
Citation: Georgiou, A.C.; Kaparis, K.;

Vretta, E.-M.; Bitsis, K.; Paltayian, G. A

Bilevel DEA Model for Efficiency

Evaluation and Target Setting with

Stochastic Conditions. Mathematics

2024, 12, 529. https://doi.org/

10.3390/math12040529

Academic Editor: Maria C. Mariani

Received: 1 January 2024

Revised: 31 January 2024

Accepted: 3 February 2024

Published: 8 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Bilevel DEA Model for Efficiency Evaluation and Target
Setting with Stochastic Conditions
Andreas C. Georgiou * , Konstantinos Kaparis, Eleni-Maria Vretta, Kyriakos Bitsis and George Paltayian

Quantitative Methods and Decision Analysis Lab, Department of Business Administration,
University of Macedonia, GR-54636 Thessaloniki, Greece; k.kaparis@uom.edu.gr (K.K.);
emvretta@uom.edu.gr (E.-M.V.); kmpitsis@uom.edu.gr (K.B.); gpaltag@uom.edu.gr (G.P.)
* Correspondence: acg@uom.edu.gr

Abstract: The effective allocation of limited resources and the establishment of targeted goals play
a pivotal role in enhancing the overall efficiency of large enterprises and organizations. To achieve
optimal organizational efficiency, managers seek dynamic strategies that adapt to the constraints of
limited and uncertain historical data. This paper introduces an evaluation of organizational efficiency
through a stochastic framework, employing a bilevel data envelopment analysis (DEA) approach. This
decision-making process is centralized within a decision-making unit (DMU) overseeing subordinate
decision-making units (subDMUs). Discrete scenarios, each associated with a realization probability,
define the uncertain parameters in the bilevel DEA-based model. This stochastic approach allows for
recourse actions upon scenario realization leading to an enhanced overall organizational strategy.
Decision-makers acting within uncertain and dynamic environments can benefit from this research
since it allows the investigation of efficiency assessment under alternative scenarios in the presence
of volatility and risk. The potential impact of applying this methodology varies depending on the
specific domain. Although, the context of this paper focuses on banking, in general, enhancing
resource allocation and target setting under stochasticity, contributes to advancing sustainability
across all its three dimensions (economic, environmental, social). As mentioned earlier, the practical
application of our approach is demonstrated via a case study in the banking sector.

Keywords: DEA; bilevel optimization; stochastic conditions; resource allocation

MSC: 90-10

1. Introduction

Large enterprises and organizations are the backbone of local and national economies;
they generate substantial profits, contribute to economic development, and foster inno-
vation. Their investments in human capital, productivity, and facilities contribute to
technological advancements. Additionally, these entities actively promote green growth
and a circular economy, aligning with sustainable development goals and the protection
of natural assets. Beyond economic contributions, their impact on societal welfare is
significant, providing job opportunities, healthcare coverage, and social insurance that
underpin overall well-being. The ongoing changes in economic policies, prices, and market
fluctuations necessitate these entities to optimally allocate resources and set targets. Such
strategic decisions are paramount, influencing productivity, efficiency, future planning, and
profitability. The perpetual limitation of resources underscores the critical importance of
optimal resource allocation for large enterprises and organizations, facilitating their ability
to achieve objectives and remain competitive in a dynamic market.

Major organizations usually comprise a central decision-making unit (DMU) and
several subordinate decision-making units (subDMUs). The primary DMU, which is
responsible for overseeing and managing the subDMUs, plays a pivotal role in allocating
finite resources and defining appropriate output targets. Concurrently, it may also set
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minimum thresholds for the efficiency of each subDMU. The latter term (i.e., efficiency)
is quantified as the weighted ratio of the outputs generated to inputs utilized by the
DMU. On the other hand, effectiveness in the context of a DMU is articulated in terms of
profitability however in a broader spectrum, effectiveness encapsulates the extent to which
an organization achieves its objectives.

The problem of resource allocation and target setting, calls for redesigning policies of
organizations with multi-stage or multi-level structures, in a way that optimizes organiza-
tional efficiency and effectiveness.

Data envelopment analysis (DEA) introduced by Charnes, Cooper, and Rhodes [1] is a
widely used non-parametric method for assessing the efficiency of homogeneous DMUs
with multiple inputs and outputs. Traditional DEA models, treat DMUs as black boxes,
disregarding internal structures, interconnections, and interactions among operational
and organizational stages. On the other hand, in a Network DEA (NDEA) environment,
each DMU comprises various stages or levels, so optimizing the performance of a DMU
could theoretically result from evaluating the performance of each individual stage or level
(sub-DMUs). In an NDEA scheme, intermediate outputs play a vital role in the DMU
evaluation as they are generated from a sub-DMU, and act as inputs to another sub-DMU
of the system, as defined by Färe and Grosskopf [2]. Kao and Hwang in [3] showed that
ignoring the sub-processes of a DMU may lead to an overall efficient system, even though
a DMU might be inefficient in an individual stage. Kao and Hwang in [4] showed that
it is important to consider the internal structure of a DMU to identify any inefficiencies,
since a DMU may have better overall efficiency compared to another DMU, although
the sub-processes of the first DMU may have worse individual efficiencies. The internal
structure of a DMU can be decomposed into two stages in a simple case, while in a more
complex case, it may consist of multiple stages. Halkos et al. [5] provide a comprehensive
classification of two-stage DEA models.

Despotis et al. [6] presented a novel definition for overall system efficiency in net-
work DEA literature, inspired by the concept of the “weak link” in supply chains and the
maximum-flow/minimum-cut problem in networks. Employing a two-phase max-min
optimization technique within a multi-objective programming framework, they estimate
individual stage efficiencies and overall system efficiency in two-stage processes of varying
complexity. Additional research on composition and decomposition techniques in both
two-stage and multi-stage environments can be found in [7–9]. In the context of assessing a
parallel network structure integrated with a hierarchical one, Kremantzis et al. [10] propose
a linear additive decomposition DEA model as well as a non-linear multiplicative aggrega-
tion DEA model. Both constitute alternative approaches to evaluating the performance in
parallel network DEA problems.

Fukuyama and Matousek [11] studied the strengths between network and traditional
DEA. Based on their research, the precision and accuracy of DEA results are better when
network models are used compared to traditional DEA models. In the same manner,
Kao [12] showed that it is possible for a DMU to be considered as efficient using traditional
DEA and not efficient using the network DEA approach. Hence, the efficiency can be
overestimated by the classical models, and this problem is perpetuated as the stages
increase. More comprehensive research about NDEA models can be found in [13–18].
Typically, each DMU independently optimizes its input and output levels to maximize its
efficiency. However, our study concerns the cases of major enterprises, where a central
DMU governs a group of subDMUs to maximize overall organizational efficiency and
profitability. DEA serves as a mathematical programming technique extensively applied
to address centralized resource allocation and target-setting challenges. In most resource
allocation DEA models, precise input and output data are assumed, whereas real-world
data are often unavailable or inaccurate. Relying on calculated optimal solutions based
on such data may lead to profit loss, planning inconsistencies, and reduced production.
Therefore, acknowledging the uncertainty in achieving output targets becomes imperative.
Large organizations must be capable of redesigning consumption and production processes,
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and taking remedial actions to maximize overall efficiency. Uncertainty is a fundamental
factor in addressing challenges related to resource allocation, production design, and
output targeting. One of the most challenging issues faced by traditional optimization
problems is the tendency of optimal solutions to perturbations in the values of the problem’s
parameters, often exhibiting a high degree of sensitivity. This characteristic underscores
the crucial importance of identifying “robust solutions” in the realm of optimization theory.
To mitigate such uncertainties, the optimization community employs various mathematical
frameworks, including stochastic programming, chance-constrained programming, and
robust optimization. Stochastic programming optimizes the expected outcome of an
objective function. On the other hand, chance constraint programming ensures that the
derived solution satisfies certain constraints within a given probability level. Finally, robust
optimization is a risk-averse strategy, focusing on optimizing the “worst- case” scenario
within a predefined uncertainty set. In the stochastic programming approach, the uncertain
parameter vector is modeled using discrete probabilistic scenarios, while in the robust
optimization approach, its values are defined by a continuous set [19].

The latest approaches tackle data uncertainty by incorporating methods that account
for and mitigate the impact of fluctuations, or imprecisions in the input data. This is
achieved by considering a range or set of possible values for the input parameters rather
than relying on precise, fixed values. The robust DEA approach aims to provide reliable
and stable efficiency assessments even when faced with uncertainties in the data, thus
enhancing the model’s resilience to variations that consider the dynamic and uncertain
nature of the banking environment. Therefore, a robust solution remains optimal regardless
of the stochasticity governing the problem’s parameters, although this optimal performance
is restricted to a specific parameter range. The latter represents a significant advantage over
traditional DEA methods that do not handle data uncertainty.

In their recent work, Zhang et al. [20] addressed the challenge of allocating limited
medical reserves in the context of a public health emergency. It takes into account uncer-
tainties in both demand and donated supplies, as well as the priorities of healthcare centers.
The formulation of the problem involves a two-stage stochastic program, treating donated
supplies as an effective recourse action with the ultimate goal of minimizing overall losses.
According to Shakouri et al. [21], in situations where uncertainties exist in the data of
a problem, traditional DEA models may yield inaccurate results. For this reason, they
proposed two stochastic p-robust two-stage network DEA (NDEA) models to estimate the
efficiency of DMU in an uncertain environment. These models are developed within the
context of a bilevel framework. Their approach facilitates more effective mitigation of the
adverse impact on the objective function, addressing uncertainties often neglected in tradi-
tional NDEA models. The practical application of these models is demonstrated through an
analysis of the performance of bank branches. Finally, robust and stochastic optimization
techniques have been successfully applied in various DEA models, such as [22–25].

This paper introduces a stochastic bilevel DEA model aimed at optimizing overall
organizational efficiency. The efficiency metric, defined as profitability (total revenues
minus total input costs), is evaluated within a stochastic framework in a bilevel structure
(DMU and sub DMUs and under uncertainty). Building upon Hakim et al.’s deterministic
model [26], the proposed DEA model accommodates stochastic conditions for uncertain
parameters by incorporating alternative scenarios with associated occurrence probabilities.
Specifically, the model assumes imprecise and unknown data for output targets, requiring
the decision-maker of the central unit to formulate a strategy without perfect information.
The motivation is an application in the banking sector where DEA methods have been
extensively applied ([11,27–33]).

Our research is driven by the recent performance evaluations conducted by Greek
banking institutions, which are a response to the ongoing transformative phase within
the Greek banking system. This restructuring is mandated by regulatory directives issued
by European supervisory authorities and is deemed crucial due to the economic crisis of
the past fifteen years and the prolonged debt crisis. At its essence, this restructuring is
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guided by two principles: the reduction of operational costs and the strategic deployment
of technology. Consequently, Greek banks have embarked on a new era characterized by a
comprehensive overhaul of their network infrastructure. The primary aim is to enhance
organizational effectiveness and branch efficiency, thereby boosting revenue generation
from retail banking products while optimizing resource utilization. Additionally, in ac-
cordance with European guiding principles, banks are revamping their branch networks
by introducing innovative outlets that seamlessly integrate state-of-the-art technologies
to serve customers, along with augmenting their specialized staff. This transformative
process is geared toward achieving key objectives, including heightened net profitability
and the equitable distribution of dividends to shareholders.

The rest of the paper is organized as follows: Section 2 discusses pertinent DEA-based
models, exploring various approaches to resource allocation, targeting, and uncertainty
capture. We review fundamental concepts and mathematical formulations of bilevel pro-
gramming and optimization under uncertainty. Section 3 provides the problem description
and notation. Section 4 details the bilevel DEA-based model with stochastic conditions
and outlines the proposed solution methodology. Our computational study and results
are presented in Section 5, while Section 6 encapsulates concluding remarks based on the
paper’s findings and contributions.

2. Literature
2.1. Resource Allocation

Numerous approaches have been proposed to tackle resource allocation and target-
setting challenges. Golany et al. [34] introduced a DEA-based model optimizing overall or-
ganizational profitability and technical efficiency. Athanassopoulos [35] integrated goal pro-
gramming and DEA for multi-level resource allocation, applied to central fund allocation in
Greek local authorities. Yu et al. [36] employed a centralized DEA model with a Russell mea-
sure for human resource reallocation in Taiwanese airports. Amirteimoori and Tabar [37] ad-
dressed fixed resource allocation in organizations with multiple DMUs, while Beasley [38]
maximized average efficiency for DEA-based models, incorporating fixed-cost resources
and output targets in centralized decision-making. Lozano and Villa [39] presented DEA
models for centralized resource allocation, aiming to minimize input consumption, max-
imize output production, and enhance individual DMU efficiency. Varmaz et al. [40] in-
centivized subDMUs in large organizations, adapting Lozano and Villa’s model [39] to
compute super-efficiency. Afsharian et al. [41] proposed a DEA-based model for incen-
tivizing DMUs under central management, addressing shortcomings in Varmaz et al. [40].
Similarly, Afsharian et al. [42] extended this approach to hierarchically structured organi-
zations, illustrating it with data from a German retail bank. Asmild et al. [43] expanded
Lozano and Villa’s [39] models, suggesting modifications for inefficient DMUs and pro-
viding a procedure for alternative optimal solutions in an input-oriented BCC framework.
Wu et al. [44] incorporated economic and environmental factors in DEA models for re-
source allocation, considering three scenarios for resource availability. Fang [45] proposed
a generalized centralized resource allocation model, decomposing technical efficiency into
components and illustrating the approach with a supermarket example.

Two-stage network DEA approaches addressing the resource allocation problem have
been introduced by various researchers. Chen et al. [46] proposed a DEA model evaluating
the efficiency of two-stage network processes with shared inputs across both stages, en-
compassing inputs utilized collectively and those specific to each stage. Zha and Liang [47]
outlined a cooperative model allocating freely shared inputs in a series production process.
This product-form model calculates the overall efficiency for the assessed DMU, illustrating
collaboration between the two stages.

Wu et al. [48] presented an approach to managing undesirable intermediate outputs
in a two-stage production process with shared resources. They employed additive and
non-cooperative models to gauge the efficiency of each DMU and subDMU, applying
these models to industrial production in thirty provincial regions in China. Yu et al. [49]
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addressed the allocation of fixed costs among subDMUs, considering efficiency. They
introduced a two-stage network DEA model grounded in cross-efficiency concepts.

Recent studies, particularly [50,51], have introduced notable advancements in tackling
the issue of resource allocation prompted by the Internet of Things.

2.2. Bilevel Network DEA

In his seminal work, Dempe [52] describes a bilevel programming problem (BLP) as a
setting where an optimization problem includes within its constraint set a second, partial
optimization problem. The outer optimization task is commonly denoted as the upper
level, while the inner optimization task is referred to as the lower level. The idea can be
traced back to the early work of Freiherr von Stackelberg [53] in economic game theory.
According to Stackelberg’s conceptualization, the hierarchical structure encompasses two
distinct decision-makers: the leader and the follower, corresponding to the upper and
lower-level problems, respectively. The standard mathematical formulation of a bilevel
problem is as follows:

min
x,y

F(x, y) (1)

s.t. G(x, y) ≤ 0 (2)

H(x, y) = 0 (3)

min
y

f (x, y) (4)

s.t. g(x, y) ≤ 0 (5)

h(x, y) = 0 (6)

where x ∈ Rn and y ∈ Rm are the set of upper- and lower-level variables, respectively.
Moreover, the upper-level problem (leader’s problem) is specified via (1)–(3) and its do-
main is partially specified by the optimal solutions of the lower-level problem (follower’s
problem) outlined by (4)–(6).

The motivation behind the employment of this optimization schema is its ability to
capture the hierarchical relations between the centralized decision-maker and the multiple
sub-DMUs with great accuracy.

Shafiee et al. [54] introduced a bilevel DEA model for evaluating bank branch perfor-
mance, employing a mixed-integer linear programming (MILP) approach for its solution.
The study incorporates internal structures and Stackelberg relationships, providing insight-
ful information about each component of the banking chain. Zhou et al. [55] devised a
bilevel DEA model tailored for systems with bilevel structures, exemplified by manufac-
turing supply chains with multiple distribution centers. Their approach, rooted in the
Stackelberg competition game theory, features multiple followers. The case study involves
a supply chain with a plant and two distribution centers. Sinha et al. [56] developed an
oligopolistic market model with multiple leaders and followers over multiple time periods
under Stackelberg relations. Their model, applicable to industries like aircraft manufactur-
ing, accounts for leaders acting in a Stackelberg manner toward followers while engaging
in the Cournot competition among themselves. Experimental results illustrate the impact
of player entrance or exit on profits and costs, with nonlinear handling of demand and cost
functions for accurate problem simulation. Hajiagha et al. [57] proposed an efficiency-based
planning method, considering current DMU performance and projecting future efficiency
while also considering profit performance. This bilevel approach maximizes efficiency at the
upper level and optimizes inputs and outputs based on costs and profits at the lower level.
Addressing the limitations of classic DEA models, the authors emphasize the simultaneous
consideration of profit and technical efficiency. In recent developments, bilevel DEA-based
models for resource allocation and target setting have emerged. Hakim et al. [26] proposed
a deterministic bilevel DEA model for centralized resource allocation and target setting,
optimizing organizational effectiveness by maximizing total profit while ensuring each
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DMU operates efficiently within predefined bounds. Ang et al. [58] extended this work for
organizational systems with higher-level entities and subordinate two-stage DMUs. Their
bilevel model aims to maximize both organizational and two-stage DMU efficiency.

2.3. Stochastic Optimization for DEA

According to Olesen and Petersen [59], stochastic DEA extends the original idea in
three different directions. First, is the deviations from the production frontier, while in the
second case, DEA can handle random noise coming from measurement or specification
errors. In the latter case, the production possibility set (PPS) is adjusted according to the
random data.

Chance constraints were introduced by Charnes and Cooper [60] and are routinely
used ever since in the context of stochastic DEA. By using this method, we can formulate
a problem with stochastic constraints assuming that we may have constraints’ violation
within a certain probability level. Beraldi and Bruni [61] proposed a stochastic DEA method
using chance constraints formulation that transformed into a deterministic equivalent
under the discrete distribution assumption.

Zhou et al. [62] suggest a stochastic network DEA model to facilitate a two-stage
system under data uncertainty. The model is based on a centralized control mechanism
and a transformation to a deterministic equivalent linear programming model. The trans-
formation relies on the assumption that some problem parameters, e.g., inputs/outputs are
related to stochastic factors.

The conventional DEA formulations exhibit determinism and static characteristics,
rendering them highly sensitive to minor parameter fluctuations. Acknowledging this
susceptibility to small changes, the incorporation of robustness in DEA models becomes
imperative. The objective is to maintain solution stability in the face of uncertain conditions.
Marbini et al. [63] pioneered the development of novel robust non-radial DEA models,
specifically designed to gauge the performance of decision-making units under conditions
of data uncertainty. Their approach involves the utilization of Interval DEA, enabling the
assessment of interval efficiencies based on both optimistic and pessimistic viewpoints. Ul-
timately, the authors introduce the concept of the “price of robustness” to comprehensively
evaluate the effectiveness and robustness of the proposed models.

In their study, Tseng et al. [64] investigated the dynamics of economic efficiency and
revenue sharing in the electricity market, employing a sophisticated bilevel scheme. Their
primary objective was to pinpoint the Nash equilibrium while contending with capacity
constraints estimated through DEA. To tackle the challenges arising from price uncertain-
ties, the researchers introduced a cutting-edge approach by developing stochastic mixed
complementarity models. These models seamlessly integrate stochastic programming and
robust optimization techniques, offering a robust solution to address the intricate issue of
price uncertainty in the electricity market.

As highlighted by Omrani et al. [65], the sole computation of a single efficiency
metric proves insufficient in certain contexts for assessing the overall efficiency of decision-
making units (DMUs). Consequently, a multi-objective DEA model has been devised to
concurrently evaluate profit, operational, and transactional efficiencies within the realm of
bank branches, particularly under conditions of data uncertainty. To address the challenges
posed by data uncertainty, a robust approach has been employed in the formulation of the
model, enhancing its capacity to provide a more comprehensive and nuanced assessment
of efficiency in banking operations.

2.4. The Proposed Stochastic Framework

In traditional DEA models, such as [1], each DMU decides on its own input and out-
put levels to maximize its own efficiency. In single-stage resource allocation DEA models,
DMUs are considered as black boxes, namely the internal structures, and the interconnec-
tions and interactions among the stages of the operational and organizational structures
are ignored [34–45]. However, in large enterprises and organizations, a group of subDMUs
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is under the control of a central DMU, aiming to maximize overall organizational efficiency
and profitability. Nonetheless, in the two-stage DEA models [46,47] where interactions
and interconnections are incorporated, hierarchical relations among the departments or
the organizational levels are not considered. In the majority of resource allocation DEA
models, the input and output data are known and precise, while in real-world problems,
these data are often unavailable or erroneous. The stochastic DEA models on resource
allocation [59–65] deal with uncertainty, however, to the best of our knowledge, the DMUs
under examination have no bilevel structure.

Within our proposed stochastic framework, we incorporate a bilevel approach to
DEA methodology alongside stochastic conditions, aimed at capturing the uncertainty
surrounding the achievement of output targets and thereby optimizing organizational
efficiency. The uncertainty within our framework is delineated by discrete realizations of
uncertain parameters across various scenarios. Each uncertain parameter within the model
is assigned a value corresponding to a scenario, with each scenario linked to a realization
probability reflecting managerial estimations. Furthermore, the decision-maker retains the
ability to select a strategy either prior to or independently of knowing the exact values
assumed by uncertain parameters when a scenario materializes.

3. Problem Description

Within this section, we offer a comprehensive description of the problem at hand.
Firstly, in Section 3.1, we provide a detailed description of our case, pointing out all the
major elements. We explain how an input, which is associated with a cost, is converted into
a valuable output. Moreover, in Section 3.2, we present the notation and model assumptions
to establish a clear understanding of the problem.

3.1. An Application in Banking

In general, the banking sector plays a pivotal role in conducting diverse financial
transactions, aggregating funds, and financing both short- and long-term public and
private investments. In particular, the Greek banking sector is further characterized by
fierce competition, driven by the pursuit of increased profitability for stakeholders. In
recent years, this competition has intensified as management endeavors to optimize returns.
Given the paramount significance of this sector, the proposed stochastic bilevel DEA model
is motivated by an application specific to banking.

In the application scenario, the central administration aims to maximize overall effi-
ciency by optimizing profit. This necessitates strategic resource allocation among subDMUs
(which actually are specific branches) and the establishment of output targets aligned with
their capabilities. Concretely, the bank management defines future performance targets
for each individual DMU, considering the resources available to them. The institution
selected for the implementation of the proposed model is among the Greek systemic banks.
It maintains an active network of more than 250 branches and significant metrics in terms
of human capital, deposits, and loans, capturing an estimated 25% of the total market share.
For the specific case under consideration, the implementation focuses on a network situated
in one of the largest urban centers in Greece. The planning process includes ten branches
(DMUs) of diverse sizes, (b)ig, (m)edium, or (s)mall, determined by factors, such as staffing
levels, customer base, and the volume of deposits and loans across various categories
(including mortgage loans, consumer loans, and small business loans). Additionally, the
branches are geographically classified as eastern, central, or western, reflecting their spe-
cific locations in the region. The spatial planning of these branches was designed to allow
coverage of geographical districts within the urban landscape under study. The data mirror
typical real-world scenarios; however, they have been simulated for disclosure purposes.

In our model (Figure 1), we established five key inputs that induce expenses under
typical operation circumstances for each bank branch (DMU):

X1: Specialized personnel (relationship managers);
X2: Supporting personnel (base officers);



Mathematics 2024, 12, 529 8 of 21

X3: ATMs;
X4: Administrative costs (thousands of euros);
X5: Interests for deposits (millions of euros).

In a similar manner, six outputs were selected and are outlined as follows:

Y1: Mortgage loans (ML);
Y2: Small business loans (SB);
Y3: Consumer loans (CL);
Y4: Mutual funds (MF);
Y5: Net fee income (NFI);
Y6: Surplus deposits (SD).

Figure 1. Input and output structures.

During the conversion of inputs into expenses, we adhered to industry-standard
practices prevalent in the banking sector. For the two staff categories, namely relationship
managers and base officers, we considered the average yearly salary expenses. Regarding
ATMs and administrative expenses, we factored in the costs associated with installation,
operation, and distribution per staff member. Regarding deposits, we accounted for the
average weighted interest rate of bank deposits, set at 0.35%. All expenses are presented on
an annual basis.

The bank manager’s objective encompasses two primary goals: to enhance both
efficiency and profitability, thus safeguarding sustainability and ensuring resilience in the
face of dynamic economic and political conditions. To aid the decision-maker, we propose
an optimal resource allocation strategy and establish output targets. It is important to note
that the pursuit of profit maximization is tempered by an additional constraint, mandating
the fulfillment of a minimum efficiency rate for each DMU. In the process, each DMU
utilizes inputs X1 to X5 (see Table 1). Table 1 includes typical values for the above inputs
for 10 DMUs.
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Table 1. Input data for each DMU.

Label DMU X1 X2 X3 X4 X5

East B1 1 4 12 3 16 0.788
East B2 2 3 10 2 15.6 0.525
East M 3 2 8 1 8 0.420
East S 4 1 5 1 2.4 0.280

Central B 5 4 10 4 21 0.875
Central M 6 5 13 4 36 1.225
Central S 7 1 4 2 1.4 0.350

West B 8 3 9 2 12 0.455
West M 9 2 7 1 7.2 0.385
West S 10 0 6 2 7.2 0.420
Total 10 25 84 22 126.8 5.723

One could argue that outputs ML, SB, and CL, correspond to revenues coming from
loans while MF and NFI refer to commissions from banking transactions and mutual funds
management. Finally, SD pertains to the revenue that stems from the surplus of deposits
that a branch holds and are placed as deposits in the European Central Bank, through the
Bank of Greece.

Table 2 contains the balances for each loan type (in millions of euros), the balances of
mutual funds under management (in millions of euros), the surplus of deposits (in millions
of euros), and the net commissions from banking activities (in thousands of euros).

Table 2. Output balances.

DMU ML SB CL MF NFI SD

1 30 19 9.8 40 9.1 67.5
2 40 15 4.5 35 7.56 45
3 18 6 2.3 20 4.54 36
4 10 3 1.5 8 2.25 24
5 30 12 11 50 8.81 50
6 24 10 9 35 7.58 35
7 12 8 5 15 1.85 15
8 50 10 12 20 5.4 20
9 34 5.8 8 9 4.5 9

10 15 3 5 5 1.3 5
Total 263 91.8 68.1 237 52.889 302.45

The income of each DMU is calculated as a percentage of the output balances. More-
over, these percentages are summarized in Table 3.

Table 3. Net margin rate profit for each output.

Output Income Percentage

Mortgages income 2.00%
SB Loans income 4.00%

Consumer income 7.00%
Mutual income 0.50%
Deposit income 3.75%

Additionally, we added the net fee income for each DMU to the above balances in
order to calculate the total income. Using the output balances and income rates, we can
deduce the final output data recorded in Table 4.



Mathematics 2024, 12, 529 10 of 21

Table 4. Output data for each DMU.

DMU

Scenario Output 1 2 3 4 5 6 7 8 9 10

1

Y1 0.42 0.56 0.25 0.14 0.42 0.34 0.17 0.70 0.48 0.21
Y2 0.53 0.42 0.17 0.08 0.34 0.28 0.22 0.28 0.16 0.08
Y3 0.48 0.22 0.11 0.07 0.54 0.44 0.25 0.59 0.39 0.25
Y4 0.14 0.12 0.07 0.03 0.18 0.12 0.05 0.07 0.03 0.02
Y5 6.37 5.29 3.18 1.58 6.17 5.31 1.3 3.78 3.15 0.91
Y6 1.77 1.18 0.95 0.63 1.97 2.76 0.79 1.02 0.87 0.95

2

Y1 0.6 0.8 0.36 0.2 0.6 0.48 0.24 1 0.68 0.3
Y2 0.76 0.6 0.24 0.12 0.48 0.4 0.32 0.4 0.23 0.12
Y3 0.69 0.32 0.16 0.11 0.77 0.63 0.35 0.84 0.56 0.35
Y4 0.2 0.18 0.10 0.04 0.25 0.18 0.08 0.1 0.05 0.03
Y5 9.1 7.56 4.54 2.25 8.81 7.58 1.85 5.4 4.5 1.3
Y6 2.53 1.69 1.35 0.9 2.81 3.94 1.13 1.46 1.24 1.35

3

Y1 0.69 0.92 0.41 0.23 0.69 0.55 0.28 1.15 0.78 0.35
Y2 0.87 0.69 0.28 0.14 0.55 0.46 0.37 0.46 0.27 0.14
Y3 0.79 0.36 0.19 0.12 0.89 0.72 0.4 0.97 0.64 0.4
Y4 0.23 0.2 0.12 0.05 0.29 0.2 0.09 0.12 0.05 0.03
Y5 10.47 8.69 5.22 2.59 10.13 8.72 2.13 6.21 5.18 1.5
Y6 2.91 1.94 1.55 1.04 3.23 4.53 1.29 1.68 1.42 1.55

3.2. Notations and Assumptions

Table 5 presents a comprehensive compilation of the notation, accompanied by
brief descriptions.

Table 5. Notation summary.

Notation Description

Indices
n number of DMUs
m number of input resources
s number of output targets
ω scenario index
Sets
J set of DMUs
I set of inputs
O set of outputs
Ω set of scenarios
Parameters
pr unit price for output r
ci unit cost for input i
Xik observed input i for DMU k
Yω

rk observed output r for DMU k of scenario ω
Lek lower bound for efficiency of DMU k
Lxik lower bound for input resource i of DMU k
Uxik upper bound for input resource i of DMU k
Lyrk lower bound for output target r of DMU k
Uyrk upper bound for output target r of DMU k
bi availability for input resource i
ϵ infinitesimal number
qω realization probability of scenario ω
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Table 5. Cont.

Notation Description

Variables
xik input resource i for DMU k
yω

rk output target r for DMU k of scenario ω
vik weight attached to input resource i for DMU k
uω

rk weight attached to output target r for DMU k of scenario ω
lt
k unrestricted variable

λω
jk

is used for defining the possibility set of input resources or output targets of DMU k
of scenario ω

e∗k optimal efficiency for DMU k
eω∗

k optimal efficiency for DMU k of scenario ω
ekj cross-efficiency of DMU j with respect to DMU k

4. Methodology
4.1. Stochastic Bilevel DEA Model

In the context described in Section 3.1, it is apparent that the decisions for the allocation
of inputs within the branches (subDMUs) are made at the beginning of the period by the
central unit and then are followed by the resolution of the inherent uncertainty. It makes
sense that target setting should take into account the observed outputs under the realized
scenario. Thus, target setting constitutes the second-stage (aka recourse) variables in
our formulation. Therefore, we extend, analogously, the deterministic bilevel model of
Hakim et al. [26] to a two-stage stochastic bilevel DEA model with recourse actions.

4.1.1. The Upper-Level Model

Within a defined set of scenarios denoted as Ω, the upper-level structure follows the
framework given in (7)–(15). The upper-level model includes decision variables for the
input resources (xik) and the output targets (yω

rk). The optimization criterion involves profit
maximization through optimal resource allocation, output targeting, and efficiency lower
bounds of each subDMU.

max
xik ,yω

rk ,λω
jk

|Ω|

∑
ω=1

qω

[
s

∑
r=1

pr

n

∑
k=1

yω
rk

]
−

m

∑
i=1

ci

n

∑
k=1

xik (7)

s.t.

Lek ≤ eω∗
k ∀k ∈ J (8)

xik ≥
n

∑
j=1

λω
jkXij ∀i ∈ I , k ∈ J (9)

yω
rk ≤

n

∑
j=1

λω
jkYω

rj ∀r ∈ O, k ∈ J , ω ∈ Ω (10)

n

∑
j=1

λω
jk = 1 ∀k ∈ J , ω ∈ Ω (11)

λω
jk ≥ 0 ∀k ∈ J , ω ∈ Ω (12)
n

∑
k=1

xik ≤ bi ∀i ∈ I (13)

Lxik ≤ xik ≤ Uxik ∀i ∈ I , k ∈ J (14)

Lyrk ≤ yω
rk ≤ Uyrk ∀r ∈ O, k ∈ J , ω ∈ Ω (15)

The objective function (7) maximizes the expected overall organizational profits, where
ci and pr denote the unit input costs and the unit output prices, respectively. Constraint (8)
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sets an efficiency lower bound for each subDMU decided by the central DMU. Con-
straints (9) and (10) ensure that the optimal allocation of resources and targeting is feasible
with respect to the production possibility set constructed by the observed input and output
values of the subDMUs. Constraint (11) poses the variable returns to scale (VRS) assump-
tion for the model; nevertheless, the constant returns to scale (CRS) assumption can also
be considered ignoring the latter constraint. Constraint (13) sets an upper bound for the
availability of resources. Constraints (14) and (15) set upper and lower bounds for input
resources and output targets decided by the central DMU.

4.1.2. The Lower-Level Model

The lower-level model is the multiplier DEA-based model under VRS assumption as
presented in Beasley [38]. In the lower level, the optimal weights associated with inputs
and outputs are determined. The main objective here is that each DMU tries to maximize its
efficiency, given the input resources and target setting based on the upper-level decisions.
For every DMU k(k = 1, . . . , n) and scenario ω ∈ Ω, the lower-level problem is described
by (16)–(19).

eω∗
k = max

vik ,uω
rk ,tω

k

∑s
r=1 uω

rkyω
rk − lω

k
∑m

i=1 vikxik
(16)

s.t.

0 ≤ eω
kj =

∑s
r=1 uω

rkyω
rj − lω

k

∑m
i=1 vikxij

≤ 1 ∀k, j ∈ J , ω ∈ Ω (17)

vik ≥ ϵ ∀i ∈ I , k ∈ J (18)

uω
rk ≥ ϵ ∀r ∈ O, k ∈ J , ω ∈ Ω (19)

The objective function (16) of this model calculates the optimal efficiency score eω∗
k for

each subDMU k and each scenario ω. The model, which runs for each subDMU k, computes
the optimal input (vik) and output weights (uω

rk) for each scenario ω that maximizes the
efficiency for each subDMU k. Constraint (17) restricts the values of subDMU efficiency
between zero and one. Constraints (18) and (19) ensure that the weights take values larger
than a nonnegative infinitesimal number for input and output respectively. The existence
of the free variable lω

k imposes the variable returns to scale assumption for the efficiency of
the subDMU k.

4.2. Solution Approach

In this section, we generalize Theorem 1 of Hakim et al. [26] in our stochastic framework.

Lemma 1. The solution (x∗ik, yω∗
rk , λω∗

jk ;∀i, k, j, r) of the upper-level model (7)–(15) is optimal, assum-
ing that (uω∗

rk , v∗ik, lω∗
k ;∀i, k, r) is an optimal solution of the lower level model (16)–(19) if and only if

(x∗ik, yω∗
rk , λω∗

jk , uω∗
rk , v∗ik, lω∗

k ;∀i, k, j, r) is an optimal solution of the single-level model (20)–(31).

Proof. Let us assume that (x∗ik, yω∗
rk , λω∗

jk ; ∀i, k, j, r) is an optimal solution of the upper-level
model (7)–(15) and U∗ is the corresponding objective value. Moreover, let (uω∗

rk , v∗ik, lω∗
k ;

∀i, k, r) be the optimal solution of the lower-level model (16)–(19), given that (x∗ik, y∗rk, λ∗
jk;

∀i, k, j, r) is a feasible solution of the upper-level model (7)–(15). Then, (x∗ik, yω∗
rk , λω∗

jk ,
uω∗

rk , v∗ik, lω∗
k ; ∀i, k, j, r) satisfies all the constraints of the single-level model (20)–(31) since it

satisfies constraints (9)–(15) and (17)–(19), which are the same with (22)–(31). Furthermore,
the optimal solution of the lower-level model e∗k equals ekk when the weights are replaced
with their optimal values (uω∗

rk , v∗ik, lω∗
k ; ∀i, k, r); therefore, constraint (21) is also satisfied.

Hence, (x∗ik, yω∗
rk , λω∗

jk , uω∗
rk , v∗ik, lω∗

k ; ∀i, k, j, r) is a feasible solution for the single-level model
and the corresponding objective value is equal to the optimum value U∗ of the bilevel
model. If A∗ is the optimum value of the single-level model then it holds that A∗ ≥ U∗.
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Conversely, we have to show that the optimal solution (x∗ik, yω∗
rk , λω∗

jk , uω∗
rk , v∗ik, lω∗

k ;
∀i, k, j, r) of the single-level model (20)–(31) induces an optimal solution (x∗ik, yω∗

rk , λω∗
jk ;

∀i, k, j, r) of the upper-level model (7)–(15) and an optimal solution (uω∗
rk , v∗ik, lω∗

k ; ∀i, k, r) of
the lower-level model (16)–(19). The optimal solution (x∗ik, yω∗

rk , λω∗
jk , uω∗

rk , v∗ik, lω∗
k ; ∀i, k, j, r)

of the single-level model (20)–(31) satisfies constraints (9)–(15) and (17)–(19), which are
the same with (22)–(31). Furthermore, e∗k equals ekk for the optimal weights, thereby con-
straint (8) is also satisfied. Thus, the optimal solution (x∗ik, yω∗

rk , λω∗
jk , uω∗

rk , v∗ik, lω∗
k ; ∀i, k, j, r)

of the single-level model (20)–(31) induces a feasible solution (x∗ik, yω∗
rk , λω∗

jk ; ∀i, k, j, r) of the
upper-level model (7)–(15), where (uω∗

rk , v∗ik, lω∗
k ; ∀i, k, r) is an optimal solution of the lower-

level model (16)–(19). Assuming that U∗ is the optimum value of the upper-level model
and the objective value of the feasible solution (x∗ik, yω∗

rk , λω∗
jk ; ∀i, k, j, r) of the upper-level

model (7)–(15) is A∗, then it holds that A∗ ≤ U∗.

By Lemma 1, the stochastic bilevel DEA programming problem is converted to a
single-level as follows:

max
xik ,yω

rk ,λω
jk

|Ω|

∑
ω=1

qω

[
s

∑
r=1

pr

n

∑
k=1

yω
rk

]
−

m

∑
i=1

ci

n

∑
k=1

xik (20)

s.t.

Lek ≤ eω
kk =

∑s
r=1 uω

rkyω
rk − lω

k
∑m

i=1 vikxik
∀k ∈ J , ω ∈ Ω (21)

xik ≥
n

∑
j=1

λω
jkXij ∀i ∈ I , k ∈ J (22)

yω
rk ≤

n

∑
j=1

λω
jkYω

rj ∀r ∈ O, k ∈ J , ω ∈ Ω (23)

n

∑
j=1

λω
jk = 1 ∀k ∈ J , ω ∈ Ω (24)

λω
jk ≥ 0 ∀k ∈ J , ω ∈ Ω (25)
n

∑
k=1

xik ≤ bi ∀i ∈ I (26)

Lxik ≤ xik ≤ Uxik ∀i ∈ I , k ∈ J (27)

Lyrk ≤ yω
rk ≤ Uyrk ∀r ∈ O, k ∈ J , ω ∈ Ω (28)

0 ≤ eω
kj =

∑s
r=1 uω

rkyω
rj − lω

k

∑m
i=1 vikxij

≤ 1 ∀j ∈ J , ω ∈ Ω (29)

vik ≥ 0 ∀i ∈ I , k ∈ J (30)

uω
rk ≥ 0 ∀r ∈ O, k ∈ J , ω ∈ Ω (31)

The above optimization problem is non-linear and can be shown to be non-convex
as well by considering the Hessian matrix of constraints (21) and (29). In either case, the
Hessian matrix is not positive semidefinite and, thus, the constrained set is not convex.

5. Computational Study

The proposed work was encoded in Python 3.7.0, and for the stochastic bilevel model,
Pyomo 5.7.3 was used, combined with the optimization engine of Gurobi 10.0.1. This
solver version can deal with quadratic non-convex constraint problems by using global
optimization techniques. All the experiments were conducted on an Intel Core i5-8350
CPU @ 1.70 GHz with 16 GB of RAM, running on 64-bit Ubuntu 22.04.1 (Intel, Santa Clara,
CA, USA).
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Our test instance comprises three different distinct scenarios denoted by ω, where
ω = 1, 2, 3 and the realization probabilities are q1 = 0.2, q2 = 0.5, q3 = 0.3, respectively.
We assume that the input availabilities are independent of scenarios and are given as
bi = (25, 84, 22, 126.8, 5.723) ∀i ∈ I , respectively. The lower bound on each input i and
DMU k is given by Lxik = 0.8Xik, while the upper bound is calculated as Uxik = 1.2Xik.
In a similar manner, the lower and upper bound for output r and DMU k are given by
Lyrk = 0.8Y1

rk, and Uyrk = 1.2Y3
rk, respectively. The output bounds are independent of the

scenarios. The unit costs for each of the five inputs are ci = (40,000, 28,000, 27,500, 1000,
and 1,000,000) ∀i ∈ I . In addition, the corresponding unit output prices are set to EUR
100,000, except the last output price, which is p6 = 1, 000, 000. We are aligned with the
VRS assumption and the efficiency lower bound is Lek = 0.95 for all DMU and scenarios.
Finally, we should point out that our test instance has 5 inputs, 6 outputs, and 10 DMUs.

Additionally, a sensitivity analysis is undertaken to evaluate the model’s performance,
with a specific emphasis on both profitability and efficiency, while maintaining all other
parameters at a constant level. In the initial scenario, we systematically vary the efficiency
lower bound. Subsequently, a series of test instances is executed, each characterized by
distinct input resources.

Utilizing the data outlined in Tables 1 and 4, we have derived an optimal solution
addressing the challenge of resource allocation and target setting, accounting for an effi-
ciency lower bound (LBek = 0.95) across all decision-making units. Referencing Table 6,
the allocation of input resources among bank branches by the central administration is
depicted. Notably, all resources are fully utilized, except for AC, which exhibits a slack of
7.63 in relation to the upper availability bound of 126.8.

Table 6. Resource allocation for each DMU.

DMU X1 X2 X3 X4 X5

1 4.00 12.00 3.00 16.00 0.788
2 3.30 10.37 2.30 13.93 0.630
3 2.20 7.82 1.20 8.38 0.437
4 1.10 5.20 1.00 2.88 0.291
5 4.01 10.72 3.65 19.42 0.848
6 4.35 11.24 3.90 28.80 0.987
7 1.05 4.14 1.95 1.68 0.352
8 2.80 9.00 1.80 12.79 0.546
9 2.20 7.50 1.20 8.08 0.425
10 0.00 6.00 2.00 7.20 0.420

Total 25.00 84.00 22.00 119.17 5.723

In addition to managing resource allocation among DMUs, our model emphasizes
a crucial aspect: the establishment of output targets designed to enhance organizational
effectiveness and profit maximization. Table 7 showcases the optimal output plan for each
output and DMU, considering various scenarios. The final column displays the summation
of outputs for each distinct output. The probability of occurrence for each scenario reflects
the economic uncertainty anticipated during the future implementation of the strategic
plan. Specifically, we consider scenarios representing a pessimistic outlook (q1 = 0.2),
a normal economic environment (q2 = 0.5), and an optimistic scenario (q3 = 0.3). This
probability distribution accounts for the potential economic conditions that may influence
the execution of the strategic plan.
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Table 7. Output targets for every DMU and scenario.

DMU

Scenario Output 1 2 3 4 5 6 7 8 9 10 Total

1

Y1 0.420 0.469 0.392 0.174 0.419 0.391 0.183 0.560 0.470 0.210 3.687
Y2 0.532 0.421 0.199 0.092 0.403 0.337 0.221 0.239 0.199 0.084 2.726
Y3 0.480 0.394 0.222 0.105 0.518 0.499 0.252 0.470 0.401 0.245 3.587
Y4 0.140 0.111 0.056 0.028 0.162 0.153 0.051 0.063 0.042 0.018 0.825
Y5 6.370 5.373 3.471 1.733 6.228 5.889 1.385 3.766 3.472 0.910 38.597
Y6 1.772 1.418 0.982 0.654 1.909 2.221 0.791 1.154 0.957 0.945 12.802

2

Y1 0.600 0.669 0.497 0.248 0.599 0.558 0.261 0.648 0.672 0.300 5.053
Y2 0.760 0.601 0.287 0.131 0.576 0.481 0.316 0.443 0.285 0.120 4.000
Y3 0.686 0.435 0.222 0.145 0.740 0.713 0.360 0.610 0.573 0.350 4.833
Y4 0.200 0.159 0.078 0.041 0.232 0.219 0.074 0.107 0.061 0.025 1.195
Y5 9.100 7.676 4.973 2.475 8.897 8.413 1.978 6.340 4.960 1.300 56.112
Y6 2.531 2.025 1.403 0.934 2.727 3.173 1.130 1.755 1.367 1.350 18.395

3

Y1 0.690 0.770 0.497 0.276 0.689 0.642 0.300 0.745 0.773 0.345 5.727
Y2 0.874 0.691 0.331 0.151 0.662 0.552 0.363 0.510 0.320 0.138 4.592
Y3 0.789 0.435 0.222 0.145 0.850 0.820 0.414 0.702 0.658 0.403 5.438
Y4 0.230 0.183 0.090 0.047 0.267 0.242 0.085 0.123 0.062 0.029 1.356
Y5 10.465 8.827 5.719 2.846 10.232 9.675 2.275 7.291 5.704 1.495 64.529
Y6 2.911 2.329 1.614 1.074 3.136 3.649 1.300 2.018 1.572 1.553 21.155

The efficiency analysis in Table 8 provides a comprehensive overview of DMU per-
formance under varying operating scenarios. It is essential to note that ẽk represents the
weighted average efficiency across all scenarios. Notably, DMU 10 consistently demon-
strates high efficiency across all scenarios, whereas DMU 7 exhibits lower efficiency in the
first scenario but achieves efficiency in subsequent scenarios. DMUs 3 and 6 showcase
increased efficiency in scenarios 2 and 3, respectively. The primary objective of the proposed
model is to maximize overall profit, and Table 9 elucidates the total revenues, costs, profits,
and profitability. Notably, the input allocation remains constant across scenarios, resulting
in a fixed total input cost of 9,799,166. As anticipated, revenues and, consequently, profits,
vary with scenarios, with lower profitability in the worst economic scenario, moderate
profitability in the moderate scenario, and high profitability in the most optimistic scenario.
It is crucial to highlight that the ‘Expected’ row represents the weighted sum of revenues
and profits, respectively. In reference to our benchmark instance, with an efficient lower
bound, LBek = 0.95, the total expected profit amounts to EUR 15,302,644, reflecting a 60.69%
profitability. This underscores the model’s effectiveness in achieving optimal outcomes
even in diverse operating conditions.

Table 8. Efficiencies for every DMU in each scenario.

DMU e1∗
k e2∗

k e3∗
k ẽk

1 0.95 0.95 0.95 0.95
2 0.95 0.95 0.95 0.95
3 0.95 0.98 0.95 0.97
4 0.95 0.95 0.95 0.95
5 0.95 0.95 0.95 0.95
6 0.95 0.95 0.96 0.95
7 0.95 1 1 0.99
8 0.95 0.95 0.95 0.95
9 0.95 0.95 0.95 0.95
10 1 1 1 1

ẽk is the weighted average efficiency.
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Table 9. Revenues, profits, and profitability for the three scenarios.

Scenario Revenues Profit Profitability (%)

1 17,744,100 7,944,934 44.78
2 25,514,665 15,715,499 61.59
3 29,318,860 19,519,693 66.58

Expected 25,101,811 15,302,644 60.96

5.1. Sensitivity Analysis

We performed a sensitivity analysis by changing the efficiency lower bound to be
achieved by the bank branches from 0.95 to 0.7 and 0, respectively. In Table 10, we can
see all optimal DMU efficiencies taking into consideration the output scenarios and the
enforced efficiency lower bound. We can observe that in the first case, e.g., LBek = 0.7, we
do not have significant variations except for DMUs 2 and 4, which have average efficiencies
of 0.78 and 0.89, respectively. More precisely, DMU 4 performs very well in the moderate
and optimistic scenario. In Table 11, it appears that the organization has higher profits for
LBek = 0 than for LBek = 0.7. This means that a strict policy about branch efficiency does
not necessarily yield greater profitability. Another argument of the latter statement is that
the relaxed problem for LBek = 0.7 seems to have an inferior solution to the one we obtain
when LBek = 0.95 and a better one in the case where LBek = 0.

It is noteworthy that—during the experiments—we identified that the system can
work in a completely efficient manner, having all eω∗

k = 1 ∀k ∈ J and ω ∈ Ω. In order to
achieve this ambitious feat, we need to increase the input availability b5 from 5.723 to 6,
yielding a profit of 15,452,279.

Table 10. Efficiencies for each DMU for LBek = 0.7 and LBek = 0.

LBek = 0.7 LBek = 0

DMU e1∗
k e2∗

k e3∗
k ẽk e1∗

k e2∗
k e3∗

k ẽk

1 0.7 0.72 0.72 0.72 0.27 0.3 0.34 0.31
2 0.78 0.76 0.81 0.78 0.54 0.18 0.37 0.31
3 0.7 0.7 0.78 0.72 0.57 0.61 0.63 0.61
4 0.7 0.94 0.94 0.89 0.7 0.84 0.84 0.81
5 0.72 0.7 0.72 0.71 0.28 0.32 0.34 0.32
6 0.7 0.7 0.75 0.72 0.32 0.37 0.4 0.37
7 0.71 0.7 0.7 0.70 0.93 0.62 0.08 0.52
8 0.72 0.7 0.7 0.70 0.47 0.55 0.58 0.54
9 0.7 0.7 0.7 0.70 0.86 0.94 0.66 0.84

10 0.79 0.73 0.7 0.73 0.57 0.49 0.46 0.50

Table 11. Revenues, costs, and profits for the three scenarios for LBek = 0.7 and LBek = 0.

LBek = 0.7 LBek = 0

Scenario Revenues Profit Yield (%) Revenues Profit Yield (%)

1 17,744,100 7,945,593 44.78 17,744,100 7,945,084 44.78
2 25,514,665 15,716,158 61.60 25,514,665 15,715,649 61.59
3 29,314,435 19,515,928 66.57 29,318,946 19,519,931 66.58

Expected 25,100,483 15,301,976 60.96 25,101,836 15,302,821 60.96
Input cost = 9,798,507.

We also implemented a sensitivity analysis for the case study presented in Section 3.1,
considering seven different strategies to maximize the overall organizational efficiency. In
the first case, two base officers were replaced with an ATM and, therefore, the ATMs are
increased by one in each bank branch. Then the overall profits of the bank are increased
in contrast to the profits in the base case study (see Table 12). In this scenario, the overall
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profits are even higher than the base case study. Thereby this strategy creates the highest
profit for the bank. In the second case, one base officer is replaced with a relationship
manager in each bank branch. Following this strategy, the overall profitability of the bank
decreases in comparison to the base case study. This reduction is expected since relationship
managers have a higher cost for the bank. In the third scenario, we differentiate the cost
of deposits among the bank branches with respect to their location. More precisely, the
cost of deposits increases to 1% from 0.35% for the West bank branches, to 1.5% for the
City Center bank branches, and to 2% for the East bank branches. In the fourth scenario,
we combine the replacement of a base officer with a relationship manager in each bank
branch with the increase in the cost of deposits performed in the third scenario. In the
third and fourth scenarios, the overall profit becomes negative. Since the cost of deposits
is augmented, the costs exceed the revenues of the bank eliminating the profit. In the
fifth scenario, a combination of the first and third scenarios is implemented and a loss is
observed, however lower than that of scenario four. In the sixth scenario, two base officers
were replaced with an ATM, and one base officer was replaced with a relationship manager
in each bank branch. Thus, the tendency of the banks to replace employees with ATMs
and digital services is also due to profit gain. In the seventh scenario, a combination of
scenarios one, two, and three is performed, leading to a loss higher than those observed
in scenarios three, four, and five. Furthermore, in conjunction with Table 12, Figure 2
illustrates the fluctuations in revenues, costs, and profits. In this sensitivity analysis, we
modify input resources, noting that expected revenues remain consistent compared to input
allocation costs. However, the variability in costs has a substantial impact on expected
profits, resulting in losses in some scenarios.

Table 12. Sensitivity analysis for the seven scenarios assumed.

Scenario Exp. Revenues Total Cost Exp. Profit

1 25,098,657 9,495,636 15,603,021
2 25,106,434 9,917,651 15,188,784
3 23,951,562 25,579,251 −1,627,688
4 23,982,217 25,693,324 −1,711,107
5 24,074,086 25,261,859 −1,187,773
6 25,103,557 9,615,635 15,487,922
7 24,117,803 25,382,135 −1,264,331

‘Exp.’ = ‘Expected’.

Figure 2. Revenues, costs, and profits for every scenario.
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5.2. Theoretical and Managerial Implications

In a theoretical context within the exploration of bilevel modeling, decisions that need
to be made at the outset of the examined time period and before any of the scenarios unfold
are termed first-stage decisions. Moreover, decisions executed after a scenario materializes,
known as recourse decisions, allow corrective actions and are referred to as second-stage
decisions. The initial-stage solutions, implemented at the beginning, remain consistent
across all scenarios. In contrast, second-stage decisions vary and are contingent on the
specific scenario. The bilevel DEA model, incorporating stochastic conditions, enables
recourse decisions and actions based on information obtained following the realization of a
particular scenario.

As a result, managers can adjust their strategic planning in response to information
revealed over time. On the other hand, the deterministic counterpart of the proposed DEA
model lacks the flexibility for dynamic changes in strategy and adjustments to emerging
economic conditions. For DMUs with multi-stage or multi-level structures, managers
aim for optimal organizational efficiency by pursuing dynamic strategies that can adapt
to the constraints of limited and uncertain historical data. To this end, the total input
consumption is reduced and/or the total production is augmented and simultaneously
the overall profits are maximized. Decision-makers acting within uncertain and dynamic
environments can benefit from the suggested approach since it allows the investigation of
efficiency assessment under alternative scenarios in the presence of volatility and risk. The
potential impact of applying this methodology varies depending on the specific domain.
Although, the context of this paper focuses on banking, in general, enhancing resource
allocation and target setting under stochasticity, contributes to advancing sustainability
across all its three dimensions (economic, environmental, social).

The bilevel DEA model, incorporating stochastic conditions, calculates the anticipated
organizational profit by considering total expected income from outputs and subtracting
total input costs. These computations account for various scenarios determined by the
manager. In contrast, the deterministic model optimizes future organizational profits based
on historical data with fixed input and output values. In both models, the central DMU
must formulate a strategy before uncertain parameters are revealed, ensuring consideration
of potential future outcomes for more informed predictions of organizational profits. This
approach enhances the accuracy of predicting expected organizational efficiency and allows
for more precise resource allocation and target setting through adjustments when new
information is revealed.

6. Conclusions

The presented bilevel DEA model with stochastic conditions simultaneously optimizes
resource allocation and output targeting, taking into consideration the efficiency lower
bound posed by the central manager of large DMUs comprising multiple subDMUs. It
considers the hierarchical relations that appear in such large organizations and enterprises
that can be captured uniquely through the bilevel framework. Within this framework,
objectives are optimized while simultaneously ensuring that DMU’s operational efficiency
aligns with the managerial strategy. The interconnections and conflicting interests inherent
in this complex organizational structure involving the central administration and subor-
dinate DMUs cannot be adequately captured by the network DEA optimization schema.
In our approach, the uncertainty and unavailability of data are considered when evaluat-
ing the efficiency of large DMUs with a hierarchical structure. The proposed stochastic
approach allows for the realization of uncertain parameters through discrete scenarios
associated with an occurrence probability. One of the main advantages of this model is
that it enables decision-makers of large DMUs to obtain an optimal economic strategy that
permits readjustment to the new data upon the realization of one of the scenarios. Based
on the scenario to be realized, recourse actions can be taken to adjust input consumption
and output targets accordingly. To examine the performance of the stochastic approach, we
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apply the proposed model to evaluate the efficiency of a bank based on data that mirror
typical real-world scenarios.

One limitation of this study is its exclusive focus on for-profit organizations, particu-
larly large enterprises, which directly influence the objective function. Alternative applica-
tions of the model could explore diverse efficiency realizations, incorporating variations of
the objective function. Additionally, when addressing banking issues, our concentration
was on stochastic fluctuations in output targets while assuming deterministic input values.
However, in many real-world scenarios, inputs may also exhibit stochastic tendencies.
Furthermore, although our analysis was based on three scenarios, there are typically nu-
merous potential scenarios to consider. For our case study, we chose to examine only a
small number of decision-making units (DMUs) and scenarios. However, increasing the
dimension of the problem will substantially increase the computational resources needed.
This may necessitate the use of additional methodologies rooted in machine learning, of-
fering an intriguing avenue for further research. For instance, Hao and An [66] suggested
a pre-scoring method for DMUs, referred to as the angle-index synthesis method. They
performed several numerical experiments, highlighting that their algorithm demonstrates
excellent performance in computational time, exhibiting a linear increase in computational
time, even for a staggering case involving 1 billion DMUs.

Taking into account the above, other avenues for future research could involve intro-
ducing stochastic elements at the input level, providing a representation of a potentially
more realistic economic environment. Furthermore, we are investigating the possible
integration of chance constraints concerning the targeted efficiency levels for each DMU.
This approach allows the central administration to specify a range of desired efficiency
levels for each distinguished DMU rather than a precise value. Finally, another path for
future exploration might involve substituting the lower level with a two-stage problem
while preserving the bilevel hierarchy. This approach would entail addressing a stochastic
bilevel network DEA problem, thus finding applications in diverse sectors beyond banking.
Ultimately, an alternative approach could involve demonstrating a tighter formulation to
effectively address instances with larger dimensions.
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