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Abstract: Evolutionary algorithms have been widely used for tackling multi-objective optimization
problems, while feature selection in classification can also be seen as a discrete bi-objective optimiza-
tion problem that pursues minimizing both the classification error and the number of selected features.
However, traditional multi-objective evolutionary algorithms (MOEAs) can encounter setbacks when
the dimensionality of features explodes to a large scale, i.e., the curse of dimensionality. Thus, in
this paper, we focus on designing an adaptive MOEA framework for solving bi-objective feature
selection, especially on large-scale datasets, by adopting hybrid initialization and effective reproduc-
tion (called HIER). The former attempts to improve the starting state of evolution by composing a
hybrid initial population, while the latter tries to generate more effective offspring by modifying the
whole reproduction process. Moreover, the statistical experiment results suggest that HIER generally
performs the best on most of the 20 test datasets, compared with six state-of-the-art MOEAs, in terms
of multiple metrics covering both optimization and classification performances. Then, the component
contribution of HIER is also studied, suggesting that each of its essential components has a positive
effect. Finally, the computational time complexity of HIER is also analyzed, suggesting that HIER is
not time-consuming at all and shows promising computational efficiency.

Keywords: bi-objective optimization; evolutionary algorithm; effective reproduction; hybrid initialization;
large-scale feature selection

MSC: 68W50

1. Introduction

Evolutionary algorithms [1] have been used as a common tool to solve optimiza-
tion problems in the past decades. When the number of optimizing objectives is more
than one, the problems become multi-objective optimization problems (MOPs) [2] and
the algorithms become multi-objective evolutionary algorithms (MOEAs) [3]. Compared
with other meta-heuristics [4], MOEAs have the superior feature of population-based
global search mode and no need for domain knowledge, which is suitable to find a set
of nondominated solutions in every generation of evolution. There have been numerous
MOEAs proposed and designed all over the world, and they can be roughly categorized
into the following frameworks: dominance-based MOEAs such as the classic nondomi-
nated sorting genetic algorithm (NSGA) [5], the improved NSGA with fast nondominated
sorting (NSGA-II) [6], the improved NSGA for many objectives (NSGA-III) [7,8], a new
dominance-relation-based algorithm [9], and a strengthened dominance-relation-based
one [10]; decomposition-based MOEAs such as the classic MOEA based on decompo-
sition (MOEA/D) [11], an improved MOEA/D with differential evolution (MOEA/D-
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DE) [12], an improved MOEA/D with stable mating (MOEA/D-STM) [13], and a hierar-
chical decomposition-based MOEA (MOEA/HD) [14]; indicator-based MOEAs such as
the classic hypervolume-based MOEA [15], the Minkowski distance-based MOEA [16], the
polar-metric-based MOEA [17], and an indicator-based MOEA for many objectives [18];
surrogate-based MOEAs such as an offline data-driven one [19], an ensemble surrogate-
based one [20], and one based on decomposition and multi-classifiers [21]; cooperative
coevolutionary MOEAs such as the competitive–cooperative coevolutionary paradigm for
dynamic multi-objective optimization [22], and so on [23,24]; multi-tasking-based MOEAs
such as the multi-objective multi-factorial MOEA [25], and so on [26,27].

Moreover, owing to their flexible architecture and versatile capability, MOEAs have
also been applied into many real-world complex optimization problems [28–32] includ-
ing discrete optimization problems such as network community detection problems [33],
neural network search problems [34], task offload problems [35,36], and feature selection
problems [37–39]. In particular, feature selection has been widely used as a data preprocess-
ing and dimensionality reduction technique for tackling large-scale classification datasets
by selecting only a subset of useful features [40]. When pursuing the minimization of both
the classification error and the number of selected features, feature selection becomes an
MOP, which is quite suitable for MOEAs to deal with [41].

However, the “curse of dimensionality” still arises from the exponential increase in the
total features in big data, challenging the search capability of traditional MOEA frameworks
in addressing high-dimensional feature selection [42] with large-scale and sparse decision
space [43]. This is fairly common in the age of big data when the features are large-scale
but the samples are relatively inadequate. As the dimensionality grows, not only will the
search space inevitably become expanded to being large scale and sparse for populations
to search [44], but also the relationships between different features will become even more
complicated to handle.

There have been various existing MOEAs attempting to solve discrete bi-objective
feature selection problems, but many of them are either inefficient in addressing high-
dimensional datasets or in need of too many complicated parameter settings and techniques.
For example, Xue et al. [45] proposed an improved initialization method for feature
selection, inspired by the classic forward and backward search ideas, but this method
was only designed for single-objective particle swarm optimization. In light of this, Xu
et al. [46] proposed a segmented initialization method to be integrated into existing
MOEA frameworks, but its key parameter setting was fixed and inflexible for different
datasets. Furthermore, Nguyen et al. [37] designed an improved decomposition-based
MOEA with static or dynamic reference points for solving feature selection, but the highest
dimensionality tested was only 649, far from large scale. Subsequently, Xu et al. [47] also
proposed a nondominated sorting-based MOEA with solution duplication analyses before
environmental selection, but still not focusing on high-dimensional datasets. Recently,
the decision variable pre-analysis idea [48,49] has become popular for addressing large-
scale optimization [50] in sparse decision space. For instance, Tian et al. [51] designed
a large-scale MOEA framework for searching in sparse decision space, but its single
feature performance pre-analysis process consumes a large number of objective function
evaluations, which can in return obstruct normal evolution if the computational resource
is inadequate.

To overcome the above-mentioned drawbacks caused by high-dimensional feature selec-
tion, in this paper, we propose a hybrid initialization method and an effective reproduction-
based MOEA framework, with the aim of boosting the search ability of MOEAs with a
promising start of a hybrid initial population, as well as improving both the diversity and
convergence performance via reproducing high-quality offspring. Moreover, regarding
the aforementioned shortcomings in existing MOEAs, the framework of HIER should be
as simple and robust as possible, with adaptive parameter settings dynamically adjusted
according to the tested dataset and the population state. To this end, in the hybrid initializa-
tion process, a set of adaptively generated extra initial populations is used to vastly explore
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the objective space and to exploit forward searching areas early, with relatively smaller
numbers of selected features. Furthermore, in the effective reproduction process, a totally
random mating method is adopted for fairness of each parent solution, and an effective
crossover operation is conducted for generating more valid offspring, and a self-adaptively
set dynamic mutation scale is utilized for increasing variations within each offspring. In a
word, the hybrid initialization method boosts the search ability of MOEAs, and the effective
reproduction method helps to balance the population diversity and convergence, thereby
combining both of them will maximize the efforts of better facing the challenges from the
“curse of dimensionality” in addressing high-dimensional feature selection.

The major contributions of this paper are summarized as follows:

• First of all, a hybrid initialization method, abbreviated as HI, is proposed in order to
boost the search ability of MOEAs in addressing high-dimensional bi-objective feature
selection, by composing a promising hybrid initial population which vastly explores
the objective space and adaptively exploits its forward areas.

• As a supplement, an effective reproduction method, abbreviated as ER, is also pro-
posed to balance the diversity and convergence factors, and to further increase the
offspring quality for better variations, via adopting an effective crossover operation
and a dynamic mutation scale.

• Comprehensive experiments are conducted in this work regarding the general per-
formance and component contributions versus different state-of-the-art MOEAs, in
terms of multiple metrics, tested on a series of 20 datasets. The empirical results and
analyses confirm the search advantages of HIER as well as its high efficiency.

The remainder of this paper is organized as follows. First, the related works are
introduced in Section 2. Then, the proposed HIER algorithm is detailed in Section 3. After
that, the experiment setups are provided in Section 4, and the empirical results are studied
in Section 5. Finally, the conclusions and future work are given in Section 6.

2. Related Works
2.1. Bi-Objective Optimization Problem

Normally, feature selection [52] can be defined as a multi-objective optimization
problem that can be shown as follows:

minimize F(x) = ( f1(x), f2(x), . . . , fM(x))T

subject to x = (x1, x2, . . . , xD), xi = {0, 1}
(1)

where M is the dimension of objective space, i.e., objectives to be optimized, and D is
the dimension of decision space, i.e., the total number of features to be selected. In this
paper, M is set to two, and F(x) is the objective vector of x, while fi(x) denotes the
corresponding value in the direction of the ith objective (so-called fi direction). Moreover,
x = (x1, x2, . . . , xD) is the decision vector of a solution where 1 means selecting a feature and
0 means not selecting it. Here, the first objective function f1(x) can be defined as follows:

f1(x) =
D

∑
i=1

xi/D (2)

where the function value discretely ranges from 0 to 1, i.e., ∈ {0, 1/D, 2/D, . . . , 1}, denoting
the ratio of currently selected features. In addition, the second objective function f2(x)
denotes the classification error rate related to the classification results of the previously
selected features in x, the value of which also discretely ranges from 0 to 1, limited by the
size of samples. If the classification accuracy obtained from a specific classifier, e.g., KNN,
is denoted as θ, then the second objective function f2(x) can be formalized as follows:

f2(x) = 1− θ (3)
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where, for example, if the classification accuracy obtained is 89%, then the f2 objective
value will become 11% or 0.11.

2.2. Evolutionary Feature Selection

Being widely used for decades, evolutionary feature selection [53] can be roughly
classified into two categories: wrapper- or filter-based approaches [54,55]. Normally,
wrapper-based approaches [56,57] utilize a classification model, like SVM or KNN [58], as a
black box to evaluate the classification accuracy. By contrast, filter-based approaches [59,60]
are mostly independent of any classifier, ignoring the classification results of currently
selected features during evolution. Therefore, a wrapper-based approach is normally more
accurate than a filter-based one but generally consumes more computational time. In
this paper, we focus on studying wrapper-based approaches for bi-objective evolutionary
feature selection, seeking to improve the optimization and classification performance.

In fact, during recent years, many evolutionary algorithms have been developed for
solving feature selection. For example, Chen et al. [42,61] proposed two algorithms based
on multi-tasking for high-dimensional classification, and Xue et al. [62] also proposed
efficient initialization and updating mechanisms for particle swarm optimization. However,
these three approaches are only designed for a single objective and may be infeasible for
multiple objectives. As for MOEAs, Xu et al. [47] proposed a duplication-analysis-based
algorithm, which is specially designed to handle bi-objective feature selection optimization.
Moreover, Tian et al. [63] proposed an MOEA for sparse decision space, which can also
be used to solve large-scale feature selection. Thus, these two MOEAs have been adopted
in the experiment as algorithms to compare our proposed one against. Nevertheless,
there are still many other MOEAs that have been reported in recent years that can be
used for tackling multi-objective feature selection, such as the variable granularity search-
based algorithm in [64], the surrogate-assisted and filter-based algorithm in [65], and the
steering-matrix-based algorithm in [66].

3. Proposed Algorithm

In this section, we first introduce the general framework of the proposed HIER algo-
rithm, and then further explain its essential components, i.e., the hybrid initialization and
effective reproduction processes. Finally, we give more discussions of how the proposed
approaches take effect, with two simple examples shown in figures. It is also worth noting
that in all the pseudocode of this paper, the variable Rand is used as a randomly generated
probability in order to make a yes or no decision.

3.1. General Framework

The general framework of the proposed HIER algorithm is given by the pseudocode
Algorithm 1. The population size N and the feature dimension D are input, while the final
optimized population Pop is output after terminating the evolutionary feature selection.
In Algorithm 1, the initialization and reproduction processes are, respectively, conducted
by Algorithms 2 and 4, which will both be explained later in the following sections. The
environmental selection process, which truncates the combination of the previous popula-
tion and the new offspring into the current population, is almost the same as that in the
most well-known traditional dominance-based framework NSGA-II [6], except that HIER
additionally removes all the duplicated solutions in the decision space beforehand. More-
over, for a better explanation of the methodology, a flow chart for the general framework of
HIER is illustrated in Figure 1, where each evolutionary step in Algorithm 1 is presented,
along with the invoked algorithms.
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Algorithm 1 GeneralFramework(N, D)

Input: population size N, feature dimension D;
Output: final population Pop;

1: Pop = HI(N, D); // initialization by Algorithm 2
2: while termination criterion not reached do
3: Osp = ER(Pop); // reproduction by Algorithm 4
4: Pop← remove all the duplicated decision vectors

from Pop ∪Osp;
5: Pop← select N best solutions from Pop by

nondominated sorting and crowding distances;
6: end while

Figure 1. Flowchart for the general framework of HIER.

3.2. Hybrid Initialization

HIEA adopts an adaptive and hybrid initialization mechanism specially designed
for large-scale feature selection, given by the pseudocode Algorithm 2 accompanied by
Algorithm 3. In Algorithm 2, we first generate an initial population in a traditional random
sampling way as the starting point. Then, the number of extra initial populations to be adap-
tively generated is roughly estimated, according to the ratio between the feature dimension
and the population size. Normally, a larger value of the above ratio means a greater number
of extra initial populations is going to be generated. All the extra initial populations are
obtained by Algorithm 3, with a so-called distribution probability parameter input. This
parameter actually controls the probable distribution area of a new population generated
in the objective space. In other words, the value of the input distribution probability acts as
a symmetric axis where all the objective vectors are distributed around in the f1 direction.
Generally speaking, in Algorithm 3, each variable value of the decision vector is randomly
decided to obtain the value zero or one, where one means selecting that feature and zero
means not selecting it. Back to Algorithm 2, all the hybrid populations, including the
starting initial population and all the extra initial populations, are at last truncated by
the same nondominated sorting and crowding distance methods used in the previously
introduced general framework to reserve only the best N unique solutions as the final
initial population we want. It should also be noted that the exponential base in line 5 of
Algorithm 2 is set to 0.5 for the following two reasons. First, 0.5 is the starting point of the
adaptively set population initialization, which is right in the middle of the objective space,
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appropriately balancing both diversity and convergence factors. Second, the proposed
hybrid initialization method (HI) is based on the idea of binary search, which constantly
reduces its previous exploring area by half, i.e., 0.5 as the base.

Algorithm 2 HI(N, D)

Input: population size N, feature dimension D;
Output: initial population Pop;

1: Pop ← generate a traditional initial population by randomly sampling N decision
vectors from the D-dimensional decision space (i.e., feature space);

2: K = ⌊Log2(D/N)⌋; // get the adaptive number of extra initial populations
3: if K > 0 then
4: for i = 1, 2, . . . , K do
5: Pop = Pop ∪ NewPop(N, D, 0.5i+1);
6: end for
7: Pop← use nondominated sorting and crowding

distances to select N best unique decision vectors
from Pop;

8: end if

Algorithm 3 NewPop(N, D, P)

Input: population size N, feature dimension D; distribution probability P;
Output: new population Pop;

1: Pop = Zeros(N, D); // 0 matrix of order N by D
2: for i = 1, 2, . . . , N do
3: for j = 1, 2, . . . , D do
4: if Rand < P then
5: Pop(i, j) = 1; // select this feature
6: end if
7: end for
8: end for

3.3. Effective Reproduction

Accompanied by the previously introduced hybrid initialization, an effective reproduc-
tion process is specially designed for HIER to cope with large-scale feature dimensionality.
The pseudocode Algorithm 4 shows how this reproduction process works, including the
mating, crossover, and mutation procedures. In Algorithm 4, all the parents are randomly
selected from the current population, with every solution holding equal opportunities for
mating, and no preference for elite solutions. In the for loop of Algorithm 4, the efficiency
and validity are both ensured by only performing crossover within the different decision
variables between the pairwise parents. Moreover, for mutation, we first obtain the number
of selected features in the parent solution (i.e., value 1 decision variables), and then use it
to estimate the scale of the genes to be randomly mutated. Normally, the mutation scale
is positively related to the number of already selected features, but the chances for larger
mutation scales are set to be much smaller than the traditional one-gene mutation scale.
This delicate principle is conducted by lines 10 to 14 in Algorithm 4, while Rand means
generating a random probability or a vector of probabilities (i.e., Rand(1, D)). For example,
if t = 10,000 in line 8 of Algorithm 4, which apparently is a large-scale case, then r in line 9
could be any integer within 100, like 10 for instance. Then, if r = 10, then the dynamically
set mutation scale s in line 11 will probably be set to a random integer value around 10,
meaning the later mutation operation in line 15 will swap probably 10 features among all
the currently selected features. This actually grants those solutions that have selected a high
number of features an opportunity to mutate more genes rather than just one. And more
subtly, this probability 1/r is inversely proportional to the mutation scale s. In this way, the
mutation scale can be dynamically set according to the current evolutionary state of the
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solutions, while a solution with high-dimensional selected features will have a delicately
controlled chance to perform a much bolder mutation operation within the previously set
mutation scale.

Algorithm 4 ER(Pop)

Input: current population Pop;
Output: offspring set Osp;

1: Pars← randomly select N pairs of solutions from Pop as parents; // mating
2: for i = 1, 2, . . . , N do
3: par1, par2 ← get the pairwise parents in Pars(i);
4: dv← find different decision variable indexes

within par1 and par2;
5: k← get a random integer between Size(dv);
6: j← randomly select k indexes from dv;
7: par1(j) = par2(j); // crossover
8: t← get the number of value 1 variables in par1;
9: r ← get a random integer within ⌈

√
t⌉;

10: if Rand < 1/r then
11: s = Rand(1, D) < r/D;
12: else
13: s = Rand(1, D) < 1/D;
14: end if
15: par1(s) = ¬par1(s); // mutation
16: Osp(i) = par1; // get the new offspring
17: end for

3.4. More Discussions

Figure 2 gives a simple example of how to compose a hybrid initial population with
three other newly generated initial populations adaptively distributed in the objective space.
According to Algorithm 2, the newly generated initial populations start from from the
middle of the objective space, i.e., from Axis1 in Figure 2. Then, using 0.5 as the exponential
base, the next generated new initial population is distributed around Axis2, i.e., 0.25 or 2−2.
The same goes for the third newly generated initial population, distributed around Axis3,
i.e., 2−3, in the objective space. Finally, by truncating the three newly generated initial
populations together into a hybrid one with the preset population size (reserving eight
solutions in this example), the final hybrid initial population then not only explores more
diverse genes by those adaptively distributed new initial populations across the objective
space, but also exploits more elite genes through the earlier search in the forward areas
of the objective space. It should also be noted that the distribution axis of each newly
generated initial population in Figure 2 is controlled by the input P parameter in Algorithm
3, where a smaller P means selecting less features and a larger one means selecting more,
in each newly generated solution within a population.

Figure 2. An example of composing a hybrid initial population composed of three new populations:
NewPop1 with Axis1, NewPop2 with Axis2, and NewPop3 with Axis3.
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Figure 3 gives a simple example of how to conduct the effective crossover operation
in reproduction. The upper and lower parts of Figure 3, respectively, show two decision
vectors for parent solutions, with 1 meaning selecting that position of the feature and 0
meaning not selecting it. It can be seen from the directions and positions of the interactive
arrows located in the middle of Figure 3 that only variables in the gray areas can be
swapped, i.e., from 1 to 0, or from 0 to 1. These gray areas are in fact valid areas where the
upper and lower variables in two decision vectors have distinct values. Thus, crossover
operations within the above-introduced valid areas can be effective, as they make no invalid
operations, such as swapping 0 to 0, or 1 to 1. Combining the above-introduced effective
crossover with the mating and mutation operations in Algorithm 4, the reproduction
process of HIER is then efficiently improved in the following three aspects: first, the mating
is based on fair and random selection from the current population to bring in more diversity;
second, the crossover only focuses on swapping different variables between two parent
solutions in order to make valid offspring; third, the mutation adaptively adjusts the scale
of variation to skip potential local optima and to help find more varied offspring.

Figure 3. An example of how to perform effective crossover in reproduction.

In HIER, although both hybrid initialization and effective reproduction have consid-
ered the balance between exploration and exploitation, yet the former still focuses more
on the convergence boosting and the latter focuses more on the diversity maintaining.
Compared with other algorithms, there are two major advantages of HIER, which also
implies its uniqueness, as explained in the following. First, the adaptively distributed
initial populations vastly explore the objective space and the finally composed hybrid
initial population that starts the evolution with a relatively smaller number of selected
features within each solution helps to exploits the forward area of objective space. The
adaptive generation mechanism of new initial populations also takes advantage of the
binary search idea which reduces its previous search range to the half and thereby increases
the exploration efficiency. Second, the effective crossover operation helps to make valid
offspring, while the dynamically set mutation scale can adaptively control the balance
between exploration and exploitation, thereby more delicately balancing the diversity and
convergence during evolution. Therefore, via combining the hybrid initialization and effec-
tive reproduction, HIER makes the most complementary contribution to improving both
the exploration and exploitation factors in addressing high-dimensional feature selection.

4. Experiment Setups
4.1. Datasets for Test Problems

In this work, a total of 20 open-source classification datasets [67] were used to test the
optimization performances of MOEAs in tackling the bi-objective feature selection problem.
Details of those datasets are shown in Table 1, where the number of features, samples, and
classes are shown in different columns. It can be seen that the number of total features in
each dataset varies from 100 to 10,509, which covers a wide range of feature dimensions
but concentrates on the high-dimensional ones. Moreover, the number of samples ranges
from 50 to 606, and that of the classes from 2 to 15, which also indicates the generality and
comprehensiveness of the test problems.
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Table 1. Attributes for each classification dataset used as test problems.

No. Datasets Features Samples Classes

1 HillValley 100 606 2
2 MUSK1 166 476 2
3 Arrhythmia 278 452 13
4 Yale 1024 165 15
5 Colon 2000 62 2
6 SRBCT 2308 83 4
7 AR10P 2400 130 10
8 PIE10P 2420 210 10
9 Leukemia1 5327 72 3
10 Tumor9 5726 60 9
11 TOX171 5748 171 4
12 Brain1 5920 90 5
13 Leukemia2 7070 72 2
14 ALLAML 7129 72 2
15 Carcinom 9182 174 11
16 Nci9 9712 60 9
17 Arcene 10,000 200 2
18 Orlraws10P 10,304 100 10
19 Brain2 10,367 50 4
20 Prostate 10,509 102 2

4.2. Algorithms for Comparison Analyses

In this paper, six state-of-the-art MOEAs (i.e., NSGA-II [6], MOEA/D [11], HypE [15],
MOEA/HD [14], SparseEA [63], and DAEA [47]) are tested to compare their performance
results with the proposed HIER algorithm. The above MOEAs are selected as comparison
algorithms versus HIER for the following reasons. First, NSGA-II, MOEA/D, and HypE are
among the most classic and well-known MOEAs, which are based on dominance, decompo-
sition, and indicator, respectively. These three algorithms will test the advantages of HIER
over traditional MOEAs in addressing feature selection problems. Second, MOEA/HD is a
recently published MOEA, based on the combination of dominance and decomposition,
which is specifically designed for solving complex MOPs. This algorithm is used to compare
the performance of HIER in tackling the discrete complicated optimization environment of
feature selection. Third, DAEA and SparseEA are both recently published MOEAs based
on dominance, which are specifically designed for tackling large-scale feature selection
problems. These two algorithms will challenge HIER in efficiently searching the sparse and
large-scale decision space on high-dimensional datasets.

4.3. Metrics for Performance Results

In this study, multiple performance indicators are used to measure the general per-
formances of each algorithm in terms of both optimization and classification. To be more
specific, the hypervolume (HV) [68] metric is used as the main indicator to measure the
MOEAs’ optimization performance, with its reference point set to (1, 1). As a supple-
ment, the minimum classification error (MCE) and number of selected features (NSFs)
metrics [46,47] are used to measure the best classification performance obtained on the final
test data, respectively, reflecting the f2 and f1 objective values of a solution. For example,
if solution x∗ within a population obtains the best classification accuracy on the final test
data (this could be any specific tested dataset), then f2(x∗) denotes the current MCE value
for that population and f1(x∗) denotes the current NSF value. The formalized definitions
of f1 and f2 are, respectively, shown in Equations (2) and (3) in Section 2.1. Generally
speaking, greater HV values mean better performance, while smaller MCE and NSF values
are preferred. Finally, the Wilcoxon’s test with a significance level of 5% is adopted to
identify the differences in pairwise comparisons.
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4.4. Settings for Computational Environments

In this work, all the comparison algorithms use the same traditional initialization
method for fairness, while the reproduction methods and other parameter settings are
inherited from the studies in which they were presented. In addition, all the algorithm codes
are programmed and run on an open-source MATLAB platform [69]. During evolution,
each classification dataset is randomly divided into the training and test subsets with a
proportion of about 70/30, following the stratified split process [47]. Moreover, the KNN
(K = 5) model is adopted for classification, with 10-fold cross-validation on the training
data to avoid feature selection bias [70]. Finally, each experiment is independently run
20 times with a series of randomly preset starting seeds, while the population size is set to
100 and the termination criterion (the number of objective function evaluations) is set to
10,000 (about 100 generations) for each algorithm.

5. Experiment Studies
5.1. General Performance Studies

The general performance of each algorithm is shown in Tables 2–5. More specifically,
Table 3 gives the multi-objective optimization performances based on the final nondomi-
nated solutions obtained by each algorithm on the test data, which are measured by the
widely used HV performance indicator. First of all, Table 2 gives the overall Friedman’s
test on all seven algorithms, showing the mean performance ranks among them: HIER
still ranks the first in performance for all three metrics on both the training and test data.
Furthermore, in Table 3, the proposed HIER performs the best on almost every dataset
in terms of the HV metric, and only loses on MUSK1 to SparseEA and DAEA, which is a
relatively low-dimensional dataset. By contrast, Table 4 combined with Table 5 gives the
classification performance of each algorithm based on the classification accuracy (i.e., the
MCE metric) and efficiency (i.e., the NSF metric). In detail, Table 4 shows the minimum
classification error while Table 5 shows the related number of selected features. In Table 4,
HIER performs the best on every dataset in terms of the MCE metric, showing its outstand-
ing superiority in classification accuracy. In Table 5, HIER performs the best on almost
every dataset in terms of the NSF metric, and only loses on HillValley and MUSK1, which
are relatively low-dimensional datasets, generally showing excellent classification efficiency.
Therefore, based on the above studies, it is suggested that HIER generally performs the
best in most of the test instances, compared with the other six MOEAs, in terms of all
three metrics.

Table 2. Mean ranks calculated by Friedman’s test on both training and test data.

Metric Data HIER NSGA-II MOEA/D HypE MOEA/HD SparseEA DAEA

HV
Train 1.1975 4.5800 3.4475 4.7475 5.5650 6.4850 1.9775
Test 1.2138 4.5250 3.6162 5.0713 5.3213 6.0563 2.1963

MCE
Train 1.2125 4.2800 5.0888 3.9987 4.7988 5.8812 2.7400
Test 1.8475 4.3800 4.6850 4.7263 4.6387 4.1350 3.5875

NSF
Train 1.3575 4.5287 2.8575 4.6937 5.4763 6.7300 2.3563
Test 1.3700 4.4150 2.9987 4.9212 5.4825 6.5850 2.2275

Table 3. Mean HV performance on the final test data, with best results marked in gray and those with
insignificant differences prefixed by †.

Dataset HIER NSGA-II MOEA/D HypE MOEA/HD SparseEA DAEA

HillValley
6.2892e-01 5.8491e-01 † 6.2589e-01 6.0937e-01 † 6.2585e-01 † 6.2597e-01 † 6.2599e-01
±8.46e-03 ±2.51e-02 ±1.04e-02 ± 1.81e-02 ±8.54e-03 ±8.77e-03 ±8.50e-03

MUSK1
8.8189e-01 8.2291e-01 8.6667e-01 8.2231e-01 8.4699e-01 8.9529e-01 9.0313e-01
±1.84e-02 ±2.49e-02 ±1.64e-02 ±2.14e-02 ±3.17e-02 ±1.42e-02 ±1.55e-02
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Table 3. Cont.

Dataset HIER NSGA-II MOEA/D HypE MOEA/HD SparseEA DAEA

Arrhythmia
6.9949e-01 6.3085e-01 6.6549e-01 6.1568e-01 4.8263e-01 5.3277e-01 † 6.9537e-01
±1.49e-02 ±2.66e-02 ±1.58e-02 ±3.67e-02 ±1.69e-02 ±5.28e-02 ±1.60e-02

Yale
7.2988e-01 4.8777e-01 5.1271e-01 4.7391e-01 4.9196e-01 4.8107e-01 6.0505e-01
±3.46e-02 ±1.34e-02 ±2.62e-02 ±2.55e-02 ±3.39e-02 ±1.64e-02 ±2.48e-02

Colon
8.8458e-01 5.5002e-01 6.0785e-01 5.4386e-01 5.2395e-01 4.9869e-01 6.6802e-01
±5.47e-02 ±2.65e-02 ±4.78e-02 ±2.77e-02 ±3.30e-02 ±2.01e-02 ±3.95e-02

SRBCT
8.8158e-01 2.8407e-01 3.1776e-01 2.8506e-01 2.5538e-01 2.4792e-01 3.0281e-01
±7.70e-02 ±2.05e-03 ±2.03e-03 ±2.29e-03 ±1.81e-03 ±1.69e-03 ±1.96e-02

AR10P
7.9190e-01 3.6309e-01 3.7087e-01 3.4460e-01 3.4495e-01 3.2227e-01 4.3142e-01
±3.81e-02 ±2.01e-02 ±2.26e-02 ±1.96e-02 ±1.75e-02 ±1.11e-02 ±2.05e-02

PIE10P
9.5463e-01 6.0231e-01 6.4575e-01 5.8837e-01 5.8831e-01 5.4344e-01 6.9820e-01
±2.49e-02 ±1.06e-02 ±1.13e-02 ±1.23e-02 ±1.22e-02 ±6.44e-03 ±1.57e-02

Leukemia1
9.4797e-01 5.2904e-01 5.4315e-01 5.1931e-01 5.1321e-01 4.8596e-01 6.0516e-01
±3.25e-02 ±1.81e-02 ±3.10e-02 ±1.15e-02 ±2.40e-02 ±1.64e-02 ±2.04e-02

Tumor9
5.0677e-01 2.7901e-01 2.8321e-01 2.6172e-01 2.6731e-01 2.6728e-01 3.0436e-01
±5.87e-02 ±2.80e-02 ±2.54e-02 ±3.52e-02 ±2.35e-02 ±1.96e-02 ±2.38e-02

TOX171
8.3099e-01 4.8294e-01 4.8764e-01 4.7065e-01 4.7759e-01 4.5753e-01 5.4227e-01
±3.79e-02 ±8.58e-03 ±1.97e-02 ±1.61e-02 ±1.65e-02 ±1.19e-02 ±1.92e-02

Brain1
7.8591e-01 4.7180e-01 4.9062e-01 4.7043e-01 4.5347e-01 4.3124e-01 5.1273e-01
±3.82e-02 ±3.11e-03 ±1.09e-02 ±3.61e-03 ±1.00e-02 ±1.78e-03 ±8.53e-03

Leukemia2
9.4408e-01 5.3600e-01 5.4496e-01 5.3301e-01 5.1258e-01 4.9718e-01 6.0216e-01
±5.57e-02 ±8.95e-03 ±1.94e-02 ±1.69e-02 ±1.79e-02 ±9.84e-03 ±1.67e-02

ALLAML
9.5646e-01 5.2052e-01 5.3575e-01 5.1175e-01 5.0598e-01 4.8530e-01 5.8265e-01
±4.54e-02 ±1.52e-02 ±1.34e-02 ±1.64e-02 ±1.44e-02 ±1.52e-02 ±1.83e-02

Carcinom
8.8720e-01 5.1803e-01 5.2327e-01 5.0847e-01 5.0915e-01 4.8714e-01 5.8095e-01
±2.73e-02 ±1.09e-02 ±1.55e-02 ±1.18e-02 ±1.10e-02 ±8.18e-03 ±1.18e-02

Nci9
5.0449e-01 2.4060e-01 2.6158e-01 2.3947e-01 2.3696e-01 2.2538e-01 2.7073e-01
±7.48e-02 ±2.54e-02 ±2.94e-02 ±2.57e-02 ±2.21e-02 ±2.00e-02 ±2.75e-02

Arcene
8.6704e-01 3.6248e-01 3.7242e-01 3.6265e-01 3.4447e-01 3.3745e-01 3.8590e-01
±2.45e-02 ±1.10e-03 ±1.85e-03 ±2.03e-03 ±1.24e-03 ±1.29e-03 ±2.75e-03

Orlraws10P
9.6479e-01 5.3898e-01 5.4470e-01 5.3648e-01 5.2969e-01 5.0571e-01 5.9507e-01
±2.83e-02 ±7.53e-03 ±9.58e-03 ±5.90e-03 ±8.00e-03 ±3.88e-03 ±8.65e-03

Brain2
7.2102e-01 3.9029e-01 3.8245e-01 3.7751e-01 3.7819e-01 3.6871e-01 4.3346e-01
±7.46e-02 ±2.15e-02 ±2.43e-02 ±2.55e-02 ±2.12e-02 ±1.66e-02 ±2.82e-02

Prostate
9.4399e-01 4.6288e-01 4.5987e-01 4.5114e-01 4.5588e-01 4.4194e-01 5.2044e-01
±4.03e-02 ±1.29e-02 ±1.51e-02 ±1.06e-02 ±1.16e-02 ±8.71e-03 ±1.53e-02

Table 4. Mean MCE performance on the final test data, with best results marked in gray and those
with insignificant differences prefixed by †.

Dataset HIER NSGA-II MOEA/D HypE MOEA/HD SparseEA DAEA

HillValley
4.0055e-01 4.2225e-01 † 4.0440e-01 4.1346e-01 † 4.0220e-01 † 4.0412e-01 † 4.0412e-01
±9.75e-03 ±1.67e-02 ±1.17e-02 ±1.44e-02 ±8.84e-03 ±1.00e-02 ±9.68e-03

MUSK1
8.5315e-02 † 9.5105e-02 1.1538e-01 9.8601e-02 † 9.7203e-02 1.0210e-01 † 9.1608e-02
±1.74e-02 ±2.18e-02 ±2.04e-02 ±1.80e-02 ±2.33e-02 ±1.64e-02 ±1.84e-02

Arrhythmia
3.2554e-01 3.7914e-01 3.5072e-01 3.8921e-01 4.6367e-01 4.3885e-01 † 3.3129e-01
±1.68e-02 ±3.29e-02 ±1.91e-02 ±4.51e-02 ±1.71e-02 ±4.18e-02 ±1.80e-02
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Table 4. Cont.

Dataset HIER NSGA-II MOEA/D HypE MOEA/HD SparseEA DAEA

Yale
2.9333e-01 3.4778e-01 3.6222e-01 3.5667e-01 3.4000e-01 3.1333e-01 † 2.9889e-01
±3.86e-02 ±2.53e-02 ±3.82e-02 ±3.85e-02 ±5.20e-02 ±2.78e-02 ±3.01e-02

Colon
1.2632e-01 2.1316e-01 2.0789e-01 2.1053e-01 2.3421e-01 1.9737e-01 1.6842e-01
±6.01e-02 ±4.35e-02 ±6.50e-02 ±4.52e-02 ±5.26e-02 ±3.77e-02 ±5.01e-02

SRBCT
1.2800e-01 6.4000e-01 6.4000e-01 6.4000e-01 6.4000e-01 6.4000e-01 6.4000e-01
±8.47e-02 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16

AR10P
2.2750e-01 4.9000e-01 5.2000e-01 5.1375e-01 5.1500e-01 5.0750e-01 4.7000e-01
±4.21e-02 ±3.38e-02 ±3.77e-02 ±3.09e-02 ±3.08e-02 ±2.00e-02 ±3.10e-02

PIE10P
4.8333e-02 9.6667e-02 1.0333e-01 1.0167e-01 1.0167e-01 1.0167e-01 8.5833e-02
±2.75e-02 ±1.28e-02 ±2.27e-02 ±1.61e-02 ±1.42e-02 ±1.07e-02 ±1.82e-02

Leukemia1
5.6818e-02 1.6136e-01 1.8182e-01 1.6818e-01 1.7045e-01 1.5909e-01 1.4773e-01
±3.57e-02 ±3.12e-02 ±4.17e-02 ±2.14e-02 ±4.14e-02 ±3.13e-02 ±2.90e-02

Tumor9
5.4167e-01 5.9722e-01 6.0556e-01 6.2222e-01 6.1111e-01 5.8056e-01 6.1111e-01
±6.47e-02 ±5.06e-02 ±4.38e-02 ±6.40e-02 ±4.42e-02 ±3.81e-02 ±4.03e-02

TOX171
1.8396e-01 2.2358e-01 2.4057e-01 2.3302e-01 2.2736e-01 2.1321e-01 2.1792e-01
±4.19e-02 ±1.53e-02 ±3.56e-02 ±3.02e-02 ±2.84e-02 ±2.38e-02 ±2.84e-02

Brain1
2.3519e-01 2.5926e-01 2.5926e-01 2.5926e-01 2.5926e-01 2.5926e-01 2.5926e-01
±4.21e-02 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00

Leukemia2
6.1364e-02 1.3182e-01 1.4545e-01 1.3182e-01 1.4545e-01 1.2727e-01 1.2045e-01
±6.13e-02 ±1.40e-02 ±2.80e-02 ±2.91e-02 ±2.80e-02 ±1.87e-02 ±2.67e-02

ALLAML
4.7727e-02 1.5682e-01 1.5909e-01 1.6591e-01 1.6364e-01 1.5000e-01 1.5000e-01
±5.00e-02 ±2.75e-02 ±2.33e-02 ±3.05e-02 ±2.28e-02 ±2.99e-02 ±2.60e-02

Carcinom
1.2308e-01 1.4231e-01 1.5000e-01 1.4904e-01 1.5000e-01 † 1.3846e-01 † 1.3269e-01
±3.02e-02 ±1.91e-02 ±2.30e-02 ±2.15e-02 ±2.03e-02 ±1.60e-02 ±1.64e-02

Nci9
5.4474e-01 6.5789e-01 6.3421e-01 6.6053e-01 6.4211e-01 6.5526e-01 6.3158e-01
±8.24e-02 ±4.68e-02 ±5.26e-02 ±4.67e-02 ±4.39e-02 ±4.00e-02 ±4.83e-02

Arcene
1.4583e-01 4.3333e-01 4.3333e-01 4.3333e-01 4.3333e-01 4.3333e-01 4.3333e-01
±2.70e-02 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16

Orlraws10P
3.8333e-02 1.0500e-01 1.1167e-01 1.0333e-01 1.0500e-01 1.0167e-01 1.0333e-01
±3.11e-02 ±1.22e-02 ±1.63e-02 ±1.03e-02 ±1.22e-02 ±7.45e-03 ±1.03e-02

Brain2
3.0667e-01 3.7667e-01 3.9667e-01 3.9333e-01 3.9000e-01 3.7000e-01 3.7333e-01
±8.21e-02 ±3.91e-02 ±4.03e-02 ±4.79e-02 ±3.91e-02 ±3.40e-02 ±4.54e-02

Prostate
6.1290e-02 2.4194e-01 2.6129e-01 2.5645e-01 2.4355e-01 2.2742e-01 2.2581e-01
±4.43e-02 ±2.45e-02 ±2.94e-02 ±1.95e-02 ±1.95e-02 ±1.65e-02 ±2.56e-02

Table 5. Mean NSF performance on the final test data, with best results marked in gray and those
with insignificant differences prefixed by †.

Dataset HIER NSGA-II MOEA/D HypE MOEA/HD SparseEA DAEA

HillValley
4.3500e+00 1.1200e+01 † 3.2500e+00 † 6.6000e+00 † 3.8500e+00 † 4.0500e+00 † 3.5500e+00
±3.01e+00 ±6.46e+00 ±1.92e+00 ±4.91e+00 ±3.45e+00 ±2.91e+00 ±3.10e+00

MUSK1
2.8650e+01 † 3.3950e+01 2.1150e+01 † 2.9950e+01 † 2.8450e+01 † 2.6800e+01 † 2.7800e+01
±1.12e+01 ±1.13e+01 ±1.08e+01 ±9.45e+00 ±1.21e+01 ±1.50e+01 ±8.97e+00

Arrhythmia
9.4500e+00 1.6550e+01 1.2150e+01 1.8850e+01 5.0900e+01 3.6950e+01 † 1.0050e+01
±2.86e+00 ±6.20e+00 ±3.87e+00 ±1.14e+01 ±3.31e+00 ±7.40e+00 ±5.69e+00

Yale
1.9000e+01 3.3400e+02 2.6825e+02 3.3800e+02 3.2915e+02 3.8475e+02 2.3105e+02
±8.35e+00 ±2.99e+01 ±1.46e+01 ±1.10e+01 ±1.68e+01 ±2.03e+01 ±4.03e+01
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Table 5. Cont.

Dataset HIER NSGA-II MOEA/D HypE MOEA/HD SparseEA DAEA

Colon
3.9000e+00 6.9905e+02 5.5090e+02 7.2470e+02 7.3735e+02 8.7520e+02 4.8045e+02
±4.01e+00 ±1.50e+01 ±5.59e+01 ±3.36e+01 ±2.43e+01 ±3.37e+01 ±3.17e+01

SRBCT
1.1700e+01 8.1420e+02 6.0965e+02 8.0820e+02 9.8835e+02 1.0337e+03 7.0040e+02
±1.27e+01 ±1.24e+01 ±1.23e+01 ±1.39e+01 ±1.10e+01 ±1.03e+01 ±1.19e+02

AR10P
1.4850e+01 9.1535e+02 7.8260e+02 9.4745e+02 9.3110e+02 1.0808e+03 6.9200e+02
±5.97e+00 ±1.77e+01 ±2.61e+01 ±5.17e+01 ±2.85e+01 ±3.27e+01 ±7.48e+01

PIE10P
1.4800e+01 9.0765e+02 7.6480e+02 9.3650e+02 9.4000e+02 1.0852e+03 6.7210e+02
±3.72e+00 ±2.51e+01 ±2.78e+01 ±1.91e+01 ±2.50e+01 ±2.95e+01 ±3.75e+01

Leukemia1
3.5500e+00 2.2284e+03 2.0482e+03 2.2672e+03 2.3012e+03 2.5398e+03 1.7904e+03
±1.54e+00 ±2.11e+01 ±8.40e+01 ±3.81e+01 ±3.01e+01 ±3.41e+01 ±7.59e+01

Tumor9
2.0750e+01 2.4570e+03 2.3302e+03 2.5034e+03 2.5214e+03 2.7432e+03 1.9975e+03
±1.13e+01 ±3.33e+01 ±4.08e+01 ±2.67e+01 ±4.34e+01 ±2.99e+01 ±6.94e+01

TOX171
2.9450e+01 2.5100e+03 2.3762e+03 2.5703e+03 2.5303e+03 2.7681e+03 2.0640e+03
±1.27e+01 ±6.23e+01 ±3.48e+01 ±6.66e+01 ±3.03e+01 ±3.54e+01 ±6.63e+01

Brain1
6.3500e+00 2.4922e+03 2.3319e+03 2.5038e+03 2.6484e+03 2.8378e+03 2.1434e+03
±4.44e+00 ±2.65e+01 ±9.29e+01 ±3.08e+01 ±8.53e+01 ±1.52e+01 ±7.27e+01

Leukemia2
2.0500e+00 3.0410e+03 2.8929e+03 3.0675e+03 3.1837e+03 3.4228e+03 2.5413e+03
±1.39e+00 ±3.44e+01 ±1.06e+02 ±3.57e+01 ±5.71e+01 ±3.21e+01 ±8.82e+01

ALLAML
2.1000e+00 3.0848e+03 2.9301e+03 3.1164e+03 3.1823e+03 3.4504e+03 2.5657e+03
±1.07e+00 ±2.61e+01 ±4.67e+01 ±3.68e+01 ±4.63e+01 ±3.33e+01 ±5.94e+01

Carcinom
2.3350e+01 4.0971e+03 3.9811e+03 4.1602e+03 4.1489e+03 4.4926e+03 3.4802e+03
±7.86e+00 ±3.82e+01 ±6.53e+01 ±4.30e+01 ±3.06e+01 ±3.26e+01 ±1.01e+02

Nci9
1.3250e+01 4.2878e+03 4.0833e+03 4.2805e+03 4.6002e+03 4.7272e+03 3.8900e+03
±1.20e+01 ±3.25e+01 ±3.29e+01 ±3.16e+01 ±2.86e+01 ±1.76e+01 ±4.30e+01

Arcene
1.3350e+01 4.4209e+03 4.2405e+03 4.4179e+03 4.7479e+03 4.8754e+03 3.9959e+03
±6.95e+00 ±1.99e+01 ±3.35e+01 ±3.68e+01 ±2.25e+01 ±2.34e+01 ±5.00e+01

Orlraws10P
1.3250e+01 4.5808e+03 4.4630e+03 4.6233e+03 4.6971e+03 5.0229e+03 3.8903e+03
±5.37e+00 ±3.63e+01 ±4.45e+01 ±3.48e+01 ±5.78e+01 ±2.67e+01 ±7.47e+01

Brain2
7.2500e+00 4.6416e+03 4.5841e+03 4.7026e+03 4.7289e+03 5.0841e+03 3.9348e+03
±3.70e+00 ±4.55e+01 ±1.21e+02 ±2.84e+01 ±4.01e+01 ±3.71e+01 ±8.19e+01

Prostate
6.5000e+00 4.7128e+03 4.5869e+03 4.7604e+03 4.7962e+03 5.1540e+03 4.0243e+03
±3.46e+00 ±5.72e+01 ±5.63e+01 ±5.75e+01 ±4.31e+01 ±4.61e+01 ±1.16e+02

5.2. Nondominated Solution Distributions

For more intuitive observations of performance, Figure 4 illustrates the nondominated
solution distributions of each algorithm in the objective space in terms of the Pareto curves,
always choosing their median HV performance runs for the sake of fairness. In Figure 4, it
can be seen that the proposed HIER generally performs the best on almost every dataset,
except for MUSK1 in Figure 4b, which is also consistent with the previously introduced HV
performance shown in Table 3. Nevertheless, HIER still obtains the smallest classification
error rate on MUSK1 in Figure 4b in the f2 objective direction compared with the other
algorithms. Generally speaking, HIER can obtain significantly better population diversity
and outstanding convergence as the dimensionality of features grows to the large-scale level.
In fact, even on relatively low-dimensional datasets, such as HillValley and Arrhythmia
in Figure 4a,c, respectively, HIER can still obtain better diversity and convergence of
population distributions than the other algorithms. It is also worth noting that in this
paper the f1 objective direction (i.e., the x-axis) in Figure 4 is illustrated on the logarithmic
(base 10) scale, so that even the distributions of other algorithms far apart from that of the
proposed algorithm can be presented in the same picture for clearer observations. Overall,
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the proposed HIER can generally achieve the most diverse and converged nondominated
solutions when compared to all the other comparison algorithms in terms of the Pareto
curves drawn in the objective space.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4. Nondominated solution distributions in terms of the Pareto curves drawn in the objective
space, with the run of median HV performance on the final test data, obtained by each algorithm.
(a) HillValley. (b) MUSK1. (c) Arrhythmia. (d) Yale. (e) Colon. (f) SRBCT. (g) AR10P. (h) PIE10P. (i)
Leukemia1. (j) Tumor9. (k) TOX171. (l) Brain1. (m) Leukemia2. (n) ALLAML. (o) Carcinom. (p) Nci9.
(q) Arcene. (r) Orlraws10P. (s) Brain2. (t) Prostate.
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Moreover, it can be observed from Figure 4 that the final obtained nondominated
solutions for each algorithm are generally sparse on the test data, which is mainly because
of the following reasons. First, as can be seen from Table 1, the number of samples used
for training and testing on some datasets is actually not sufficient, such as the ALLAML
dataset with only 72 samples but having a large-scale number of 7129 features to explore.
This unbalanced ratio between samples and features is quite common for large-scale
discrete optimization, which makes the feasible decision space rather sparse. As a result,
the nondominated solutions obtained by each algorithm are restricted to a much smaller
number compared with the cases in continuous optimization. Second, the nondominated
solutions shown in Figure 4 are obtained from the test data, which have already been filtered
by the conversion process from training to testing. Thus, what used to be nondominated
on the training data may become dominated on the test data, which makes the number of
nondominated solutions obtained on the test data become even smaller.

5.3. Component Contribution Analyses

For more comprehensive studies, the component contribution performances of the
proposed hybrid initialization (abbreviated as HI) and effective reproduction (abbreviated
as ER) methods are shown in Tables 6–9. To be more specific, three variant algorithms,
i.e., Base/HI, Base/ER, and Base, are created to be compared with the proposed HIER;
Base denotes the baseline algorithm deleting both the HI and ER methods from HIER.
Base/HI and Base/ER denote the variant algorithms adding the HI and ER methods to
Base, respectively. Overall, it is suggested that HIER performs the best on most of the
datasets in Table 7–9, and always ranks the first in Table 6, proving that the proposed HI and
ER methods together can make the greatest contribution. Furthermore, it is also implied
from the marking situation of ✓shown in Tables 7–9 that either Base/HI or Base/ER can
generally perform better than the Base algorithm on most of the datasets, in terms of
all three metrics, and always ranks better than Base in Table 6, which also implies that
each component of HIER (i.e., HI or ER) can have a positive effect on improving the
algorithm’s performance but their combination (i.e., the entire HIER) makes the greatest
contribution. This is mainly owing to the complementary effects made by combining both
hybrid initialization and effective reproduction in HIER, which has already been discussed
in the last paragraph of Section 3.4, for improving both the exploration and exploitation
factors in addressing high-dimensional feature selection.

Table 6. Mean ranks calculated by Friedman’s test on both training and test data, for each algorithm,
with best ranks marked in gray for component contribution analyses.

Metric Data HIER Base/HI Base/ER Base

HV
Train 1.1300 2.1125 2.8075 3.9500
Test 1.3350 1.9225 2.8250 3.9175

MCE
Train 1.3375 1.9038 3.0688 3.6900
Test 1.7475 2.0975 2.8687 3.2862

NSF
Train 1.2463 2.0275 2.8862 3.8400
Test 1.2337 2.0500 2.8862 3.8300

Table 7. Mean HV performance on the final test data, with best results marked in gray and those
with insignificant differences prefixed by †, also a ✓ means a better performance than that of the
corresponding Base algorithm.

Dataset HIER Base/HI Base/ER Base

HillValley
6.2892e-01 ✓ 6.0206e-01 † 6.2892e-01 ✓ 6.0206e-01
±8.46e-03 ±2.58e-02 ±8.46e-03 ±2.58e-02

MUSK1
8.8189e-01 ✓ 8.3186e-01 †8.8189e-01 ✓ 8.3186e-01
±1.84e-02 ±2.82e-02 ±1.84e-02 ±2.82e-02
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Table 7. Cont.

Dataset HIER Base/HI Base/ER Base

Arrhythmia
6.9949e-01 ✓ 6.7456e-01 ✓ † 6.9239e-01 ✓ 6.1565e-01
±1.49e-02 ±1.70e-02 ±1.28e-02 ±3.45e-02

Yale
7.2988e-01 ✓ † 7.1830e-01 ✓ 6.1279e-01 ✓ 4.9729e-01
±3.46e-02 ±4.03e-02 ±2.52e-02 ±2.18e-02

Colon
8.8458e-01 ✓ 8.8048e-01 ✓ 6.9894e-01 ✓ 5.5372e-01
±5.47e-02 ±4.48e-02 ±2.99e-02 ±2.85e-02

SRBCT
8.8158e-01 ✓ 8.4499e-01 ✓ 4.6735e-01 ✓ 2.8731e-01
±7.70e-02 ±6.29e-02 ±1.67e-01 ±2.35e-03

AR10P
7.9190e-01 ✓ 7.0132e-01 ✓ 4.4533e-01 ✓ 3.5733e-01
±3.81e-02 ±4.87e-02 ±2.39e-02 ±1.93e-02

PIE10P
9.5463e-01 ✓ † 9.7024e-01 ✓ 7.3321e-01 ✓ 6.0007e-01
±2.49e-02 ±1.86e-02 ±1.55e-02 ±9.66e-03

Leukemia1
9.4797e-01 ✓ 9.2420e-01 ✓ 6.3440e-01 ✓ 5.3239e-01
±3.25e-02 ±5.80e-02 ±2.17e-02 ±1.68e-02

Tumor9
5.0677e-01 ✓ 4.8747e-01 ✓ 3.1102e-01 ✓ 2.8046e-01
±5.87e-02 ±5.37e-02 ±2.29e-02 ±2.54e-02

TOX171
8.3099e-01 ✓ † 8.3398e-01 ✓ 5.5152e-01 ✓ 4.8962e-01
±3.79e-02 ±3.01e-02 ±1.21e-02 ±1.27e-02

Brain1
7.8591e-01 ✓ † 7.7663e-01 ✓ 5.5687e-01 ✓ 4.7613e-01
±3.82e-02 ±3.34e-02 ±5.32e-03 ±3.95e-03

Leukemia2
9.4408e-01 ✓ 9.2057e-01 ✓ 6.2342e-01 ✓ 5.3959e-01
±5.57e-02 ±5.67e-02 ±2.32e-02 ±1.43e-02

ALLAML
9.5646e-01 ✓ 9.4528e-01 ✓ 5.9713e-01 ✓ 5.2342e-01
±4.54e-02 ±4.46e-02 ±1.73e-02 ±1.73e-02

Carcinom
8.8720e-01 ✓ 8.7518e-01 ✓ 5.8885e-01 ✓ 5.2509e-01
±2.73e-02 ±2.53e-02 ±1.02e-02 ±1.08e-02

Nci9
5.0449e-01 ✓ † 4.9181e-01 ✓ 2.8777e-01 ✓ 2.4995e-01
±7.48e-02 ±8.25e-02 ±2.90e-02 ±2.88e-02

Arcene
8.6704e-01 ✓ 8.5578e-01 ✓ 4.2071e-01 ✓ 3.6608e-01
±2.45e-02 ±2.96e-02 ±1.86e-03 ±2.63e-03

Orlraws10P
9.6479e-01 ✓ 9.5124e-01 ✓ 6.1629e-01 ✓ 5.4507e-01
±2.83e-02 ±3.47e-02 ±1.12e-02 ±6.24e-03

Brain2
7.2102e-01 ✓ 6.7439e-01 ✓ 4.3591e-01 ✓ 3.9461e-01
±7.46e-02 ±8.16e-02 ±3.54e-02 ±1.79e-02

Prostate
9.4399e-01 ✓ 9.1163e-01 ✓ 5.2506e-01 ✓ 4.6475e-01
±4.03e-02 ±5.66e-02 ±1.55e-02 ±1.37e-02

Table 8. Mean MCE performance on the final test data, with best results marked in gray and those
with insignificant differences prefixed by †, also a ✓ means a better performance than that of the
corresponding Base algorithm.

Dataset HIER Base/HI Base/ER Base

HillValley
4.0055e-01 ✓ 4.1099e-01 † 4.0055e-01 ✓ 4.1099e-01
±9.75e-03 ±2.08e-02 ±9.75e-03 ±2.08e-02

MUSK1
8.5315e-02 ✓ 9.4755e-02 † 8.5315e-02 ✓ 9.4755e-02
±1.74e-02 ±1.78e-02 ±1.74e-02 ±1.78e-02

Arrhythmia
3.2554e-01 ✓ 3.4137e-01 ✓ † 3.2950e-01 ✓ 3.9137e-01
±1.68e-02 ±1.77e-02 ±1.56e-02 ±4.20e-02
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Table 8. Cont.

Dataset HIER Base/HI Base/ER Base

Yale
2.9333e-01 ✓ † 2.9778e-01 ✓ † 3.0111e-01 ✓ 3.4222e-01
±3.86e-02 ±4.53e-02 ±3.26e-02 ±3.26e-02

Colon
1.2632e-01 ✓ † 1.2632e-01 ✓ 1.5789e-01 ✓ 2.0789e-01
±6.01e-02 ±4.95e-02 ±4.52e-02 ±4.97e-02

SRBCT
1.2800e-01 ✓ † 1.6200e-01 ✓ 4.7600e-01 ✓ 6.4000e-01
±8.47e-02 ±6.93e-02 ±2.32e-01 ±1.14e-16

AR10P
2.2750e-01 ✓ 3.2250e-01 ✓ 4.6750e-01 ✓ 5.0375e-01
±4.21e-02 ±5.37e-02 ±3.15e-02 ±3.37e-02

PIE10P
4.8333e-02 ✓ 2.5000e-02 ✓ 7.4167e-02 ✓ 1.0083e-01
±2.75e-02 ±2.06e-02 ±2.26e-02 ±1.38e-02

Leukemia1
5.6818e-02 ✓ † 7.9545e-02 ✓ 1.4318e-01 ✓ 1.6364e-01
±3.57e-02 ±6.41e-02 ±3.05e-02 ±3.09e-02

Tumor9
5.4167e-01 ✓ † 5.6111e-01 ✓ 6.1111e-01 6.0000e-01
±6.47e-02 ±5.95e-02 ±3.60e-02 ±4.63e-02

TOX171
1.8396e-01 ✓ † 1.7736e-01 ✓ 2.1415e-01 ✓ 2.1887e-01
±4.19e-02 ±3.32e-02 ±1.96e-02 ±2.24e-02

Brain1
2.3519e-01 ✓ † 2.4259e-01 ✓ 2.5926e-01 2.5926e-01
±4.21e-02 ±3.70e-02 ±0.00e+00 ±0.00e+00

Leukemia2
6.1364e-02 ✓ † 8.6364e-02 ✓ 1.3636e-01 1.3636e-01
±6.13e-02 ±6.24e-02 ±3.30e-02 ±2.55e-02

ALLAML
4.7727e-02 ✓ † 5.9091e-02 ✓ 1.6364e-01 1.6136e-01
±5.00e-02 ±4.91e-02 ±2.72e-02 ±3.12e-02

Carcinom
1.2308e-01 ✓ † 1.3462e-01 ✓ † 1.3269e-01 ✓ † 1.3558e-01
±3.02e-02 ±2.79e-02 ±1.52e-02 ±1.82e-02

Nci9
5.4474e-01 ✓ † 5.5789e-01 ✓ 6.4474e-01 ✓ 6.4737e-01
±8.24e-02 ±9.10e-02 ±4.48e-02 ±5.15e-02

Arcene
1.4583e-01 ✓ † 1.5667e-01 ✓ 4.3333e-01 4.3333e-01
±2.70e-02 ±3.26e-02 ±1.14e-16 ±1.14e-16

Orlraws10P
3.8333e-02 ✓ † 5.1667e-02 ✓ 1.0667e-01 1.0333e-01
±3.11e-02 ±3.82e-02 ±1.37e-02 ±1.03e-02

Brain2
3.0667e-01 ✓ † 3.5667e-01 ✓ 3.9000e-01 3.7667e-01
±8.21e-02 ±8.99e-02 ±5.83e-02 ±3.26e-02

Prostate
6.1290e-02 ✓ 9.5161e-02 ✓ 2.4194e-01 ✓ 2.4516e-01
±4.43e-02 ±6.23e-02 ±2.67e-02 ±2.20e-02

Table 9. Mean NSF performance on the final test data, with best results marked in gray and those
with insignificant differences prefixed by †, also a ✓ means a better performance than that of the
corresponding Base algorithm.

Dataset HIER Base/HI Base/ER Base

HillValley
4.3500e+00 ✓ 9.3000e+00 † 4.3500e+00 ✓ 9.3000e+00
±3.01e+00 ±5.10e+00 ±3.01e+00 ±5.10e+00

MUSK1
2.8650e+01 † 2.7550e+01 † 2.8650e+01 † 2.7550e+01
±1.12e+01 ±7.44e+00 ±1.12e+01 ±7.44e+00

Arrhythmia
9.4500e+00 ✓ 1.3250e+01 ✓ † 1.0100e+01 ✓ 1.9000e+01
±2.86e+00 ±4.70e+00 ±4.36e+00 ±6.83e+00

Yale
1.9000e+01 ✓ 2.9850e+01 ✓ 1.8300e+02 ✓ 3.2705e+02
±8.35e+00 ±1.10e+01 ±1.15e+01 ±3.23e+01
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Table 9. Cont.

Dataset HIER Base/HI Base/ER Base

Colon
3.9000e+00 ✓ 1.3750e+01 ✓ 4.0850e+02 ✓ 7.0025e+02
±4.01e+00 ±4.92e+00 ±3.07e+01 ±1.44e+01

SRBCT
1.1700e+01 ✓ 3.2550e+01 ✓ 4.4115e+02 ✓ 7.9455e+02
±1.27e+01 ±1.22e+01 ±4.02e+01 ±1.43e+01

AR10P
1.4850e+01 ✓ 2.8450e+01 ✓ 6.1860e+02 ✓ 9.3145e+02
±5.97e+00 ±5.45e+00 ±4.64e+01 ±5.75e+01

PIE10P
1.4800e+01 ✓ 3.2850e+01 ✓ 5.9990e+02 ✓ 9.0505e+02
±3.72e+00 ±1.52e+01 ±4.80e+01 ±1.69e+01

Leukemia1
3.5500e+00 ✓ 2.4300e+01 ✓ 1.5901e+03 ✓ 2.2003e+03
±1.54e+00 ±5.25e+00 ±4.96e+01 ±4.57e+01

Tumor9
2.0750e+01 ✓ 4.0000e+01 ✓ 1.8952e+03 ✓ 2.4187e+03
±1.13e+01 ±1.21e+01 ±5.26e+01 ±5.87e+01

TOX171
2.9450e+01 ✓ 5.3700e+01 ✓ 2.0159e+03 ✓ 2.4728e+03
±1.27e+01 ±1.57e+01 ±6.33e+01 ±4.90e+01

Brain1
6.3500e+00 ✓ 2.6750e+01 ✓ 1.7675e+03 ✓ 2.4553e+03
±4.44e+00 ±8.84e+00 ±4.53e+01 ±3.36e+01

Leukemia2
2.0500e+00 ✓ 9.2500e+00 ✓ 2.2483e+03 ✓ 2.9917e+03
±1.39e+00 ±2.75e+00 ±6.90e+01 ±3.79e+01

ALLAML
2.1000e+00 ✓ 9.7500e+00 ✓ 2.3678e+03 ✓ 3.0438e+03
±1.07e+00 ±2.86e+00 ±1.09e+02 ±4.66e+01

Carcinom
2.3350e+01 ✓ 5.2000e+01 ✓ 3.3603e+03 ✓ 4.0616e+03
±7.86e+00 ±1.35e+01 ±8.42e+01 ±5.96e+01

Nci9
1.3250e+01 ✓ 2.9150e+01 ✓ 3.2576e+03 ✓ 4.1949e+03
±1.20e+01 ±1.01e+01 ±8.85e+01 ±3.19e+01

Arcene
1.3350e+01 ✓ 3.1550e+01 ✓ 3.3642e+03 ✓ 4.3557e+03
±6.95e+00 ±1.06e+01 ±3.38e+01 ±4.77e+01

Orlraws10P
1.3250e+01 ✓ 2.4550e+01 ✓ 3.5998e+03 ✓ 4.5159e+03
±5.37e+00 ±4.20e+00 ±8.68e+01 ±3.09e+01

Brain2
7.2500e+00 ✓ 2.5250e+01 ✓ 3.7093e+03 ✓ 4.5658e+03
±3.70e+00 ±7.18e+00 ±1.02e+02 ±4.33e+01

Prostate
6.5000e+00 ✓ 2.8750e+01 ✓ 3.7854e+03 ✓ 4.6622e+03
±3.46e+00 ±9.90e+00 ±6.45e+01 ±5.72e+01

5.4. Computational Time Complexity

The computational time complexity of the proposed HIER algorithm is first estimated
by counting the probable time consumption of each algorithm step, and then specifically
counted in seconds for the general running time under the same computational environ-
ment with all the other comparison algorithms. First of all, the greatest time complexity of
Algorithm 2 lies in two parts: the generation of new populations and the final truncation
based on nondominated sorting. The former costs O(ND) according to the two-layer nested
for loop in Algorithm 3, while the latter costs O(MN2) according to the common complex-
ity for fast nondominated sorting [6]. Then, the greatest time complexity of Algorithm 4
is also O(ND), according to its major for loop with crossover and mutation operations.
Finally, the greatest time complexity of all the other operations in Algorithm 1 is O(MN2)
for the nondominated sorting and crowding distance-based environmental selection. There-
fore, by comparing the above estimations, the computational time complexity of HIER is
theoretically estimated as O(MN2).

However, if also considering the evaluation of objective values, which is actually
the most time-consuming part for evolutionary feature selection, it is hard to accurately
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estimate the theoretical complexity, but the real consumption is closely related to the
number of selected features (i.e., the NSF metric performance shown in Tables 5 and 9);
where normally a smaller NSF value leads to a smaller time consumption for classification.
As already discussed before, HIER generally performs the best in Tables 5 and 9 in terms
of the NSF metric, suggesting its promising efficiency in the classification process for
evolutionary feature selection. In fact, this is also verified by counting each comparison
algorithm’s general computational time in seconds, shown by Tables 10 and 11. It is implied
from these two tables that the computational time complexity of HIER is generally not
high at all, consuming the smallest time in a majority of test instances in Table 10, and also
ranking the first in terms of the general Friedman’s test in Table 11.

Table 10. Mean running time counted in seconds for each algorithm, with best results marked in gray
and those with insignificant differences prefixed by †.

Dataset HIER NSGA-II MOEA/D HypE MOEA/HD SparseEA DAEA

HillValley 1.6542e+02 1.3886e+02 1.1863e+02 1.3268e+02 1.3296e+02 1.2853e+02 1.3046e+02
±2.29e+00 ±5.31e+00 ±1.30e+00 ±2.11e+00 ±3.03e+00 ±4.11e+00 ±2.42e+00

MUSK1 1.5299e+02 1.2916e+02 1.0806e+02 1.2888e+02 1.2909e+02 1.2506e+02 1.1893e+02
±3.12e+00 ±3.75e+00 ±2.35e+00 ±2.70e+00 ±5.20e+00 ±4.18e+00 ±2.17e+00

Arrhythmia 1.2357e+02 † 1.2683e+02 † 1.2521e+02 1.1269e+02 1.4024e+02 1.5856e+02 1.1801e+02
±2.96e+00 ±8.77e+00 ±6.33e+00 ±1.30e+01 ±3.60e+00 ±4.70e+00 ±5.54e+00

Yale 7.1823e+01 1.3820e+02 1.3998e+02 1.4007e+02 1.4154e+02 1.4353e+02 1.3358e+02
±8.93e-01 ±2.61e+00 ±2.37e+00 ±1.93e+00 ±2.96e+00 ±1.92e+00 ±2.81e+00

Colon 4.1085e+01 6.5188e+01 7.4923e+01 6.7189e+01 6.8834e+01 6.8019e+01 7.4603e+01
±4.34e-01 ±8.52e-01 ±1.54e+00 ±9.17e-01 ±9.49e-01 ±7.63e-01 ±9.65e-01

SRBCT 6.3116e+01 1.2351e+02 1.2505e+02 1.1532e+02 1.2714e+02 1.1498e+02 1.2557e+02
±6.48e-01 ±9.46e+00 ±1.40e+00 ±1.17e+00 ±1.23e+00 ±1.16e+00 ±4.77e+00

AR10P 1.4548e+02 3.1300e+02 2.6741e+02 2.7840e+02 2.8346e+02 2.6225e+02 2.7489e+02
±2.21e+00 ±4.12e+01 ±7.94e+00 ±9.79e+00 ±7.91e+00 ±6.51e+00 ±1.06e+01

PIE10P 2.5280e+02 1.0896e+04 6.7676e+02 7.0708e+02 7.1007e+02 6.5288e+02 6.1220e+02
±2.73e+00 ±1.11e+04 ±1.93e+01 ±2.34e+01 ±2.47e+01 ±1.28e+01 ±1.69e+01

Leukemia1 1.9317e+02 4.5790e+02 3.3060e+02 3.4796e+02 3.4160e+02 2.6899e+02 3.7272e+02
±1.92e+00 ±6.68e+00 ±9.08e+00 ±3.73e+00 ±3.17e+00 ±4.54e+00 ±5.57e+00

Tumor9 1.6337e+02 4.4825e+02 3.0571e+02 3.1021e+02 3.0621e+02 2.3338e+02 3.4640e+02
±2.98e+00 ±2.07e+01 ±3.95e+00 ±2.93e+00 ±3.18e+00 ±5.95e+00 ±5.31e+00

TOX171 5.3810e+02 1.2920e+03 1.4180e+03 1.4445e+03 1.4350e+03 8.9183e+02 1.3980e+03
±3.02e+01 ±2.58e+01 ±2.91e+01 ±2.96e+01 ±3.31e+01 ±8.35e+00 ±2.98e+01

Brain1 2.6227e+02 9.4599e+02 6.3031e+02 6.4571e+02 6.9449e+02 4.2454e+02 6.8087e+02
±4.27e+00 ±5.02e+01 ±1.09e+01 ±2.65e+01 ±1.13e+01 ±1.32e+01 ±1.81e+01

Leukemia2 2.4579e+02 6.4440e+02 6.3381e+02 6.5402e+02 6.5913e+02 3.4785e+02 6.0041e+02
±3.70e+00 ±1.01e+01 ±1.84e+01 ±1.25e+01 ±1.61e+01 ±8.51e+00 ±1.06e+01

ALLAML 2.5027e+02 8.9622e+02 6.4559e+02 6.6036e+02 6.6043e+02 3.5437e+02 6.1682e+02
±4.92e+00 ±3.85e+01 ±1.46e+01 ±1.44e+01 ±1.45e+01 ±8.26e+00 ±1.07e+01

Carcinom 8.4547e+02 2.1541e+03 2.3686e+03 2.4095e+03 2.4011e+03 8.9313e+02 2.3300e+03
±3.53e+01 ±7.39e+01 ±3.80e+01 ±4.63e+01 ±4.49e+01 ±8.86e+00 ±4.14e+01

Nci9 3.1374e+02 1.0316e+03 7.0608e+02 6.9304e+02 6.6720e+02 † 2.9938e+02 7.7338e+02
±1.83e+01 ±4.64e+01 ±1.95e+01 ±2.35e+01 ±1.47e+01 ±3.33e+00 ±1.28e+01

Arcene 1.0505e+03 2.9155e+03 3.0924e+03 2.9755e+03 3.2501e+03 9.6620e+02 3.0443e+03
±2.62e+01 ±4.38e+01 ±6.12e+01 ±1.58e+01 ±5.47e+01 ±1.22e+01 ±3.80e+01

Orlraws10P 5.4502e+02 1.3103e+03 1.2668e+03 1.2411e+03 1.3601e+03 † 5.0940e+02 1.2799e+03
±4.24e+01 ±1.58e+01 ±3.51e+01 ±2.45e+01 ±2.66e+01 ±6.23e+00 ±4.12e+01

Brain2 2.8679e+02 7.0154e+02 6.3982e+02 6.5642e+02 6.4192e+02 † 2.7188e+02 6.8426e+02
±2.12e+01 ±1.26e+01 ±1.03e+01 ±1.07e+01 ±2.01e+01 ±6.72e+00 ±1.88e+01

Prostate 5.6033e+02 1.9147e+03 1.3660e+03 1.3550e+03 1.3583e+03 † 5.3659e+02 1.4231e+03
±5.23e+01 ±4.50e+01 ±7.34e+01 ±5.96e+01 ±4.33e+01 ±4.60e+00 ±1.88e+01
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Compared with the other algorithms, HIER shows superior efficiency in terms of
running time, mainly because of the following two reasons. First, owing to the hybrid
initialization method HIER establishes a promising starting state before evolution, with
an earlier exploitation in the forward areas of objective space and a vast exploration from
different distributed and adaptively generated new populations across the objective space.
Second, the evolutionary speed is dynamically controlled by the adaptive mutation scale of
the effective reproduction method, which maintains a good balance between diversity and
convergence during evolution, and thereby reproduces effective and valid offspring with
smaller numbers of selected features. The above two reasons help to improve the HV, MCE,
and NSF performance of HIER, which in return boosts the running time performance.

Table 11. Mean ranks of general running time calculated by Friedman’s test on both training and test
data for each algorithm, with best ranks marked in gray.

Metric Data HIER NSGA-II MOEA/D HypE MOEA/HD SparseEA DAEA

Time Train 1.1975 4.5800 3.4475 4.7475 5.5650 6.4850 1.9775
Test 1.2138 4.5250 3.6162 5.0713 5.3213 6.0563 2.1963

6. Conclusions

This paper proposes an evolutionary algorithm based on hybrid initialization and
effective reproduction, termed HIER, specifically addressing bi-objective high-dimensional
feature selection in classification, which challenges the search ability of MOEAs in explor-
ing and exploiting the sparse and large-scale decision space. In HIER, the initialization
process is improved by truncating the adaptively distributed extra initial populations into a
promising hybrid one, while the reproduction process is enhanced by introducing the valid
crossover operation and a dynamically set mutation scale. As observed and analyzed from
the empirical results, it is suggested that HIER shows significant performance advantages
over other algorithms it is compared to in terms of all the metrics on most of the tested
datasets. Furthermore, the nondominated solution distribution analyses also support the
diversity and convergence advantages of HIER in the objective space, while the component
contribution analyses implies that each essential component of HIER can separately have
a positive effect and the combination of them makes the greatest contribution. Finally,
the computational complexity of HIER is comprehensively studied by considering both
theoretical and practical scenarios in terms of the estimated greatest time complexity and
the experimental running time, which proves that HIER is not time-consuming theoretically
and has an acceptable running time cost.

In our future work, it is planned to study the application of adopting the proposed
hybrid initialization and effective reproduction ideas to solve more kinds of complex dis-
crete large-scale optimization problems with binary coding, such as network construction,
pattern mining, task offloading, and community detection. Moreover, the proposed algo-
rithm HIER can also be applied to some practical cases such as medical diagnoses, which
normally have a large-scale level of features and the cost of obtaining those features is often
quite expensive, such as performing a pathological examination or performing nuclear
magnetic resonance. In such cases, selecting a subset of features with as small a size as
possible is vitally important for both patients and doctors; here, HIER could make use
of its efficient and effective search ability on high-dimensional datasets. Finally, for the
methodology part, there are also two potential improvements that could be added as part
of our future work, shown as follows. First, the total number of extra initial populations,
i.e., K in line 2 of Algorithm 2, adaptively generated for composing the final hybrid one,
could be more adaptively and delicately set. Second, the dynamically set mutation scale s
in line 11 of Algorithm 4 could also be more adaptively and delicately controlled.
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