
Citation: Demidova, L.A.

Decision-Making on the Diagnosis of

Oncological Diseases Using

Cost-Sensitive SVM Classifiers Based

on Datasets with a Variety of Features

of Different Natures. Mathematics

2024, 12, 538. https://doi.org/

10.3390/math12040538

Academic Editor: Liangxiao Jiang

Received: 5 January 2024

Revised: 28 January 2024

Accepted: 5 February 2024

Published: 8 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Decision-Making on the Diagnosis of Oncological Diseases
Using Cost-Sensitive SVM Classifiers Based on Datasets with a
Variety of Features of Different Natures
Liliya A. Demidova

Institute of Information Technologies, Federal State Budget Educational Institution of Higher Education,
MIREA—Russian Technological University, 78, Vernadsky Avenue, 119454 Moscow, Russia;
liliya.demidova@rambler.ru

Abstract: This paper discusses the problem of detecting cancer using such biomarkers as blood
protein markers. The purpose of this research is to propose an approach for making decisions in the
diagnosis of cancer through the creation of cost-sensitive SVM classifiers on the basis of datasets with
a variety of features of different nature. Such datasets may include compositions of known features
corresponding to blood protein markers and new features constructed using methods for calculating
entropy and fractal dimensions, as well as using the UMAP algorithm. Based on these datasets,
multiclass SVM classifiers were developed. They use cost-sensitive learning principles to overcome
the class imbalance problem, which is typical for medical datasets. When implementing the UMAP
algorithm, various variants of the loss function were considered. This was performed in order to select
those that provide the formation of such new features that ultimately allow us to develop the best
cost-sensitive SVM classifiers in terms of maximizing the mean value of the metric MacroF1 − score.
The experimental results proved the possibility of applying the UMAP algorithm, approximate
entropy and, in addition, Higuchi and Katz fractal dimensions to construct new features using blood
protein markers. It turned out that when working with the UMAP algorithm, the most promising
is the application of a loss function on the basis of fuzzy cross-entropy, and the least promising is
the application of a loss function on the basis of intuitionistic fuzzy cross-entropy. Augmentation of
the original dataset with either features on the basis of the UMAP algorithm, features on the basis
of the UMAP algorithm and approximate entropy, or features on the basis of approximate entropy
provided the creation of the three best cost-sensitive SVM classifiers with mean values of the metric
MacroF1 − score increased by 5.359%, 5.245% and 4.675%, respectively, compared to the mean values
of this metric in the case when only the original dataset was utilized for creating the base SVM
classifier (without performing any manipulations to overcome the class imbalance problem, and also
without introducing new features).

Keywords: oncological disease; cost-sensitive SVM classifier; features; UMAP algorithm; loss
function; entropy; fractal dimension

MSC: 68Q32; 68T05

1. Introduction

At present, the processes of digital transformation are becoming more and more
apparent and sought-after in many spheres of human society, including the spheres of
medicine and healthcare. First of all, digital transformation in the spheres of medicine
and healthcare is a complex continuous process that involves a complete restructuring of
the fundamental principles of the functioning of medical organizations at all hierarchy
levels, as well as the concept of their work with patients [1]. Now, the implementation
of innovative digital technologies is aimed at establishing high standards of healthcare

Mathematics 2024, 12, 538. https://doi.org/10.3390/math12040538 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12040538
https://doi.org/10.3390/math12040538
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4516-3746
https://doi.org/10.3390/math12040538
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12040538?type=check_update&version=3

Mathematics 2024, 12, 538 2 of 38

delivery and moving towards the “4P medicine” model [1,2], which integrates preventive,
personalized, participatory and predictive aspects of medical practice.

Digital transformation in sphere of healthcare consists of the transition from standard
approved clinical approaches recommended for use in the examination and treatment of
patients, to personal and individual approaches, as well as the prevention of certain diseases
through timely early diagnosis, the constant monitoring of patients, active involvement of
patients in treatment process, etc. [2]. An important key aspect of the digital transformation
in the sphere of healthcare involves creating the prerequisites for reducing morbidity and
mortality, as well as for increasing the active life expectancy of a person. Advanced health
monitoring technologies should help not only to detect certain diseases in their early stages,
but also to prevent disease progression through the application of innovative treatments
for certain diseases.

The design of intellectual analysis tools for processing medical data of large and
ultra-large volumes with the involvement of advanced machine learning (ML) [3–7] and
deep learning (DL) [8–12] technologies provides an opportunity to receive and analyze new
previously hidden knowledge both directly in the medical sphere and in related ones. These
technologies are actively applied in solving various problems of medical diagnosis and, in
particular, in solving problems of diagnosis of oncological diseases (ODs). The logistic re-
gression algorithm [13], k-nearest neighbors (kNN) algorithm [14], support vector machine
(SVM) algorithm [15], random forest (RF) algorithm [16] and DL algorithms [8–10] are
usually applied when creating classifiers to solve OD diagnosis problems. Such classifiers
are created on the basis of datasets which accommodate information about both patterns
with diagnosed ODs of various types and patterns with unconfirmed ODs (i.e., normal
patterns) [13–20].

Recently, applied and computational mathematics tools have become increasingly in
demand, especially in the sense of digital transformation in healthcare. At the present time,
the integration of applied and computational mathematics into digital health platforms is an
important factor for efficient analysis and processing of medical data. These tools provide
more accurate detection of pathologies at early stages of development, which is critical
for the successful prevention of diseases, including cancer [13,21–23]. The use of applied
and computational mathematics methods in the digital transformation of healthcare not
only improves the accuracy of diagnosis but also contributes to the formation of innovative
methods of disease prevention and treatment. As a result, the basis for personalized
and predictive healthcare strategies is created, including strategies of cancer prevention
and diagnosis.

Oncological diseases (ODs) are considered to be one of the most critically danger-
ous diseases due to the potentially severe consequences for patients, especially with late
diagnosis [24,25]. These consequences include severe pain and serious psychological dis-
tress. Treatment for ODs can take a very long time. In addition, it is associated with huge
financial costs both on the part of patients and on the part of the state. ODs are dangerous
immune violations that cause abnormal cells to divide and grow in some organ of the
patient. In addition, these immune violations can very quickly cover the patient’s entire
body and lead to a sad outcome. Clearly, timely early diagnosis of ODs is crucial so that the
doctor can promptly choose an effective method for treating the patient. Unfortunately, the
problem of early diagnosis of ODs is challenging and extremely difficult, because obvious
characteristic symptoms do not manifest themselves until late in the course of the disease,
so even innovative treatments may not be effective.

One approach to early diagnosis of ODs involves analyzing the results of various
tests, for example, gene tests (GTs) [13,26] and protein tests (PTs) [13,27,28]. In the last
few years, experts have favored PT-based OD diagnostic tools involving blood protein
markers [13–16,26]. While GTs are static, PTs are dynamic, so PTs, when performed in a
timely manner, can detect the disease onset and monitor its progression [13]. In addition,
PTs are performed non-invasively. Also, they are cheap. It is assumed that PT-based

Mathematics 2024, 12, 538 3 of 38

diagnostic technologies provide the forecasting of risks of cancer development for 1–3 years
in advance and, therefore, allow us to carry out advanced prevention and diagnosis of ODs.

Various protein markers are present in the blood. It is known that for different types
of ODs, the values of blood protein markers (BPMs) differ from each other [13]. It can
be reasonably assumed that taking into account the entire spectrum of BPMs should
provide an increase in the accuracy of diagnostics of various diseases. The use of data
mining (DM) tools with the involvement of ML and DL technologies will allow us to reveal
the relationships between the values of BPMs hidden in PT data for different types of
ODs [13,14,20].

The main problem that arises when solving medical diagnosis problems is the class
imbalance of the dataset [14,20]. As a rule, the number of normal data patterns describing
situations with the absence of any ODs greatly exceeds the number of pathologic ones
describing situations of OD of one type or another. As a result, the pattern class of normal
data represents the majority class, while the pattern classes of pathologic data represent the
minority classes (minority classes). When solving the problem of early diagnosis of ODs,
the target classes, i.e., the classes whose correct classification of patterns is most important,
are the minority classes. In addition, the medical diagnosis problem itself is usually a
multiclass classification problem.

The problem of creating a multiclass classifier on the basis of an imbalanced dataset
is very difficult, as the classifier must be trained to accurately classify the patterns of dif-
ferent classes that are imbalanced. Currently, a lot of approaches to overcoming the class
imbalance problem have been proposed [29,30]. The most commonly used approaches are
those that implement various class balancing algorithms realizing the strategies of over-
sampling [31–34], undersampling [34,35] and their combinations, as well as approaches
that implement cost-sensitivity learning (CSL) and take into account the cost of incorrect
decisions [14,36]. In [29], the authors show that, currently, there is no universal approach to
address class imbalance. They propose a taxonomy that covers methods to eliminate class
imbalance such as through performing cost-sensitive classification or through data sam-
pling. The authors show that a lot of DM problems are cost-sensitive and class-imbalanced.
In [30], the authors note that it is common to use data-level approaches, algorithm-level
approaches, ensemble approaches and hybrid approaches to deal with class imbalance.
They present a systematic literature review and perform an analysis of the studies presented
in more than 400 papers from 2002 to June 2017. This analysis emphasizes the significant
impact that inherent problems in the data have on the results obtained from classification
problems. In addition, the analysis covers methods for handling imbalanced data and
methods used to deal with skewed data distributions. The authors reveal trends and gaps
in this sphere of research and discuss directions for future research.

Obviously, in each specific case, when applying one or another method to overcoming
the class imbalance problem, it is necessary to check whether undesirable effects have not
appeared, for example, in the form of a loss of representative data during undersampling,
the appearance of mistaken or redundant data during oversampling, a significant increase
in time for classifier development, a significant decrease in accuracy for classifying patterns
of the majority class, etc. [20]. In this regard, when evaluating the quality of the created
classifier, it is advisable to perform a thorough analysis of different classification quality
metrics using the test set, particularly metrics which allow taking the dataset imbalance
into account; e.g., such metrics as F1 − score and balanced accuracy can be used for this
purpose. In addition, it is advisable to use k-fold cross-validation to empirically assess the
generalization ability of the created classifier.

The problem of working with data accommodating information on blood protein
markers is addressed in a number of scientific papers [13,21–25,37,38]. In particular, in [13],
the so-called CancerSEEK test based on the logistic classifier (LC) is considered. The
authors of the pilot study [13] choose eight types of ODs described by the patterns of
this dataset due to the fact that these types are most often found in residents of Western
countries and, additionally, because in clinical practice, blood tests were not applied for the

Mathematics 2024, 12, 538 4 of 38

early identification of ODs. As a result, the dataset contains information about patterns
belonging to nine classes: eight of them correspond to eight types of ODs, and another one
corresponds to patterns for which no OD has been diagnosed. Also, the authors consider
each individual’s sex, levels of eight proteins and facts of mutations in 1933 various genomic
locations. Based on the results of the experiments, the authors argue that blood protein
markers reflect most of the information about the localization of ODs, because mutations in
genes are most often not tissue-specific.

Later, there appeared research that proposed approaches to the development of classi-
fiers that diagnose ODs based on datasets that accommodate data only on blood protein
marker values [14,20], that is, they do not take into account data about the values of gene
markers. Thus, in [14], the authors propose a cost-sensitive three-class kNN classifier
created on the basis of the three-class imbalanced dataset extracted from the dataset used
in [13]. The new dataset accommodates only patterns describing information for 39 blood
protein markers mapped to 39 features. The authors extract additional information hidden
in the 39-dimensional data patterns using sample entropy and approximate entropy, form
two new features and add them to the used dataset, hoping to improve the data classifica-
tion quality. In the research [20] performed earlier by the author of this paper, the aspects of
kNN [14,39] and SVM [15,39] classifier development using sampling class balancing tools
are considered. In this study, oversampling strategies are applied to balance classes [31–34].
In addition, the research explored various approaches to the formation of new features
based on the methods for calculating entropy [40–45], Hjorth parameters [46,47] and fractal
dimension [48,49], as well as on the basis of the UMAP (Uniform Manifold Approximation
and Projection) algorithm [50–53], which is a nonlinear dimension reduction algorithm.
New features were created to be added to the original dataset in different combinations, as
well as to independently use these combinations as datasets when developing classifiers.

In general, we can note the high interest of scientists and practitioners in developing
approaches to diagnosing cancer based on blood protein markers. At the same time, ideas
are proposed for the development of both binary classifiers aimed at identifying any one
cancer disease and multiclass classifiers seeking to identify different classes of diseases,
which is much more difficult.

The aim of this research is to develop efficient classifiers of ODs (in terms of providing
high values of classification quality metrics) using modern DM tools and ML techniques.
We propose to develop SVM classifiers [15,20,39] using cost-sensitive algorithms that allow
for the different estimation of classification errors in majority and minority classes when
working with the original dataset and the extended datasets created on the basis of the
original dataset using different tools for forming new features. In particular, when forming
new features, as in [20], it is planned to use:

• The UMAP algorithm [50–53], which implements the nonlinear dimensionality reduc-
tion of data;

• Methods for calculating the approximate entropy (AE) [45] as well as Higuchi fractal
dimension (HFD) [48] and Katz fractal dimension (KFD) [48].

While working with the UMAP algorithm, the plan is to investigate how different
loss functions affect the results of embedding the original dataset into a lower-dimensional
space. Also, we plan to research how the choice of loss function (LF) affects the quality of
the extended datasets and the quality of the SVM classifiers developed from them.

In addition, it is planned to perform a comparative analysis of the SVM classifiers cre-
ated in this study with the SVM classifiers created in [20], both in terms of the classification
quality metrics and the time taken to train and test the SVM classifiers.

The rest of the paper is organized as follows. Section 2 is devoted to a review of works
related to the presented research. Section 3 summarizes the design aspects of cost-sensitive
SVM classifiers used to address the class imbalance problem in datasets. Furthermore,
the applied quality metrics for multiclass classification are emphasized. In addition, a
brief description of the principles of the UMAP algorithm and the various LFs used in it,
which affect the results of embedding the original dataset from a high-dimensional space

Mathematics 2024, 12, 538 5 of 38

into a low-dimensional space, is also provided. Moreover, the methods for computing the
approximate entropy, Higuchi fractal dimension and Katz fractal dimension are mentioned.
Section 4 presents the experimental results. First, a brief background to this research is
given; in particular, a description of the approach to generating datasets and the previously
obtained results of the creation of multi-class classifiers using oversampling algorithms are
discussed. Then, aspects of the analysis of the original three-class datasets on the basis of the
UMAP algorithm using various LFs are considered. Furthermore, the results of developing
cost-sensitive SVM classifiers based on various datasets are discussed. Section 5 discusses
the obtained results. Section 6 provides conclusions and purposes for future research. The
section Appendix A contains the names of concepts and their abbreviations in Table A1
and reference information on the datasets and the composition of their features in Table A2.
The section Appendix B contains figures visualizing the graphical dependencies for the LFs
used in the UMAP algorithm when the original dataset is embedded in two-dimensional
space. Section Appendix C contains information on the results of statistical tests with the
developed models.

2. Related Work

In a pilot study [13], the authors propose to evaluate the levels of proteins and mu-
tations in extracellular deoxyribonucleic acid and apply this information in a nine-class
CancerSEEK test based on LC. The dataset applied during the development of the Can-
cerSEEK test is available in the supplementary materials to the paper [13] under the name
aar3247_cohen_sm_tables-s1-s11.xlsx. It should be noted that new data are constantly being
added to this dataset. A regularly updated version of this dataset is openly presented in
the repository titled as Catalog of Somatic Mutations in Cancer (COSMIC) [54] under the
title NIHMS982921-supplement-Tables_S1_to_S11.xlsx. In developing the CancerSEEK
test, the authors use 1005 patterns of data from patients with clinically identified “Breast”,
“Colorectum”, “Esophagus”, “Liver”, “Lung”, “Ovary”, “Pancreas” or “Stomach” ODs. In
doing so, they propose to consider each individual’s sex, levels of eight proteins and facts
of mutations in 1933 various genomic locations. The authors believe that the facts of the
gene mutations or the growth in the level of any of the eight proteins allows a pattern of
data to be classified as a pattern with detectable OD. They use 10-fold cross-validation to
calculate values of the classification quality metrics and show that for all types of ODs, the
mean value of such metrics as sensitivity is about 70%; however, there are great differences
by classes: the lowest value of this metric, equal to 33%, is found for the breast class, and
the highest value of this metric, equal to 98%, is found for the ovarian class. Also, authors
show that the value of this metric depends significantly on the stage of the disease: the
lower the disease stage number, the lower the sensitivity metric value.

In [14], the authors develop a cost-sensitive three-class kNN classifier on the basis
of imbalanced dataset patterns describing data only for 39 blood protein markers. Each
pattern belongs to one of the following classes: “Normal”, “Ovary” and “Liver”. The
authors refused the idea of developing a nine-class classifier, as was performed in [14],
because of the poor separability of the patterns of the nine classes. They expand the
original dataset containing 39 features with 2 new features formed using sample entropy
and approximate entropy, and they use the extended 41-dimensional dataset to create a
cost-sensitive kNN classifier. In this research, the dataset contained 897 patterns belonging
to one of three classes in the such ratio as “Normal”:“Ovary”:“Liver” = 799:54:44. The
values of metrics such as Precision, Recall, MacroF1 − score and AUC were equal to 0.807,
0.833, 0.819 and 0.920, respectively. The overall accuracy of the classifier was equal to 0.952.

In study [20], the author of this paper develops kNN [14,39] and SVM [15,39] clas-
sifiers using such class balancing tools as SMOTE (Synthetic Minority Oversampling
Technique) [31], Borderline SMOTE-1 [32], Borderline SMOTE-2 [32] and ADASYN (ADap-
tive SYNthetic sampling approach) [33], which allow us to restore class balance based on
oversampling strategies. The creation of classifiers is performed on the basis of both the
original dataset and the new datasets designed on the basis of the original dataset using

Mathematics 2024, 12, 538 6 of 38

different tools for forming new features. Thus, five methods of entropy calculation [40–45],
such as approximate entropy (AE), sample entropy (SE), singular value decomposition
entropy (SVDE), spectral entropy (SPE) and permutation entropy (PE); two methods of
Hjorth parameter calculation [46,47], such as Hjorth complexity and Hjorth mobility (HC
and HM); and three methods for calculating fractal dimensions [48,49], such as Higuchi
fractal dimension (HFD), Katz fractal dimension (KFD) and Petrosian fractal dimension
(PFD) were used to form potentially new features from the 39-dimensional patterns of
the original dataset. Based on the results of the analysis of values of the mean and the
standard deviation (SD), calculated for each class, as well as correlation assessments, the
methods for calculating approximate entropy AE, Higuchi fractal dimension HFD and Katz
fractal dimension KFD were selected for further use. In addition, the UMAP algorithm
(Uniform Manifold Approximation and Projection) [50–53], which implements non-linear
dimensionality reduction on the data by embedding them in a lower-dimensional space,
was applied to form new features from 39-dimensional patterns of the original dataset. The
dimensionality reduction was performed not only to 2-dimensional space (as it is usually
carried out when solving data visualization problems in two-dimensional space), but also
to other dimensions (from 3 to 38) in order to select the best dimensionality reduction
option in the context of solving the problem of achieving higher data classification quality.

The research in reference [20] is the first attempt to create datasets using different
tools for generating new features by recovering data that are hidden in 39 features of the
original dataset and then selecting the best tools for generating new features. In particular,
the selection of new feature formation tools was founded on the correlation analysis of
potentially new features among themselves, as well as on their ability to separate patterns
that belong to different classes, using the mean and the SD values of features for each
class. This approach to the creation of a group of datasets describing the subject area was
first applied in the field of medical diagnostics, including the identification of ODs using
blood protein markers. These datasets were further subjected to balancing using SMOTE,
Borderline SMOTE-1, Borderline SMOTE-2 and ADASYN oversampling tools followed by
choosing the best of them. The best oversampling tools were used in developing kNN and
SVM classifiers followed by choosing the best classifiers in terms of maximizing the mean
value of the metric MacroF1 − score. In this research, the best kNN classifier was created
using the original dataset extended by the feature on the basis of approximate entropy,
and the best SVM classifier was created using the original dataset extended by the feature
on the basis of approximate entropy and 28 features on the basis of the UMAP algorithm.
The mean values of the metric MacroF1 − score of kNN and SVM classifiers increased by
16.138% and 4.219%, respectively, in comparison with the mean values of this metric in the
case when the original dataset was applied to create kNN and SVM classifiers. Thus, the
mean values of the metric MacroF1 − score of the best kNN and SVM classifiers were 0.878
(with the SD value equal to 0.050) and 0.914 (with the SD value equal to 0.050), respectively.
In addition, in [20], it was shown that it is promising to work with other considered tools of
new feature formation, because their use in the datasets applied in the creation of classifiers
also provided an improvement in data classification quality, although not as significant as
the best classifiers mentioned above. Thus, the feasibility of using the proposed approach
to form a group of datasets describing the subject area has been experimentally proven.

Despite the clearly significant results of the study performed in [20], we should note
the drawbacks of the approach to solving the class imbalance problem, which implements
work with oversampling tools that involve the synthesis of new patterns (perhaps never
hypothetically possible). First, oversampling may lead to even more class mixing (in the
case when classes are already poorly separable from each other) due to the impossibility
of a priori accurate knowledge about the spatial geometry of data patterns because of the
refusal (due to substantial time expenditures) to conduct additional research to study the
spatial geometry of data patterns. However, in a sense, this disadvantage can be offset by
evaluating the quality of the developed classifiers while screening out the unreliable ones.
Second, oversampling always leads to an increase in the time cost of classifier development,

Mathematics 2024, 12, 538 7 of 38

both because of the need to synthesize new patterns and because of the need to develop
classifiers on significantly larger datasets.

Due to this, it is reasonable to consider approaches to overcoming the class imbalance
problem, in which algorithms that take into account the cost sensitivity of wrong decisions
are implemented. CSL, and, in particular, cost-sensitive algorithms, have been addressed
and applied in a large number of research works. For example, such an approach is used in
the aforementioned work [14] related to the development of a three-class kNN classifier for
diagnosing ODs.

In [36], the authors note that CSL accounts for the misclassification cost and possibly
costs of other types as well. The purpose of CSL is to minimize the total cost. CSL handles
various classification errors differently. In particular, the classification cost of marking the
positive data pattern as negative may not be equal to the classification cost of marking
the negative data pattern as positive. Non-cost-sensitive learning does not account for the
misclassification cost.

In [55], the authors show that the class imbalance problem (CIP) is one of the serious
ML problems. Training on very imbalanced data leads to the fact that classifiers will be
overloaded with data patterns from majority classes; therefore, the false negative rate will
be high. They note that many methods are currently known to address the class imbalance
problem, including sampling methods and CSL methods, but these methods are usually
applied independently of each other. The authors propose two empirical methods on the
basis of sampling methods and CSL methods. The first method suggests to create SVM
classifiers conjoining sampling methods with CSL methods. The second method suggests
to use CSL methods with a locally optimized cost matrix. The authors show that the
first method allows reducing the misclassification costs, while the second method allows
improving the classifier performance.

In [56], the authors argue that CSL has made significant efforts to address the CIP, but in
practice, it is almost impossible to assess the misclassification cost exactly. Additionally, they
show that the classification quality depends on the used feature subsets from the dataset
and the values of the classifier parameters. The authors embed evaluation metrics such
as AUC (Area Under Curve) and G−mean (Geometric Mean) into the objective function
to improve the classification quality of the cost-sensitive SVM classifier. They offer the
method that tries to find the best combination of feature subsets, values of misclassification
costs and values of the classifier parameters. The authors show that the proposed method
is more efficient than commonly used sampling methods.

In [57], the authors propose robust cost-sensitive classifiers developed via the modifica-
tion of the target functions of ML algorithms such as decision tree, random forest, extreme
gradient boosting and logistic regression and apply them to efficiently predict medical
diagnoses. Unlike sampling methods, the authors’ approach does not change the original
data distribution. The authors implement standard versions of the algorithms mentioned
above and compare them with cost-sensitive versions. The cost-sensitive classifiers take
into account the imbalanced class distribution during training, leading to more robust
performance compared to classifiers on the basis of sampling methods.

In [58], the authors show that although methods such as cost-sensitive methods,
sampling methods and ensemble learning methods can improve classification accuracy for
minority class patterns, they are restricted by the problems of selection of cost parameter
values and overfitting. The authors suggest a hybrid approach that includes data block
construction, dimensionality reduction and ensemble creation with DL neural network
classifiers. The effectiveness of the proposed hybrid approach is validated by experimental
results using eight unbalanced datasets evaluated in terms of Recall, G−mean and AUC.

In [59], the authors analyze CSL aspects and postulate its importance in medicine.
They note that doctors are interested in models which can seek to minimize several types
of healthcare-related costs such as the attribute cost (e.g., the diagnostic test cost) and the
misclassification cost (e.g., the false negative test cost). They show that the diagnostic
tests and the misclassification errors have high financial and human costs. The authors

Mathematics 2024, 12, 538 8 of 38

propose ideas for dealing with CSL and its medical applications and provide an overview
of research on CSL, including approaches and methods for the creation and evaluation of
cost-sensitive classifiers.

Currently, especially in 2022–2023, there is a significant increase in the number of
studies addressing aspects of the use of ML and DL technologies in the context of solving the
problem of early diagnosis of cancer [3–7,11–14,20,26,37,38,60–66]. At the same time, many
of them are aimed at solving the problem of diagnosing ODs on the basis of biomarkers,
including blood protein markers [13,14,20–24,27,28,37,38,60]. However, most research
solves the problem of binary classification with the identification of one specific disease,
for example, breast [22], liver [12] or lung [37] cancer. It is obvious that the problem of
multiclass classification is, on the one hand, more complex, but, on the other hand, the data
used in its solution contain more complex dependencies, the restoration of which should
help the rapid diagnosis of oncological diseases [13,14,20].

3. Materials and Methods
3.1. Aspects of Developing Cost-Sensitive SVM Classifiers

Various ML and DL algorithms can be used in the development of data classifiers,
including multi-class classifiers, such as kNN [14,20,39,67,68], SVM [15,20,39,69,70], LR
(Logistic Regression) [13,71] and RF [16,72,73], as well as algorithms on the basis of certain
neural network architectures [8–12]. In addition, an increase in the quality of data classifi-
cation can be achieved by applying cascade algorithms and ensembles on the basis of ML
and DL algorithms. In this case, when developing certain classifiers, it is possible to use
the default values of the parameters of the eponymous algorithms or to adjust the values
of these parameters by applying, for example, grid search algorithms or well-established
population optimization algorithms [74].

It should be noted that there are no universal approaches to classifier development
which would guarantee that the classifier developed with their application will ensure
high-quality classification for every task. In particular, the quality of data classification
will depend both on the key features of the mathematical apparatus used in classifier
development and on the specifics of the dataset used in classifier development, including
its balance. In some cases, the time spent on classifier development, as well as on making
classification decisions, may be of fundamental importance. Obviously, preference should
be given to classifiers that provide high data classification quality with minimum time
cost. For example, the kNN algorithm can be characterized as an algorithm that requires
minimal time to develop a classifier as well as to make classification decisions, unlike
the RF algorithm. The SVM algorithm is generally less time-consuming than the RF
algorithm but more time consuming than the kNN algorithm. It is for this reason that the
author of the study in [20] used the kNN and the SVM algorithms in the creation of the
eponymous classifiers.

In this study, only the SVM algorithm is considered, and a cost-sensitive one at that.
This choice is made in connection with the previously stated goal of the study. The rejection
of the kNN algorithm used by the author of this study along with the SVM algorithm
in [20] can be justified by the fact that the SVM classifiers provided a higher quality of
data classification in the earlier study. Therefore, it was decided to conduct an additional
study to see if the SVM classifiers could be developed with even higher quality by utilizing
cost-sensitive learning principles.

Let U = {⟨x1, y1⟩, . . . , ⟨xs, ys⟩} be the dataset applied in the creation of the SVM
classifier, where xi (i = 1, s) is the pattern described by q features; xi ∈ X; X is the set of
patterns; yi is the class labels of the pattern xi (i = 1, s); yi ∈ Y = {1, . . . , M}; Y is the set of
pattern class labels; s is the number of patterns in the dataset U; M is number of classes in
the dataset U [39].

Suppose that the SVM classifier is trained on S patterns. Additionally, the SVM
classifier is tested on s− S patterns. In this case, the k-fold cross-validation procedure can
be used to assess the quality of the SVM classifier.

Mathematics 2024, 12, 538 9 of 38

The base SVM algorithm assumes that M = 2, that is, the classification is binary,
and implements binary data classification by constructing a hyperplane that separates
the classes [39,62]. In this case, each data pattern xi ∈ X corresponds to a class label
yi ∈ Y = {−1;+1} (i = 1, s).

When developing a binary SVM classifier, we must solve the problem of constructing
a hyperplane that separates the classes. This problem can be reduced, accordingly with
the Kuhn–Tucker theorem, to a quadratic programming problem that contains only dual
variables λi (i = 1, S) [39,69]:

1
2 ·

S
∑

i=1

S
∑

j=1
λi·λj·yi·yj·κ

(
xi, xj

)
−

S
∑

i=1
λi → min

λ
,

S
∑

i=1
λi·yi = 0,

0 ≤ λi ≤ C, i = 1, S,

(1)

where κ
(

xi, xj
)

is the kernel function; C (C > 0) is the value of the regularization parameter.
The kernel function κ

(
xi, xj

)
can be linear, radial basis, polynomial or sigmoid, the last

three of which carry out a transition to a higher-dimensional space than the original feature
space in order to provide better separability of pattern classes from each other.

In the proposed study, as in [20], the radial basis function (RBF) kernel is applied.

Such function can be defined as κ
(
xi, xj

)
= exp

(
− (xi−xj)·((xi−xj))

2·σ2

)
, where σ (σ > 0) is

the kernel function parameter.
When creating a binary SVM classifier with an a priori defined RBF kernel function

κ
(

xi, xj
)
, we must define the value of the parameter σ and the value of the regularization

parameter C [62], which assures the minimum classification error. The task of searching for
optimal values of these parameters can be solved on the basis of grid search (GS) algorithms
or population optimization algorithms.

Support vectors, which are patterns of the original dataset located near the hyperplane
that separates classes, are defined as a result of solving problem (1). They present all
information about the class separation rules. For the support vectors, the values of the dual
variables λi satisfy the condition λi ̸= 0 [75].

The classification rule, according to which the membership class of pattern x is deter-
mined, has the following form [39,69]:

F(x) = sign

(
S

∑
i=1

λi·yi·κ(xi, x) + b

)
(2)

where b = ω·xi − yi; ω = ∑S
i=1 λi·yi·xi.

In order to form classification decisions in the case of multiclass classification, i.e., when
the number of classes is greater than 2, either the OvR (One-vs-Rest) strategy or the OvO
(One-vs-One) strategy is applied [75].

Since the purpose of this research is to create a multi-class cost-sensitive SVM classifier,
we can use different values of the regularization parameter Cj (j = 1, M) for different
classes by defining them as Cj = weightj·C, where weightj is the weight coefficient of the

j-th class. Thus, weightj can be defined as S
M·Sj

, where Sj is the number of patterns in the

j-th class; ∑M
j=1 Sj = S. Furthermore, we can consider arbitrary combinations of weights

for different classes, assigning large weights weightj
(

j = 1, M) to small classes. As a
result, it will be possible to select such combinations of weights that guarantee high-quality
data classification according to some quality metric at not the highest costs (penalties) for
classification errors.

When evaluating the quality of multiclass classification, it is reasonable to use metrics
such as Accuracy, MacroPrecision, MacroRecall and MacroF1 − score [20,76]. Such met-

Mathematics 2024, 12, 538 10 of 38

rics as MacroPrecision, MacroRecall and MacroF1 − score are useful and effective when
developing classifiers using imbalanced datasets [76].

We can calculate Accuracy, MacroPrecision and MacroRecall as

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)

MacroPrecision =
1
M∑M

m=1
TPm

TPm + FPm
, (4)

MacroRecall =
1
M∑M

m=1
TPm

TPm + FNm
, (5)

where TP is the total number of true positive patterns; TN is the total number of true
negative patterns; FP is the total number of false positive patterns; FN is the total number
of false negative patterns; M is the total number of classes; TPm is the number of true
positive patterns with the m-th class label; FPm is the number of false positive patterns with
the m-th class label; FNm is the number of false negative patterns with the m-th class label.

The metric MacroF1− score is based on metrics MacroPrecision and MacroRecall. This
metric allows us to simultaneously consider information about the precision and recall of
the decisions formed by the classifier. It can be calculated as follows [20,76]:

MacroF1 − score = 2· MacroPrecision·MacroRecall
MacroPrecision + MacroRecall

. (6)

A high value of the metric MacroF1 − score means that the classifier has good perfor-
mance on all the classes, whereas a low value of the metric MacroF1 − score means that the
classes are poorly predictable [76].

In the proposed study, just like in [20], the SVM classifier having the maximum value
of the metric MacroF1 − score is recognized as the best one.

3.2. Aspects of New Feature Generation
3.2.1. Generation of Features on the Basis of the UMAP Algorithm with Different
Loss Functions

The UMAP algorithm carries out nonlinear dimensionality reduction by embed-
ding patterns whose feature values are defined in high-dimensional space into lower-
dimensional space. When performing such an embedding, the UMAP algorithm preserves
local and global data structures that are defined in the high-dimensional space better [50,53]
than similar algorithms, for example, the t-SNE (t-distributed stochastic neighbor embed-
ding) algorithm [77].

Let X = {x1, x2, . . . , xs} be some dataset. The UMAP algorithm embeds q-dimensional
patterns xi (i = 1, s) described by q features into h-dimensional space (h ≤ q).

At the first stage, the UMAP algorithm constructs a fuzzy weighted undirected graph.
At the second stage, the UMAP algorithm optimizes the LF [50].

At the first stage, k nearest neighbors [78] are found for each pattern xi (i = 1, s), and
then distances dil (l = 1, k) to k nearest neighbors are calculated based on some distance
metric (e.g., on the basis of the Euclidean metric). Next, the values ρi that define the
distances to the nearest neighbor are found for each pattern xi (i = 1, s).

Then, a binary search is carried out to look for the values σi that satisfy the condition:

∑k
l=1 e(

ρi−dil
σi

)
= log2 k. (7)

An array Mi is formed for each pattern xi (i = 1, s). The array’s component µij
(µij ∈ [0, 1]) is a fuzzy number that defines how similar the i-th and the j-th patterns
belonging to dataset X are. If the patterns xi and xj are not neighbors, the component µij of

Mathematics 2024, 12, 538 11 of 38

the arrayMi is assumed to be 0. If the patterns xi and xj are neighbors, the component µij
of the arrayMi is calculated as follows:

µij = e(
ρi−dij

σi
). (8)

As a result, a weighted adjacency matrix Matr ∈ Rs×s is formed in which the i-th
row is defined on the basis of components from the arrayMi (i = 1, s). The matrix Matr
is asymmetric. It defines the fuzzy weighted oriented graph that encodes the pairwise
similarity of patterns xi (i = 1, s).

At the second stage, the UMAP algorithm carries out the symmetrization of the matrix
Matr on the basis of the probabilistic t-conorm:

µij ← µij + µji − µij·µji
(
i = 1, s ; j = 1, s

)
, (9)

where µll = 0 (l = 1, s).
Representations of q-dimensional patterns xi (i = 1, s) in h-dimensional space as

h-dimensional patterns yi (i = 1, s) are computed using spectral embedding [50] (h ≤ q).
As a result, a dataset Y = {y1, y2, . . . , ys} is generated.

The base UMAP algorithm implements optimization using an LF [79] that is a weighted
fuzzy cross-entropy with reduced repulsion:

L(Matr, Y) =
s

∑
i=1

s

∑
j=1

(
µijln

µij

νij
+

∑s
k=1 µik

2s
ln

(
1− µij

1− νij

))
, (10)

where Matr ∈ Rs×s is a symmetric adjacency matrix containing fuzzy values that determine
the pairwise similarity of patterns of high dimensionality (i.e., of dimensionality q) from
the dataset X; Y ∈ Rs×h is the representation of s patterns of low dimensionality (i.e., of
dimensionality h); µij ∈ [0, 1] is the number that defines the fuzzy similarity of the i-th
and the j-th patterns of high dimensionality that belong to the dataset X; νij ∈ [0, 1]
is the number that defines the fuzzy similarity of the i-th and the j-th patterns of low
dimensionality that belong to the dataset Y.

Pairwise similarity of the i-th and the j-th patterns of low dimensionality that belong
to the dataset Y is defined as:

νij =
(

1 + ad2b
ij

)−1
, (11)

where dij is the distance between the i-th and the j-th patterns of low dimensionality
that belong to the dataset Y, calculated based on some distance metric (e.g., based on the
Euclidean metric); a and b are coefficients fitted using the nonlinear least squares method
(11) on the curve:

ψij =

{
1, dij ≤ dmin

e(dmin−dij), dij > dmin
, (12)

where dij is the distance between the i-th and j-th patterns of low dimensionality that
belong to the dataset Y; dmin is the parameter (dmin ∈ (0, 1]) that influences the density of
clusters created in the low-dimensional space during the optimization of the LF.

In the proposed study, as in the earlier study [20], the Euclidean metric is used as the
distance metric.

The base UMAP algorithm applies the stochastic gradient descent (SGD) algorithm to
optimize the LF (10) [50]. Pattern representations yi (i = 1, s) of low dimensionality from
the dataset Y are refined at each iteration of the SGD algorithm during minimization of the
LF (10).

In addition to the LF (10), other LFs can be used.
We will additionally use the LFs described in [53] and presented below.

Mathematics 2024, 12, 538 12 of 38

The LF based on fuzzy cross-entropy can be written as [53]

L1(Matr, Y) =
s

∑
i=1

s

∑
j=1

(
µijln

µij

νij
+
(
1− µij

)
ln

(
1− µij

1− νij

))
. (13)

The LF based on symmetric fuzzy cross-entropy can be written as [53]

L2(Matr, Y) =
s

∑
i=1

s

∑
j=1

((
µij − νij

)
ln

(
µij
(
1− νij

)
νij
(
1− µij

))). (14)

The LF based on intuitionistic fuzzy cross-entropy can be written as [53]

L3(Matr, Y) =
s

∑
i=1

s

∑
j=1

µijln
µij

1
2 µij +

1
2 νij

+
(
1− µij

)
ln

(
1− µij

1− 1
2
(
µij + νij

))
. (15)

In the following, for convenience of presentation, we will refer to the LF (10) based on
weighted fuzzy cross-entropy with reduced repulsion as L4.

LFs (10) and (13)–(15) determine how the embedding of q-dimensional patterns xi
(i = 1, s) into h-dimensional space (h ≤ q) will look like.

It should be noted that in the author’s study [50], function (10) is stated as an LF,
but in fact, in the author’s version of the UMAP algorithm software (v. 0.5.5) library in
Python [70], the LF is not explicitly specified, and the optimization process itself when
performing pattern embedding from a high-dimensional space to a low-dimensional space
can be described precisely by the LF (10), as proven by the authors of study [79].

The main parameters involved in the work of the UMAP algorithm are the parameters
k and dmin.

k is the number of nearest neighbors that are found for each pattern in the high-
dimensional space. This parameter is responsible for controlling balance between local and
global structures in the data. Low values of k (n_neighbors in the software library [80]) will
force the UMAP algorithm to pay attention to a very local structure. Large values of k will
force the UMAP algorithm to pay attention to larger neighborhoods of each pattern during
assessment of the topological structure of the data, but in this case, it is possible to lose
small detail structure wanting to cover more data. Traditionally, k = 15. In our research,
we will enumerate values for parameter k from the range [10, 20] with a step of 5.

dmin is the threshold distance (dmin ∈ (0, 1]). This parameter influences the density
of clusters created in the low-dimensional space during the optimization of the LF. It is
responsible for controlling how densely UMAP algorithm packs points together. It defines
the minimum distance between the patterns in the low-dimensional space. Low values
of dmin (min_dist in the software library [80]) will lead to clumpier embeddings. Larger
values of dmin will make it possible to avert from packing patterns together and focus on
the preserving of the broad topological structure. Traditionally, dmin = 0.1. In our research,
we will enumerate values for parameter dmin from the range [0.1, 0.3] with a step of 0.1.

The UMAP algorithm also works with the parameter h, which determines the dimen-
sion of low-dimensional space. Traditionally, h = 2. In our research, we will enumerate
values for parameter h from the range [2, 38] with a step of 2 to investigate the performance
of the UMAP algorithm when embedding data in spaces with dimensions other than 2.

3.2.2. Generation of Features on the Basis of the Approximate Entropy, the Higuchi Fractal
Dimension and the Katz Fractal Dimension

The study carried out in [20] has shown the feasibility of using the methods of calcu-
lating the approximate entropy AE [45], Higuchi fractal dimensionality HFD [48] and Katz
fractal dimensionality KFD [48] for the creation of new features. These are the methods
that will be used in the proposed research. They are described in detail in [20].

Mathematics 2024, 12, 538 13 of 38

3.2.3. Computational Complexity of Developing Classifiers

The assessment of the computational complexity of developing the proposed SVM
classifiers can be performed as follows. Let s be the number of patterns in the dataset and q
be the number of features.

The computational complexity of the standard SVM classifier training has both a
quadratic component and a cubic one [81]. It increases at least like s2 when the value of
the regularization parameter C is small and like s3 when the value of the regularization
parameter C is large [81,82]. In general, the computational complexity of the standard SVM
classifier training can be estimated as O

(
qs3).

The computational complexity of the UMAP algorithm realization can be estimated as
O
(
qs2) [50,83].

The computational complexity of the approximate entropy calculation method can be
estimated as O

(
q2) [84,85]. Because we calculate the approximate entropy for each pattern

in the dataset, the total computational complexity can be estimated as O
(
q2s
)
.

The computational complexity of the methods for calculating the Higuchi fractal
dimension and the Katz fractal dimension can be estimated as O

(
q2) [48]. Because we

calculate the fractal dimensions for each pattern in the dataset, the total computational
complexity can be estimated as O

(
q2s
)
.

Thus, the main computational complexity comes from training the SVM classifier.
However, state-of-the-art SVM realizations typically have computational complexity that
scales between O(s) and O

(
s2.3), if we assume that the number of features q is not large

compared to the number patterns s [86]. We can improve the computational complexity
to O(s) using parallel mixture [87]. Also, we can use such modern solvers as the Pegasos
SVM [88] and the quantum SVM [89] to improve the computational complexity of standard
SVM classifier training. Hence, this complexity can be reduced to quadratic (and even
lower), both taking into account the specifics of the dataset and through the use of modern
solvers. Though, these are only empirical observations and not theoretical guarantees [82].

Working with fractal dimensions does not make a significant contribution to the
computational complexity of the developed classifiers. The computational complexity of
the UMAP algorithm implementation and the computational complexity of the approximate
entropy calculation method (taking into account working with all patterns in the dataset)
are comparable.

Thus, the computational complexity of developing one SVM classifier in this research
in the worst case is determined as O

(
s3), but in some cases it can be estimated as O

(
s2).

When working with modern solvers, we can obtain computational complexity of O
(
s2) (if

the UMAP algorithm is used when creating a dataset) and even less (if only entropy and
fractal dimension calculation methods are used when creating a dataset).

4. Experimental Studies

All experimental studies were performed in the interactive cloud environment Google
Colab. We used the Python 3.10 programming language for software development, since it
allows us to work with a large number of different software libraries, including libraries
that implement ML algorithms.

A three-class dataset on oncological diseases accommodating data on 39 serum protein
markers (39 features) for 910 patterns was used in experimental studies. The following
classes are considered: “Normal” (corresponding to the case when no OD was detected),
“Liver” and “Ovary”. Each protein marker in this dataset corresponds to a feature in the
dataset. A list of serum protein markers can be found in [20]. This dataset is extracted from
the original nine-class dataset, which contains 1817 patterns of classes such as “Normal”,
“Breast”, “Colorectum”, “Esophagus”, “Liver”, “Lung”, “Ovary”, “Pancreas” and “Stom-
ach”. Such a dataset with nine classes is publicly available in the COSMIC repository [54].
However, as shown in [14,20], the nine-class dataset is characterized by both poor separabil-
ity of classes from each other and significant imbalance. In this regard, an attempt to work
to restore class balance through the use of sampling strategies will not give the desired

Mathematics 2024, 12, 538 14 of 38

result. The use of oversampling strategies can lead to an even greater deterioration of the
situation in the context of class separability as a result of even greater mixing of patterns
of different classes, and the use of undersampling strategies can lead to the unreasonable
deletion of representative patterns belonging to the “Normal” class, which is the biggest
one, that is, the majority class. In [14,20], it is shown that the three-class dataset is also
poorly balanced.

In [20], the visualization results using the UMAP algorithm in two-dimensional space
for the original nine-class dataset and for the three-class dataset are presented. At the same
time, it is assumed that the class separation in the three-class dataset should be better than
in the original one. In this regard, it was the three-class dataset that was chosen for further
research in [20]. It should be noted that the class ratio in a three-class dataset is as follows:
“Normal”:”Liver”:”Ovary” = 812:44:54.

The UMAP algorithm has a library implementation in Python [80], proposed by the
authors of this algorithm [50]. The authors argue that UMAP is a stochastic algorithm, so
they use elements of randomness both to speed up the approximation steps and during the
solution of optimization problems using the SGD algorithm.

Figure 1 shows the two-dimensional visualization for the three-class dataset using
the library implementation of the UMAP algorithm with default parameter values of
n_neighbors = 15, min_dist = 0.1, metric = ‘euclidean’ and random_state = 42, where n_neighbors
is the number of neighbors taken into account when assessing local and global properties
of a diverse data structure [80]; min_dist is the parameter that determines the minimum
distance at which data patterns can be located in low-dimensional space [80]; random_state is
the parameter responsible for the initialization of UMAP algorithm and the reproducibility
of results [80]; metric is the parameter that defines the metric used when calculating the
distance between patterns [80]. Each two-dimensional point in Figure 1 corresponds to
a 39-dimensional data pattern. The points corresponding to different classes are marked
with different colors.

Mathematics 2024, 12, x FOR PEER REVIEW 14 of 39

balance through the use of sampling strategies will not give the desired result. The use of

oversampling strategies can lead to an even greater deterioration of the situation in the con-

text of class separability as a result of even greater mixing of patterns of different classes,

and the use of undersampling strategies can lead to the unreasonable deletion of representa-

tive patterns belonging to the “Normal” class, which is the biggest one, that is, the majority

class. In [14,20], it is shown that the three-class dataset is also poorly balanced.

In [20], the visualization results using the UMAP algorithm in two-dimensional space

for the original nine-class dataset and for the three-class dataset are presented. At the same

time, it is assumed that the class separation in the three-class dataset should be better than

in the original one. In this regard, it was the three-class dataset that was chosen for further

research in [20]. It should be noted that the class ratio in a three-class dataset is as follows:

“Normal”:”Liver”:”Ovary” = 812:44:54.

The UMAP algorithm has a library implementation in Python [80], proposed by the

authors of this algorithm [50]. The authors argue that UMAP is a stochastic algorithm, so

they use elements of randomness both to speed up the approximation steps and during

the solution of optimization problems using the SGD algorithm.

Figure 1 shows the two-dimensional visualization for the three-class dataset using the

library implementation of the UMAP algorithm with default parameter values of n_neighbors

= 15, min_dist = 0.1, metric = ‘euclidean’ and random_state = 42, where n_neighbors is the number

of neighbors taken into account when assessing local and global properties of a diverse data

structure [80]; min_dist is the parameter that determines the minimum distance at which data

patterns can be located in low-dimensional space [80]; random_state is the parameter responsi-

ble for the initialization of UMAP algorithm and the reproducibility of results [80]; metric is

the parameter that defines the metric used when calculating the distance between patterns

[80]. Each two-dimensional point in Figure 1 corresponds to a 39-dimensional data pattern.

The points corresponding to different classes are marked with different colors.

Figure 1. Two-dimensional visualization for three-class dataset using the library implementation of the

UMAP algorithm [80] with the default parameter values (n_neighbors = 15, min_dist = 0.1, metric = ‘euclid‐

ean’, random_state = 42). The points corresponding to different classes are marked with different colors.

Since the dataset has three classes, the classification problem is multi-class, and its

solution includes the development of a multi-class classifier.

4.1. Brief Background of This Study

Previously, in [20], approaches to the creation of three-class kNN and SVM classifiers

based on datasets generated in various ways were investigated. The original dataset was

tested for feature correlation. This test showed that there was no strong correlation be-

tween all the features. The correlation index values for all pairs of features, except one,

turned out to be less than 0.6. Only for one pair of features with numbers 34 and 35

Figure 1. Two-dimensional visualization for three-class dataset using the library implementation
of the UMAP algorithm [80] with the default parameter values (n_neighbors = 15, min_dist = 0.1,
metric = ‘euclidean’, random_state = 42). The points corresponding to different classes are marked with
different colors.

Since the dataset has three classes, the classification problem is multi-class, and its
solution includes the development of a multi-class classifier.

4.1. Brief Background of This Study

Previously, in [20], approaches to the creation of three-class kNN and SVM classifiers
based on datasets generated in various ways were investigated. The original dataset
was tested for feature correlation. This test showed that there was no strong correlation
between all the features. The correlation index values for all pairs of features, except
one, turned out to be less than 0.6. Only for one pair of features with numbers 34 and 35

Mathematics 2024, 12, 538 15 of 38

(sHER2/sEGFR2/sErbB2 (pg/mL) and sPECAM-1 (pg/mL)), the value of the correlation
index was 0.604. Thus, the feasibility of using all features when performing further research
was proven. Also, different options for extracting features from those in question were
previously analyzed as well. In particular, five methods for calculating entropies such as
approximate entropy (AE), sample entropy (SE), singular value decomposition entropy
(SVDE), spectral entropy (SPE) and permutation entropy (PE); two methods for calculating
Hjort parameters such as Hjorth complexity and Hjorth mobility (HC and HM); and three
methods for calculating fractal dimensions such as Higuchi fractal dimension (HFD), Katz
fractal dimension (KFD) and Petrossian fractal dimension (PFD) were considered. These
methods were applied to the three-class dataset whose feature values were not subjected to
preliminary scaling to [0, 1] to generate potential new features.

The values of entropies, Hjorth parameters and fractal dimensions were combined
according to pattern class labels. Then, for each class, the mean value and the SD value of
the potential new feature were calculated.

For each potential new feature, based on the results of the analysis of values of
the mean and the SD for each class, the following conclusions were made. The biggest
differences between the classes are observed for potentially new features based on the
entropies AE and SE, as well as based on the fractal dimensions HFD and KFD. At the same
time, the SD values for the aforementioned potentially new features are not large (and only
for the feature based on the fractal dimension KFD they are slightly larger). It was these
four potential new features that were selected for further consideration and examined for
correlation with each other. We discovered that the potential new features based on the
entropies AE and SE highly correlate with each other (the correlation score value is equal to
0.931). The feature based on the sample entropy SE was removed from consideration since
it had a lesser correlation with the target feature that defines the pattern class label [20]. We
also discovered that the potential new features based on the fractal dimensions HFD and
KFD weakly correlate with each other (the correlation score value is equal to 0.141).

Thus, the preliminary analysis showed the feasibility of using the new feature on the
basis of the approximate entropy AE as well as new features on the basis of the fractal
dimensions HFD and KFD.

The additional experiments showed a slight excellence of the feature on the basis of
the approximate entropy AE over the feature on the basis of the sample entropy SE in terms
of maximizing the mean value of the metric MacroF1 − score.

In addition, the library implementation of the UMAP algorithm [63] was used in [20]
to embed a three-class 39-dimensional dataset into spaces of lower dimensions h (h = 2, . . .,
38) to form new features.

Thus, the new generated features belonged to one of the following three groups:

• Feature on the basis of the approximate entropy AE;
• Features on the basis of the fractal dimensions HFD and KFD;
• Features on the basis of the UMAP algorithm.

We created the new datasets either by appending various combinations of new features
of the three groups mentioned above to the original dataset or by appending various
combinations of new features of the first two groups mentioned above to the features of
the third group formed on the basis of the UMAP algorithm. As a result, we developed
classifiers of 12 types: we developed classifiers of 4 types once (since we did not use the
UMAP algorithm in the creation of the corresponding datasets) and classifiers of another
8 types over and over again (since we used the UMAP algorithm in the creation of the
corresponding datasets for h = 2, . . ., 38, where h is the dimension of the space into which
the original dataset is embedded).

Figure 2 schematically shows all 12 ways for creating datasets. Table A2 in Appendix A
contains information on the composition of features for all 12 datasets.

Mathematics 2024, 12, 538 16 of 38

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 39

The developed classifiers subsequently have the same names as the datasets on the ba-

sis of which they are developed. Thus, the designation C7 in Figure 2 corresponds to a da-

taset obtained by supplementation of the original three-class dataset with the feature on the

basis of the approximate entropy AE, as well as the features on the basis of the UMAP algo-

rithm for a certain dimension ℎ (ℎ 2,…, 38) of space in which the original three-class

dataset is embedded. Based on dataset C7 for a certain space dimension ℎ, homonymous

classifier C7 is developed. All 12 considered three-class datasets are unbalanced, since the

three-class dataset C1 extracted from the original nine-class dataset is unbalanced.

It should be noted that all the principles formulated above for forming new groups of

datasets can be applied when developing classifiers on the basis of any ML algorithms, since

they only have an impact on the stage of preparing datasets applied in the creation of classifi-

ers.

In [20], the CIP was overcome by applying oversampling algorithms such as SMOTE

[31], Borderline SMOTE-1 [32], Borderline SMOTE-2 [32] and ADASYN [33]. Then, the

best oversampling algorithms in terms of maximizing the mean value of the metric

𝑀𝑎𝑐𝑟𝑜𝐹 𝑠𝑐𝑜𝑟𝑒 were selected. In this case, all datasets were either immediately used to

develop classifiers or were first subjected to oversampling based on SMOTE, Borderline

SMOTE-1, Borderline SMOTE-2 and ADASYN algorithms.

We found that Borderline SMOTE-1 is the best oversampling algorithm for develop-

ing kNN classifiers. Also, we found that the base SMOTE algorithm is the best over-

sampling algorithm for developing SVM classifiers.

The choice of these different oversampling algorithms was justified by the fact that

these particular algorithms made it possible to provide the best classification quality as-

sessed using the metric 𝑀𝑎𝑐𝑟𝑜𝐹 𝑠𝑐𝑜𝑟𝑒 for the kNN and SVM classifiers.

Features
of the original

dataset

Features
based on UMAP

algorithm

Feature
based on
entropy

Features
based on fractal
dimensions

C3C2 C4 C5 C6 C7 C11 C12C8C10 C9 C1

Datasets without using
the UMAP algorithm

Datasets using
 the UMAP algorithm

Figure 2. Scheme of creating of all 12 datasets applied in the research for the development of classi-

fiers.

The following conclusions were made based on the experimental results:

Figure 2. Scheme of creating of all 12 datasets applied in the research for the development of classifiers.

The developed classifiers subsequently have the same names as the datasets on the
basis of which they are developed. Thus, the designation C7 in Figure 2 corresponds to a
dataset obtained by supplementation of the original three-class dataset with the feature on
the basis of the approximate entropy AE, as well as the features on the basis of the UMAP
algorithm for a certain dimension h (h = 2,. . ., 38) of space in which the original three-class
dataset is embedded. Based on dataset C7 for a certain space dimension h, homonymous
classifier C7 is developed. All 12 considered three-class datasets are unbalanced, since the
three-class dataset C1 extracted from the original nine-class dataset is unbalanced.

It should be noted that all the principles formulated above for forming new groups
of datasets can be applied when developing classifiers on the basis of any ML algorithms,
since they only have an impact on the stage of preparing datasets applied in the creation
of classifiers.

In [20], the CIP was overcome by applying oversampling algorithms such as SMOTE [31],
Borderline SMOTE-1 [32], Borderline SMOTE-2 [32] and ADASYN [33]. Then, the best
oversampling algorithms in terms of maximizing the mean value of the metric MacroF1− score
were selected. In this case, all datasets were either immediately used to develop classifiers
or were first subjected to oversampling based on SMOTE, Borderline SMOTE-1, Borderline
SMOTE-2 and ADASYN algorithms.

We found that Borderline SMOTE-1 is the best oversampling algorithm for developing
kNN classifiers. Also, we found that the base SMOTE algorithm is the best oversampling
algorithm for developing SVM classifiers.

The choice of these different oversampling algorithms was justified by the fact that
these particular algorithms made it possible to provide the best classification quality
assessed using the metric MacroF1 − score for the kNN and SVM classifiers.

The following conclusions were made based on the experimental results:

• SVM classifiers outperform kNN classifiers, both in the absence of oversampling
and in the case of its use, in terms of maximizing the mean value of the metric
MacroF1 − score.

Mathematics 2024, 12, 538 17 of 38

• In the case of oversampling, SVM classifiers provided the best classification quality
assessed using the metric MacroF1 − score, but the time spent on their development
increased significantly.

In this regard, it was decided to continue researching the capabilities of SVM classifiers.
In order to solve the CIP, it was decided to use the cost-sensitive algorithms instead of
oversampling algorithms. If a positive result is obtained from experiments using cost-
sensitive algorithms, we will be able to significantly reduce the time spent on creating SVM
classifiers and, possibly, improve the data classification quality.

The method for finding the best SVM classifiers is described in detail in [20]. It involves
searching through a grid of parameter values that provide the maximum value of the metric
MacroF1 − score.

In particular, we applied a grid search to find the values of parameters such as C and
gamma, that, respectively, determine the regularization parameter and the parameter of the
RBF kernel. The values of parameter C and parameter gamma varied in the range [0.4, 2]
with a step of 0.1. We used the default values from the software implementation of the SVM
algorithm in the scikit-learn library of Python as the values of the remaining parameters.

We used the metric MacroF1 − score as the main classification quality metric. This was
performed to minimize the negative impact of the existing class imbalance in the original
dataset C1 on the classification performance.

We applied a grid search to find the optimal values of the SVM classifier parame-
ters [20] using stratified 10-fold cross-validation [90,91] with three-time repetition and the
multi-class OvO strategy. We calculated the mean value of the metric MacroF1 − score with
the corresponding SD value. Also, we calculated the mean values of the metrics Accuracy,
MacroPrecision and MacroRecall with the corresponding SD values for the best classifiers.
In addition, we determined the hyperparameter values for the best classifiers.

Table 1 demonstrates, for reference, the mean values of the metric MacroF1 − score
and the corresponding SD values for the best classifiers of 12 types created without the
application of oversampling algorithms [20]. Based on the information in Table 1, we can
select best potential types of classifiers, which, in the future, first of all, should be paid
attention to when developing classifiers based on CSL principles.

Table 1. Characteristic values of the best classifiers of different types created without the application
of oversampling algorithms and cost-sensitive algorithms on the basis of the metric MacroF1 − score.

Characteristic
Classifiers

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Mean 0.877 0.837 0.864 0.799 0.840 0.846 0.873 0.885 0.878 0.880 0.866 0.876
Standard deviation 0.078 0.095 0.074 0.101 0.090 0.090 0.075 0.079 0.078 0.074 0.078 0.080

Values greater than 0.850 are highlighted in bold.

As we can see, classifiers C3, C7, C8, C9, C10, C11 and C12 have the mean values of
the metric MacroF1− score exceeding 0.850. The mean values of the metric MacroF1− score
of these classifiers are highlighted in bold in Table 1. In the future, it will be interesting
to evaluate the behavior of classifiers of these types if CSL principles will be applied for
their development.

We found that that even the best SVM classifiers do not have good quality metric
values due to class imbalance: the values of the metric MacroF1 − score are small, while all
classifiers make many errors on patterns belonging to minority classes [20].

4.2. Experiments to Implement the Concept of This Study

When performing experiments in this study, it was decided to:

• Apply the principles of cost-sensitive algorithms for developing classifiers;
• Explore the possibility of generating new features using the UMAP algorithm, which

uses five variants of the LF.

Mathematics 2024, 12, 538 18 of 38

We plan to select the parameter values of the UMAP algorithm on the basis of the
GS algorithm.

It should be noted that, as in [20], methods for calculating the approximate entropy
AE, the Higuchi fractal dimension HFD and the Katz fractal dimension KFD will be used
to generate new features.

We plan to use the following variants for the LF:

• Variant available in the library implementation in Python [80];
• Four variants described in [53] and available in the library implementation in Python [92].

Unfortunately, the LF in the library implementation in Python [80] is set implicitly,
although the authors really use an SGD algorithm to solve an optimization problem when
embedding the dataset from the high-dimensional space into the low-dimensional space;
that is, in fact, the LF (13) declared by the authors in [50] is not used. The authors of
study [79] tried to explicitly write down the formula for the LF, relying on the library
implementation in Python [80]. They concluded that the LF resembles formula (10). In
this case, with some error, they reproduced the work of the UMAP algorithm in the library
implementation in Python [80]. In what follows, we will call the implicit LF used in the
library implementation [80] as L0 and the LF (10) as L4.

The LFs in [92] are defined in accordance with (10) and (13)–(15). In this case, the
optimization problem is solved using full gradient descent (FGD). The parameter value
of random_state equal to 42 is used only when initializing the embedding of patterns into
low-dimensional space.

We suggest using the following methodology when performing experiments.

1. Create datasets C1–C12 in accordance with the scheme presented in Figure 2, for a
fixed combination of the parameter values (h, LF type, n_neighbors, min_dist), where
h is the dimension of the low-dimensional space (h is selected from the range [2, 38]
with a step of 2); the LF type is defined as one of the types in the list [L0, L1, L2, L3,
L4]; n_neighbors is the number of nearest neighbors of the data pattern in the high-
dimensional space (n_neighbors is selected from the range [10, 20] with a step of 5);
min_dist is the threshold distance that influences the density of clusters created in the
low-dimensional space (min_dist is selected from the range [0.1, 0.3] with a step of 0.1).
During the experiments, a walk through the grid is carried out for combinations of
parameter values (h, LF type, n_neighbors, min_dist).

2. Develop cost-sensitive SVM classifiers based on datasets C1–C12 for a fixed combina-
tion of penalty values (weight1, weight2, weight3) for the misclassification of patterns
of different classes.

3. Assess the data classification quality using the cost-sensitive SVM classifiers based on
datasets C1–C12 on the basis of stratified 10-fold cross-validation. Select classifiers
that maximize the mean value of the metric MacroF1 − score (6). Analyze of the mean
values of the metrics Accuracy (3), MacroPrecision (4) and MacroRecall (5). Assess
the time spent training and testing the cost-sensitive SVM classifiers.

At step 1 of the methodology, we prepare different datasets that vary from each other
in the composition of features. Additional information on the formation of such datasets is
also reflected in [20].

At step 2 of the methodology, we can use the options for setting penalties for classifi-
cation errors proposed in Section 3.1. Selecting fine values involves a certain amount of
time. It can be performed by walking through the grid or by analyzing the most intuitively
selected combinations of penalty values based on the following considerations: the smaller
the number of patterns in a class, the greater the penalty for misclassifying patterns of this
class. At the same time, considering various combinations of penalties and maximizing
the mean value of the metric MacroF1 − score, it is advisable to choose combinations with
smaller penalties with similar mean values of the metric MacroF1 − score. For the three-
class dataset under study, we preferred the combination of penalties in the form (weight1,
weight2, weight3) = (1, 10, 10).

Mathematics 2024, 12, 538 19 of 38

At step 3 of the methodology, it makes sense to pay special attention to the mean values
of the metrics MacroF1 − score and MacroRecall: we maximize the first in order to select
the best classifier, and the second allows us to assess whether there is an increase in the data
classification quality in terms of sensitivity to identifying truly existing diseases. In addition,
with similar values of the data classification quality for SVM classifiers, it makes sense to
give preference to those whose training and testing time will be lesser (paying attention
to time costs makes sense, for example, when comparing the cost-sensitive classifiers
and classifiers created using oversampling technologies). It should be noted that when
choosing classifiers for further use, it is advisable to pay attention to the results of certain
statistical tests.

Figure 1 shows the two-dimensional visualization of the three-class dataset using the
UMAP algorithm, for which there is a library implementation in Python [80], with the
values of parameters n_neighbors, min_dist, random_state and metric set as default. These are
the values of the parameters that were used in [20]. It should be noted that, unfortunately,
this library implementation does not provide an explicit output of the values of the LF,
and the results of the embedding, even with fixed values of the parameters n_neighbors
and min_dist, depend on the initialization of the UMAP algorithm using the parameter
random_state. In addition, the final results of the UMAP algorithm’s application depend on
the version of the library implementation, which is in a state of constant improvement, as
well as on the version of the libraries associated with it, including the Numba library [93],
which is responsible for parallelizing calculations and allows for speeding up the operation
of the UMAP algorithm.

In the proposed study for the UMAP algorithm with LFs L0, L1, L2, L3 and L4, the
GS was performed for the values of parameters n_neighbors and min_dist, providing devel-
opment of the best cost-sensitive SVM classifiers in terms of maximizing the mean value
of the metric MacroF1 − score. In our research, we enumerate values for the parameter
n_neighbors in the range [10, 20] with a step of 5, and enumerate values for the parameter
min_dist in the range [0.1, 0.3] with a step of 0.1. In addition, we enumerate values for the
parameter that defines the space dimension h in the range [2, 38] with a step of 2.

The tuple of parameter values (n_neighbors, min_dist) which allowed us to obtain a
cost-sensitive SVM classifier of a specific type with the maximum possible mean value of
the metric MacroF1 − score was considered the best.

It should be emphasized that the creation of cost-sensitive SVM classifiers was carried
out. At the same time, different ratios of penalties for classification errors were considered
for different classes, but in the end, a ratio of the form 1:10:10 was chosen, respectively, for
the classes “Normal”, “Liver” and “Ovary”.

With this ratio of penalties for classification errors, the best cost-sensitive classifier
C1 has a mean value of the metric MacroF1 − score equal to 0.907 (with the SD value
equal to equal to 0.052). In what follows, we will consider this mean value of the metric
MacroF1 − score to be the base (threshold) value. It is with this value that we will compare
the mean values of the metric MacroF1 − score of cost-sensitive SVM classifiers of other
types in order to select the truly best one, that is, superior to classifier C1, developed based
on a cost-sensitive SVM algorithm.

Table 2 shows the main characteristics of the base classifier C1 [20], created on the
basis of the original three-class 39-dimensional dataset not subjected to any manipula-
tion, balanced classifier C1 using SMOTE algorithm [20], balanced classifier C7 using the
SMOTE algorithm (at h = 28) [20] and the base cost-sensitive classifier C1, developed on
the basis of the original three-class 39-dimensional dataset, which was not subjected to
any manipulation.

Mathematics 2024, 12, 538 20 of 38

Table 2. Characteristics of such SVM classifiers as the base C1, balanced C1, balanced C7 (at h = 28)
and the base cost-sensitive C1.

Characteristic

Classifiers

Base C1
[20]

Balanced
C1

Using
SMOTE Algorithm [20]

Balanced
C7 (at h=28)

Using SMOTE Algorithm [20]

Base
Cost-Sensitive

C1

Number of features in the
dataset 39 39 68 39

gamma 1.2 1 0.7 0.8

C 2.0 0.4 0.7 0.4

MacroF1 − score (mean/SD) 0.877/0.078 0.910/0.064 0.914/0.050 0.907/0.052

Accuracy (mean/SD) 0.973/0.015 0.977/0.015 0.978/0.012 0.977/0.013

MacroRecall (mean/SD) 0.843/0.088 0.907/0.081 0.907/0.065 0.907/0.066

MacroPrecision (mean/SD) 0.950/0.053 0.929/0.058 0.937/0.048 0.923/0.053

Training time (mean/SD), s. 0.123/0.008 0.886/0.214 0.489/0.021 0.169/0.023

Quality metrics calculation
time (mean/SD), s. 0.007/0.001 0.013/0.004 0.008/0.001 0.011/0.003

It should be noted that the best kNN and SVM classifiers created on the basis of over-
sampling strategies and presented in [20] outperformed the cost-sensitive kNN classifier
developed in [14] in terms of maximizing the mean value of the metric MacroF1 − score. In
addition, the best SVM classifier [20] outperformed the kNN classifier [20] in terms of the
same indicator. In this regard, the main attention in the proposed study is paid specifically
to the aspects of creating cost-sensitive SVM classifiers that have a higher data classification
quality than previously developed classifiers.

As can be seen from Table 2, the base cost-sensitive classifier C1 has a higher mean
value of the metric MacroF1 − score than the base classifier C1. However, this value in case
of the cost-sensitive classifier C1 is less than that of classifier C1 balanced using the SMOTE
algorithm [20] and classifier C7 balanced using the SMOTE algorithm (at h = 28) [20]. At
the same time, the time spent on developing and testing base cost-sensitive classifier C1 is
comparable to a similar time for the base classifier C1.

Figure 3a–e show the two-dimensional visualization of the three-class dataset using the
UMAP algorithm with LFs L0, L1, L2, L3 and L4 for tuples of parameter values (n_neighbors,
min_dist) providing development of the best cost-sensitive SVM classifiers, called C3, for
h = 2 in terms of maximizing the mean value of the metric MacroF1 − score. It should be
said that, generally speaking, the best SVM classifiers, called C3, can be obtained in spaces
of dimension h other than 2. Each two-dimensional point in Figure 3a–e corresponds to
a 39-dimensional data pattern. The points corresponding to different classes are marked
with different colors.

Figure A1a–d, from Appendix B, show graphical dependencies for LF L1, L2, L3
and L4, obtained by constructing embeddings of the original 39-dimensional three-class
dataset into the two-dimensional space, presented in Figure 3b–e. It should be noted that
the ability to analyze and display the values of the LF L0 is not provided by the library
implementation [80]; therefore, graphical dependency is not shown.

Mathematics 2024, 12, 538 21 of 38Mathematics 2024, 12, x FOR PEER REVIEW 21 of 39

(a)

(b)

(c)

(d)

(e)

Figure 3. Two-dimensional visualization of the 39-dimensional three-class dataset using the UMAP

algorithm with various LFs with parameter values n_neighbors and min_dist, ensuring the creation

of the best cost-sensitive classifiers C3 (at ℎ 2) in the terms of maximizing the mean value of the

metric 𝑀𝑎𝑐𝑟𝑜𝐹 𝑠𝑐𝑜𝑟𝑒: (a) 𝐿 : implicitly set LF (n_neighbors = 10; min_dist = 0.3; 𝑀𝑎𝑐𝑟𝑜𝐹 𝑠𝑐𝑜𝑟𝑒:
mean = 0.924; SD = 0.047); (b) 𝐿 : LF based on fuzzy cross-entropy with FGD (n_neighbors = 15;

min_dist = 0.1; 𝑀𝑎𝑐𝑟𝑜𝐹 𝑠𝑐𝑜𝑟𝑒: mean = 0.918; SD = 0.049); (c) 𝐿 : LF based on symmetric fuzzy

cross-entropy with FGD (n_neighbors = 15; min_dist = 0.1; 𝑀𝑎𝑐𝑟𝑜𝐹 𝑠𝑐𝑜𝑟𝑒: mean = 0.916; SD =

0.047); (d) 𝐿 : LF based on intuitionistic fuzzy cross-entropy with FGD (n_neighbors = 15; min_dist =

0.3; 𝑀𝑎𝑐𝑟𝑜𝐹 𝑠𝑐𝑜𝑟𝑒: mean = 0.914; SD = 0.055); (e) 𝐿 : LF based on weighted fuzzy cross-entropy

with FGD (n_neighbors = 20; min_dist = 0.2; 𝑀𝑎𝑐𝑟𝑜𝐹 𝑠𝑐𝑜𝑟𝑒: mean = 0.915; SD = 0.044). The points

corresponding to different classes are marked with different colors.

The best cost-sensitive classifier C3 on the basis of the library implementation [80]

has parameter values n_neighbors and min_dist (Figure 3a) different from the default val-

ues (Figure 1). At the same time, the mean values of the metric 𝑀𝑎𝑐𝑟𝑜𝐹 𝑠𝑐𝑜𝑟𝑒 for the
best cost-sensitive classifier C3 and the cost-sensitive classifier C3 with the default values

of the parameters n_neighbors and min_dist are equal to 0.924 (with the SD value equal to

0.047) and 0.913 (with the SD value equal to 0.045), respectively, i.e., the best cost-sensitive

classifier C3 outperformed the cost-sensitive classifier C3 with default parameter values

by 1.205%. It should be noted that in both cases, the used default value of the parameters

random_state was equal to 42. We decided to check how choosing the value of parameter

random_state affects the final quality of the cost-sensitive classifier C3. In order to do this,

we varied the values of the parameter random_state from 1 to 50 with a step of 1. Unfortu-

nately, it turned out that only in 11 cases out of 50, which is 22%, we were able to receive

a mean values of the metric 𝑀𝑎𝑐𝑟𝑜𝐹 𝑠𝑐𝑜𝑟𝑒 of no less than 0.907. Moreover, only in 7

cases out of 50, which is only 14%, we were able to receive mean values of the metric

Figure 3. Two-dimensional visualization of the 39-dimensional three-class dataset using the UMAP
algorithm with various LFs with parameter values n_neighbors and min_dist, ensuring the creation
of the best cost-sensitive classifiers C3 (at h = 2) in the terms of maximizing the mean value of the
metric MacroF1 − score: (a) L0: implicitly set LF (n_neighbors = 10; min_dist = 0.3; MacroF1 − score :
mean = 0.924; SD = 0.047); (b) L1: LF based on fuzzy cross-entropy with FGD (n_neighbors = 15;
min_dist = 0.1; MacroF1 − score : mean = 0.918; SD = 0.049); (c) L2: LF based on symmetric fuzzy
cross-entropy with FGD (n_neighbors = 15; min_dist = 0.1; MacroF1 − score : mean = 0.916; SD = 0.047);
(d) L3: LF based on intuitionistic fuzzy cross-entropy with FGD (n_neighbors = 15; min_dist = 0.3;
MacroF1 − score : mean = 0.914; SD = 0.055); (e) L4: LF based on weighted fuzzy cross-entropy
with FGD (n_neighbors = 20; min_dist = 0.2; MacroF1 − score : mean = 0.915; SD = 0.044). The points
corresponding to different classes are marked with different colors.

The best cost-sensitive classifier C3 on the basis of the library implementation [80] has
parameter values n_neighbors and min_dist (Figure 3a) different from the default values
(Figure 1). At the same time, the mean values of the metric MacroF1 − score for the best
cost-sensitive classifier C3 and the cost-sensitive classifier C3 with the default values of
the parameters n_neighbors and min_dist are equal to 0.924 (with the SD value equal to
0.047) and 0.913 (with the SD value equal to 0.045), respectively, i.e., the best cost-sensitive
classifier C3 outperformed the cost-sensitive classifier C3 with default parameter values
by 1.205%. It should be noted that in both cases, the used default value of the parameters
random_state was equal to 42. We decided to check how choosing the value of parameter
random_state affects the final quality of the cost-sensitive classifier C3. In order to do this, we
varied the values of the parameter random_state from 1 to 50 with a step of 1. Unfortunately,
it turned out that only in 11 cases out of 50, which is 22%, we were able to receive a mean
values of the metric MacroF1 − score of no less than 0.907. Moreover, only in 7 cases out
of 50, which is only 14%, we were able to receive mean values of the metric MacroF1− score
of no less than 0.908: three of them turned out to be equal to 0.908, one of them turned

Mathematics 2024, 12, 538 22 of 38

out to be equal to 0.909, two of them turned out to be equal to 0.911 and only one of
these, which is only 2%, turned out to be 0.924. In this regard, the following conclusions
can be deduced: Indeed, we can reduce the dimension of space even to 2, obtaining in
some cases mean values of the metric MacroF1 − score of no less than 0.907, which is not
bad, because in this case, it is possible to reduce the dimension of space from 39 to 2.
However, such cases occur rarely, and searching for them is associated with the additional
time expenditures. The case where the mean value of the metric MacroF1 − score is 0.924
turned out to be the only one. The remaining cases in which it was possible to obtain
mean values of the metric MacroF1 − score of no less than 0.907 did not occur often, and
the corresponding mean values of the metric MacroF1 − score turned out to be significantly
less than the found maximum mean value of 0.924. So, obviously, one should not expect
that simply iterating over the values of the parameter random_state will quickly lead us to
the desired result, namely, to mean values of the MacroF1 − score of no less than 0.924. We
can say that the use of the SGD algorithm in the problem under consideration, although it
makes it possible to reduce the time spent searching for a solution, in most cases leads to
finding only certain local extrema. Therefore, to find better solutions, i.e., solutions close
to the global extremum, repeated runs of the SGD algorithm are required. So, choosing
a different value for the parameter random_state other than 42 does not guarantee that
we will obtain a mean value of the metric MacroF1 − score for cost-sensitive classifier C3
no worse than the mean value of the metric MacroF1 − score for cost-sensitive classifier
C1. We will look for classifiers that are no worse in terms of the mean value of the metric
MacroF1 − score than the cost-sensitive classifier C1, assuming that, perhaps, with equal
mean values of the MacroF1 − score we will be able to decrease the number of features in
the datasets on the basis of which cost-sensitive classifiers will be developed. A smaller
number of features in the dataset that is applied for a certain classifier development, with all
other characteristics being equal for the compared classifiers, can be considered a positive
property of this classifier.

As can be seen from Figure 3a–e, only four LFs, named L0, L1, L2 and L4, provide
good separation of classes in the two-dimensional space. They are used in the formation of
two-dimensional datasets, a visualization of which is presented in Figure 3a–c,e.

However, for the purity of the experiment and the formation of convincing conclusions,
we conducted experiments with all five LFs, without abandoning the LF L3, for all values
of the space dimension h indicated above, i.e., for values h from 2 to 38 with a step of 2.

It should be noted, based on the results obtained when developing cost-sensitive
classifiers C3 (at h = 2) based on different LFs, that the best cost-sensitive classifiers C3
have parameter values recommended for use by default in the library implementation
of the UMAP algorithm in only two out of five cases [80]. It can be assumed that the
best cost-sensitive SVM classifiers on the basis of the UMAP algorithm result in spaces
with dimension h different from 2 and may have parameter values of n_neighbors and
min_dist different from those that are recommended to be used by default in the library
implementation of the UMAP algorithm [80].

Next, the responses to two research questions (RQs) will be presented.
Question 1. Which types of cost-sensitive SVM classifiers are the best in terms of

maximizing the mean value of the metric MacroF1 − score when using LFs L0, L1, L2, L3
and L4 for different combinations of values of parameters n_neighbors (in the range [10, 20]
with a step of 5) and min_dist (in the range [0.1, 0.3] with a step of 0.1), as well as different
values of the space dimension h (from 2 to 38 with a step of 2)?

Question 2. How often do cost-sensitive SVM classifiers of each type have mean values
of the metric MacroF1 − score no lower than the base (threshold) mean value of the metric
MacroF1 − score inherent to the base cost-sensitive classifier C1 and equal to 0.907, when
using different LFs for different combinations of values of parameters n_neighbors (from 10
to 20 with a step of 5) and min_dist (from 0.1 to 0.3 with a step of 0.1), as well as different
values of the space dimension h (in the range [2, 38] with a step of 2)?

Mathematics 2024, 12, 538 23 of 38

4.2.1. Identifying the Best Cost-Sensitive SVM Classifiers and Analysis of
Their Characteristics

In order to answer Question 1, Table 3 shows the names of the best cost-sensitive
SVM classifiers and their characteristics, such as the mean value and the SD value of the
metric MacroF1 − score, as well as the dimension of space h (in the case of using the UMAP
algorithm) in the format classifier name/mean/standard deviation/space dimension.

Table 3. Names of the best cost-sensitive SVM classifiers and their characteristics.

Tuple
of Parameter

Values (n_neighbors,
min_dist)

Loss Functions

L0 L1 L2 L3 L4

(10, 0.1) C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/-
(10, 0.2) C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/-
(10, 0.3) C3/0.924/0.047/2 * C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/-

(15, 0.1) C8/0.918/0.047/- C7/0.919/0.046/22 C7/0.917/0.048/12 C8/0.918/0.047/- C8/0.918/0.047/-
(15, 0.2) C8/0.918/0.047/- C7/0.919/0.042/8 C7/0.919/0.042/6 C8/0.918/0.047/- C7/0.918/0.046/6
(15, 0.3) C8/0.918/0.047/- C7/0.920/0.044/28 C7/0.921/0.048/26 C8/0.918/0.047/- C8/0.918/0.047/-

(20, 0.1) C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C3/0.918/0.045/12 C7/0.920/0.047/34
(20, 0.2) C8/0.918/0.047/- C7/0.920/0.052/30 C8/0.918/0.047/- C8/0.918/0.047/- C11/0.919/0.054/8
(20, 0.3) C8/0.918/0.047/- C7/0.921/0.045/28 *** C7/0.923/0.047/28 ** C8/0.918/0.047/- C3/0.921/0.045/6

* the classifier, which took first place in the ranking in terms of maximizing the mean value of the metric
MacroF1 − score, is highlighted in bold; ** the classifier, which took second place in the ranking in terms of
maximizing the mean value of the metric MacroF1 − score, is highlighted in bold italic font; *** the classifiers,
sharing third place in the ranking in terms of maximizing the mean value of the metric MacroF1 − score, are
highlighted in italics.

We can see from Table 3 that the best cost-sensitive SVM classifiers for the considered
tuples of the parameter values (n_neighbors, min_dist) turned out to be cost-sensitive classi-
fiers C3, C7, C8 and C11. At the same time, cost-sensitive classifiers C7 and C8 most often
took the lead, 11 and 30 times, respectively. Cost-sensitive classifiers C3 and C11 were
leaders three times and one time, respectively.

In Table 3, the cost-sensitive SVM classifier, which is the absolute leader in terms of
maximizing the mean value of the metric MacroF1− score, is highlighted in bold. This is the
cost-sensitive classifier C3 with values of the mean and the SD of the metric MacroF1− score
equal to 0.924 and 0.047, respectively. The dataset used in the development of this classifier
was created by supplementing the original three-class 39-dimensional dataset with new
features generated on the basis of the library implementation of the UMAP algorithm [80]
(i.e., using the LF L0). Based on the results of previously performed experiments with the
LF L0, we can conclude that its use when implementing the UMAP algorithm does not give
the expected effect when working with spaces of dimensions h different from 2, with a fixed
value of the parameter random_state, which affects the results of stochastic gradient descent.
By default, in the library implementation of the UMAP algorithm [80], the value of the
parameter random_state is 42. Previously performed experiments with different values of
the parameter random_state at h = 2 did not improve the quality of cost-sensitive classifiers
C3, so the feasibility of similar experiments with other values of the space dimension h is
questionable, but it is related to large time expenditures.

In Table 3, the cost-sensitive SVM classifier, which took second place in the ranking
in terms of maximizing the mean value of the metric MacroF1 − score, is highlighted in
bold italic font. This is the cost-sensitive classifier C7 with values of the mean value and
the SD of the metric MacroF1 − score equal to 0.923 and 0.047, respectively. This classifier
is built on the basis of the original 39-dimensional dataset, supplemented with a feature
on the basis of the approximate entropy AE as well as features on the basis of the UMAP
algorithm at h = 28 using LF L2.

In Table 3, three cost-sensitive SVM classifiers, sharing third place in the ranking in
terms of maximizing the mean value of the metric MacroF1 − score, are highlighted in
italics. These are such cost-sensitive SVM classifiers as the following:

Mathematics 2024, 12, 538 24 of 38

• Classifier C7, with values of the mean value and the SD of the metric MacroF1 − score
equal to 0.921 and 0.045, respectively (this classifier is built on the basis of the original
39-dimensional dataset, supplemented with a feature on the basis of the approximate
entropy AE, as well as features on the basis of the UMAP algorithm at h = 28 using
the LF L1);

• Classifier C7, with values of the mean value and the SD of the metric MacroF1 − score
equal to 0.921 and 0.048, respectively (this classifier is built on the basis of the original
39-dimensional dataset, supplemented with a feature on the basis of the approximate
entropy AE, as well as features on the basis of the UMAP algorithm at h = 26 using
the LF L2);

• Classifier C3, with values of the mean value and the SD of the metric MacroF1 − score
equal to 0.921 and 0.045, respectively (this classifier is built on the basis of the orig-
inal 39-dimensional dataset, supplemented with features on the basis of the UMAP
algorithm at h = 6 using the LF L4).

In this case, obviously, preference should be given to the cost-sensitive classifier C3,
because it allows us to work with low-dimensional dataset h (at h = 6) in the UMAP
algorithm, unlike the other two cost-sensitive classifiers C7, for which the dimension of the
low-dimensional space h in the UMAP algorithm is equal to 26 or 28.

As can be seen from Table 3, the LF turned out to be the most successful and reliable
L1 in the context of its use for the formation of new features: for all analyzed tuples of
parameter values (n_neighbors, min_dist), using this function allowed us to develop cost-
sensitive classifiers C7, which became the best in terms of maximizing the mean value of the
metric MacroF1− score in five out of nine experiments. In this regard, we can conclude that
the LF L1 successfully copes with the problem of reducing dimensionality when embedding
the original dataset into spaces of different dimensions h (both small and large) and can be
recommended for further use when working with the UMAP algorithm.

Second place in the success rating was shared by LFs L2 and L4. The use of the
LF L2 made it possible to develop the cost-sensitive classifiers C7, which became the
best in terms of maximizing the mean value of the metric MacroF1 − score in four out of
nine experiments.

The use of the LF L4 allowed to develop two cost-sensitive classifiers C7, one cost-
sensitive classifier C3 and one cost-sensitive classifier C11, which became the best in terms
of maximizing the mean value of the metric MacroF1− score in four out of nine experiments.
It should be noted that although one cost-sensitive classifier C7 (at h = 6) has the same
mean value of the metric MacroF1 − score as the cost-sensitive classifier C8, we will assume
that the cost-sensitive classifier C7 (at h = 6) is the winner, because it has a slightly lower
standard deviation value (it is equal to 0.46), while the cost-sensitive classifier C8 has a
standard deviation value of 0.47. However, 6 more additional features were used during
development of the cost-sensitive classifier C7.

The LFs L0 and L3 in the proposed study did not show significant success in solving
the problem of generating new features that would improve the data classification quality:
the successes of these LFs, according to the experimental results given in Table 3, can
rather be called random (single, characteristic only of individual tuples of parameter values
(n_neighbors, min_dist). Working with these LFs can lead to a substantial increase in time
expenditure without any guarantee that the results expected from them will be obtained. It
should be emphasized that even the success of the LF L0 is only partial: the results depend
significantly on how successfully the initialization of the UMAP algorithm was performed.

Table 4 shows the main characteristics of the five best cost-sensitive classifiers from
Table 3, ranked in the first three places, as well as the main characteristics of the base
cost-sensitive classifier C1 (Table 2).

Mathematics 2024, 12, 538 25 of 38

Table 4. Characteristics cost-sensitive the winning classifiers of the rating and the base cost-sensitive
classifier C1.

Characteristics

Classifiers

Base Cost-Sensitive
C1

C3
(at h=2)

C7
(at h=28)

C7
(at h=26)

C7
(at h=28)

C3
(at h=6)

Number of features in the
dataset 39 41 67 65 67 45

Loss function - L0 L1 L2 L2 L4

n_neighbors - 10 20 15 20 20

min_dist - 0.3 0.3 0.3 0.3 0.3

gamma 0.8 0.5 0.7 0.5 0.5 0.4

C 0.4 0.8 0.6 1 1 1.3

MacroF1 − score (mean/SD) 0.907/0.052 0.924/0.047 0.921/0.045 0.921/0.048 0.923/0.047 0.921/0.045

Accuracy (mean/SD) 0.977/0.013 0.980/0.012 0.979/0.011 0.980/0.012 0.981/0.010 0.979/0.012

MacroRecall (mean/SD) 0.907/0.066 0.920/0.061 0.911/0.056 0.913/0.065 0.916/0.062 0.915/0.060

MacroPrecision (mean/SD) 0.923/0.053 0.943/0.046 0.944/0.052 0.943/0.053 0.945/0.050 0.941/0.045

Training time (mean/SD), s. 0.169/0.023 0.238/0.041 0.133/0.013 0.125/0.012 0.130/0.008 0.231/0.030

Quality metrics calculation
time (mean/SD), s. 0.011/0.003 0.017/0.007 0.011/0.002 0.012/0.001 0.013/0.001 0.017/0.007

As can be seen from Table 4, all winning cost-sensitive classifiers surpassed the
base cost-sensitive classifier C1 in terms of maximizing of the mean value of the met-
ric MacroF1− score (note that it was previously decided to use the mean value of the metric
MacroF1 − score of the base cost-sensitive classifier C1 as the base (threshold) values for
comparison). In addition, all winning cost-sensitive classifiers outperformed the base classi-
fier C1 (Table 2, [20]); the classifier C1, balanced using the SMOTE algorithm (Table 2, [20]);
and the classifier C7, balanced using the SMOTE algorithm (at h = 28) (Table 2, [20]) in
terms of maximizing of the mean value of the metric MacroF1 − score. In this case, there is
a decrease in the SD value for the metric MacroF1 − score, especially compared to the same
value of the base classifier C1 (Table 2, [20]).

In addition, we can notice an increase in the mean value of the metric MacroRecall
with a decrease in the SD value for the metric MacroRecall, especially compared to the
same value of the base classifier C1 (Table 2, [20]).

It should be noted that the winning cost-sensitive SVM classifiers are created on the
basis of datasets whose number of features is greater than the number of features in the
original 39-dimensional dataset.

Table 5 shows, for reference, the mean values of the metric MacroF1 − score and the
corresponding SD values for the best cost-sensitive classifiers of 12 types. Bold font in
Table 5 indicates information on the cost-sensitive classifiers that outperformed the base
cost-sensitive classifier C1 (information for which is marked in bold italics) in terms of
maximizing the mean value of the metric MacroF1 − score.

We can notice that cost-sensitive classifiers of all types, with the exception of the
cost-sensitive classifier C4, improved their mean values of the metric MacroF1 − score
compared to similar classifiers, during the development of which no manipulations were
used to overcome the problem of class imbalance (Table 2, [20]). First of all, it should be
noted that classifiers C1, C3, C7, C8, C10, C11 and C12, whose mean values of the metric
MacroF1 − score exceeded the similar value for the base classifier C1 (Table 2, [20]), turned
out to be more than 0.900.

Mathematics 2024, 12, 538 26 of 38

Table 5. Characteristic values for the best cost-sensitive classifiers of different types based on the
metric MacroF1 − score.

Characteristic
Classifiers

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Mean 0.907 * 0.874 0.924 ** 0.799 0.851 0.849 0.923 0.918 0.898 0.915 0.919 0.913
Standard deviation 0.052 0.079 0.047 0.108 0.065 0.067 0.047 0.047 0.063 0.053 0.054 0.065

* information for the base cost-sensitive classifier C1 is highlighted in italics; ** information for classifiers that
outperformed the base cost-sensitive classifier C1 in terms of maximizing the mean value of the metric MacroF1 −
score is highlighted in bold.

4.2.2. Identification of the Best Loss Functions in the UMAP Algorithm and Analysis of
Their Capabilities in the Context of the Formation of New Features

In order to answer Question 2 in Table 6 for each tuple of parameter values (n_neighbors,
min_dist) it is shown how many times a cost-sensitive classifier of a certain type performed
no worse than the base cost-sensitive classifier C1 in terms of maximizing the mean value of
the metric MacroF1 − score. Moreover, the percentage of successfulness to the total number
of experiments is indicated for each tuple of parameter values (n_neighbors, min_dist).
The total number of experiments is 19, because the dimension of space h in the UMAP
algorithm varies from 2 to 39 with a step of 2. Table 6 provides information only about
those cost-sensitive classifiers that that were no worse than the base cost-sensitive classifier
C1 more than once (in all experiments). It can be noted that, according to the information
from Table 5, the cost-sensitive classifier C12 outperformed the base cost-sensitive classifier
C1, but it did this only once (when using the LF L0 in the UMAP algorithm (at h = 2,
n_neighbors = 10 and min_dist = 0.3).

Table 6. Names of the best cost-sensitive SVM classifiers and their win rates.

Tuple of
Parameter Values

(n_neighbors, min_dist)

Loss Functions

L0 L1 L2 L3 L4

(10, 0.1)

C3: 0 (0%) C3: 2 (10.526%) C3: 2 (10.526%) C3: 1 (5.263%) C3: 3 (15.789%)
C7: 5 (26.316%) C7: 18 (94.737%) C7: 18 (94.737%) C7: 2 (10.526%) C7: 7 (36.842%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 9 (47.368%) C10: 0 (0%) C10: 0 (0%) C10: 0 (0%)
C11: 0 (0%) C11: 2 (10.526%) C11: 0 (0%) C11: 0 (0%) C11: 1 (5.263%)

(10, 0.2)

C3: 1 (5.263%) C3: 3 (15.789%) C3: 2 (10.526%) C3: 0 (0%) C3: 3 (15.789%)
C7: 7 (36.842%) C7: 18 (94.737%) C7: 17 (89.474%) C7: 1 (5.263%) C7: 3 (15.789%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 0 (0%) C10: 2 (10.526%) C10: 0 (0%) C10: 0 (0%)
C11: 0 (0%) C11: 2 (10.526%) C11: 0 (0%) C11: 0 (0%) C11: 1 (5.263%)

(10, 0.3)

C3: 1 (5.263%) C3: 2 (10.526%) C3: 2 (10.526%) C3: 0 (0%) C3: 3 (15.789%)
C7: 11 (57.895%) C7: 18 (94.737%) C7: 17 (89.474%) C7: 2 (10.526%) C7: 3 (15.789%)

C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)
C10: 0 (0%) C10: 2 (10.526%) C10: 1 (5.263%) C10: 0 (0%) C10: 0 (0%)

C11: 1 (5.263%) C11: 2 (10.526%) C11: 0 (0%) C11: 0 (0%) C11: 2 (10.526%)

(15, 0.1)

C3: 1 (5.263%) C3: 3 (15.789%) C3: 3 (15.789%) C3: 0 (0%) C3: 4 (21.053%)
C7: 4 (21.053%) C7: 18 (94.737%) C7: 18 (94.737%) C7: 4 (21.053%) C7: 15 (78.947%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 1 (5.263%) C10: 0 (0%) C10: 0 (0%) C10: 0 (0%) C10: 0 (0%)
C11: 0 (0%) C11: 1 (5.263%) C11: 1 (5.263%) C11: 0 (0%) C11: 3 (15.789%)

(15, 0.2)

C3: 2 (10.526%) C3: 2 (10.526%) C3: 0 (0%) C3: 1 (5.263%) C3: 4 (21.053%)
C7: 8 (42.105%) C7: 18 (94.737%) C7: 19 (100%) C7: 6 (31.579%) C7: 9 (47.368%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 1 (5.263%) C10: 3 (15.789%) C10: 5 (26.316%) C10: 0 (0%) C10: 0 (0%)
C11: 0 (0%) C11: 2 (10.526%) C11: 2 (10.526%) C11: 0 (0%) C11: 5 (26.316%)

(15, 0.3)

C3: 0 (0%) C3: 0 (0%) C3: 1 (5.263%) C3: 1 (5.263%) C3: 6 (31.579%)
C7: 4 (21.053%) C7: 18 (94.737%) C7: 19 (100%) C7: 4 (21.053%) C7: 7 (36.842%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 4 (21.053%) C10: 8 (42.105%) C10: 0 (0%) C10: 1 (5.263%)
C11: 0 (0%) C11: 2 (10.526%) C11: 2 (10.526%) C11: 0 (0%) C11: 4 (21.053%)

Mathematics 2024, 12, 538 27 of 38

Table 6. Cont.

Tuple of
Parameter Values

(n_neighbors, min_dist)

Loss Functions

L0 L1 L2 L3 L4

(20, 0.1)

C3: 1 (5.263%) C3: 3 (15.789%) C3: 1 (5.263%) C3: 2 (10.526%) C3: 9 (47.368%)
C7: 3 (15.789%) C7: 19 (100%) C7: 15 (78.947%) C7: 2 (10.526%) C7: 16 (84.211%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 6 (31.579%) C10: 4 (21.053%) C10: 0 (0%) C10: 1 (5.263%)
C11: 0 (0%) C11: 3 (15.789%) C11: 1 (5.263%) C11: 2 (10.526%) C11: (36.842%)

(20, 0.2)

C3: 1 (5.263%) C3: 4 (21.053%) C3: 2 (10.526%) C3: 1 (5.263%) C3: 15 (78.947%)
C7: 6 (31.579%) C7: 19 (100%) C7: 18 (94.737%) C7: 1 (5.263%) C7: 17 (89.474%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 4 (21.053%) C10: 0 (0%) C10: 0 (0%) C10: 2 (10.526%)
C11: 0 (0%) C11: 3 (15.789%) C11: 1 (5.263%) C11: 0 (0%) C11: 13 (68.421%)

(20, 0.3)

C3: 1 (5.263%) C3: 5 (26.316%) C3: 1 (5.263%) C3: 1 (5.263%) C3: 14 (73.684%)
C7: 7 (36.842%) C7: 19 (100%) C7: 19 (100%) C7: 2 (10.526%) C7: 16 (84.211%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 3 (15.789%) C10: 11 (57.895%) C10: 0 (0%) C10: 4 (21.053%)
C11: 0 (0%) C11: 5 (26.316%) C11: 2 (10.526%) C11: 0 (0%) C11: 11 (57.895%)

Analysis of the results given in Table 6 confirms the clear advantage of the LF L1: its
use allows us to develop cost-sensitive SVM classifiers of different types that exceed the
base cost-sensitive classifier C1 in terms of maximizing of the mean value of the metric
MacroF1 − score.

In addition, analysis of the results given in Table 6 allows us to notice that, usually,
the number of successful cost-sensitive classifiers C3 for each tuple of parameter values
(n_neighbors, min_dist) is no more than three. Most often, such situations arise when the
dimensionality h of the low-dimensional space in the UMAP algorithm is two, four or
six. However, when using the LF L4 in the UMAP algorithm, the number of successful
cost-sensitive classifiers C3 for each tuple of parameter values (n_neighbors, min_dist) is
always at least 3, and for tuples (n_neighbors, min_dist) taking values (20, 0.2) and (20, 0.3),
the number of successful cost-sensitive classifiers C3 is 15 and 14, respectively (i.e., such
classifiers are successful with different dimensions h of space (both small and large)).

It should be noted that all cost-sensitive SVM classifiers, indicated in Table 6, are
developed based on datasets whose number of features is greater than the number of
features in the original 39-dimensional dataset.

5. Discussion

Experimental results of creating SVM classifiers using the cost-sensitive SVM algorithm
confirmed that high data classification quality can be achieved through modification of
the original dataset by adding different combinations of new features on the basis of the
approximate entropy AE and the fractal dimensions KFD and HFD, as well as on the
basis of the UMAP algorithm. The most successful in terms of maximizing the mean
value of the metric MacroF1 − score turned out to be classifiers C3, C7 and C8, developed,
respectively, on the basis of the original three-class 39-dimensional datasets, supplemented,
respectively, with new features on the basis of the UMAP algorithm; on the basis of the
UMAP algorithm and the approximate entropy AE; as well as only on the basis of the
approximate entropy AE.

All winning classifiers, C3, C7, C11, C8, C10 and C12 (Table 5), presented in descending
order of the mean values of the metric MacroF1 − score, outperformed the base SVM
classifier (Table 2, [20]) in terms of maximizing the mean value of the metric MacroF1− score
by 5.359%, 5.245%, 4.789%, 4.675%, 4.333% and 4.105%, respectively.

All winning classifiers, C3, C7, C11, C8, C10 and C12 (Table 5), presented in de-
scending order of the mean values of the metric MacroF1 − score, outperformed the base
cost-sensitive classifier C1 (Table 2) in terms of maximizing the mean value of the metric
MacroF1 − score by 1.874%, 1.764%, 1.323%, 1.2135, 0.882% and 0.662%, respectively.

Mathematics 2024, 12, 538 28 of 38

Also, all winning classifiers, C3, C7, C11, C8, C10 and C12 (Table 5), presented in
descending order of the mean values of the metric MacroF1 − score, outperformed the best
classifier C1 on the basis of the SMOTE algorithm (Table 2, [20]) in terms of maximizing of
the mean value of the metric MacroF1 − score by 1.538%, 1.429%, 0.989%, 0.879%, 0.549%
and 0.330%, respectively.

In addition, five out of the six winning classifiers, C3, C7, C11, C8, C10 and C12
(Table 5)—namely classifiers C3, C7, C11, C8 and C10, presented in descending order of
the mean values of the metric MacroF1 − score—outperformed the best classifier C7 on the
basis of the SMOTE algorithm (Table 2, [20]) in terms of maximizing the mean value of
the metric MacroF1 − score by 1.094%, 0.985%, 0.547%, 0.438% and 0.109%, respectively.
Only classifier C12 turned out to be worse than the best classifier C7 on the basis of the
SMOTE algorithm (Table 2, [20]) in terms of maximizing the mean value of the metric
MacroF1 − score by 0.109%.

We can see that the advantage of the best cost-sensitive classifiers over the best classi-
fiers C1 and C7 on the basis of the SMOTE algorithm is not very large. However, it was
possible to significantly reduce the time expenditures for developing and testing classifiers
(Table 4) compared to similar time estimates obtained when developing classifiers using
the SMOTE algorithm, which implements the strategy of oversampling new data patterns
(Table 2, [20]).

So, for example, we can compare the total time spent on the training and testing of
the cost-sensitive classifiers C7, recognized as the best in the proposed study and in [20].
They are created on the basis of the original 39-dimensional dataset, supplemented with
features created on the basis of the approximate entropy AE and the UMAP algorithm. At
the same time, in [20], the library implementation of the UMAP algorithm with the default
parameter values is applied, and in the proposed study for the UMAP algorithm, the value
enumeration of the parameters n_neighbors and min_dist is implemented for five LFs with
the choice of the best variant. However, the CIP is solved differently in the proposed study
and in [20]. The best SVM classifier in [20] is the classifier C7, in which the CIP was solved
using the oversampling SMOTE algorithm. One of the best cost-sensitive SVM classifiers in
the proposed study is the cost-sensitive classifier C7 (Table 4), for which the CIP was solved
using the CSL concept. In this case, the LF L2 was used in the UMAP algorithm, and the
parameters n_neighbors and min_dist took the values 20 and 0.3, respectively. The total time
spent on the training and testing of the cost-sensitive classifier C7 in the proposed study
turned out to be only 1.1 times longer than the time to develop the base classifier C1 and
1.26 times less than the time to develop the base cost-sensitive classifier C1, while it took
3.48 times less than the same time for classifier C7 built using the SMOTE algorithm and
being the best in [20], as well as 6.29 times less than the same time for classifier C1 built
using the SMOTE algorithm [20].

The function L1 that implements the calculation of fuzzy cross-entropy with FGD
should be recognized as the best function in the context of working with different LFs in
the UMAP algorithm in order to form new features that complement the original dataset
and ensure the development of classifiers with high data classification quality. The function
L3 that implements the calculation of intuitionistic fuzzy cross-entropy with FGD and then
the LF L0 that implements the calculation of implicitly set LF should be recognized as the
worst LFs. Such conclusions were made based on the efficiency of these LFs in terms of
embedding of the original 39-dimensional dataset into spaces of arbitrary dimensions h
(from 2 to 38 with a step of 2) in the context of the formation of new datasets and the further
development of a classifier with high data classification quality, superior to the quality of
the base cost-sensitive classifier C1. Thus, the function L1 was successful in these terms
for all space dimensions h, while the successes of the function L3 were solitary. The L0
function’s successes were also solitary. Although the use of the function L0 made it possible
to obtain the best classifier C3 in the terms of maximizing the mean value of the metric
MacroF1 − score, that is, the absolute winning classifier in our rating (Table 3), the use of
this LF is associated with selecting the value of another parameter, namely the random_state

Mathematics 2024, 12, 538 29 of 38

parameter, affecting the final results of UMAP algorithm. This leads to additional time
expenditures without a guaranteed expected result. The LFs L2 and L4 turned out to be
less successful than the LF L1 in the terms under consideration but more successful than
the LFs L0 and L3. However, their use in the UMAP algorithm made it possible to obtain
the winning classifiers in our rating (Table 3), so it is advisable to use them (in the absence
of significant restrictions on the time spent on the development of high-quality classifiers).

In order to statistically test the superiority of the developed classifiers, which solve the
CIP in different ways, over other classifiers, we applied the Wilcoxon signed rank test [94,95]
to the obtained quality estimates of various classifiers. To obtain statistically representative
results, we repeated the evaluation of each pair of classifiers using stratified 10-fold cross-
validation [90,91] with three-time repetition: each time, the datasets were divided into
10 blocks, and the classifiers were evaluated on 10 different parts of each dataset. This was
performed three times. Thus, each of the resulting classifier quality distributions contained
a total of 30 values. The distribution obtained for the base classifier C1 based on the original
dataset was compared with all other distributions obtained for other classifiers in this study.
When assessing the quality of the classifiers, we considered the metrics MacroF1 − score
and Recall, as well as estimates of the training time and testing time of the classifiers. The
values of metrics MacroF1 − score and Recall should be maximized. Estimates of training
time and testing time for classifiers should be minimized.

According to the null hypothesis H0, the two compared distributions did not have
statistically significant differences [94,95]. The p-value was set to 0.05. The obtained results
are presented in Tables A4–A7 in Appendix C. We compared the classifiers developed
in this study with the base SVM classifier based on the original dataset [20], with the
SVM classifier based on the original dataset and the SMOTE algorithm [20], and also
with the SVM classifier based on the original dataset expanded using features based on
the approximate entropy AE, the UMAP algorithm and the SMOTE algorithm [20]. In
Tables A4–A7, the “=“ sign means that there are no statistically significant differences
between the compared distributions of the classifiers, the “+” sign means that the classifier
in the row header is superior to the classifier in the column header, and the “–” sign means
the opposite.

According to Table A4, classifiers C3 (at h = 2) with L0, C7 (at h = 28) with L1, C7 (at
h = 26) with L2, C7 (at h = 28) with L2, C3 (at h = 6) with L4 and balanced C7 (at h = 28)
using the SMOTE algorithm [20] surpassed the base classifier C1 as measured by the metric
MacroF1 − score. The base cost-sensitive classifier C1 and the balanced classifier C1 using
the SMOTE algorithm [20] have no statistically significant differences from the base C1 by
this metric. When comparing the classifiers developed in the proposed study using the
same metric with classifiers developed using the SMOTE algorithm [20], it was possible to
reveal only the superiority of the C3 classifier (at h = 2) with L0.

According to Table A5, all classifiers that solve the CIP in one way or another out-
performed the base classifier C1 as measured by the metric Recall. When comparing the
values of the same metric of the classifiers developed in the proposed study with classi-
fiers developed using the SMOTE algorithm [20], it was also possible to reveal only the
superiority of the C3 classifier (at h = 2) with L0.

According to Table A6, all classifiers that solve the CIP in one way or another lose to
the base classifier C1 in training time (which was expected). When comparing the training
time of the classifiers developed in the proposed study with the classifiers developed using
the SMOTE algorithm [20], the superiority of the cost-sensitive classifiers is observed. At
the same time, the balanced classifier C7 (at h = 28) using the SMOTE algorithm [20]
outperformed the balanced classifier C1 using the SMOTE algorithm [20] in training time
(possibly due to better separability of classes).

According to Table A7, all classifiers that solve the CIP in one way or another lose to
the base classifier C1 in terms of testing time (which was expected). When comparing the
testing time of the classifiers developed in the proposed study with the same time of the
balanced classifier C1 using the SMOTE algorithm [20], the superiority of the cost-sensitive

Mathematics 2024, 12, 538 30 of 38

classifiers is observed, with the exception of the classifier C3 (at h = 2) with L0 that lost.
At the same time, the balanced classifier C7 (at h = 28) using the SMOTE algorithm [20]
outperformed all classifiers in testing time except the base classifier C1, which it lost to.

In general, the following should be noted. All classifiers that solve the CIP in one way
or another and are developed on the basis of modified datasets are superior to the base
classifier C1 by the metrics MacroF1 − score and Recall.

The best cost-sensitive classifiers developed in the proposed study outperform the
base cost-sensitive C1 in terms of metrics MacroF1 − score and Recall; however, they do
not have statistical differences among themselves in these metrics. In terms of training time
and classifier testing time, all these classifiers are statistically different. Therefore, when
choosing a classifier, one can focus, for example, on the minimal time required to train a
classifier. Thus, classifier C7 (at h = 26) with L2 provides minimal time of training.

In general, limitations on the applicability of the proposed approach may be due to
the following reasons. First, we may experience limitations caused by the computational
complexity of developing SVM classifiers using standard implementations of the SVM
algorithm. However, this problem can be solved using modern SVM solvers [87–89].
Secondly, certain problems may be caused by the very nature of the used dataset. Data
should be subjected to exploratory analysis and, if possible, cleared of omissions, outliers
and similar defects. In the case of data of very poor quality, their preprocessing can lead
to an even greater imbalance of classes, up to the loss of a significant part of the patterns
belonging to minority classes. In this regard, a qualitative solution to the imbalance problem
using CSL algorithms or, for example, oversampling algorithms will be questionable. In
addition, the nature of the used dataset may be such that the data of different classes in
it will initially be poorly separable, for example, due to the poor separability of patterns
determined by blood protein markers according to their membership in different classes.
In this regard, both attempts to develop SVM classifiers based on the original dataset and
attempts to generate new features, for example, based on approximation entropy and
the UMAP algorithm, will be unsuccessful: new features will not improve the quality
of dividing data patterns into different classes. Third, it should be noted that additional
experiments are needed when determining penalties for misclassifying patterns of different
classes in the case of CSL or when determining the class ratio that should be achieved after
restoring the balance, for example, using oversampling algorithms.

In the proposed study, we used a dataset, the properties of which were previously
studied in detail in [13,14,20], and in [20] it was noted that there was no strong correlation
both between the features of the original dataset and when introducing those new features
approved for use.

In the proposed study, we used a dataset, the properties of which were previously
studied in detail in [13,14,20], including in [20], where it was noted that there was no strong
correlation both between the features of the original dataset and when introducing those
approved for use new features.

It should be noted that the combination of the CSL principles and the approach pro-
posed in [20] to the creation of datasets by forming new features using various technologies
with their acquisition and application as a new dataset or adding to the original dataset may
be considered appropriate. In this case, varying the values of the parameters n_neighbors
and min_dist, as well as working with several LFs in the UMAP algorithm, ultimately
made it possible to obtain qualitatively better cost-sensitive SVM classifiers in terms of
maximizing the mean value of the metric MacroF1 − score.

6. Conclusions

In this research, we investigated a previously suggested approach [20] for the diagnosis
of cancer using blood protein markers through creation of the SVM classifiers on the basis
of datasets with a variety of features of different nature. These features may correspond to
blood protein markers or be constructed using methods for calculating entropy and fractal
dimensions, as well as using the UMAP algorithm. These medical datasets are imbalanced.

Mathematics 2024, 12, 538 31 of 38

To overcome the class imbalance problem, the concept of cost-sensitive learning was
implemented, the use of which allowed the best developed SVM classifiers to outperform
the base SVM classifier in data classification quality and the best SVM classifiers developed
on the basis of the oversampling strategy, not only in data classification quality but also in
the time spent on their development. The most successful in terms of maximizing the mean
value of the metric MacroF1 − score are the following cost-sensitive SVM classifiers, listed
in descending order of successfulness: C3, C7, C8, C11 and C10. The UMAP algorithm
was applied to create new features in datasets used to develop classifiers C3, C7 and
C11. The approximate entropy was applied to create a new feature in datasets used to
develop classifiers C7, C8 and C10. The Katz and Higuchi fractal dimensions were applied
to create new features in datasets used to develop classifiers C10 and C11. Each time,
new features supplemented the original dataset. We showed that to create additional
features on the basis of the UMAP algorithm, it is advisable to use the LFs L1, L2 and L4,
defined explicitly by formulas (13), (14) and (10). The use of an implicitly defined LF, which
we called L0, applied in the library implementation [80], is complicated because of the
impossibility of explicitly estimating the values for the LF, although it cannot be considered
unambiguously inexpedient.

The purpose of further research is to explore ways to improve data classification quality
by forming new features on the basis of various dimensionality reduction algorithms, such
as UMAP [53], t-SNE [77], TriMAP (Triplet Manifold Approximation) [96] and PaCMAP
(Pairwise Controlled Manifold Approximation) [97], for which both the initialization of
the initial embedding of patterns into low-dimensional space and the optimization of the
embedding of patterns into low-dimensional space are performed in different manners. We
also plan to implement a simultaneous combination of CSL and oversampling technologies
with the selection of the best combinations of penalties and the best class proportions when
synthesizing new data patterns.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in [54].

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

Table A1. Names of concepts and their abbreviations.

Name
of Concept Abbreviation

ADASYN ADaptive SYNthetic sampling approach
AE Approximate Entropy
AUC Area Under Curve
CIP Class Imbalance Problem
COSMIC Catalog of Somatic Mutations in Cancer
CSL Cost-Sensitivity Learning
BPM Blood Protein Marker
FGD Full Gradient Descent
GT Gene Test
HC Hjorth Complexity
HFD Higuchi Fractal Dimension
HM Hjorth Mobility
KFD Katz Fractal Dimension
DL Deep Learning
DM Data Mining
kNN k-Nearest Neighbors
LF Loss Function

Mathematics 2024, 12, 538 32 of 38

Table A1. Cont.

Name
of Concept Abbreviation

LR Logistic Regression
ML Machine Learning
OD Oncological Disease
OvO One-vs-One strategy
OvR One-vs-Rest strategy
PaCMAP Pairwise Controlled Manifold Approximation
PFD Petrosian Fractal Dimension
PT Protein Test
SGD Stochastic Gradient Descent
SMOTE Synthetic Minority Over-Sampling Technique
SVDE Singular Value Decomposition Entropy
SVM Support Vector Machine
RBF Radial Basis Function
RF Random Forest
RQ Research Question
t-SNE T-Distributed Stochastic Neighbor Embedding
TriMAP Triplet Manifold Approximation
SE Sample Entropy
SD Standard Deviation
SPE SPectral Entropy
UMAP Uniform Manifold Approximation and Projection

Table A2. Datasets and the composition of their features.

Dataset Name The Composition of Features

C1 FOD *
C2 FUMAP **
C3 FOD, FUMAP
C4 FUMAP, FAE ***
C5 FUMAP, FHKFR ****
C6 FUMAP, FAE, FHKFR
C7 FOD, FUMAP, FAE
C8 FOD, FAE
C9 FOD, FHKFR

C10 FOD, FAE, FHKFR
C11 FOD, FUMAP, FHKFR
C12 FOD FUMAP, FAE, FHKFR

* FOD are the Features of the Original Dataset; ** FUMAP are the Features on the basis of the UMAP algorithm;
*** FAE is the Feature on the basis of Approximate Entropy; **** FHKFR are the Features on the basis of Higuchi
and Katz Fractal Dimensions.

Table A3. Basic algorithms and description of their changeable parameters.

Algorithm Parameter Parameter Value or Range
with Step of Change

SVM
C is the regularization parameter (C in the scikit-learn library of Python) [0.4, 2] with a step of 0.1
σ (σ > 0) is the parameter of the RBF kernel (gamma in the scikit-learn library of
Python) [0.4, 2] with a step of 0.1

UMAP

k in the number of nearest neighbors that are found for each pattern in the
high-dimensional space (n_neighbors in the software library [80]) [10, 20] with a step of 5

dmin is the threshold distance (dmin ∈ (0, 1]) that influences the density of clusters
created in the low-dimensional space (min_dist in the software library [80]) [0.1, 0.3] with a step of 0.1

h is the dimension of the low-dimensional space (n_components in the software
library [80]) [2, 38] with a step of 2

metric is the distance metric in the software library [80] Euclidean
random_state is the parameter responsible for initialization of UMAP algorithm and
reproducibility of results in the software library [80] 42

Mathematics 2024, 12, 538 33 of 38

Appendix B

Mathematics 2024, 12, x FOR PEER REVIEW 33 of 39

Table A3. Basic algorithms and description of their changeable parameters.

Algorithm Parameter
Parameter Value or Range with Step of

Change

SVM

𝐶 is the regularization parameter (𝐶 in the scikit-learn library of
Python)

[0.4, 2] with a step of 0.1

𝜎 (𝜎 0) is the parameter of the RBF kernel (𝑔𝑎𝑚𝑚𝑎 in the scikit-
learn library of Python)

[0.4, 2] with a step of 0.1

UMAP

𝑘 in the number of nearest neighbors that are found for each pattern

in the high-dimensional space (n_neighbors in the software library

[80])

[10, 20] with a step of 5

𝑑 is the threshold distance (𝑑 ∈ 0, 1) that influences the

density of clusters created in the low-dimensional space (min_dist in

the software library [80])

[0.1, 0.3] with a step of 0.1

ℎ is the dimension of the low-dimensional space (n_components in

the software library [80])
[2, 38] with a step of 2

metric is the distance metric in the software library [80] Euclidean

random_state is the parameter responsible for initialization of UMAP

algorithm and reproducibility of results in the software library [80]
42

Appendix B

(a)

(b)

(c)

(d)

Figure A1. Graphical dependencies for LFs obtained by constructing embeddings of the original
39-dimensional three-class dataset in the two-dimensional space on the basis of the UMAP algo-
rithm with various LFs with parameter values n_neighbors and min_dist, ensuring the creation of
the best cost-sensitive classifiers C3 (at h = 2) in the terms of maximizing the mean value of the
metric MacroF1 − score) presented in Figure 3. (a) L1: LF based on fuzzy cross-entropy with FGD
(n_neighbors = 15; min_dist = 0.1; MacroF1− score : mean = 0.918; SD = 0.049); (b) L2: LF based on sym-
metric fuzzy cross-entropy with FGD (n_neighbors = 15; min_dist = 0.1; MacroF1− score : mean = 0.916;
SD = 0.047); (c) L3: LF based on intuitionistic fuzzy cross-entropy with FGD (n_neighbors = 15;
min_dist = 0.3; MacroF1 − score : mean = 0.914; SD = 0.055); (d) L4: LF based on weighted fuzzy
cross-entropy with FGD (n_neighbors = 20; min_dist = 0.2; MacroF1 − score : mean = 0.915; SD = 0.044).

Appendix C

Table A4. Results of the Wilcoxon signed rank test applied to classifiers, which were estimated on the
basis of the metric MacroF1 − score.

Classifier Base C1
Balanced C1

Using SMOTE
Algorithm [20]

Balanced C7 (at h = 28)
Using SMOTE
Algorithm [20]

Classifier Sign p-Value Sign p-Value Sign p-Value

base cost-sensitive C1 = 0.071 = 0.950 = 0.761
C3 (at h = 2) with L0 + 0.002 = 0.200 + 0.034

C7 (at h = 28) with L1 + 0.005 = 0.214 = 0.594
C7 (at h = 26) with L2 + 0.004 = 0.252 = 0.462
C7 (at h = 28) with L2 + 0.004 = 0.147 = 0.795
C3 (at h = 6) with L4 + 0.008 = 0.178 = 0.795

balanced C1
using SMOTE
algorithm [20]

= 0.125 Not Not = 0.795

balanced C7 (at h = 28) using SMOTE
algorithm [20] + 0.021 = 0.795 Not Not

Mathematics 2024, 12, 538 34 of 38

Table A5. Results of the Wilcoxon signed rank test applied to classifiers, which were estimated on the
basis of the metric Recall.

Classifier Base C1
Balanced C1

Using SMOTE
Algorithm [20]

Balanced C7 (at h = 28)
Using SMOTE
Algorithm [20]

Classifier Sign p-Value Sign p-Value Sign p-Value

base cost-sensitive C1 + 0.001 = 0.740 = 0.102
C3 (at h = 2) with L0 + 4.571 × 10−5 = 0.153 + 0.039

C7 (at h = 28) with L1 + 2.194 × 10−4 = 0.331 = 0.810
C7 (at h = 26) with L2 + 3.405 × 10−4 = 0.365 = 0.576
C7 (at h = 28) with L2 + 2.682 × 10−4 = 0.207 = 0.420
C3 (at h = 6) with L4 + 2.309 × 10−4 = 0.283 = 0.909

balanced C1
using SMOTE
algorithm [20]

+ 0.004 Not Not = 0.724

balanced C7 (at h = 28) using SMOTE
algorithm [20] + 2.043 × 10−4 = 0.724 Not Not

Table A6. Results of the Wilcoxon signed rank test applied to classifiers, which were estimated on the
basis time of training.

Classifier Base C1
Balanced C1

Using SMOTE
Algorithm [20]

Balanced C7 (at h = 28)
Using SMOTE
Algorithm [20]

Classifier Sign p-Value Sign p-Value Sign p-Value

base cost-sensitive C1 − 1.863 × 10−9 + 1.863 × 10−9 + 1.863 × 10−9

C3 (at h = 2) with L0 − 1.863 × 10−9 + 1.863 × 10−9 + 1.863 × 10−9

C7 (at h = 28) with L1 − 1.863 × 10−9 + 1.863 × 10−9 + 1.863 × 10−9

C7 (at h = 26) with L2 − 3.725 × 10−9 + 1.863 × 10−9 + 1.863 × 10−9

C7 (at h = 28) with L2 − 3.725 × 10−9 + 1.863 × 10−9 + 1.863 × 10−9

C3 (at h = 6) with L4 − 5.588 × 10−9 + 1.863 × 10−9 + 3.239 × 10−6

balanced C1
using SMOTE
algorithm [20]

− 1.863 × 10−9 Not Not − 1.863 × 10−9

balanced C7 (at h = 28) using SMOTE
algorithm [20] − 1.863 × 10−9 + 1.863 × 10−9 Not Not

Table A7. Results of the Wilcoxon signed rank test applied to classifiers, which were estimated on the
basis time of testing.

Classifier Base C1
Balanced C1

Using SMOTE
Algorithm [20]

Balanced C7 (at h = 28)
Using SMOTE
Algorithm [20]

Classifier Sign p-Value Sign p-Value Sign p-Value

base cost-sensitive C1 − 2.608 × 10−8 + 0.013 − 1.863 × 10−8

C3 (at h = 2) with L0 − 1.106 × 10−4 − 0.002 − 0.003
C7 (at h = 28) with L1 − 2.608 × 10−8 + 0.0128 − 1.863 × 10−8

C7 (at h = 26) with L2 − 3.725 × 10−9 + 1.863 × 10−8 − 2.608 × 10−8

C7 (at h = 28) with L2 − 3.725 × 10−9 + 1.863 × 10−8 − 2.608 × 10−8

C3 (at h = 6) with L4 − 2.608 × 10−8 + 0.013 − 1.863 × 10−8

balanced C1
using SMOTE
algorithm [20]

− 1.863 × 10−9 Not Not − 1.863 × 10−9

balanced C7 (at h = 28) using SMOTE
algorithm [20] − 0.002 + 1.863 × 10−9 Not Not

Mathematics 2024, 12, 538 35 of 38

References
1. 2021 Global Health Care Outlook. Available online: https://www2.deloitte.com/cn/en/pages/life-sciences-and-healthcare/

articles/2021-global-healthcare-outlook.html (accessed on 4 January 2024).
2. Slim, K.; Selvy, M.; Veziant, J. Conceptual innovation: 4P Medicine and 4P surgery. J. Visc. Surg. 2021, 158, S12–S17. [CrossRef]

[PubMed]
3. Brar, A.; Zhu, A.; Baciu, C.; Sharma, D.; Xu, W.; Orchanian-Cheff, A.; Wang, B.; Reimand, J.; Grant, R.; Bhat, M. Development of

diagnostic and prognostic molecular biomarkers in hepatocellular carcinoma using machine learning: A systematic review. Liver
Cancer Int. 2022, 3, 141–161. [CrossRef]

4. Li, P.; Xu, S.; Han, Y.; He, H.; Liu, Z. Machine learning-empowered cis-diol metabolic fingerprinting enables precise diagnosis of
primary liver cancer. Chem. Sci. 2023, 14, 2553–2561. [CrossRef]

5. Ma, J.; Bo, Z.; Zhao, Z.; Yang, J.; Yang, Y.; Li, H.; Yang, Y.; Wang, J.; Su, Q.; Wang, J.; et al. Machine Learning to Predict the
Response to Lenvatinib Combined with Transarterial Chemoembolization for Unresectable Hepatocellular Carcinoma. Cancers
2023, 15, 625. [CrossRef] [PubMed]

6. Fu, Y.; Si, A.; Wei, X.; Lin, X.; Ma, Y.; Qiu, H.; Guo, Z.; Pan, Y.; Zhang, Y.; Kong, X.; et al. Combining a machine-learning derived
4-lncRNA signature with AFP and TNM stages in predicting early recurrence of hepatocellular carcinoma. BMC Genom. 2023,
24, 89. [CrossRef] [PubMed]

7. Iseke, S.; Zeevi, T.; Kucukkaya, A.S.; Raju, R.; Gross, M.; Haider, S.P.; Petukhova-Greenstein, A.; Kuhn, T.N.; Lin, M.;
Nowak, M.; et al. Machine Learning Models for Prediction of Posttreatment Recurrence in Early-Stage Hepatocellular Carcinoma
Using Pretreatment Clinical and MRI Features: A Proof-of-Concept Study. AJR Am. J. Roentgenol. 2023, 220, 245–255. [CrossRef]
[PubMed]

8. Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep learning-based multi-omics integration robustly predicts survival in liver
cancer. Clin. Cancer Res. 2018, 24, 1248–1259. [CrossRef] [PubMed]

9. Lv, J.; Wang, J.; Shang, X.; Liu, F.; Guo, S. Survival prediction in patients with colon adenocarcinoma via multi-omics data
integration using a deep learning algorithm. Biosci. Rep. 2020, 40, BSR20201482. [CrossRef] [PubMed]

10. Lee, T.Y.; Huang, K.Y.; Chuang, C.H.; Lee, C.Y.; Chang, T.H. Incorporating deep learning and multi-omics autoencoding for
analysis of lung adenocarcinoma prognostication. Comput. Biol. 2020, 87, 107277. [CrossRef]

11. Nam, D.; Chapiro, J.; Paradis, V.; Seraphin, T.P.; Kather, J.N. Artificial intelligence in liver diseases: Improving diagnostics,
prognostics and response prediction. JHEP Rep. 2022, 4, 100443. [CrossRef]

12. Kawka, M.; Dawidziuk, A.; Jiao, L.R.; Gall, T.M.H. Artificial intelligence in the detection, characterisation and prediction of
hepatocellular carcinoma: A narrative review. Transl. Gastroenterol. Hepatol. 2022, 7, 41. [CrossRef]

13. Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection
and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [CrossRef]

14. Song, C.; Li, X. Cost-Sensitive KNN Algorithm for Cancer Prediction Based on Entropy Analysis. Entropy 2022, 24, 253. [CrossRef]
[PubMed]

15. Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of Support Vector Machine (SVM) Learning in
Cancer Genomics. Cancer Genom. Proteom. 2018, 15, 41–51. [CrossRef]

16. Toth, R.; Schiffmann, H.; Hube-Magg, C.; Büscheck, F.; Höflmayer, D.; Weidemann, S.; Lebok, P.; Fraune, C.; Minner, S.;
Schlomm, T.; et al. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin. Epigenet. 2019, 11,
148. [CrossRef]

17. Pan, L.Y.; Liu, G.J.; Lin, F.Q.; Zhong, S.L.; Xia, H.M.; Sun, X.; Liang, H.Y. Machine Learning Applications for Prediction of Relapse
in Childhood Acute Lymphoblastic Leukemia. Sci. Rep. 2017, 7, 7402. [CrossRef]

18. Abreu, P.H.; Santos, M.S.; Abreu, M.H.; Andrade, B.; Silva, D.C. Predicting Breast Cancer Recurrence using Machine Learning
Techniques: A Systematic Review. ACM Comput. Surv. 2017, 49, 52. [CrossRef]

19. Savareh, B.A.; Aghdaie, H.A.; Behmanesh, A.; Bashiri, A.; Sadeghi, A.; Zali, M.; Shams, R. A machine learning approach identified
a diagnostic model for pancreatic cancer through using circulating microRNA signatures. Pancreatology 2020, 20, 1195–1204.
[CrossRef]

20. Demidova, L.A. A Novel Approach to Decision-Making on Diagnosing Oncological Diseases Using Machine Learning Classifiers
Based on Datasets Combining Known and/or New Generated Features of a Different Nature. Mathematics 2023, 11, 792. [CrossRef]

21. Li, G.; Hu, J.; Hu, G. Biomarker Studies in Early Detection and Prognosis of Breast Cancer. Adv. Exp. Med. Biol. 2017, 1026, 27–39.
[CrossRef]

22. Loke, S.Y.; Lee, A.S.G. The future of blood-based biomarkers for the early detection of breast cancer. Eur. J. Cancer. 2018, 92, 54–68.
[CrossRef] [PubMed]

23. Killock, D. CancerSEEK and destroy—A blood test for early cancer detection. Nat. Rev. Clin. Oncol. 2018, 15, 133. [CrossRef]
[PubMed]

24. Kalinich, M.; Haber, D.A. Cancer detection: Seeking signals in blood. Science 2018, 359, 866–867. [CrossRef]
25. Mansur, A.; Vrionis, A.; Charles, J.P.; Hancel, K.; Panagides, J.C.; Moloudi, F.; Iqbal, S.; Daye, D. The Role of Artificial Intelligence

in the Detection and Implementation of Biomarkers for Hepatocellular Carcinoma: Outlook and Opportunities. Cancers 2023,
15, 2928. [CrossRef] [PubMed]

https://www2.deloitte.com/cn/en/pages/life-sciences-and-healthcare/articles/2021-global-healthcare-outlook.html
https://www2.deloitte.com/cn/en/pages/life-sciences-and-healthcare/articles/2021-global-healthcare-outlook.html
https://doi.org/10.1016/j.jviscsurg.2021.01.003
https://www.ncbi.nlm.nih.gov/pubmed/33714709
https://doi.org/10.1002/lci2.66
https://doi.org/10.1039/D2SC05541D
https://doi.org/10.3390/cancers15030625
https://www.ncbi.nlm.nih.gov/pubmed/36765583
https://doi.org/10.1186/s12864-023-09194-8
https://www.ncbi.nlm.nih.gov/pubmed/36849926
https://doi.org/10.2214/AJR.22.28077
https://www.ncbi.nlm.nih.gov/pubmed/35975886
https://doi.org/10.1158/1078-0432.CCR-17-0853
https://www.ncbi.nlm.nih.gov/pubmed/28982688
https://doi.org/10.1042/BSR20201482
https://www.ncbi.nlm.nih.gov/pubmed/33258470
https://doi.org/10.1016/j.compbiolchem.2020.107277
https://doi.org/10.1016/j.jhepr.2022.100443
https://doi.org/10.21037/tgh-20-242
https://doi.org/10.1126/science.aar3247
https://doi.org/10.3390/e24020253
https://www.ncbi.nlm.nih.gov/pubmed/35205547
https://doi.org/10.21873/cgp.20063
https://doi.org/10.1186/s13148-019-0736-8
https://doi.org/10.1038/s41598-017-07408-0
https://doi.org/10.1145/2988544
https://doi.org/10.1016/j.pan.2020.07.399
https://doi.org/10.3390/math11040792
https://doi.org/10.1007/978-981-10-6020-5_2
https://doi.org/10.1016/j.ejca.2017.12.025
https://www.ncbi.nlm.nih.gov/pubmed/29413690
https://doi.org/10.1038/nrclinonc.2018.21
https://www.ncbi.nlm.nih.gov/pubmed/29405203
https://doi.org/10.1126/science.aas9102
https://doi.org/10.3390/cancers15112928
https://www.ncbi.nlm.nih.gov/pubmed/37296890

Mathematics 2024, 12, 538 36 of 38

26. Hao, Y.; Jing, X.Y.; Sun, Q. Joint learning sample similarity and correlation representation for cancer survival prediction. BMC
Bioinform. 2022, 23, 553. [CrossRef]

27. Núñez, C. Blood-based protein biomarkers in breast cancer. Clin. Chim. Acta. 2019, 490, 113–127. [CrossRef]
28. Du, Z.; Liu, X.; Wei, X.; Luo, H.; Li, P.; Shi, M.; Guo, B.; Cui, Y.; Su, Z.; Zeng, J.; et al. Quantitative proteomics identifes a plasma

multi protein model for detection of hepatocellular carcinoma. Sci. Rep. 2020, 10, 15552. [CrossRef]
29. Siers, M.J.; Md Zahidul, I. Class Imbalance and Cost-Sensitive Decision Trees: A Unified Survey Based on a Core Similarity. ACM

Trans. Knowl. Discov. Data. 2020, 15, 4. [CrossRef]
30. Rekha, G.; Tyagi, A.K.; Reddy, V.K. A Wide Scale Classification of Class Imbalance Problem and its Solutions: A Systematic

Literature Review. J. Comput. Sci. 2019, 15, 886–929. [CrossRef]
31. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
32. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In

Advances in Intelligent Computing; Huang, D.S., Zhang, X.P., Huang, G.B., Eds.; ICIC 2005. Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2005; Volume 3644, pp. 878–887. [CrossRef]

33. He, H.; Bay, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of
the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong
Kong, China, 1–8 June 2008; pp. 1322–1328. [CrossRef]

34. Swana, E.F.; Doorsamy, W.; Bokoro, P. Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced
Dataset. Sensors 2022, 22, 3246. [CrossRef]

35. Tomek, I. Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 1976, 6, 769–772. [CrossRef]
36. Ling, C.X.; Sheng, V.S. Cost-Sensitive Learning. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer:

Boston, MA, USA, 2011. [CrossRef]
37. Xu, R.; Wang, J.; Zhu, Q.; Zou, C.; Wei, Z.; Wang, H.; Ding, Z.; Meng, M.; Wei, H.; Xia, S.; et al. Integrated models of blood protein

and metabolite enhance the diagnostic accuracy for Non-Small Cell Lung Cancer. Biomark. Res. 2023, 11, 71. [CrossRef]
38. Luan, Y.; Zhong, G.; Li, S.; Wu, W.; Liu, X.; Zhu, D.; Feng, Y.; Zhang, Y.; Duan, C.; Mao, M. A panel of seven protein tumour markers

for effective and affordable multi-cancer early detection by artificial intelligence: A large-scale and multicentre case-control study.
EClinicalMedicine 2023, 61, 102041. [CrossRef]

39. Demidova, L.A. Two-stage hybrid data classifiers based on SVM and kNN algorithms. Symmetry 2021, 13, 615. [CrossRef]
40. Zanin, M.; Zunino, L.; Rosso, O.A.; Papo, D. Permutation Entropy and Its Main Biomedical and Econophysics Applications: A

Review. Entropy 2012, 14, 1553–1577. [CrossRef]
41. Zhang, A.; Yang, B.; Huang, L. Feature Extraction of EEG Signals Using Power Spectral Entropy. In Proceedings of the International

Conference on BioMedical Engineering and Informatics, Sanya, China, 27–30 May 2008; Volume 2, pp. 435–439. [CrossRef]
42. Weng, X.; Perry, A.; Maroun, M.; Vuong, L.T. Singular Value Decomposition and Entropy Dimension of Fractals. arXiv 2022,

arXiv:2211.12338. [CrossRef]
43. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [CrossRef]
44. Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. Comput. 1991,

7, 335–345. [CrossRef]
45. Delgado-Bonal, A.; Marshak, A. Approximate Entropy and Sample Entropy: A Comprehensive Tutorial. Entropy 2019, 21, 541.

[CrossRef] [PubMed]
46. Hjorth, B. EEG Analysis Based on Time Domain Properties. Electroencephalogr. Clin. Neurophysiol. 1970, 29, 306–310. [CrossRef]
47. Galvão, F.; Alarcão, S.M.; Fonseca, M.J. Predicting Exact Valence and Arousal Values from EEG. Sensors 2021, 21, 3414. [CrossRef]
48. Shi, C.-T. Signal Pattern Recognition Based on Fractal Features and Machine Learning. Appl. Sci. 2018, 8, 1327. [CrossRef]
49. Bykova, M.O.; Balandin, V.A. Methodological features of the analysis of the fractal dimension of the heart rate. Russ. Technol. J.

2023, 11, 58–71. [CrossRef]
50. McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv 2018,

arXiv:1802.03426.
51. Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for

visualizing single-cell data using UMAP. Nat. Biotechnol. 2019, 37, 38–44. [CrossRef] [PubMed]
52. Dorrity, M.W.; Saunders, L.M.; Queitsch, C.; Fields, S.; Trapnell, C. Dimensionality reduction by UMAP to visualize physical and

genetic interactions. Nat. Commun. 2020, 11, 1537. [CrossRef]
53. Demidova, L.A.; Gorchakov, A.V. Fuzzy Information Discrimination Measures and Their Application to Low Dimensional

Embedding Construction in the UMAP Algorithm. J. Imaging 2022, 8, 113. [CrossRef]
54. COSMIC|Catalogue of Somatic Mutations in Cancer. Available online: https://cancer.sanger.ac.uk/cosmic (accessed on

4 January 2023).
55. Thai-Nghe, N.; Gantner, Z.; Schmidt-Thieme, L. Cost-sensitive learning methods for imbalanced data. In Proceedings of the 2010

International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–8.
56. Cao, P.; Zhao, D.; Zaiane, O. An optimized cost-sensitive SVM for imbalanced data learning. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2013; pp. 280–292.

https://doi.org/10.1186/s12859-022-05110-1
https://doi.org/10.1016/j.cca.2018.12.028
https://doi.org/10.1038/s41598-020-72510-9
https://doi.org/10.1145/3415156
https://doi.org/10.3844/jcssp.2019.886.929
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/11538059_91
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.3390/s22093246
https://doi.org/10.1109/TSMC.1976.4309452
https://doi.org/10.1007/978-0-387-30164-8_181
https://doi.org/10.1186/s40364-023-00497-2
https://doi.org/10.1016/j.eclinm.2023.102041
https://doi.org/10.3390/sym13040615
https://doi.org/10.3390/e14081553
https://doi.org/10.1109/BMEI.2008.254
https://doi.org/10.48550/arXiv.2211.12338
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1007/BF01619355
https://doi.org/10.3390/e21060541
https://www.ncbi.nlm.nih.gov/pubmed/33267255
https://doi.org/10.1016/0013-4694(70)90143-4
https://doi.org/10.3390/s21103414
https://doi.org/10.3390/app8081327
https://doi.org/10.32362/2500-316X-2023-11-2-58-71
https://doi.org/10.1038/nbt.4314
https://www.ncbi.nlm.nih.gov/pubmed/30531897
https://doi.org/10.1038/s41467-020-15351-4
https://doi.org/10.3390/jimaging8040113
https://cancer.sanger.ac.uk/cosmic

Mathematics 2024, 12, 538 37 of 38

57. Mienye, I.D.; Sun, Y. Performance analysis of cost-sensitive learning methods with application to imbalanced medical data.
Inform. Med. Unlocked 2021, 25, 100690. [CrossRef]

58. Tsai, H.-H.; Yang, T.-W.; Wong, W.-M.; Chou, C.-F. A Hybrid Approach for Binary Classification of Imbalanced Data. arXiv 2022,
arXiv:2207.02738. [CrossRef]

59. Freitas, A.; Brazdil, P.; Costa-Pereira, A. Cost-Sensitive Learning in Medicine. In Data Mining and Medical Knowledge Management:
Cases and Applications; Berka, P., Rauch, J., Zighed, D.A., Eds.; IGI Global: Hershey, PA, USA, 2009; pp. 57–75. [CrossRef]

60. Gupta, R.; Kleinjans, J.; Caiment, F. Identifying novel transcript biomarkers for hepatocellular carcinoma (HCC) using RNA-Seq
datasets and machine learning. BMC Cancer 2021, 21, 962. [CrossRef] [PubMed]

61. Lee, T.; Rawding, P.A.; Bu, J.; Hyun, S.; Rou, W.; Jeon, H.; Kim, S.; Lee, B.; Kubiatowicz, L.J.; Kim, D.; et al. Machine-Learning-Based
Clinical Biomarker Using Cell-Free DNA for Hepatocellular Carcinoma (HCC). Cancers 2022, 14, 2061. [CrossRef] [PubMed]

62. Sato, M.; Tateishi, R.; Moriyama, M.; Fukumoto, T.; Yamada, T.; Nakagomi, R.; Kinoshita, M.N.; Nakatsuka, T.; Minami, T.;
Uchino, K. Machine Learning–Based Personalized Prediction of Hepatocellular Carcinoma Recurrence After Radiofrequency
Ablation. Gastro Hep. Adv. 2022, 1, 29–37. [CrossRef]

63. An, C.; Yang, H.; Yu, X.; Han, Z.Y.; Cheng, Z.; Liu, F.; Dou, J.; Li, B.; Li, Y.; Li, Y.; et al. A Machine Learning Model Based on
Health Records for Predicting Recurrence After Microwave Ablation of Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2022,
9, 671–684. [CrossRef] [PubMed]

64. Ding, W.; Wang, Z.; Liu, F.Y.; Cheng, Z.G.; Yu, X.; Han, Z.; Zhong, H.; Yu, J.; Liang, P. A Hybrid Machine Learning Model Based
on Semantic Information Can Optimize Treatment Decision for Naïve Single 3-5-cm HCC Patients. Liver Cancer 2022, 11, 256–267.
[CrossRef]

65. Hsu, P.Y.; Liang, P.C.; Chang, W.T.; Lu, M.Y.; Wang, W.H.; Chuang, S.C.; Wei, Y.J.; Jang, T.Y.; Yeh, M.L.; Huang, C.I.; et al. Artificial
intelligence based on serum biomarkers predicts the efficacy of lenvatinib for unresectable hepatocellular carcinoma. Am. J.
Cancer Res. 2022, 12, 5576–5588.

66. Ge, S.; Xu, C.R.; Li, Y.M.; Zhang, Y.L.; Li, N.; Wang, F.T.; Ding, L.; Niu, J. Identification of the Diagnostic Biomarker VIPR1 in
Hepatocellular Carcinoma Based on Machine Learning Algorithm. J. Oncol. 2022, 2022, 2469592. [CrossRef]

67. Xing, W.; Bei, Y. Medical Health Big Data Classification Based on KNN Classification Algorithm. IEEE Access 2020, 8, 28808–28819.
[CrossRef]

68. Mohanty, S.; Mishra, A.; Saxena, A. Medical Data Analysis Using Machine Learning with KNN. In International Conference on
Innovative Computing and Communications; Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A., Eds.;
Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; Volume 1166. [CrossRef]

69. Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing multiple parameters for support vector machines. Mach. Learn.
2002, 46, 131–159. [CrossRef]

70. Yu, W.; Liu, T.; Valdez, R.; Gwinn, M.; Khoury, M.J. Application of support vector machine modeling for prediction of common
diseases: The case of diabetes and pre-diabetes. BMC Med. Inform. Decis. Mak. 2010, 10, 16. [CrossRef]

71. Schober, P.; Vetter, T.R. Logistic Regression in Medical Research. Anesth. Analg. 2021, 132, 365–366. [CrossRef] [PubMed]
72. Dai, B.; Chen, R.-C.; Zhu, S.-Z.; Zhang, W.-W. Using Random Forest Algorithm for Breast Cancer Diagnosis. In Proceedings of the

2018 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 6–8 December 2018; pp. 449–452.
[CrossRef]

73. Acharjee, A.; Larkman, J.; Xu, Y.; Cardoso, V.R.; Gkoutos, G.V. A random forest based biomarker discovery and power analysis
framework for diagnostics research. BMC Med. Genom. 2020, 13, 178. [CrossRef] [PubMed]

74. Cheng, S.; Liu, B.; Ting, T.O.; Qin, Q.; Shi, Y.; Huang, K. Survey on data science with population-based algorithms. Big Data Anal.
2016, 1, 3. [CrossRef]

75. Liu, J.-Y.; Jia, B.-B. Combining One-vs-One Decomposition and Instance-Based Learning for Multi-Class Classification. IEEE
Access 2020, 8, 197499–197507. [CrossRef]

76. Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-class Classification: An Overview. arXiv 2020, arXiv:2008.05756.
77. Van der Maaten, L.; Hinton, G.E. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
78. Dong, W.; Moses, C.; Li, K. Efficient k-nearest neighbor graph construction for generic similarity measures. In Proceedings of the

20th International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 577–586.
79. Damrich, S.; Hamprecht, F.A. On UMAP’s true loss function. Adv. Neural Inf. Process. Syst. 2021, 34, 12.
80. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. Available online: https://umap-learn.

readthedocs.io/en/latest/_modules/umap/umap_.html (accessed on 4 January 2024).
81. Bottou, L.; Chapelle, O.; DeCoste, D.; Weston, J. Support Vector Machine Solvers Large-Scale Kernel Machines; MIT Press: Cambridge,

MA, USA, 2007; pp. 1–27.
82. Tsang, I.W.; Kwok, J.T.; Cheung, P.-M. Core Vector Machines: Fast SVM Training on Very Large Data Sets. J. Mach. Learn. Res.

2005, 6, 363–392.
83. umap. Available online: https://github.com/lmcinnes/umap/issues/8 (accessed on 4 January 2024).
84. Tomčala, J. New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power

Consumption. Entropy 2020, 22, 863. [CrossRef]
85. Batu, T.; Dasgupta, S.; Kumar, R.; Rubinfeld, R. The complexity of approximating the entropy. In Proceedings of the 17th IEEE

Annual Conference on Computational Complexity, Montreal, QC, Canada, 21–24 May 2002; pp. 17–26. [CrossRef]

https://doi.org/10.1016/j.imu.2021.100690
https://doi.org/10.48550/arXiv.2207.02738
https://doi.org/10.4018/978-1-60566-218-3.ch003
https://doi.org/10.1186/s12885-021-08704-9
https://www.ncbi.nlm.nih.gov/pubmed/34445986
https://doi.org/10.3390/cancers14092061
https://www.ncbi.nlm.nih.gov/pubmed/35565192
https://doi.org/10.1016/j.gastha.2021.09.003
https://doi.org/10.2147/JHC.S358197
https://www.ncbi.nlm.nih.gov/pubmed/35923613
https://doi.org/10.1159/000522123
https://doi.org/10.1155/2022/2469592
https://doi.org/10.1109/ACCESS.2019.2955754
https://doi.org/10.1007/978-981-15-5148-2_42
https://doi.org/10.1023/A:1012450327387
https://doi.org/10.1186/1472-6947-10-16
https://doi.org/10.1213/ANE.0000000000005247
https://www.ncbi.nlm.nih.gov/pubmed/33449558
https://doi.org/10.1109/IS3C.2018.00119
https://doi.org/10.1186/s12920-020-00826-6
https://www.ncbi.nlm.nih.gov/pubmed/33228632
https://doi.org/10.1186/s41044-016-0003-3
https://doi.org/10.1109/ACCESS.2020.3034448
https://umap-learn.readthedocs.io/en/latest/_modules/umap/umap_.html
https://umap-learn.readthedocs.io/en/latest/_modules/umap/umap_.html
https://github.com/lmcinnes/umap/issues/8
https://doi.org/10.3390/e22080863
https://doi.org/10.1109/CCC.2002.1004329

Mathematics 2024, 12, 538 38 of 38

86. Platt, J. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods—Support
Vector Learning; Schölkopf, B., Burges, C.J., Smola, A.J., Eds.; MIT Press: Cambridge, MA, USA, 1999; pp. 185–208.

87. Collobert, R.; Bengio, S.; Bengio, Y. A parallel mixture of SVMs for very large scale problems. Neural Comput. 2002, 14, 1105–1114.
[CrossRef]

88. Shalev-Shwartz, S.; Singer, Y.; Srebro, N. Pegasos: Primal estimated sub-gradient solver for SVM. Math. Program. 2011, 127, 3–30.
[CrossRef]

89. Gentinetta, G.; Thomsen, A.; Sutter, D.; Woerner, S. The complexity of quantum support vector machines. Quantum 2024, 8, 1225.
[CrossRef]

90. Prusty, S.; Patnaik, S.; Dash, S.K. SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Front.
Nanotechnol. 2022, 4, 972421. [CrossRef]

91. Slamet, W.; Herlambang, B.; Samudi, S. Stratified K-fold cross validation optimization on machine learning for prediction. Sink. J.
Dan Penelit. Tek. Inform. 2022, 7, 2407–2414. [CrossRef]

92. umap-losses. Available online: https://github.com/worldbeater/umap-losses (accessed on 4 January 2024).
93. Numba: A High Performance Python Compiler. Available online: https://numba.pydata.org/ (accessed on 4 January 2024).
94. Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30.
95. Gorchakov, A.V.; Demidova, L.A.; Sovietov, P.N. Analysis of Program Representations Based on Abstract Syntax Trees and

Higher-Order Markov Chains for Source Code Classification Task. Future Internet 2023, 15, 314. [CrossRef]
96. Amid, E.; Warmuth, M.K. TriMap: Large-scale Dimensionality Reduction Using Triplets. arXiv 2019, arXiv:1910.00204v2.

[CrossRef]
97. Wang, Y.; Huang, H.; Rudin, C.; Shaposhnik, Y. Understanding How Dimension Reduction Tools Work: An Empirical Approach

to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization. J. Mach. Learn. Res. 2021, 22, 9129–9201.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1162/089976602753633402
https://doi.org/10.1007/s10107-010-0420-4
https://doi.org/10.22331/q-2024-01-11-1225
https://doi.org/10.3389/fnano.2022.972421
https://doi.org/10.33395/sinkron.v7i4.11792
https://github.com/worldbeater/umap-losses
https://numba.pydata.org/
https://doi.org/10.3390/fi15090314
https://doi.org/10.48550/arXiv.1910.00204

	Introduction
	Related Work
	Materials and Methods
	Aspects of Developing Cost-Sensitive SVM Classifiers
	Aspects of New Feature Generation
	Generation of Features on the Basis of the UMAP Algorithm with Different Loss Functions
	Generation of Features on the Basis of the Approximate Entropy, the Higuchi Fractal Dimension and the Katz Fractal Dimension
	Computational Complexity of Developing Classifiers

	Experimental Studies
	Brief Background of This Study
	Experiments to Implement the Concept of This Study
	Identifying the Best Cost-Sensitive SVM Classifiers and Analysis of Their Characteristics
	Identification of the Best Loss Functions in the UMAP Algorithm and Analysis of Their Capabilities in the Context of the Formation of New Features

	Discussion
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

