 (Theorem 4 in [43]). Let Gj be a family of topological metagroups, where j ∈ J, J
is a set. Then, their direct product G = ∏j∈J Gj relative to the Tychonoff product topology is a
topological metagroup, and

C(G) = ∏
j∈J
C(Gj).

Theorem 2 (Theorem 3 in [41]). Let the conditions of Remark 1 be fulfilled. Then, the Cartesian
product A× B supplied with a binary operation (9) is a metagroup. Moreover, there are embeddings
of A and B into A

⊗ϕ,η,κ,ξ B = C1, such that B is an almost normal submetagroup in C1. If, in
addition, Cm(C1) ⊆ Cm(B) ⊆ C, then B is a normal submetagroup.

Theorem 3 (Theorem 4 in [41]). Suppose that the conditions of Remark 1 are satisfied. Then, the
Cartesian product A× B supplied with a binary operation (10) is a metagroup. Moreover, there
exist embeddings of A and B into A ⋆ϕ,η,κ,ξ B = C2, such that B is an almost normal submetagroup
in C2. If, additionally, Cm(C2) ⊆ Cm(B) ⊆ C, then B is a normal submetagroup.

Definition 2 ([41]). We call the metagroup A
⊗ϕ,η,κ,ξ B provided by Theorem 2 (or A ⋆ϕ,η,κ,ξ B

by Theorem 3) a smashed product (or a smashed twisted product, correspondingly) of metagroups A
and B with smashing factors ϕ, η, κ and ξ.

Lemma 1 (Lemma 5 in [41], Lemma 1.1 in [45]). (a) Let D be a metagroup, and A be a
submetagroup in D. Then, there exists a subset V in D such that D is a disjoint union of vA, where
v ∈ V; that is,

D =
⋃

v∈V
vA

and (∀v1 ∈ V, ∀v2 ∈ V, v1 ̸= v2)⇒ (v1 A ∩ v2 A) = ∅).
(b) If G is a left quasigroup, and H is a left subquasigroup in G, such that (ab)H = a(bH)

for each a and b in G, then there exists a transversal set VG,H for H in G.

Definition 3. A set V from Lemma 1 is called a transversal set of A in D.

Corollary 1 ([41]). Let D be a metagroup, A be a submetagroup in D, and V a transversal set of A
in D. Then,

∀a ∈ D, ∃1s ∈ A, ∃1b ∈ V, a = sb f or a given triple (A, D, V). (11)
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Remark 2 (Remark 3 in [41]). We denote b in the decomposition (11) by b = τ(a) = aτ and
s = ψ(a) = aψ, where τ and ψ is a shortened notation of τA,D,V and ψA,D,V , respectively. That is,
there are single-valued maps

τ : D → V and ψ : D → A.

Remark 3 (Remark 4 in [41]). Let B and D be metagroups, A be a submetagroup in D, and V be
a transversal of A in D. Also let Conditions (1)–(8) be satisfied for A and B. We write

(aτ)[c] := (aτc)τ for each a and c in D. (12)

(see also Remark 3 in [41] or 2 above). By Theorem 2, there exists a metagroup
F = BV , where BV = ∏v∈V Bv, Bv = B for each v ∈ V.
It contains a submetagroup

F∗ = { f ∈ F : card(σ( f )) < ℵ0},

where σ( f ) = {v ∈ V : f (v) ̸= e} is a support of f ∈ F, and card(Ω) denotes the cardinality of
a set Ω.

Let Th f = f h for each f ∈ F and h : V → A. We write

Ŝd(Th f J) = ThS−1
d

f Sd J,

where J: V × F → B, J( f , v) = f Jv, Sd Jv = Jv[d\e] for each d ∈ D, f ∈ F and v ∈ V. Then, for
each f ∈ F, d ∈ D, we write

f {d} = Ŝd(Tgd f E),

where
s(d, v) = e/(v/d)ψ, gd(v) = s(d, v),

f Ev = f (v) for each v ∈ V, (see also (11) and (12)).

Definition 4 ([41]). Suppose that the conditions of Remark 3 are satisfied, and on the Cartesian
product C = D× F (or C∗ = D× F∗), a binary operation is given by the following formula:

(d1, f1)(d, f ) = (d1d, ξ((dψ
1 , f1), (dψ, f )) f1 f {d1}), (13)

where ξ((dψ
1 , f1), (dψ, f ))(v) = ξ((dψ

1 , f1(v)), (dψ, f (v))) for every d and d1 in D, f and f1 in F
(or F∗, respectively), v ∈ V.

Theorem 4 (Theorem 5 in [41]). Let C, C∗, D, F, F∗ be the same as in Definition 4. Then, C and
C∗ are loops, and there are natural embeddings D ↪→ C, F ↪→ C, D ↪→ C∗, F∗ ↪→ C∗, such that F
(or F∗) is an almost normal subloop in C (or C∗, respectively).

Definition 5 ([41]). Product (13) in loop C (or C∗) of Theorem 4 is called a smashed twisted wreath
product of D and F (or a restricted smashed twisted wreath product of D and F∗, respectively)
with smashing factors ϕ, η, κ, ξ and it will be denoted by C = D∆ϕ,η,κ,ξ F (or C∗ = D∆ϕ,η,κ,ξ F∗,
respectively). The loop C (or C∗) is also called a smashed splitting extension of F (or of F∗,
respectively) by D.

Theorem 5 (Theorem 6 in [41]). Let the conditions of Remark 3 be satisfied, and Cm(D) ⊆ C,
where C is as in (1). Then, C and C∗ supplied with the binary operation (13) are metagroups.

Theorem 6 (Theorem 2.1 in [45]). Assume that G is a topological T1 quasigroup with a topology
TG. Assume also that H is a closed subquasigroup, such that a(bH) = (ab)H, (aH)b = a(Hb),
H(ab) = (Ha)b for each a and b in G. Then, for each x, b in G, the family {π(xU) : b ∈ U ∈ TG}
is a local base for G/cH at (xb)H ∈ G/c H, where G/cH is supplied with the quotient topology
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with respect to the quotient map π : G → G/c H. Moreover, the map π is continuous and open,
and G/c H is a homogeneous T1-space.

Theorem 7 (Theorem 2.3 in [45]). If the conditions of Theorem 6 are satisfied, then the quotient
space G/cH is regular.

Example 1. If the conditions of Corollary 1 in [41] or above are satisfied, either (G = D, H = AC1)
or (G = AC1, H = A), then the conditions a(bH) = (ab)H, (aH)b = a(Hb), and H(ab) =
(Ha)b for each a and b in G are satisfied for these pairs.

Theorem 8 (Theorem 2.4 in [45]). Assume that G is a topological T1 unital quasigroup, and H is
a compact unital subquasigroup in G, satisfying the conditions of Theorem 6. Then, the quotient
map π : G → G/c H is perfect.

Corollary 2 (Corollary 2.4 in [45]). Suppose that the conditions of Theorem 8 are satisfied, and
G/cH is compact. Then, G is compact.

Corollary 3 (Corollary 2.5 in [45]). Assume that the conditions of Theorem 8 are satisfied, and the
quotient space G/cH is compact. Let V = VG,H be a transversal set for H in G, and let V be supplied
with a topology T (V) = T (G)∩V inherited from G. Then, V can be chosen compact and closed in G.

Corollary 4 (Corollary 2.6 in [45]). If the conditions of Corollary 3 are satisfied, then the transver-
sal set V and the transversal mapping τ = τG

H can be chosen, such that τ : G → V and ψ : G → H
are continuous relative to topologies T (H) = T (G) ∩ H and T (V) = T (G) ∩V on H and V,
correspondingly, inherited from G.

Corollary 5. Let the conditions of Corollary 1 in [41] or above be satisfied, and let C1 and A and
AC1 be closed in G; then, D/c(AC1) and (AC1)/c A are homogeneous T1 ∩ T3 spaces, and the
quotient maps πD

AC1
: D → D/c(AC1) and πAC1

A : AC1 → (AC1)/c A are open.

Proof. This follows from Theorems 2.1 and 2.3 in [45], or Theorems 6 and 7 above, as their
particular case.

The following corollaries, together with the assertions above, can serve for construc-
tions of suitable examples.

Corollary 6. Let the conditions of Remark 2 in [42] be satisfied, and let (G, TG,A) be compact and
(G, TG) be T1 as the topological quasigroup. Then, TG,A = TG.

Proof. Since (G, TG) is the T1 topological quasigroup, then it is regular. In view of
Corollary 3.1.14 in [46], TG,A = TG.

Corollary 7. Assume that the conditions of Remark 4 in [42] are satisfied, and (D, TD,AC1,A)
is compact. Then, TD = TD,AC1,A; moreover, A and AC1 are compact relative to the topologies
TD ∩ A and TD ∩ (AC1), respectively, inherited from G.

Proof. Corollary 6 implies that TD = TD,AC1,A. The maps τD
A and τD

AC1
are continuous by the

conditions of Remark 4 in [42]. On the other hand, A = (τD
A )−1(e) and AC1 = (τD

AC1
)−1(e);

consequently, A and AC1 are closed in D; hence, A and AC1 are compact by Theorem 3.1.2
in [46].

Example 2. In particular, as pairs of A and B can be taken as the special orthogonal group
A = SO(n, R) of the Euclidean space Rn, the special linear group B = SL(m, R) of the Euclidean
space is Rm, where 1 < n ≤ m ∈ N, A and B are supplied with topologies induced by the operator
norm topology. Then, their central extensions can be taken, or semidirect products or smashed
products with connected commutative groups. Then, using smashed products and smashed twisted
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wreath products, new metagroups are subsequently constructed using the theorems and corollaries
above or given in the references.

Example 3. Let l2 be the separable Hilbert space over the complex field C, where C is supplied
with the standard multiplicative norm topology. We consider the unitary group A = U(l2) and the
general linear group B = GL(l2) of l2, where A and B are considered in the topologies inherited
form the operator norm topology. Then, metagroups are constructed similarly to Example 2.

Other examples are 2–4 in [43].
Possible applications and further developments are discussed in Section 3.

2. Inverse Spectrum and Structure of Topological Metagroups

Theorem 9. Assume that the conditions of Remark 1 in [41] or above are satisfied, and G =
A ⋆ϕ,η,κ,ξ B is a smashed twisted product of metagroups A and B with smashing factors ϕ, η, κ, ξ.
Then, embeddings θG

A : A ↪→ G and θG
B : B ↪→ G exist, and θG

B (B) in G is invariant. Moreover, a
transversal set VG,B exists such that VG,B = θG

A(A).

Proof. We shortly denote θG
A as θA, because G is specified, and we write θA(a) = (a, e) with

e = eB for each a ∈ A; θB(b) = (e, b) with e = eA for each b ∈ B. From Formula (37) in [41]
or (10 above, it follows that (e, b)(a, e) = (a, bξ((e, b), (a, e))) for each a ∈ A and b ∈ B.
Therefore, for each g = (a1, b1) in G, there exist unique a ∈ A and b ∈ B, such that

(e, b)(a, e) = g with a = a1 and b = b1/ξ((e, b1), (a1, e)), (14)

since ξ((e, b), (a, e)) = ξ((e, b1), (a, e)) by (35) in [41] or (8) above. Certainly, the maps
a1 7→ a and (a1, b1) 7→ b provided by (14) are single-valued.

For each g1 = (e, b1) ∈ G, g2 = (a2, b2) ∈ G, g3 = (a3, b3) ∈ G, we deduce that
I1 = (g1g2)g3 = (a2a3, ba2

3 (b2b1)ξ((e, b1), (a2, b2))ξ((a2, b2b1), (a3, b3))) and

I2 = g1(g2g3) = (a2a3, (ba2
3 b2)ξ((a2, b2), (a3, b3))b1ξ((e, b1), (a2a3, ba2

3 b2)))

by Conditions (31), (32), and (34) in [41], or (4), (5), and (7) above. Hence, I1 = tI2 with
t = t(g1, g2, g3) ∈ θB(C); consequently, θB(B) satisfies a(bH) = (ab)H for each a and b in G,
since C ↪→ C(B) by Remark 1 in [41] or above.

In view of Lemma 1 and Formula (14), the transversal set VG,B = θA(A) and the maps
ψ = ψG

B : G → θB(B) and τ = τG
B : G → θA(A) exist, such that

g = gψgτ (15)

with
gψ = (e, b) and gτ = (a, e) for each g = (a1, b1) ∈ G, (16)

where
a = a1 and b = b1/ξ((e, b1), (a1, e)). (17)

It remains to prove that θB(B) is invariant in G. For this, it is sufficient to prove that

g1θB(B) = θB(B)g1 (18)

and
(g1θB(B))g2 = g1(θB(B)g2) for each g1 and g2 in G, (19)

since Properties (18) and (19) imply that (g1g2)θB(B) = g1(g2θB(B)) for each g1 and g2
in G.

For each g1 = (a1, b1) in G and b2 ∈ B, b3 ∈ B we obtain
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(a1, b1)(e, b2) = (a1, ba1
2 b1ξ((a1, b1), (e, b2))) and

(e, b3)(a1, b1) = (a1, b1b3ξ((e, b3), (a1, b1)))

according to (37) in [41] or (10) above. The following equation,
ba1

2 b1ξ((a1, b1), (e, b2)) = b1b3ξ((e, b3), (a1, b1)) has a unique solution
b3 = [b1 \ (ba1

2 b1)]ξ((a1, b1), (e, b2))/ξ((e, [b1 \ (ba1
2 b1)]), (a1, b1)) for given g1 = (a1, b1)

and g2 = (e, b2), since ξ satisfies Condition (35) in [41] or (8) above. From ξ(g1, g3) ∈ C
for each g1 and g3 in G, and C ↪→ C(B) ⊂ B, it follows that b3 ∈ B. Thus, G satisfies
Condition (18).

Then, we consider I1 = (g1(e, b2))g3 and Ĩ2 = g1((e, b̃2)g3) for any g1 and g3 in G, b2
and b̃2 in B. Then, we infer that

I1 = (a1a3, ba1
3 (ba1

2 b1)ξ((a1, b1), (e, b2))ξ((a1, ba1
2 b1), (a3, b3))) and

Ĩ2 = (a1a3, (ba1
3 b̃a1

2 )κ(a1, b3, b̃2)ξ((e, b̃2), (a3, b3))b1ξ((a1, b1), (a3, b3b̃2)))

by (33) and (37) in [41], or (6) and (10) above. The following equation, I1 = Ĩ2, is satisfied
if and only if

ba1
2 b1γ = b̃a1

2 b1α̃p(ba1
3 , b̃a1

2 , b1α̃), with

γ = ξ((a1, b1), (e, b2))ξ((a1, ba1
2 b1), (a3, b3));

α̃ = κ(a1, b3, b̃2)ξ((e, b̃2), (a3, b3))ξ((a1, b1), (a3, b3b̃2))

by (i) and (ii) in Definition 1. Using (34), (35) and Lemma 2 in [41], or (7) and (8) above,
we deduce that there exists a unique solution,

b̃a1
2 = (ba1

2 b1γ)/(b1δ), for the given g1 = (a1, b1) and g3 = (a3, b3) in G, b2 ∈ B (20)

with δ = αp(ba1
3 , ba1

2 , b1α), and

α = κ(a1, b3, b2)ξ((e, b2), (a3, b3))ξ((a1, b1), (a3, b3b2)).

Since γ ∈ C and δ ∈ C, C ↪→ C(B), then b̃a1
2 ∈ B. From (31) and (33) in [41], or (4) and

(6) above, it follows that

b̃2 = (b̃a1
2 )e/a1 /η(e/a1, a1, (b̃a1

2 )e/a1). (21)

Hence, (20) and (21) imply that b̃2 ∈ B; consequently, G satisfies Condition (19). Thus,
θB(B) is the invariant submetagroup in G.

Corollary 8. If the conditions of Remark 1 in [41] or above are satisfied, A and B are topological
T1 metagroups, the topology on G is induced by the Tychonoff product topology on A× B, and
the smashing factors ϕ, η, κ, ξ are (jointly) continuous, then the maps ψ : G → θB(B) and
τ : G → VG,B = θA(A) are continuous relative to the topology TG on the topological metagroup
G = A ⋆ϕ,η,κ,ξ B.

Proof. This follows from Formulas (15)–(17) and the (joint) continuity of the smashing
factors ϕ, η, κ, ξ, and hence of Divr and tG on (G, TG), where the topology TG on G is
induced by the Tychonoff product topology on A× B.
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Corollary 9. For pairs of metagroups, let Aj, Bj (the conditions of Remark 1 in [41] or above)
be satisfied for each j ∈ {1, 2}, where B1 = B2, such that Cm(Aj) ⊂ C ↪→ Bj ↪→ C(Aj)
for each j ∈ {1, 2}. Let ϕ2(a)b = id(b) = b for each a ∈ C and b ∈ B2, and ξ2((a, e),
(e, b)) = ξ2((e, b), (a, e)) for each a ∈ A2 and b ∈ B2. Let A′ = A1 ⋆

ϕ1,η1,κ1,ξ1 B1 and
B = A2 ⋆

ϕ2,η2,κ2,ξ2 B2, and let ϕ3, η3, κ3, ξ3 for the pair (A′, B) with C ′1 = θB
B2
(B2) satisfy

the conditions of Remark 1 in [41] or above (with C ′1 instead of C), and let D = A′ ⋆ϕ3,η3,κ3,ξ3 B,
where θB

B2
: B2 ↪→ B is the embedding provided by Theorem 9. Then, there are embeddings

θAj : Aj ↪→ D, θBj : Bj ↪→ D for each j ∈ {1, 2}, θB : B ↪→ D, such that D with A = θ2(A2)

and C1 = θB2(B2) satisfy Condition (28) in [41] or (1) above, and xA = Ax for each x ∈ C1.

Proof. By virtue of Theorem 4 in [41], or Theorem 3 above, B, A′ and D are metagroups
and there are embeddings θAj : Aj ↪→ D, θBj : Bj ↪→ D for each j ∈ {1, 2}, θB : B ↪→ D,
such that θB(B) = θA2(A2)θB2(B2), since B2 ↪→ C(A2).

For each (e, b) ∈ B, (a, e) ∈ B and (a2, e) ∈ B with b ∈ B2, a ∈ A2, a2 ∈ A2, we deduce
that

(a, e)(e, b) = (a, baξ((a, e), (e, b))) and

(e, b)(a2, e) = (a2, bξ((e, b), (a2, e))).

Therefore, (a, e)(e, b) = (e, b)(a2, e) if and only if a = a2 and baξ((a, e), (e, b)) = bξ((e, b), (a2, e)).
From (31) and (35) in [41], or (4) and (8) above, and the conditions of this corollary, it
follows that xA = Ax for each x ∈ C1, since ϕ2(a)b = ba = b for each a ∈ A2 and b ∈ B2.
In view of Theorem 9, the subgroup C1 is invariant in θB(B) and θA′(A′).

Certainly, θB1(B1) and θB2(B2) are isomorphic subgroups in D, since B1 = B2. Hence,
each d ∈ D can be presented in the following form: d = a1a2b with a1 ∈ θA1(A1),
a2 ∈ θA2(A2) and b ∈ θB1(B1). From a1θB2(B2) = θB2(B2)a1 and a2θB2(B2) = θB2(B2)a2, it
follows that dθB2(B2) = θB2(B2)d for each d ∈ D. On the other hand, Cm(D) ⊂ C1, since
Cm(Aj) ⊂ C ↪→ Bj ↪→ C(Aj) for each j ∈ {1, 2}. Consequently, the subgroup θB2(B2) is
invariant in D.

Corollary 10. Assume that the conditions of Corollary 9 are satisfied, Aj, Bj are T1 topological
metagroups for each j ∈ {1, 2}, and ϕi, ηi, κi, ξi are jointly continuous for each i ∈ {1, 2, 3}.
Then, D, A, C1, provided by Corollaries 8 and 9, are T1 ∩ T3 topological metagroups and satisfy the
conditions of Theorem 6 in [41] or Theorem 5 above, and C1 is closed in D.

Proof. This follows from Theorem 4 in [41], or Theorem 3 above, and Corollaries 8 and 9
above.

Definition 6. Let Λ be a directed set, Gj be a topological metagroup (or quasigroup), and π
j
i : Gj →

Gi be a continuous homomorphism for each i ≤ j in Λ, such that π
j
i ◦πk

j = πk
i for each i ≤ j ≤ k in

Λ, and πi
i = idGi for each i ∈ Λ, where idGi (gi) = gi for each gi ∈ Gi. Then, S = {Gj, π

j
i , Λ} is

called an inverse spectrum of topological metagroups (or quasigroups, respectively). If a topological
metagroup G is a limit of S, G =

←−−
lim S, then it is said that G is decomposed into S.

Theorem 10. There exists an infinite family F , where each G ∈ F is a topological T1 metagroup,
such that G is compact, locally connected and can not be decomposed into the inverse spectrum
SG = {Gj, π

j
i , Λ} of topological metagroups Gj with dim(Gj) < ∞ for each j ∈ Λ.

Proof. We take any locally connected T1 compact metagroups A, B, and their invari-
ant closed subgroup C with positive covering dimensions dim(A) > 0, dim(B) > 0,
dim(A/cC) > 0, dim(B/cC) > 0, such that the conditions of Theorem 6 in [41] or Theo-
rem 5 above are satisfied. Evidently, such triples (A, B, C) exist, and their family is infinite.
Indeed, in particular, they may be direct products A = K1 × C, B = P1 × C or semidirect
products A = K1 ×s C, B = P1 ×s C with topological T1 metagroups K1, P1, and a topolog-
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ical T1 group C; or, in particular, A, B may be topological T1 groups (see also examples
(α)–(γ) in Remark 2 [42]).

Therefore, θB(B) is invariant in the smashed twisted product G = A ⋆ϕ,η,κ,ξ B, such that
G is a topological T1 metagroup, and a transversal set exists VG,B = θA(A) by Corollary 1
in [41] or above and Theorem 9. By virtue of Corollary 8, the maps ψ : G → θB(B) and
τ : G → VG,B are continuous. For compact A and B, the metagroup G is compact by the
Tychonoff Theorem 3.2.4 in [46].

This implies that there are triples (A1, B1, C) and (A2, B2, C) satisfying the conditions
of Corollary 10 with locally connected T1 compact metagroups A1, A2, B1 = B2, and their
invariant closed subgroup C, with positive covering dimensions dim(A1) > 0, dim(A2) > 0,
dim(B1) > 0, dim(A1/cC) > 0, dim(A2/cC) > 0, dim(B1/cC) > 0. Then, D, A, C1,
provided by Corollaries 8 and 9, satisfy the conditions of Corollary 1 in [41] or Theorem 9,
such that A = θA2(A2). By virtue of Theorem 6 in [41] or Theorem 5 above, Theorem 1 in
[43], Theorem 2.4 in [45], or Theorem 8 and Corollary 10 above, D, A, B are locally connected
T1 compact metagroups with a closed invariant subgroup C1 = θB2(B2) and dim(D) > 0,
dim(A) > 0, dim(B) > 0. Moreover, VD,AC1 = θA′(A′), with A′ = A1 ⋆

ϕ1,η1,κ1,ξ1 B1,
and there is a bijection from VAC1,A = VC1,C1,A onto (AC1)/c A by Remark 3 in [42] and
VC1,C1,A VD,AC1 = VD,A by Formula (3) in [42]. Therefore, VC1,C1,A and VD,AC1 can be chosen
to be compact; consequently, VD,A is compact by the Tychonoff Theorem 3.2.4 in [46].
Corollary 5 and Corollary 8 imply that the maps ψD

A : D → A and τD
A : D → VD,A are

continuous relative to the topology TD.
In view of Theorems 3 and 4 in [42], there exists a T1 ∩ T3 compact metagroup

C0 = D∆ϕ,η,κ,ξ
A F0, where F0 is closed in (C(V, B), TW ), where F0 ⊂ C(V, B) ⊂ F = BV ,

V = VD,A. Hence, dim(C0) > 0 and C0 is locally connected. In view of Theorem 3.1.9 in [46],
D, A, B, C1, C0 are T1 ∩ T4 topological spaces. By the construction above, card(V) ≥ ℵ0.

On the other hand, a family Homc,C = Homc,C((A × F0) × (A × F0), C1) of all con-
tinuous homomorphisms from (A× F0)× (A× F0) into C1, satisfying (35) in [41] or (8)
above, is a proper closed subset in a family CC = CC((A× F0)× (A× F0), C1) of all con-
tinuous maps from (A× F0)× (A× F0) into C1, satisfying (35) in [41] or (8) above. Since
dim(B) > 0 and dim(V) > 0, then dim(C(V, B)) = ∞, where C(V, B) is in the TW topology.

We choose F0 with dim(F0) = ∞ and the map ξ ∈ CC − Homc,C with values in C1 such
that ξ((dψ

1 , f1), (dψ, f ))(v) depends nontrivially on infinite number of coordinates v ∈ V
for an infinite family of ( f1, f ) ∈ F0 × F0 for each dψ

1 ̸= e and dψ ̸= e, where d and d1 belong
to D, f ∈ F0, f1 ∈ F0, since dim(C1) > 0 and dim(A2) > 0. This implies that there exists
the topological metagroup G = C0 with dim(G) = ∞, which cannot be decomposed into
the inverse spectrum SG = {Gj, π

j
i , Λ} of topological metagroups Gj with dim(Gj) < ∞ for

each j ∈ Λ. From the proof above, it follows that the family of such topological metagroups
is infinite.

Remark 4. If, instead of Theorem 6, we use Theorem 5 in [41], or instead of Theorem 5, we use
Theorem 4 above, then Theorem 10 will be for topological unital quasigroups (loops) G.

Thus, Theorem 10 illustrates a principal structural distinction between topological groups and
topological metagroups.

3. Conclusions

All the primary results of this article are obtained for the first time. They can be
used for further studies of noncommutative analysis and noncommutative harmonic
analysis [15,16,47,48], operator theory, generalized C∗-algebras [20,22], topological quasi-
groups, and representations of topological quasigroups [3,18,47], in noncommutative geom-
etry [13,18], PDEs [11,25,34], nonassociative quantum field theory [27,28], nonassociative
quantum mechanics and quantum gravity [31,32], gauge theory, the great unification
theory [12,29,30,33–36], informatics, and coding theory [37–40,49].
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