
Citation: Stanovov, V.; Semenkin, E.

Adaptation of the Scaling Factor

Based on the Success Rate in

Differential Evolution. Mathematics

2024, 12, 516. https://doi.org/

10.3390/math12040516

Academic Editors: Jonathan

Blackledge and Liliya Demidova

Received: 7 December 2023

Revised: 16 January 2024

Accepted: 29 January 2024

Published: 7 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Adaptation of the Scaling Factor Based on the Success Rate in
Differential Evolution
Vladimir Stanovov * and Eugene Semenkin

Institute of Informatics and Telecommunication, Reshetnev Siberian State University of Science and Technology,
660037 Krasnoyarsk, Russia; eugenesemenkin@yandex.ru
* Correspondence: vladimirstanovov@yandex.ru

Abstract: Differential evolution is a popular heuristic black-box numerical optimization algorithm
which is often used due to its simplicity and efficiency. Parameter adaptation is one of the main
directions of study regarding the differential evolution algorithm. The main reason for this is that
differential evolution is highly sensitive to the scaling factor and crossover rate parameters. In this
study, a novel adaptation technique is proposed which uses the success rate to replace the popular
success history-based adaptation for scaling factor tuning. In particular, the scaling factor is sampled
with a Cauchy distribution, whose location parameter is set as an nth order root of the current success
rate, i.e., the ratio of improved solutions to the current population size. The proposed technique
is universal and can be applied to any differential evolution variant. Here it is tested with several
state-of-the-art variants of differential evolution, and on two benchmark sets, CEC 2017 and CEC 2022.
The performed experiments, which include modifications of algorithms developed by other authors,
show that in many cases using the success rate to determine the scaling factor can be beneficial,
especially with relatively small computational resource.

Keywords: differential evolution; parameter adaptation; numerical optimization

MSC: 68W50; 68T20; 65K10

1. Introduction

Over the last several years, the differential evolution (DE) [1] algorithm has become
one of the most commonly used numerical optimization techniques within the evolutionary
computation (EC) community. DE is used in unconstrained, constrained, multi-objective,
dynamic, multimodal and other cases [2], when the problem being solved has numerical
parameters. Hence, developing more advanced and efficient DE variants is an important
research direction for many evolutionary algorithms.

The main problem of DE stems from its main advantage: only three main parameters,
scaling factor F, crossover rate Cr and population size N, control most of the optimization
process, which makes DE highly sensitive to settings. This problem has been significantly
mitigated by parameter adaptation techniques proposed in jDE [3], JADE [4], SHADE [5]
and some other schemes [6]. However, there still seems to be room for further improvement.
The existing adaptation techniques rely on subsequent immediate improvements, which
may constitute a greedy approach. In particular, the popular success history-based adapta-
tion tunes the scaling factor F and crossover rate Cr values based on the most successful
values in the last generations, but this does not guarantee that these values will result in
good coverage of the search space and good convergence in the long term. This problem
was considered in [7], where the effects of bias in parameter adaptation were studied.
Hence, some other sources of information could be used to determine parameter values,
for example, the number of improved solutions at every generation.

In this study, the scaling factor F adaptation technique is proposed, which is based
on the success rate (SR) value, i.e., the ratio of the number of successful new solutions

Mathematics 2024, 12, 516. https://doi.org/10.3390/math12040516 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12040516
https://doi.org/10.3390/math12040516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1695-5798
https://orcid.org/0000-0002-3776-5707
https://doi.org/10.3390/math12040516
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12040516?type=check_update&version=1

Mathematics 2024, 12, 516 2 of 22

divided by the total number of individuals. This value is not used explicitly in any of the
DE variants to the best of our knowledge, although it is part of the averaging in the JADE
and SHADE (Success History Adaptive Differential Evolution) algorithms. The idea of
using the success rate came from analyzing the results of the genetic programming (GP)
algorithm applied to design novel parameter adaptation techniques [8]. In particular, it was
observed that GP heavily relies on the success rate in many of its solutions. Here, a refined
variant of this idea is presented, more specifically, a cth order root of the success rate is
utilized. To evaluate the efficiency of the new approach for F sampling, it is tested on sev-
eral algorithms, including L-SHADE-RSP [9], NL-SHADE-RSP [10], NL-SHADE-LBC [11]
and L-NTADE [12]. The experiments are performed on two benchmark sets, namely the
Congress on Evolutionary Computation (CEC) competitions from 2017 [13] and 2022 [14].

The main features of this study can be outlined as follows:

1. The success rate adaptation of the scaling factor improves the performance of most
DE variants and requires the same settings independent of the algorithm;

2. The proposed adaptation scheme shows small dependence on the computational
resource or problem dimension;

3. Compared to success history adaptation, success rate adaptation performs better with
relatively small computational resource.

The Section 2 contains a short overview of parameter adaptation in differential evolu-
tion, the Section 3 describes the proposed approach, the Section 4 contains the experimental
setup and results; after that, in Section 5, a discussion of the results is provided, and
Section 6 concludes the paper.

2. Related Work
2.1. Differential Evolution

The main focus of our study is on differential evolution, so we only consider its
variants and modifications. The reason for this is that, as latest competitions (such as CEC
2017, CEC 2021, CEC 2022) show, other techniques, such as genetic algorithms, particle
swarm optimization, and other biology inspired algorithms are not competitive in a single-
objective black-box setup. The only exclusion may be the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) algorithm and its hybrids with DE.

The main idea of the differential evolution algorithm proposed in [15] is to use differ-
ence vectors between individuals to produce new solutions during mutation. The algorithm
starts with the initialization of N individuals, xi = (xi,1, xi,2, . . . , xi,D), i = 1, . . . , N, within
the bounds:

S = {xi ∈ RD|xi = (xi,1, xi,2, . . . , xi,D) : xi,j ∈ [xlb,j, xub,j]}, (1)

where D is the number of variables. Most of the studies use the uniform random generation
of individuals:

xi,j = xlb,j + rand × (xub,j − xlb,j). (2)

After initialization and target function evaluation, the mutation step begins. Many
mutation strategies have been proposed for DE, but the two most popular ones are rand/1
and current-to-pbest/1:

vi,j = xr1,j + F × (xr2,j − xr3,j), (3)

vi,j = xi,j + F × (xpbest,j − xi,j) + F × (xr1,j − xr2,j), (4)

where xi is called the target vector, vi is the mutant or donor vector, F is the scaling factor,
pbest is the index of one of the p% best individuals, and indexes r1, r2, r3 and pbest are
chosen randomly so that they are different from each other and the current individual with
index i. The mutation is performed for all solutions in the population, i = 1, 2, . . . , N.

Mathematics 2024, 12, 516 3 of 22

After a set of donor vectors is generated, the crossover step is performed. The most
widely used method is binomial crossover, described as follows:

ui,j =

{
vi,j, if rand(0, 1) < Cr or j = jrand
xi,j, otherwise

, (5)

where ui is called the trial vector, Cr is the crossover rate parameter, and jrand ∈ [1, D],
generated randomly. In other words, binomial crossover combines the information in target
vector xi and mutant vector vi to produce the trial vector, and jrand is required to make
sure that the trial vector is different from the target one.

The mutation may generate vectors which are outside the [xlb,j, xub,j] range, so a
bound constraint handling technique is required in DE. One of the widely used ones is the
midpoint-target method [16], which works as follows:

ui,j =

{ xlb,j+xi,j
2 , if vi,j < xlb,j

xub,j+xi,j
2 , if vi,j > xub,j

. (6)

If some of the components of the trial vector overshoot the boundaries, then the
coordinate of the parent (target vector) is used to move towards the boundary without
reaching it. We note that this step can be applied after mutation or after crossover.

The last step in DE is the selection, which here plays the role of a replacement mecha-
nism. If the trial vector, ui, is better in terms of the target function value compared to target
vector xi, then replacement occurs:

xi =

{
ui, if f (ui) ≤ f (xi)

xi, if f (ui) > f (xi)
. (7)

Although this selection mechanism is known to be simple and efficient, there are some
attempts to modify it, for example, by using information about neighbuorhood [17] or
replacing other individuals [12].

2.2. Parameter Adaptation in Differential Evolution

Most of the modern studies which are focused on DE or apply DE to some problem
use one of the previously proposed parameter adaptation techniques. Here, it would
be impractical to cover all of the existing parameter adaptation techniques, so interested
readers are advised to refer to surveys such as [18,19] as well as some recent papers
considering the problem [7].

Some of the earliest successful experiments on parameter adaptation were presented
in the jDE algorithm [3], where, on each iteration t before the mutation and crossover steps
of the search loop, new control parameters are generated in the following way:

Fi,t+1 =

{
random(Fl , Fu), if random(0, 1) < τ1

Fi,t, otherwise
, (8)

CRi,t+1 =

{
random(0, 1), if random(0, 1) < τ2

CRi,t, otherwise
. (9)

In the equations above, values Fl = 0.1 and Fu = 0.9 represent the lower and upper
boundaries for F, and the parameters controlling the frequency of change τ1 and τ2 are
set to 0.1. If, during selection, improvement occurs, then the new values for F and Cr are
saved. This technique was successfully applied in several highly efficient versions of jDE,
including the jDE100 [20] and j2020 [21] algorithms, which have shown competitive results
in CEC 2019 and 2020 competitions, respectively.

Mathematics 2024, 12, 516 4 of 22

Another important algorithm is JADE, proposed in [4]. Despite the fact that JADE
introduced one of the most used mutations, current-to-pbest/1, it also proposed sampling
of F and Cr in a way similar to the SaDE algorithm [22]. However, instead of using fixed
means, in JADE, F and Cr are sampled with Cauchy and normal distributions around µF
and µCr: {

F = randc(µF, 0.1)
Cr = randn(µCr, 0.1)

, (10)

where randc(µ, s) and randn(µ, s) are random numbers sampled from Cauchy and normal
distribution with location parameter µ and scale parameter s = 0.1. The update of µ values
is performed as follows:{

µF = (1 − c) · µF + c · meanL(SF)

µCr = (1 − c) · µCr + c · meanA(SCr)
, (11)

where meanA() is the arithmetic mean, c is the update parameter, SF and SCr contain the
successful values of F and Cr, i.e., values which produce individuals better than parents,
and meanL() is the Lehmer mean:

meanL(SF) =
∑F∈SF

F2

∑F∈SF
F

. (12)

The success of JADE’s parameter adaptation has led to the development of the even
more efficient Success History Adaptation (SHA), proposed in the SHADE algorithm [5].
Unlike JADE, in SHADE, there are H memory cells, each containing a pair (MF,h, MCr,h),
i.e., mean values to be used for sampling F and Cr. These values are used in a similar way
as in Equation (10): {

F = randc(MF,h, 0.1)
Cr = randn(MCr,h, 0.1)

. (13)

The h index is randomly sampled from [1, H] before each mutation and crossover.
At the end of the generation, the new means are calculated using a weighted Lehmer
mean [23], where weights are set based on the improvements ∆ f = | f (uj)− f (xj)|, stored
in S∆ f :

meanwL,F =
∑
|SF |
j=1 wjS2

F,j

∑
|SF |
j=1 wjSF,j

, meanwL,Cr =
∑
|SCr |
j=1 wjS2

Cr,j

∑
|SCr |
j=1 wjSCr,j

, (14)

where wj =
S∆ f j

∑
|S|
k=1 S∆ f k

. Next, one of the memory cells with index k, iterated every generation,

is updated: {
Mt+1

F,k = 0.5(Mt
F,k + meanwL,F)

Mt+1
Cr,k = 0.5(Mt

Cr,k + meanwL,Cr)
, (15)

where t is the current generation number. If k > H, then it is set to k = 1.
As for the population size, in L-SHADE [24], the Linear Population Size Reduction

(LPSR) was proposed, which is a widely used technique nowadays. The LPSR works by
determining new population size at every generation as follows:

Ng+1 = round
(

Nmin − Nmax

NFEmax
NFE

)
+ Nmax, (16)

where NFE is the current number of target function evaluations, NFEmax is the total avail-
able computational resource, Nmax and Nmin are the initial and final number of individuals,
g is the generation number. The main idea of LPSR consists in spreading across the search
space at the beginning and concentrating at the end of the search. LPSR allows achievement

Mathematics 2024, 12, 516 5 of 22

of significant improvements in performance if the computational resource limit is known.
However, some other studies modify it and use non-linear reduction; for example, [10].

In [9], it was shown that adding tournament or rank-based selection strategies to
sample the indexes of individuals for further mutation may be beneficial. The exponential
rank-based selection was implemented by selecting an individual depending on its fitness
in a sorted array, with the ranks assigned as follows:

ranki = e
−kp·i

N , (17)

where kp is the parameter controlling the pressure and i is the individual number. Larger
ranks are assigned to better individuals, and discrete distribution is used for selection.

It is hard to underestimate the importance of the L-SHADE (SHADE with LPSR)
algorithm: the success history adaptation was further developed and improved in many
studies [6]. To provide some examples, the jSO algorithm [25] proposed specific rules
for parameter adaptation, limiting the F and Cr values depending on computational
resource, and used in L-SHADE-RSP [9] with rank-based selection, proposed in [26], DB-
LSHADE proposed distance-based adaptation, where weights are based on the Euclidean
distance instead of fitness improvement [27,28]. In [7], the effect of modified Lehmer
means was considered. Nevertheless, most of the adaptive DE variants tend to apply small
modifications to the SHA general scheme without changing it dramatically. The main
problem of SHA is that it follows immediate improvements in fitness and tunes F and Cr
to them, which is a greedy approach. The biased adaptation introduced with the Lehmer
mean in the JADE algorithm was, in fact, proposed to eliminate this effect by sampling
higher F values than they should be. A more detailed consideration of the effects of bias on
parameter adaptation was performed in [7].

Some other modifications of DE include population regeneration in case of pre-
mature convergence [29], modifications for binary search space [30], Gaussian–Cauchy
mutation [31] and using an ensemble of mutation and crossover operators [32]. Some
works focus on proposing new mutation strategies, such as the triple competitive approach
recently proposed in [33]. In [34], the Unbounded DE (UDE) was proposed, where all
the individuals generated throughout the whole search space are saved and used in the
search. Such an approach shows some interesting effects of using old solutions in the
search process.

3. Proposed Approach

Developing new algorithmic schemes, including parameter adaptation techniques,
could be a tedious process requiring prolonged experimentation and brand new ideas. In a
recent study [8], an attempt to use genetic programming solving symbolic regression as
a knowledge extraction technique was performed, and as a result, it was discovered that
the success rate can be an important source of information for the adaptation of scaling
factor F. Based on this idea, as well as some additional experiments, success rate-based
adaptation is proposed.

Success rate is calculated as the ratio of the number of successful solutions NS to the
current population size N:

SR =
NS
N

. (18)

In other words, NS is equal to the amount of elements in SF or SCr. Success rate shows,
in general, how well the algorithm performs: if the search is efficient, then NS is quite high,
and if the population is stuck in a local optimum or optima, then it is low. Success rate is
used to calculate the MF value, which acts as a mean for sampling F:

MF = SR1/c, (19)

Mathematics 2024, 12, 516 6 of 22

where c is the parameter value. Some of the solutions found by GP used the square root
of the success rate. However, further experiments have shown that using the cube root or
even larger c values may produce better results. The MF value is then used as follows:

F = randc(MF, 0.1). (20)

Joining together all the above equations, the scaling factor for every mutation can be
calculated as follows:

F = randc

((
NS
N

)1/c
, 0.1

)
. (21)

As in many other methods, if F > 1, it is set to 1, and if F < 0, it is sampled again until
positive. Such a technique is very simple compared to SHADE, or even JADE and jDE, as it
does not require additional values to be stored or the average to be calculated. Moreover, it
can be applied to any DE algorithm without significant effort.

Figure 1 shows the dependence of MF on SR with different c parameter values.

0.0 0.2 0.4 0.6 0.8 1.0
SR

0.0

0.2

0.4

0.6

0.8

1.0

M
F

c = 1
c = 2
c = 3
c = 4
c = 5
c = 6
c = 7
c = 8
c = 9

Figure 1. MF values for different c parameter values.

As shown in Figure 1, small success rate values (<0.05) lead to MF values between 0
and 0.5, while larger success rates result in MF being larger than 0.5.

The main advantage of the proposed technique is its simplicity: to apply it, a single
Equation (21) is required, whereas SHA needs to store memory cells, successful parameter
values, calculate weights, Lehmer means and update memory cells (Equations (13)–(15)).
This creates additional computational effort. To illustrate this, in Figure 2, the two tech-
niques are compared. In the next section, when the modifications of DE variants are
considered, the steps of success history adaptation are replaced by a single step of success
rate adaptation.

Figure 2. Comparison of steps required for success rate-based adaptation and success history-
based adaptation.

Mathematics 2024, 12, 516 7 of 22

The proposed technique was implemented for L-SHADE-RSP, NL-SHADE-RSP, NL-
SHADE-LBC, L-NTADE and other algorithms, and the results are considered in the
next section.

4. Experimental Setup and Results
4.1. Benchmark Functions and Parameters

The main purpose of the experiments in this study was to determine the efficiency of
success rate-based adaptation in different scenarios. For this, two benchmark sets were
chosen, namely the CEC 2017 [13] and 2022 [14] Single Objective Bound Constrained
Numerical Optimization problems. These benchmarks have different numbers of functions,
30 and 12, respectively, different dimensions and computational resource. For CEC 2017,
the test functions were defined for D = 10, 30, 50 and 100, and for CEC 2022 D = 10 and 20.
The number of available function evaluations was set to NFEmax = 10,000D for CEC 2017,
and for CEC 2022 it was set to NFEmax = 2 × 105 for 10D and NFEmax = 1 × 106 for 20D.
All the experiments with algorithms and their modifications were performed according to
competition rules.

All the tested algorithms were implemented in C++, and ran on eight AMD Ryzen 3700
PRO processors with eight cores each under Ubuntu Linux 20.04; the experiments were
paralleled using OpenMPI 4.0.3, and post-processing was performed using Python 3.8.5.

To compare different results, two main techniques were applied. The first was the
Mann–Whitney rank sum statistical test with normal approximation and tie-breaking,
with significance level set to p = 0.01. In addition to the result of the test (win/tie/loss),
the standard Z score values were calculated and summed over all test functions. We note
that Z = ±2.58 corresponds to p = 0.01. The second is the Friedman ranking procedure,
applied in the Friedman statistical test. Here, it was used to compare a set of algorithms
or their variants, and the ranks were assigned to the results obtained on every run and
function independently, and then summed together. We note that unlike CEC 2017, in CEC
2022, the ranking of results included not only the best achieved values, but also the total
computational resource spent, and this ranking was used in both the Mann–Whitney test
and Friedman ranking.

4.2. Numerical Results

In order to consider the proposed modification from different points, in the following
subsections, several aspects were considered, including the effects of SR-based adaptation
on the performance of different existing algorithms when success history-based adaptation
is replaced; the influence of the available computational resource and mutation strategies;
comparison with the best methods on two sets of benchmark functions. Also, a visualization
of the parameter adaptation process was considered for a better understanding of the effects
on the differential evolution algorithm.

4.2.1. Modification of Existing Algorithms

As was mentioned above, the success rate-based adaptation for F replaced the success
history adaptation in four tested algorithms. As for the crossover rate Cr adaptation, it was
unchanged. In the case of the L-SHADE-RSP algorithm, which uses a specific mutation
strategy with F and F2, when using the success rate, F2 was set equal to F, and specific
rules based on the current resource from jSO algorithm were removed. The parameters for
all the algorithms were set according to those used in corresponding papers.

The majority of modern DE algorithms rely on the success history adaptation method
introduced in SHADE, so the purpose of the study was to compare the adaptation methods,
and not specific algorithms. For this purpose, in Tables 1–10, we modified L-SHADE-RSP,
NL-SHADE-RSP, NL-SHADE-LBC, L-NTADE, jSO, LSHADE-SPACMA, APGSK-IMODE,
MLS-LSHADE and MadDE with success rate-based adaptation and compared the results.

Tables 1 and 2 present the comparison of the original L-SHADE-RSP with the modified
L-SHADE-RSP (SR) with different c values. Each cell in the tables contains the number of

Mathematics 2024, 12, 516 8 of 22

wins/ties/losses and the total standard score in brackets. Larger standard score means that
the modified algorithm is better.

Table 1. L-SHADE-RSP (SR) vs. L-SHADE-RSP, CEC 2017.

c 10D 30D 50D 100D

1 3/18/9 (−45.16) 0/9/21 (−157.01) 0/7/23 (−163.79) 2/5/23 (−183.13)
2 3/23/4 (−12.68) 4/11/15 (−74.72) 4/8/18 (−87.52) 4/9/17 (−91.82)
3 5/23/2 (4.32) 5/16/9 (−28.41) 5/15/10 (−25.87) 8/12/10 (−16.28)
4 4/26/0 (19.57) 2/23/5 (−18.11) 5/20/5 (2.37) 11/11/8 (11.60)
5 5/23/2 (14.58) 3/20/7 (−31.34) 1/25/4 (−11.09) 12/10/8 (16.57)
6 6/19/5 (8.65) 2/18/10 (−41.83) 3/20/7 (−33.75) 12/11/7 (4.25)

Table 2. L-SHADE-RSP (SR) vs. L-SHADE-RSP, CEC 2022.

c 10D 20D

1 7/3/2 (29.61) 3/3/6 (−11.30)
2 7/3/2 (30.91) 4/4/4 (4.29)
3 6/3/3 (21.43) 4/6/2 (18.58)
4 4/2/6 (−8.13) 2/8/2 (−3.00)
5 4/4/4 (−8.23) 2/6/4 (−14.21)
6 3/5/4 (−9.17) 1/7/4 (−16.18)

As can be seen from Tables 1 and 2, the c parameter significantly influences perfor-
mance, and if for CEC 2017 c = 1, i.e., MF = SR, is a bad choice; for CEC 2022 it is a
reasonable setting for 10D. The setting which leads to good performance is c = 4 for CEC
2017. In this case, for 10D, 50D and 100D, there are more improvements than losses, but for
30D the success history adaptation works better. In the case of the CEC 2022 benchmark,
the best choice isc = 3.

In Tables 3 and 4, the comparison of the basic NL-SHADE-RSP and the modified
NL-SHADE-RSP (SR) is presented.

Table 3. NL-SHADE-RSP (SR) vs. NL-SHADE-RSP, CEC 2017.

c 10D 30D 50D 100D

1 0/13/17 (−77.34) 1/6/23 (−134.10) 1/9/20 (−128.17) 6/6/18 (−91.88)
2 0/25/5 (−18.32) 7/21/2 (17.65) 14/13/3 (45.81) 20/6/4 (89.04)
3 2/27/1 (8.46) 14/14/2 (64.24) 15/13/2 (100.78) 22/7/1 (134.60)
4 7/22/1 (28.38) 15/14/1 (81.37) 17/11/2 (111.83) 22/6/2 (141.35)
5 8/21/1 (33.83) 16/13/1 (73.35) 18/10/2 (111.43) 21/7/2 (139.24)
6 6/24/0 (29.73) 13/14/3 (66.20) 17/11/2 (111.59) 22/5/3 (135.73)

Table 4. NL-SHADE-RSP (SR) vs. NL-SHADE-RSP, CEC 2022.

c 10D 20D

1 4/4/4 (2.46) 0/6/6 (−39.78)
2 5/6/1 (14.26) 1/8/3 (−8.21)
3 6/2/4 (14.37) 5/4/3 (5.05)
4 6/2/4 (8.26) 5/3/4 (4.18)
5 5/3/4 (9.20) 5/3/4 (6.02)
6 6/2/4 (11.19) 5/4/3 (8.10)

The situation with NL-SHADE-RSP is quite different as this method was not tuned
for CEC 2017 or CEC 2022. Nevertheless, small values of the c parameter lead to poor

Mathematics 2024, 12, 516 9 of 22

performance on both benchmarks, and increasing c up to 3 or 4 produces much better
results. After c = 4, performance gains become smaller.

Tables 5 and 6 show the results of NL-SHADE-LBC and its modified version.

Table 5. NL-SHADE-LBC (SR) vs. NL-SHADE-LBC, CEC 2017.

c 10D 30D 50D 100D

1 0/17/13 (−63.46) 2/8/20 (−138.49) 5/8/17 (−103.11) 7/4/19 (−108.71)
2 2/24/4 (−13.13) 7/13/10 (−15.57) 18/3/9 (62.92) 16/8/6 (63.66)
3 4/24/2 (21.91) 14/12/4 (73.17) 23/6/1 (161.08) 23/5/2 (161.72)
4 8/21/1 (40.55) 16/13/1 (97.39) 25/4/1 (185.04) 25/5/0 (190.54)
5 10/20/0 (53.79) 16/13/1 (106.44) 25/5/0 (186.03) 27/3/0 (199.10)
6 10/20/0 (56.07) 17/12/1 (106.95) 25/4/1 (176.66) 26/4/0 (193.90)

Table 6. NL-SHADE-LBC (SR) vs. NL-SHADE-LBC, CEC 2022.

c 10D 20D

1 6/3/3 (26.91) 3/3/6 (-19.44)
2 2/3/7 (−23.34) 1/4/7 (−37.09)
3 3/2/7 (−25.30) 2/5/5 (−20.46)
4 2/3/7 (−26.51) 3/4/5 (−17.18)
5 2/3/7 (−28.37) 3/4/5 (−20.26)
6 2/3/7 (−28.53) 3/4/5 (−18.72)

As can be seen from Tables 5 and 6, the situation with NL-SHADE-LBC is quite
different. As this method was specifically developed for the CEC 2022 benchmark, its
parameter adaptation was not tuned for the CEC 2017 benchmark, and applying success
rate-based adaptation significantly improves results, with up to 27 improvements out of
30 functions in 100D. However, for CEC 2022, the success rate adaptation was not able
to deliver better performance, but still c = 4 or higher is a reasonable choice for both
benchmarks. The reason why SR-based adaptation worked worse with NL-SHADE-LBC
is that the parameter adaptation of this algorithm was specifically tuned for the CEC
2022 benchmark.

Tables 7 and 8 contain the results of the L-NTADE algorithm and its modification.

Table 7. L-NTADE (SR) vs. L-NTADE, CEC 2017.

c 10D 30D 50D 100D

1 2/10/18 (−105.68) 0/8/22 (−192.68) 0/4/26 (−218.98) 1/2/27 (−219.12)
2 6/15/9 (−11.94) 3/14/13 (−65.01) 4/8/18 (−108.84) 5/3/22 (−124.60)
3 9/15/6 (22.08) 12/15/3 (43.24) 8/17/5 (19.67) 8/9/13 (-6.39)
4 11/14/5 (37.30) 14/15/1 (75.39) 15/11/4 (69.26) 15/11/4 (70.63)
5 10/16/4 (44.53) 14/15/1 (73.95) 17/10/3 (67.77) 15/11/4 (65.51)
6 11/17/2 (36.40) 9/19/2 (48.88) 13/11/6 (25.88) 11/12/7 (24.52)

Table 8. L-NTADE (SR) vs. L-NTADE, CEC 2022.

c 10D 20D

1 5/3/4 (11.08) 3/2/7 (−22.99)
2 6/4/2 (25.53) 3/3/6 (−6.99)
3 6/4/2 (25.45) 3/5/4 (1.07)
4 5/5/2 (26.17) 2/6/4 (−1.82)
5 3/8/1 (13.29) 2/6/4 (−10.64)
6 2/6/4 (−10.49) 2/7/3 (−12.62)

Mathematics 2024, 12, 516 10 of 22

Although L-NTADE has two populations and has a different algorithmic scheme,
applying success rate-based adaptation improved the results in both benchmarks. As
before, small c values are inefficient. However, setting c = 4 for CEC 2017 or probably even
larger values offers significant performance benefits.

In order to test the applicability of the proposed approach to other algorithms, several
of them for which the source codes were available were modified and the modifications
were compared to the original results. For the CEC 2017 benchmark, in the jSO (derived
from L-SHADE) [25], the mutation step, which uses two factors, F and F2, was modified
to have only a single one, and the control rules for F were deactivated. For LSHADE-
SPACMA [35], the scaling factor sampling in the DE part was replaced by Equation (19).
The comparison is shown in Table 9.

Table 9. Comparison of other modified approach vs. original versions, CEC 2017.

Algorithm 10D 30D 50D 100D

jSO (SR, c = 4) vs. 1/21/8 8/16/6 6/14/10 11/9/10
jSO [25] (−37.08) (21.04) (−25.27) (−2.29)

LSHADE-SPACMA (SR, c = 4) vs. 3/22/5 1/24/5 0/22/8 0/23/7
LSHADE-SPACMA [35] (−22.61) (−41.67) (−64.32) (−42.11)

As can be seen from Table 9, the modification of jSO with c = 4 may be beneficial
in some cases, for example, in the 30D scenario, but in 10D the number of losses was
much larger than the number of wins. As for LSHADE-SPACMA, using success rate-based
adaptation leads to decreased performance. The main reason why SR-based adaptation
failed to improve the performance in these cases could be that both jSO and LSHADE-
SPACMA were specifically tuned for the CEC 2017 benchmark, and the SR-based adaptation
is a more general approach, which was not tuned for these particular algorithms.

In Table 10, the same modification was applied to APGSK-IMODE (only in IMODE
part) [36], MLS-LSHADE [37] and MadDE [38]. Due to a simpler benchmark in terms of
computation time, the experiments were performed with different c values.

Table 10. Comparison of other modified approaches vs. original versions, CEC 2022.

Algorithm 10D 20D

APGSK-IMODE (SR, c = 2) vs. 4/5/3 1/5/6
APGSK-IMODE [36] (3.66) (−24.33)

APGSK-IMODE (SR, c = 3) vs. 4/4/4 1/8/3
APGSK-IMODE [36] (12.88) (−14.19)

APGSK-IMODE (SR, c = 4) vs. 3/4/5 1/8/3
APGSK-IMODE [36] (−8.81) (−12.24)

APGSK-IMODE (SR, c = 5) vs. 3/4/5 1/8/3
APGSK-IMODE [36] (−8.81) (−12.24)

MLS-LSHADE (SR, c = 2) vs. 4/3/5 0/4/8
MLS-LSHADE [37] (−2.05) (−49.53)

MLS-LSHADE (SR, c = 3) vs. 2/3/7 0/6/6
MLS-LSHADE [37] (−29.50) (−41.34)

MLS-LSHADE (SR, c = 4) vs. 3/1/8 0/5/7
MLS-LSHADE [37] (−32.78) (−41.91)

MLS-LSHADE (SR, c = 5) vs. 1/3/8 0/5/7
MLS-LSHADE [37] (−37.41) (−40.96)

Mathematics 2024, 12, 516 11 of 22

Table 10. Cont.

Algorithm 10D 20D

MadDE (SR, c = 2) vs. 5/4/3 2/6/4
MadDE [38] (12.46) (−9.56)

MadDE (SR, c = 3) vs. 4/5/3 3/8/1
MadDE [38] (14.78) (13.48)

MadDE (SR, c = 4) vs. 4/5/3 3/8/1
MadDE [38] (13.10) (15.39)

MadDE (SR, c = 5) vs. 3/6/3 3/6/3
MadDE [38] (4.88) (0.68)

The effect of success rate-based scaling factor adaptation is different for different
algorithms. For example, the performance of APGSK-IMODE was improved only in the
10D case, with c = 2 and c = 3, but for MLS-LSHADE the effect was mainly negative.
As for the MadDE algorithm, it was mostly improved by the modification, especially for
c = 3 and c = 4.

4.2.2. Effect of the Available Computational Resource

The main difference between the two considered benchmarks is the number of com-
putations available for every function. The experiments shown above demonstrated that
there is a possibility that amount of resource may influence the performance of success
rate-based adaptation. To test this hypothesis, a set of experiments was performed for the
L-NTADE algorithm on CEC 2022, where the number of function evaluations NFEmax was
decreased to 10%, 20% and so on up to 100%. Figure 2 shows the Friedman ranking of the
results in the form of heatmaps.

In Figure 3, the ranking was performed independently in every column, as there is no
sense in comparing algorithms with different available resource. The best ranks are shown
in red. In the 10D case, if the resource is relatively small, the success rate adaptation is
significantly better than SHA. However, as the NFEmax grows, the SHA may take the lead.
In the 20D case, however, the SR adaptation is always better, and the best settings are c = 5
or c = 6, although c = 4 is very similar. From these results, it can be concluded that, first of
all, success rate-based adaptation is not highly influenced by available resource, but there
is a difference in performance compared to SHA.

2 × 10
4

4 × 10
4

6 × 10
4

8 × 10
4

1 × 10
5

1.2 × 10
5

1.4 × 10
5

1.6 × 10
5

1.8 × 10
5

2 × 10
5

L-NTADE (SR, c=1)

L-NTADE (SR, c=2)

L-NTADE (SR, c=3)

L-NTADE (SR, c=4)

L-NTADE (SR, c=5)

L-NTADE (SR, c=6)

L-NTADE (SR, c=7)

L-NTADE (SR, c=8)

L-NTADE (SR, c=9)

L-NTADE

56.1 67.3 68.5 68.4 66.3 68.7 69.1 70.5 71.2 69.7

40.3 50.7 53.2 54.3 55.4 55.5 55.2 55.0 55.0 55.2

40.3 46.2 50.9 52.0 52.4 52.7 53.7 52.3 54.3 54.6

44.5 50.4 50.4 50.7 50.9 50.5 53.7 52.1 51.2 53.2

50.3 48.2 52.9 50.1 49.8 53.2 52.3 51.0 49.5 51.9

56.0 53.5 53.4 51.2 52.8 51.2 50.7 50.1 52.7 51.4

63.0 56.0 50.0 54.7 53.2 52.3 51.0 52.5 52.5 50.7

65.1 57.2 52.8 54.7 53.0 52.7 52.5 51.6 50.4 50.1

67.6 54.1 55.3 53.5 52.7 54.3 52.7 55.0 53.2 52.9

56.8 56.4 52.5 50.5 53.4 48.8 49.2 50.0 49.9 50.4

10D

Figure 3. Cont.

Mathematics 2024, 12, 516 12 of 22

1 × 10
5

2 × 10
5

3 × 10
5

4 × 10
5

5 × 10
5

6 × 10
5

7 × 10
5

8 × 10
5

9 × 10
5

1 × 10
6

L-NTADE (SR, c=1)

L-NTADE (SR, c=2)

L-NTADE (SR, c=3)

L-NTADE (SR, c=4)

L-NTADE (SR, c=5)

L-NTADE (SR, c=6)

L-NTADE (SR, c=7)

L-NTADE (SR, c=8)

L-NTADE (SR, c=9)

L-NTADE

80.2 82.0 82.5 83.1 82.3 82.8 83.4 82.8 83.9 83.6

60.9 66.4 67.4 67.8 70.6 71.3 70.3 71.8 70.9 70.4

45.8 51.9 53.5 54.2 53.6 53.2 54.8 54.6 54.7 56.8

41.1 47.6 46.2 47.8 46.9 47.2 47.1 46.4 49.5 47.3

44.9 46.0 45.6 45.6 43.8 46.9 45.3 44.5 45.4 44.9

50.1 46.2 48.5 45.9 44.7 44.8 45.9 44.8 43.9 45.4

53.7 45.4 48.2 50.0 45.9 45.6 46.8 45.7 46.4 45.9

53.1 50.8 49.0 47.9 47.9 48.6 47.1 48.6 48.2 47.9

57.7 51.9 48.2 48.5 51.5 48.4 49.1 49.5 47.6 49.7

52.6 51.8 51.0 49.3 52.7 51.2 50.2 51.4 49.5 48.1

20D

Figure 3. Comparison of L-NTADE with and without success rate adaptation with different available
resource NFEmax, Friedman ranking.

4.2.3. Visualization of Parameter Adaptation Process

For a better understanding of what SR actually does during the search process,
Figures 4 and 5 show the graphs of F values set by the SHA and SR methods in the case of
the L-SHADE-RSP algorithm.

0 60,000 120,000 180,000 240,000 300,000
NFE

0.0

0.5

1.0
F F6

0 60,000 120,000 180,000 240,000 300,000
NFE

0.0

0.5

1.0
F F9

0 60,000 120,000 180,000 240,000 300,000
NFE

0.0

0.5

1.0
F F15

0 60,000 120,000 180,000 240,000 300,000
NFE

0.0

0.5

1.0
F F19

0 60,000 120,000 180,000 240,000 300,000
NFE

0.0

0.5

1.0
F F22

0 60,000 120,000 180,000 240,000 300,000
NFE

0.0

0.5

1.0
F F30

Success rate based MF (c=4)
Success Rate SR
SHA average memory MF

Figure 4. Graphs of parameter adaptation of L-SHADE-RSP with and without success rate adaptation,
CEC 2017, 30D, selected functions.

The graphs in Figure 4 show that the behavior of the two considered adaptation
methods is quite different, and sometimes even opposite. For example, at the beginning of
the search, the success rate is high, and so is the MF value, and they both decrease, while
SHA makes larger F values. If the success rate drops close to 0, this makes the MF values
oscillate between 0 and 0.5, while SHA slowly tunes values in the memory cells, as seen on
functions F15 and F19. If the search process is going well, SR tends to maintain relatively
high F values, and switches to an oscillating mode if the success rate is low.

Figure 5 shows similar trends, but they are seen much better due to larger resource.
For example, for functions F4, F7 and F8, the success history adaptation leads to memory
cell values close to zero at some points in the middle of the search, but success rate

Mathematics 2024, 12, 516 13 of 22

adaptation tries every possible F value from 0 to around 0.4 when the success rate drops
low. Also, oscillation tends to become higher closer to the end of the search. This is simply
the effect of smaller a population size.

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F1

Success rate based MF (c=4)
Success Rate SR
SHA average memory MF

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F2

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F3

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F4

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F5

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F6

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F7

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F8

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F9

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F10

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F11

0 2 × 105
4 × 105

6 × 105
8 × 105

1 × 106

NFE

0.0

0.2

0.4

0.6

0.8

1.0
F F12

Figure 5. Graphs of parameter adaptation of L-SHADE-RSP with and without success rate adaptation,
CEC 2022, 20D.

4.2.4. Success Rate-Based Adaptation With Different Mutation Strategies

One of the possible explanations of the high performance of success rate-based adap-
tation for F could be that it works in combination with the current-to-pbest strategy. If the
success rate is low, smaller F values force more exploration, while F closer to 1 leads to
a move towards one of the p% best solutions. To test this effect of success rate-based
adaptation, a set of experiments was performed on the standard L-SHADE algorithm with
different mutation strategies, such as rand/1, rand/2, current-to-best/1, current-to-rand/1,
best/1 and best/2. The c parameter was also altered from 1 to 6, and the original L-SHADE
was tested. Next, the Friedman ranking procedure was applied to compare the performance
of SHA with SR. The ranks were assigned for each mutation strategy (column) indepen-
dently. The experiments were repeated for both CEC 2017 and CEC 2022 benchmarks.
The parameters of L-SHADE were the following: N = 60 × D

2
3 , pbest = 0.2, H = 5, initial

MF = 0.5, MCr = 0.5, archive was not used. Figures 6 and 7 contain the heatmaps of
the comparison.

Mathematics 2024, 12, 516 14 of 22

cu
rre

nt
-to

-p
be

st
/1

ra
nd

/1

ra
nd

/2
cu

rre
nt

-to
-b

es
t/1

cu
rre

nt
-to

-ra
nd

/1
be

st
/1

be
st

/2

L-SHADE

L-SHADE (SR, c=1)

L-SHADE (SR, c=2)

L-SHADE (SR, c=3)

L-SHADE (SR, c=4)

L-SHADE (SR, c=5)

L-SHADE (SR, c=6)

80.5 91.5 92.3 79.7 77.1 104.9 91.6

111.7 72.0 63.5 103.7 128.4 119.0 109.4

85.6 81.0 72.4 89.2 91.1 89.6 77.1

83.2 88.9 89.8 86.6 79.7 75.3 79.0

87.6 94.6 99.1 87.8 83.0 78.5 82.1

87.1 99.6 106.4 90.9 84.7 76.6 94.0

94.3 102.4 106.6 92.0 85.9 86.2 96.8

10D

cu
rre

nt
-to

-p
be

st
/1

ra
nd

/1

ra
nd

/2
cu

rre
nt

-to
-b

es
t/1

cu
rre

nt
-to

-ra
nd

/1
be

st
/1

be
st

/2

L-SHADE

L-SHADE (SR, c=1)

L-SHADE (SR, c=2)

L-SHADE (SR, c=3)

L-SHADE (SR, c=4)

L-SHADE (SR, c=5)

L-SHADE (SR, c=6)

74.8 99.2 92.3 78.2 72.3 107.6 91.4

112.7 49.8 37.1 113.2 132.2 116.5 100.0

72.9 65.6 58.4 80.1 85.0 86.2 73.3

73.3 84.6 84.7 80.4 73.5 77.3 74.6

84.4 99.4 105.0 85.0 79.0 76.9 86.4

99.8 111.9 121.9 94.3 90.2 80.5 96.3

112.1 119.5 130.7 98.7 97.9 84.9 108.1

30D

cu
rre

nt
-to

-p
be

st
/1

ra
nd

/1

ra
nd

/2
cu

rre
nt

-to
-b

es
t/1

cu
rre

nt
-to

-ra
nd

/1
be

st
/1

be
st

/2

L-SHADE

L-SHADE (SR, c=1)

L-SHADE (SR, c=2)

L-SHADE (SR, c=3)

L-SHADE (SR, c=4)

L-SHADE (SR, c=5)

L-SHADE (SR, c=6)

75.3 97.4 92.0 79.2 73.9 107.6 91.6

120.3 42.0 29.6 118.8 141.3 119.4 102.7

68.9 51.5 54.0 81.0 84.2 87.9 71.2

68.3 84.5 83.0 74.2 66.9 76.8 70.9

81.7 105.1 108.4 82.8 74.4 76.7 86.8

101.6 119.0 126.0 91.6 90.1 77.4 98.9

113.8 130.5 136.9 102.5 99.2 84.3 107.8

50D

cu
rre

nt
-to

-p
be

st
/1

ra
nd

/1

ra
nd

/2
cu

rre
nt

-to
-b

es
t/1

cu
rre

nt
-to

-ra
nd

/1
be

st
/1

be
st

/2

L-SHADE

L-SHADE (SR, c=1)

L-SHADE (SR, c=2)

L-SHADE (SR, c=3)

L-SHADE (SR, c=4)

L-SHADE (SR, c=5)

L-SHADE (SR, c=6)

65.4 92.3 80.8 73.4 68.8 112.0 100.0

104.8 36.1 27.6 109.9 137.0 112.1 90.3

65.1 56.0 50.4 69.5 77.5 81.9 59.7

70.6 79.1 83.4 71.8 66.7 73.5 72.4

87.7 105.0 112.5 86.8 79.6 75.5 88.0

110.0 124.9 130.6 104.2 92.8 81.8 105.0

126.3 136.7 144.7 114.4 107.6 93.2 114.6

100D

Figure 6. Comparison of L-SHADE with different strategies, with and without success rate adaptation,
CEC 2017, Friedman ranking.

cu
rre

nt
-to

-p
be

st
/1

ra
nd

/1

ra
nd

/2
cu

rre
nt

-to
-b

es
t/1

cu
rre

nt
-to

-ra
nd

/1
be

st
/1

be
st

/2

L-SHADE

L-SHADE (SR, c=1)

L-SHADE (SR, c=2)

L-SHADE (SR, c=3)

L-SHADE (SR, c=4)

L-SHADE (SR, c=5)

L-SHADE (SR, c=6)

37.4 31.6 30.3 38.0 36.0 31.3 28.9

36.8 24.0 24.1 36.8 41.6 28.0 26.5

29.3 29.5 31.9 29.8 33.1 30.8 30.0

30.6 35.4 36.8 30.9 31.5 35.6 35.3

35.0 40.2 40.2 35.5 34.4 39.0 39.9

40.2 44.3 43.2 39.3 36.7 42.1 44.1

42.6 46.9 45.5 41.7 38.6 45.2 47.3

10D

cu
rre

nt
-to

-p
be

st
/1

ra
nd

/1

ra
nd

/2
cu

rre
nt

-to
-b

es
t/1

cu
rre

nt
-to

-ra
nd

/1
be

st
/1

be
st

/2
L-SHADE

L-SHADE (SR, c=1)

L-SHADE (SR, c=2)

L-SHADE (SR, c=3)

L-SHADE (SR, c=4)

L-SHADE (SR, c=5)

L-SHADE (SR, c=6)

36.0 33.8 34.9 37.8 35.8 36.8 35.2

41.6 30.2 31.2 39.1 41.7 33.8 32.0

30.6 34.1 33.4 31.0 34.9 32.4 32.4

32.4 36.1 37.0 32.4 33.9 34.2 35.1

35.3 38.1 37.9 35.0 35.0 36.4 37.0

37.3 39.7 38.4 37.5 34.7 38.4 39.1

38.8 40.0 39.1 39.3 36.0 39.9 41.1

20D

Figure 7. Comparison of L-SHADE with different strategies, with and without success rate adaptation,
CEC 2022, Friedman ranking.

The heatmaps for the CEC 2017 benchmark show that in low-dimensional cases like
10D and 30D, the SHA may perform better than SR, but only for current-to-pbest/1, current-
to-best/1 and current-to-rand/1. As for the other strategies, rand/1 and rand/2 performed
much better with the modified approach, and so did best/1 and best/2, although the
difference here was smaller. In high-dimensional cases, SR is always performing better,
especially when the rand/2 strategy is used. Different strategies prefer different c values;

Mathematics 2024, 12, 516 15 of 22

for example, rand/1 and rand/2 only use c = 1, i.e., linear dependence. In fact, this means
that the success rate is used directly. Other strategies, such as best/1 and best/2, prefer
c = 2, c = 3 or c = 4, but this value is always smaller for best/2 compared to best/1.
The same is true when comparing rand/1 and rand/2: the effect of smaller c values is
larger in the case of rand/2. The current-to-best and current-to-rand strategies are similar
to current-to-pbest ones, and the best settings for them are close. The comparison on CEC
2022 demonstrates the same trends, but in general smaller c values are preferred for all
strategies except current-to-rand ones. Also, on this benchmark, the SHA is never the
best choice.

To compare different strategies with current-to-pbest, the best performing ones from
every dimension and every benchmark were chosen and compared to current-to-pbest
with SR. The standard SHA was not considered here. The Mann–Whitney statistical tests
for both benchmarks are shown in Tables 11 and 12.

Table 11. L-SHADE (SR) with different mutation strategies, current-to-pbest strategy vs. best variants,
CEC 2017.

Strategy 10D 30D 50D 100D

current-to-pbest/1 vs. 10/11/9 19/9/2 24/4/2 18/8/4
rand/1 (26.18) (110.36) (150.35) (133.91)

current-to-pbest/1 vs. 11/16/3 20/9/1 25/3/2 20/6/4
rand/2 (56.51) (134.71) (174.02) (146.97)

current-to-pbest/1 vs. 15/10/5 5/22/3 4/22/4 11/10/9
current-to-best/1 (45.26) (17.98) (3.20) (19.94)

current-to-pbest/1 vs. 11/17/2 19/11/0 19/9/2 22/7/1
current-to-rand/1 (52.97) (119.34) (135.04) (164.06)

current-to-pbest/1 vs. 9/17/4 15/11/4 23/4/3 20/6/4
best/1 (20.28) (80.90) (108.31) (107.48)

current-to-pbest/1 vs. 11/16/3 17/11/2 24/4/2 20/6/4
best/2 (27.58) (80.53) (123.93) (108.48)

Table 12. L-SHADE (SR) with different mutation strategies, current-to-pbest strategy vs. best variants,
CEC 2022.

Strategy 10D 20D

current-to-pbest/1 vs. rand/1 4/5/3 (1.77) 3/5/4 (−5.97)

current-to-pbest/1 vs. rand/2 4/5/3 (8.87) 2/7/3 (−1.72)

current-to-pbest/1 vs. current-to-best/1 1/7/4 (−15.58) 1/8/3 (−8.00)

current-to-pbest/1 vs. current-to-rand/1 7/4/1 (35.73) 5/6/1 (22.00)

current-to-pbest/1 vs. best/1 5/3/4 (1.91) 5/4/3 (12.18)

current-to-pbest/1 vs. best/2 3/4/5 (−10.48) 6/2/4 (13.10)

In the case of the CEC 2017 benchmark in Table 11, the current-to-pbest strategy
dominates other strategies in terms of performance in all cases. However, the closest
competitor is the current-to-best which performed similar in the 50D case, which might
indicate a non-optimal choice of the pbest parameter for current-to-best. As for the results
on CEC 2022, the current-to-pbest outperformed most of the strategies but the current-
to-best had several wins in both the 10D and 30D cases. Also, the rand/1 strategy has
shown some competitive performance in 20D, as well as best/2 in 10D. Considering the
improvements that success rate-based adaptation was able to deliver for these strategies

Mathematics 2024, 12, 516 16 of 22

compared to success history adaptation (Figures 6 and 7), one may conclude that SR can be
efficiently applied to other strategies, and even make them competitive.

4.2.5. Comparison With Alternative Approaches

Tables 13–15 contain the comparison of the L-NTADE (SR) algorithm with c = 4 to
other modern DE algorithms on the CEC 2017 benchmark, and Tables 16–18 on the CEC
2022 benchmark. Table 13 shows the results of Mann–Whitney statistical tests, Table 14
contains the Friedman ranking results, the ranking that is used in a Friedman statistical test
to compare several sets of measurements; smaller total ranks are better. Table 15 shows
the recently proposed U-scores [39]. Tables 16–18 contain the same results for CEC 2022.
The U-scores represent a trial-based dominance method for comparing several optimization
methods using Mann–Whitney U tests. For CEC 2017, the convergence speed is not taken
into consideration, while for CEC 2022 the number of function evaluations to reach the
desired accuracy is considered.

Table 13. L-NTADE (SR) vs. alternative approaches, Mann–Whitney tests, CEC 2017.

Algorithm 10D 30D 50D 100D

L-NTADE (SR, c = 4) vs. 9/18/3 17/6/7 14/3/13 14/1/15
LSHADE-SPACMA [35] (25.76) (75.97) (17.98) (1.50)

L-NTADE (SR, c = 4) vs. 6/21/3 19/10/1 22/6/2 24/1/5
jSO [25] (7.27) (139.25) (153.40) (147.83)

L-NTADE (SR, c = 4) vs. 3/19/8 16/9/5 18/7/5 22/2/6
EBOwithCMAR [40] (−37.99) (79.00) (110.30) (131.61)

L-NTADE (SR, c = 4) vs. 3/24/3 18/11/1 20/8/2 20/6/4
L-SHADE-RSP [9] (2.69) (127.15) (131.90) (121.52)

L-NTADE (SR, c = 4) vs. 12/9/9 23/4/3 29/1/0 29/0/1
NL-SHADE-RSP [10] (17.82) (173.49) (250.21) (241.25)

L-NTADE (SR, c = 4) vs. 6/20/4 21/8/1 28/2/0 27/1/2
NL-SHADE-LBC [11] (6.58) (176.68) (227.05) (210.08)

L-NTADE (SR, c = 4) vs. 11/14/5 14/15/1 15/11/4 15/11/4
L-NTADE [12] (37.30) (75.39) (69.26) (70.63)

Table 14. L-NTADE (SR) vs. alternative approaches; Friedman ranking. Smaller ranks are better,
CEC 2017.

Algorithm 10D 30D 50D 100D Total

LSHADE-SPACMA [35] 139.42 127.42 100.55 85.06 452.45

jSO [25] 134.97 131.33 132.14 139.09 537.53

EBOwithCMAR [40] 116.15 123.19 124.94 131.67 495.94

L-SHADE-RSP [9] 133.93 126.37 121.91 122.36 504.58

NL-SHADE-RSP [10] 146.25 196.87 226.37 226.63 796.13

NL-SHADE-LBC [11] 133.80 177.80 193.38 191.89 696.88

L-NTADE [12] 143.55 110.41 100.85 101.93 456.75

L-NTADE (SR, c = 4) 131.92 86.60 79.85 81.37 379.75

As can be seen from Table 13, the L-NTADE algorithm with success rate-based adapta-
tion is able to outperform most of the alternative algorithms in both benchmarks. EBOwith-
CMAR performed better in the 10D case, and LSHADE-SPACMA showed comparable
in the 100D case. Table 14 supports these results, ranking L-NTADE with c = 4 the best

Mathematics 2024, 12, 516 17 of 22

algorithm overall, and even the standard L-NTADE is very competitive. In Table 15,
the comparison yields similar results, and L-NTADE with c = 4 ranks first, followed by
LSHADE-SPACMA and L-NTADE.

Table 15. L-NTADE (SR) vs. alternative approaches, U-scores. Larger ranks are better [39], CEC 2017.

Algorithm 10D 30D -

LSHADE-SPACMA [35] 263,193 293,839.5 -

jSO [25] 272,469 282,122.5 -

EBOwithCMAR [40] 322,146.5 303,458.5 -

L-SHADE-RSP [9] 276,570.5 296,012 -

NL-SHADE-RSP [10] 244,170 112,109 -

NL-SHADE-LBC [11] 276,146 161,327 -

L-NTADE [12] 248,186 336,712.5 -

L-NTADE (SR, c = 4) 281,959 399,259 -

Algorithm 50D 100D Total

LSHADE-SPACMA [35] 364,005.5 404,653 1,325,691

jSO [25] 281,506 262,631 1,098,728.5

EBOwithCMAR [40] 298,859 282,227 1,206,691

L-SHADE-RSP [9] 305,628.5 305,817 1,184,028

NL-SHADE-RSP [10] 34,664.5 34,687 425,630.5

NL-SHADE-LBC [11] 121,800.5 124,111 683,384.5

L-NTADE [12] 362,005 359,221 1,306,124.5

L-NTADE (SR, c = 4) 416,371 411,493 1,509,082

Table 16. L-NTADE (SR) vs. alternative approaches, CEC 2022.

Algorithm 10D 20D

L-NTADE (SR, c = 4) vs. 8/2/2 10/0/2
APGSK-IMODE [36] (36.86) (52.60)

L-NTADE (SR, c = 4) vs. 4/2/6 4/1/7
MLS-LSHADE [37] (−9.67) (−19.78)

L-NTADE (SR, c = 4) vs. 8/2/2 8/2/2
MadDE [38] (39.05) (43.60)

L-NTADE (SR, c = 4) vs. 2/6/4 5/3/4
EA4eigN100 [41] (−15.49) (5.51)

L-NTADE (SR, c = 4) vs. 3/4/5 6/2/4
NL-SHADE-RSP-MID [42] (−5.98) (17.59)

L-NTADE (SR, c = 4) vs. 5/3/4 4/6/2
L-SHADE-RSP [9] (14.23) (12.24)

L-NTADE (SR, c = 4) vs. 6/3/3 7/4/1
NL-SHADE-RSP [10] (24.51) (34.78)

L-NTADE (SR, c = 4) vs. 2/3/7 4/4/4
NL-SHADE-LBC [11] (−30.20) (−3.75)

L-NTADE (SR, c = 4) vs. 5/5/2 2/6/4
L-NTADE [12] (26.17) (−1.82)

Mathematics 2024, 12, 516 18 of 22

The comparison on the CEC 2022 benchmark in Table 16 shows that L-NTADE with
c = 4 is outperformed by NL-SHADE-LBC and EA4eigN100 in the 10D case, but in 20D
the difference between them decreases. However, the MLS-LSHADE is able to deliver
better performance in the 20D case. The Friedman ranking in Table 17 sets EA4eigN100 in
first place, followed by NL-SHADE-LBC, and MLS-LSHADE and L-NTADE with c = 4.
However, when using U-scores in Table 18, L-NTADE with c = 4 takes second place after
NL-SHADE-LBC, and MLS-LSHADE has an almost identical total rank. We note that
L-NTADE used the same parameter settings in both benchmarks, and still was able to show
highly competitive results in both of them.

Table 17. L-NTADE (SR) vs. alternative approaches, Friedman ranking. Smaller ranks are better,
CEC 2022.

Algorithm 10D 20D Total

APGSK-IMODE [36] 81.57 87.92 169.48

MLS-LSHADE [37] 64.05 50.13 114.18

MadDE [38] 87.15 87.02 174.17

EA4eigN100 [41] 39.17 53.02 92.18

NL-SHADE-RSP-MID [42] 58.92 71.25 130.17

L-SHADE-RSP [9] 66.65 59.07 125.72

NL-SHADE-RSP [10] 88.23 83.58 171.82

NL-SHADE-LBC [11] 49.77 56.73 106.50

L-NTADE [12] 64.58 55.92 120.50

L-NTADE (SR, c = 4) 59.92 55.37 115.28

Table 18. L-NTADE (SR) vs. alternative approaches, U-scores. Larger ranks are better [39], CEC 2022.

Algorithm 10D 20D Total

APGSK-IMODE [36] 38,228 28,381.5 66,609.5

MLS-LSHADE [37] 52,255 62,548.5 114,803.5

MadDE [38] 35,727 30,402.5 66,129.5

EA4eigN100 [41] 50358 60,202 110,560

NL-SHADE-RSP-MID [42] 56,740.5 44,291.5 101,032

L-SHADE-RSP [9] 44,754.5 54,543.5 99,298

NL-SHADE-RSP [10] 35,363.5 32,772.5 68,136

NL-SHADE-LBC [11] 64,330 56,998.5 121,328.5

L-NTADE [12] 51,346 57,894 109,240

L-NTADE (SR, c = 4) 56,897.5 57,965.5 114,863

In order to compare the computational complexity of the proposed approach, the ex-
periment on the CEC 2022 benchmark was performed according to the rules of the CEC
2022 competition rules [14]. The T0, T1 and T2 values are the estimations of time required
for the processor to perform mathematical evaluations, target function evaluation time and
the algorithm runtime, respectively. Table 19 compares L-NTADE with the SHA and the SR
adaptation methods.

Mathematics 2024, 12, 516 19 of 22

Table 19. Computational complexity of L-NTADE with SHA and the SR adaptation methods.

L-NTADE

D T0 T1 T2 (T2 − T1)/T0

D = 10 2.5 × 10−2 2.1 × 10−2 1.358 × 10−1 4.592
D = 20 2.5 × 10−2 5.0 × 10−2 1.704 × 10−1 4.816

L-NTADE (SR, c = 4)

D T0 T1 T2 (T2 − T1)/T0

D = 10 2.5 × 10−2 2.1 × 10−2 1.192 × 10−1 3.928
D = 20 2.5 × 10−2 5.0 × 10−2 1.658 × 10−1 4.632

As can be seen from Table 19, applying SR reduces the amount of time, as the calcu-
lation of the weighted Lehmer mean for F in success history-based adaptation requires
significant computational effort.

5. Discussion

The main advantage of the proposed success rate-based adaptation of the scaling factor
is its simplicity. As simple as the original DE, it relies on a naturally present value in the
algorithm, namely the number of successful individuals, i.e., the number of solutions that
were improved according to the selection step. This number is, in fact, calculated by the
majority of existing DE algorithms. Success rate-based adaptation does not require complex
calculations of means, averaging over time and other techniques, and still performs very
well. Moreover, the experiments have shown that the sensitivity to the c parameter is
very low: the same value, c = 4, works on different benchmarks, different functions and
different computational resource. This property makes for a universal approach, which
seems to work well enough in most scenarios. Although there are cases when the success
history adaptation may deliver better performance, we believe that this can be mitigated
by further development of SR-based adaptation schemes.

As for the reasons for high performance, and why c = 4 is a good choice in many
cases, the following explanation seems reasonable. The SR in most tested algorithms
worked together with the current-to-pbest mutation strategy, which has a specific structure.
If F > 0.5, then the new solutions are attracted closer to some of the best ones, although this
also means that larger steps in other directions will be made. If F < 0.5, this means that the
attention towards better solutions is smaller, and the algorithm searches more around the
current positions of each individual. What the success rate adaptation does is it switches
between these two behaviors. If the search is going well, it makes DE generate solutions
closer to better ones, and the F values are relatively stable. However, if the algorithm is
stagnating, a wider search is beneficial. In this case, success rate adaptation makes MF
oscillate in the [0, 0.5] range, sampling smaller F values and trying to escape local optima.
In this manner, applying a simple curve like SR1/4 produces the desired behavior of DE
without complex adaptation mechanisms.

The experiments with other mutation strategies revealed that SR-based adaptation
works not only with the current-to-pbest strategy, but also with other ones, and in all cases
there was a setting of c which lead to improved performance. Moreover, in most cases, any
c value resulted in better performance than SHA. In the case of the rand/1 and rand/2
strategies, this improvement was very significant, and even allowed for current-to-pbest
to be outperformed in some cases. This might mean that the SR-based adaptation can be
used as a universal mechanism, independent of the mutation strategy, although the c value
should be set accordingly.

Replacing the original success history adaptation in other DE-based algorithms, such
as APGSK-IMODE, MLS-LSHADE, MadDE, jSO and LSHADE-SPACMA, did not always
improve performance; nevertheless, the results were mostly comparable. Some of the

Mathematics 2024, 12, 516 20 of 22

modified algorithms represented hybrids with other methods, such as local search or
covariance matrix adaptation, and probably better results could be achieved with a more
careful tuning of the hybridization.

Of course, the presented experiments cannot cover all the possibilities of success
rate-based adaptation. However, it is worth mentioning some of the possible directions of
further studies, which include:

1. Developing a crossover rate adaptation scheme based on the success rate,
2. Connecting the success rate to the pbest parameter,
3. Combining the advantages of the success history and success rate adaptation.

6. Conclusions

In this study, a new adaptation technique for the scaling factor parameter in differential
evolution was proposed. The new method relies on the success rate, and the performed
experimental analysis showed that the new method is insensitive to computational resource,
works with different mutation strategies, and can be included in various algorithms.

Author Contributions: Conceptualization, V.S. and E.S.; methodology, V.S. and E.S.; software, V.S.;
validation, V.S. and E.S.; formal analysis, E.S.; investigation, V.S.; resources, E.S. and V.S.; data curation,
E.S.; writing—original draft preparation, V.S.; writing—review and editing, V.S.; visualization, V.S.;
supervision, E.S.; project administration, E.S.; funding acquisition, V.S. and E.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation within limits of state contract No. FEFE-2023-0004.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GA Genetic Algorithms
GP Genetic Programming
EC Evolutionary Computation
DE Differential Evolution
CEC Congress on Evolutionary Computation
SHADE Success History Adaptive Differential Evolution
LPSR Linear Population Size Reduction
LBC Linear Bias Change
RSP Rank-based Selective Pressure
L-NTADE Linear population size reduction Newest and Top Adaptive Differential Evolution

References
1. Price, K.; Storn, R.; Lampinen, J. Differential Evolution: A Practical Approach to Global Optimization; Springer: Berlin/Heidelberg,

Germany, 2005.
2. Das, S.; Suganthan, P. Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [CrossRef]
3. Brest, J.; Greiner, S.; Boškovic, B.; Mernik, M.; Žumer, V. Self-adapting control parameters in differential evolution: a comparative

study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [CrossRef]
4. Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution With Optional External Archive. IEEE Trans. Evol. Comput.

2009, 13, 945–958. [CrossRef]
5. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the 2013 IEEE

Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 71–78. [CrossRef]
6. Piotrowski, A.P.; Napiorkowski, J.J. Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure? Swarm

Evol. Comput. 2018, 43, 88–108. [CrossRef]
7. Stanovov, V.; Akhmedova, S.; Semenkin, E. Biased Parameter Adaptation in Differential Evolution. Inf. Sci. 2021, 566, 215–238.

[CrossRef]

http://doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1109/TEVC.2006.872133
http://dx.doi.org/10.1109/TEVC.2009.2014613
http://dx.doi.org/10.1109/CEC.2013.6557555
http://dx.doi.org/10.1016/j.swevo.2018.03.007
http://dx.doi.org/10.1016/j.ins.2021.03.016

Mathematics 2024, 12, 516 21 of 22

8. Stanovov, V.; Akhmedova, S.; Semenkin, E. The automatic design of parameter adaptation techniques for differential evolution
with genetic programming. Knowl. Based Syst. 2022, 239, 108070. [CrossRef]

9. Stanovov, V.; Akhmedova, S.; Semenkin, E. LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC
2017 Benchmark Problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro,
Brazil, 8–13 July 2018; pp. 1–8.

10. Stanovov, V.; Akhmedova, S.; Semenkin, E. NL-SHADE-RSP Algorithm with Adaptive Archive and Selective Pressure for CEC
2021 Numerical Optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland,
28 June–1 July 2021; pp. 809–816. [CrossRef]

11. Stanovov, V.; Akhmedova, S.; Semenkin, E. NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC
2022 Numerical Optimization. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy,
18–23 July 2022.

12. Stanovov, V.; Akhmedova, S.; Semenkin, E. Dual-Population Adaptive Differential Evolution Algorithm L-NTADE. Mathematics
2022, 10, 4666. [CrossRef]

13. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 special Session and
Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological
University: Singapoure, 2016.

14. Kumar, A.; Price, K.; Mohamed, A.K.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2022 Special Session
and Competition on Single Objective Bound Constrained Numerical Optimization; Technical Report; Nanyang Technological University:
Singapoure, 2021.

15. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

16. Biedrzycki, R.; Arabas, J.; Jagodziński, D. Bound constraints handling in Differential Evolution: An experimental study. Swarm
Evol. Comput. 2019, 50, 100453. [CrossRef]

17. Kumar, A.; Biswas, P.P.; Suganthan, P.N. Differential evolution with orthogonal array-based initialization and a novel selection
strategy. Swarm Evol. Comput. 2022, 68, 101010. [CrossRef]

18. Das, S.; Mullick, S.; Suganthan, P. Recent advances in differential evolution—An updated survey. Swarm Evol. Comput. 2016,
27, 1–30. [CrossRef]

19. Al-Dabbagh, R.D.; Neri, F.; Idris, N.; Baba, M.S.B. Algorithmic design issues in adaptive differential evolution schemes: Review
and taxonomy. Swarm Evol. Comput. 2018, 43, 284–311. [CrossRef]

20. Brest, J.; Maucec, M.; Bovsković, B. The 100-Digit Challenge: Algorithm jDE100. In Proceedings of the 2019 IEEE Congress on
Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 19–26.

21. Brest, J.; Maucec, M.; Bosković, B. Differential Evolution Algorithm for Single Objective Bound-Constrained Optimization:
Algorithm j2020. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020;
pp. 1–8.

22. Qin, A.K.; Suganthan, P.N. Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of the 2005
IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; Volume 2; pp. 1785–1791 .

23. Bullen, P. Handbook of Means and Their Inequalities; Springer: Amsterdam, The Netherlands, 2003. [CrossRef]
24. Tanabe, R.; Fukunaga, A. Improving the search performance of SHADE using linear population size reduction. In Proceedings of

the IEEE Congress on Evolutionary Computation, CEC, Beijing, China, 6–11 July 2014; pp. 1658–1665. [CrossRef]
25. Brest, J.; Maučec, M.; Boškovic, B. Single objective real-parameter optimization algorithm jSO. In Proceedings of the IEEE

Congress on Evolutionary Computation, Donostia, Spain, 5–8 June 2017; pp. 1311–1318. [CrossRef]
26. Gong, W.; Cai, Z. Differential Evolution With Ranking-Based Mutation Operators. IEEE Trans. Cybern. 2013, 43, 2066–2081.

[CrossRef] [PubMed]
27. Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T.; Zamuda, A. Distance based parameter adaptation for Success-History based

Differential Evolution. Swarm Evol. Comput. 2019, 50, 100462. [CrossRef]
28. Bujok, P.; Kolenovsky, P. Differential Evolution with Distance-based Mutation-selection Applied to CEC 2021 Single Objective

Numerical Optimisation. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28
June–1 July 2021; pp. 849–856.

29. Yang, M.; Cai, Z.; Li, C.; Guan, J. An improved adaptive differential evolution algorithm with population adaptation. In
Proceedings of the Annual Conference on Genetic and Evolutionary Computation, Amsterdam, The Netherlands, 6–10 July 2013.

30. Santucci, V.; Baioletti, M.; Bari, G.D. An improved memetic algebraic differential evolution for solving the multidimensional
two-way number partitioning problem. Expert Syst. Appl. 2021, 178, 114938. [CrossRef]

31. Chen, X.; Shen, A. Self-adaptive differential evolution with Gaussian–Cauchy mutation for large-scale CHP economic dispatch
problem. Neural Comput. Appl. 2022, 34, 11769–11787. [CrossRef]

32. Yi, W.; Chen, Y.; Pei, Z.; Lu, J. Adaptive differential evolution with ensembling operators for continuous optimization problems.
Swarm Evol. Comput. 2021, 69, 100994. [CrossRef]

33. Yang, Q.; Qiao, Z.Y.; Xu, P.; Lin, X.; Gao, X.D.; Wang, Z.J.; Lu, Z.Y.; Jeon, S.W.; Zhang, J. Triple competitive differential evolution
for global numerical optimization. Swarm Evol. Comput. 2024, 84, 101450. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2021.108070
http://dx.doi.org/10.1109/CEC45853.2021.9504959
http://dx.doi.org/10.3390/math10244666
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.swevo.2018.10.004
http://dx.doi.org/10.1016/j.swevo.2021.101010
http://dx.doi.org/10.1016/j.swevo.2016.01.004
http://dx.doi.org/10.1016/j.swevo.2018.03.008
http://dx.doi.org/10.1007/978-94-017-0399-4
http://dx.doi.org/10.1109/CEC.2014.6900380
http://dx.doi.org/10.1109/CEC.2017.7969456
http://dx.doi.org/10.1109/TCYB.2013.2239988
http://www.ncbi.nlm.nih.gov/pubmed/23757516
http://dx.doi.org/10.1016/j.swevo.2018.10.013
http://dx.doi.org/10.1016/j.eswa.2021.114938
http://dx.doi.org/10.1007/s00521-022-07068-w
http://dx.doi.org/10.1016/j.swevo.2021.100994
http://dx.doi.org/10.1016/j.swevo.2023.101450

Mathematics 2024, 12, 516 22 of 22

34. Kitamura, T.; Fukunaga, A. Differential Evolution with an Unbounded Population. In Proceedings of the 2022 IEEE Congress on
Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022.

35. Mohamed, A.; Hadi, A.A.; Fattouh, A.; Jambi, K. LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving
CEC 2017 benchmark problems. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain,
5–8 June 2017; pp. 145–152.

36. Mohamed, A.W.; Hadi, A.A.; Agrawal, P.; Sallam, K.M.; Mohamed, A.K. Gaining-Sharing Knowledge Based Algorithm with
Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems. In Proceedings of the 2021
IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021; pp. 841–848.

37. Cuong, L.V.; Bao, N.N.; Binh, H.T.T. Technical Report: A Multi-Start Local Search Algorithm with L-SHADE for Single Objective Bound
Constrained Optimization; Technical Report; SoICT, Hanoi University of Science and Technology: Hanoi, Vietnam, 2021.

38. Biswas, S.; Saha, D.; De, S.; Cobb, A.D.; Das, S.; Jalaian, B. Improving Differential Evolution through Bayesian Hyperparameter
Optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July
2021; pp. 832–840.

39. Price, K.V.; Kumar, A.; Suganthan, P. Trial-based dominance for comparing both the speed and accuracy of stochastic optimizers
with standard non-parametric tests. Swarm Evol. Comput. 2023, 78, 101287. [CrossRef]

40. Kumar, A.; Misra, R.K.; Singh, D. Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix
Adapted Retreat Phase. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8
June 2017; pp. 1835–1842.

41. Bujok, P.; Kolenovsky, P. Eigen Crossover in Cooperative Model of Evolutionary Algorithms Applied to CEC 2022 Single Objective
Numerical Optimisation. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23
July 2022.

42. Biedrzycki, R.; Arabas, J.; Warchulski, E. A Version of NL-SHADE-RSP Algorithm with Midpoint for CEC 2022 Single Objective
Bound Constrained Problems. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy,
18–23 July 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.swevo.2023.101287

	Introduction
	Related Work
	Differential Evolution
	Parameter Adaptation in Differential Evolution

	Proposed Approach
	Experimental Setup and Results
	Benchmark Functions and Parameters
	Numerical Results
	Modification of Existing Algorithms
	Effect of the Available Computational Resource
	Visualization of Parameter Adaptation Process
	Success Rate-Based Adaptation With Different Mutation Strategies
	Comparison With Alternative Approaches

	Discussion
	Conclusions
	References

