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Abstract: This paper introduces the exponential time differencing (ETD) technique as a numerical
method to efficiently solve vulnerable American options pricing. We address several challenges,
including removing cross-derivative terms through appropriate transformations, treating early-
exercise opportunities using the penalty method, and substituting fixed boundary conditions with
corresponding one-sided finite differences. The proposed method is shown to be both accurate and
efficient through numerical experiments, which also compare the results with existing methods and
analyze the numerical stability and convergence rate.
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1. Introduction

The Global Financial Crisis of 2007–2008 has raised concerns regarding the exposure
to credit default risk in financial derivatives traded in over-the-counter (OTC) markets.
In the absence of an organized exchange, option holders face the risk of default, leading
to the emergence of “vulnerable options” that carry lower values compared to their non-
vulnerable counterparts due to the inherent default risk.

Early studies by Johnson and Stulz [1] proposed pricing formulas for vulnerable
European options under the assumption that the option represents the only liability of the
involved party. Subsequent research by Klein [2] extended this work by considering the
recovery of nominal claims in default and the correlation between the issuer’s asset and
the underlying option asset. Further advancements [3] incorporated the Vasicek model
and introduced a default boundary dependent on the option’s value. In [4], the model
was extended to accommodate default before option maturity, while Ref. [5] explored
vulnerable options in incomplete markets with fluctuating interest rates.

Recently, the focus has shifted towards the pricing of American options, which of-
fer the holder the right to exercise at any point before the expiration date. Klein and
Yang [6] ventured into the realm of vulnerable American options, but a closed-form for-
mula remained elusive. Later, Ref. [7] provided a semi-analytical solution specifically for
standalone vulnerable American put options, with a focus on the early exercise boundary.

The difficulty arises in pricing vulnerable American options due to the significant
discontinuity in their payoff function. Current models for these options are often based
on a binomial tree method, yielding option prices and critical stock prices in tabulated
form [7]. Ref. [8] utilized the two-point Geske and Johnson method to assess vulnerable
American options, delivering analytical pricing formulas under risk-neutral measures. The
study also delved into the price sensitivity of these options to correlations between the
underlying and option writer’s assets. Further, Refs. [9,10] offered models incorporating
jump-diffusion processes and correlated credit risk, respectively.
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Pricing vulnerable American options poses substantial challenges due to the presence
of early-exercise opportunities and the mixed derivative term in the governing nonlin-
ear partial differential equation (PDE), which complicates numerical schemes and may
result in solution instabilities [11]. To overcome these difficulties, this paper presents a
novel numerical methodology that integrates multiple techniques. The penalty method,
see [12] and references therein, to our knowledge previously unexplored in the context of
vulnerable American options, is employed to handle early-exercise opportunities. The re-
sulting nonlinear PDE is then transformed into a canonical form through mixed derivative
elimination [13].

The transformed PDE is solved using the Exponential Time Differencing (ETD)
method [14], designed for solving ordinary differential equations (ODEs) or systems of
ODEs. This method utilizes exponential integrators, known for their effectiveness in
handling stiff systems characterized by solution modes with divergent decay rates. ETD
techniques excel at capturing both rapid transient dynamics and slower dynamics accu-
rately. In the context of vulnerable American options, a suitable approach is required for
applying the ETD method to PDEs. The method of lines is employed to discretize space
variables, such as the underlying asset price and the firm’s asset value, thereby converting
the pricing PDE into a system of ODEs.

The ETD technique is then applied to this system of ODEs, efficiently yielding a
stable and accurate solution for the option price. This combined approach enables the
handling of the complex mixed-derivative term, which often poses numerical challenges in
traditional methods. To validate the proposed method, extensive numerical experiments
are conducted, comparing the results with existing approaches. Furthermore, numerical
stability and convergence rate analyses reinforce the efficiency and precision of the ETD
method. The findings demonstrate that the proposed method offers not only computational
efficiency but also remarkable accuracy in pricing vulnerable American options.

The remainder of this paper is structured as follows. Section 2 outlines the formulation
of the free-boundary PDE problem for vulnerable American options. In Section 3, the
proposed methodology is detailed, encompassing the mixed-derivative removal transfor-
mation, the semi-discretization of the PDE, and the utilization of the ETD method to solve
the resulting system of ODEs. Noteworthy focus is given to the solution of the default
case. Section 4 presents the numerical results, including a numerical analysis of stability
and convergence, as well as a comprehensive comparison with existing methods. Finally,
Section 5 provides concluding remarks.

2. Vulnerable Option Modeling

Let us consider an American option written on the asset S, which follows the risk-
neutral process

dS
S

= (r − q)dt + σSdZS, (1)

where r is the risk-free rate, q is the dividend yield, σS is the constant volatility of the
underlying asset S, and ZS is a standard Wiener process.

If the option is traded in the over-the-counter market, and there is no guarantee
that participants will fulfill their obligations, the option writers become vulnerable to a
counter-party credit risk, and the corresponding options are known as vulnerable.

Johnson and Stulz [1] were pioneers in studying vulnerable options. They assumed
that default may occur when the option price is greater than the value of the option writer’s
assets. This model was extended by Klein and Inglis in [3] by allowing the option writer
to hold other liabilities, but only changes in the value of the writer’s assets, including the
underlying asset of the option, can lead to financial distress. Later on, in [6], Klein and
Yang derived the PDE formulation for the vulnerable American option price considered in
present study.
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Let V denote the market value of the writer’s assets, which is correlated with the
underlying asset price S. The risk-neutral process for V is given as follows.

dV
V

= r dt + σV dZV, (2)

where σV is the instantaneous standard deviation of the return on the writer’s assets, and
ZV is a standard Wiener process. The instantaneous correlation coefficient between dZS
and dZV is ρ.

Let τ = T − t be the time to maturity; then, the vulnerable American put option price
P(τ, S; V) is the solution of the following nonlinear PDE

∂P
∂τ

=
σ2

S
2

S2 ∂2P
∂S2 +

σ2
V
2

V2 ∂2P
∂V2 + ρσSσV

∂2P
∂S∂V

+ (r − q)S
∂P
∂S

+ rV
∂P
∂V

− rP, (3)

subject to the following initial conditions

P(0, S; V) = (S − K)+
(
1(V≥D∗+K−S) +

(1 − α)V
D∗ + K − S

1(V<D∗+K−S)

)
, (4)

where (·)+ = max{·, 0}; D∗ is the fixed default boundary such that a default occurs if the
value of the option writer’s assets V < D∗ + (K − S)+. If V ≥ D∗ + (K − S)+, the entire
claim is paid out. Parameter α is the dead-weight cost related with the bankruptcy of the
writer, expressed as a percentage of the value of the writer’s assets. Expression (4) is a payoff
function of a vulnerable put option with strike price K, and 1A is an indicator function.

The boundary condition when S → ∞ for the PDE put problem (3) is established
as follows.

lim
S→∞

P(τ; S, V) = 0, τ > 0. (5)

Let us denote the value of the corresponding non-vulnerable American option by
Pv(τ, S), which can be calculated as a solution of the Black–Scholes problem [15],

∂Pv

∂τ
=

σ2
S

2
S2 ∂2Pv

∂S2 + (r − q)S
∂Pv

∂S
− rPv, S > S f (τ), (6)

where S f (τ) is the unknown early exercise boundary, subject to the following initial and
boundary conditions.

Pv(0, S) = (K − S)+, S f (0) = K, (7)

Pv(τ, S f (τ)) = K − S f (τ),
∂Pv

∂S
(τ, S f (τ)) = −1, (8)

Pv(τ, S) = K − S, 0 ≤ S < S f (τ), (9)

lim
S→∞

Pv(τ, S) = 0. (10)

If default occurs prior to maturity, the option price is calculated as follows

P(τ, S; V) = (1 − α)
V

D∗ + Pv(τ, S)
Pv(τ, S), S ≤ K, V ≤ D∗ + Pv(τ, S), (11)

where Pv(τ, S) is the value of a vanilla (non-vulnerable) American option defined by the
PDE problem (6). Expression (11) defines the amount the holder will receive if the value of
the option writer’s assets does not exceed the variable default boundary prior to maturity.
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If default does not occur prior to maturity (V > D∗ + Pv(τ, S)), then the option price
is a solution of PDE (3) with the conditions imposed on the optimal stopping boundary
S f (τ) [6]:

P(τ, S f (τ), V) = K − S f (τ),
∂P
∂S

(τ, S f (τ), V) = −1. (12)

Hence, (3), with initial conditions (4) and boundary conditions (5), is a free boundary
PDE problem that can be reduced to the fixed domain problem by introducing some penalty
term. In the simplest case, the penalty term is defined as follows

f (P) = µ((K − S)+ − P(τ, S; V))+, (13)

where µ is some positive sufficiently large constant. This penalty term guarantees that
the solution at any moment before the maturity will not be less than the payoff of the
corresponding non-vulnerable option. This penalty term allows a fixed solution domain, re-
moving the free and moving boundary imposed by the early exercise feature of the contract.
Note that if µ = 0, the PDE problem (14) reduces to the vulnerable European option.

Finally, the PDE problem to be solved is

∂P
∂τ

=
σ2

S
2

S2 ∂2P
∂S2 +

σ2
V
2

V2 ∂2P
∂V2 + ρσSσV

∂2P
∂S∂V

+ (r − q)S
∂P
∂S

+ rV
∂P
∂V

− rP + f (P), (14)

subject to the initial conditions (4) and boundary conditions (11).

3. Numerical Solution

The PDE problem (14) with conditions (4) and (11) does not have an analytic solution
and has to be solved numerically. In [6], the three-dimensional tree was used. This method
is easy to implement but computationally expensive and time-consuming to obtain the
solution not in one fixed point but in some domain. Therefore, in the present study, the
method of exponential time differencing proposed in [14] is employed after applying
the mixed derivative terms removing transformation [13] and the semi-discretization
technique [16].

3.1. Mixed Derivative Terms Removing

The presence of mixed derivative terms in a partial differential equation can lead to
instabilities and inaccuracies, posing significant challenges for numerical methods. To
overcome these issues, various transformation techniques have been developed to remove
these mixed derivative terms. One such method, proposed in [13], is based on an LDLT

transformation of the correlation matrix, which avoids the need for iterative methods for
orthogonal diagonalization of the matrix. In this paper, we adopt a similar approach to
simplify the partial differential Equation (14).

To begin, we apply a logarithmic transformation to the variables in the PDE, which
enables us to eliminate the mixed derivative terms and reduce the problem to a more
manageable form. This transformation technique has been successfully used in previous
studies and provides a straightforward way to address the computational challenges posed
by mixed derivative terms.

x1 =
log(V/K)

σV
, x2 =

log(S/K)
σS

. (15)

Since the partial differential Equation (14) involves only two spatial variables, S and
V, the correlation matrix and its LDLT decomposition can be written in a simplified form
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R =

(
1 ρ
ρ 1

)
=

(
1 0
ρ 1

)(
1 0
0 1 − ρ2

)(
1 ρ
0 1

)
= LDLT . (16)

Then, the transformation matrix C is found as

C = L−1 =

(
1 0
ρ 1

)−1

=

(
1 0
−ρ 1

)
. (17)

The transformation Y = CX is used to remove the mixed derivative term in the PDE.
Specifically, if we define Y = (y1, y2)

T and X = (x1, x2)
T , then we have

y1 =
1

σV
log(V/K), y2 =

1
σS

log(S/K)− ρ

σV
log(V/K). (18)

The inverse transformation is

V = KeσVy1 , S = KeσS(ρy1+y2). (19)

This transformation simplifies the PDE by eliminating the mixed derivative term,
resulting in a new PDE for Y. Specifically, if we substitute Y into the original PDE (14),
denoting U(τ, y1, y2) =

1
K P(τ, S; V), we obtain

∂U
∂τ

=
1
2

2

∑
i=1

(di)
∂2U
∂y2

i
+

2

∑
i=1

(
2

∑
j=1

(r − qj − σ2
j /2)cij

σj

)
∂U
∂yi

− rU + f (U), (20)

where di are the diagonal elements of matrix D in (16), cij are the components of matrix C
defined in (17), and f (U) is a penalty term

f (U) = µ(U(0, y1, y2)− U(τ, y1, y2))
+, µ ≫ 1. (21)

Hence, the transformed PDE finally takes the form

∂U
∂τ

=
1
2

∂2U
∂y2

1
+

(1 − ρ2)

2
∂2U
∂y2

1
+

r − σ2
V/2

σV

∂U
∂y1

+

(
r − q − σ2

S /2
σS

− ρ
r − σ2

V/2
σV

)
∂U
∂y2

− rU + f (U).

(22)

The initial conditions (4) for V can be transformed to the new variables Y using the
same transformation, resulting in the transformed initial condition for U:

U(0, y1, y2) =

(eσS(ρy1+y2) − 1)+, if eσVy1 ≥ D∗
K + 1 − eσS(ρy1+y2)

(1−α)eσVy1 (eσS(ρy1+y2)−1)+
D∗
K +1−eσS(ρy1+y2)

, if eσVy1 < D∗
K + 1 − eσS(ρy1+y2)

. (23)

To solve the transformed PDE problem, we use the ETD technique [14], which consists
of two steps.

First, we apply a semi-discretization scheme to obtain a system of ordinary differential
equations (ODEs) in time. In our case, we use the second-order central difference formula
for space discretization, which results in a system of nonlinear ODEs.

Second, we use exponential time integration to solve the system of ODEs. The expo-
nential time integrator is based on a splitting of the nonlinear part of the ODEs and the
linear part, which can be solved exactly. This allows for an efficient and accurate numerical
solution of the transformed PDE.
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3.2. Semi-Discretization

Under the coordinate transformation given by (18), the solution domain V × S =
[0, ∞)× [0, ∞) is transformed to the infinite domain [y1, y2] = R2. Therefore, the trans-
formed PDE (22) needs to be satisfied for any fixed pair (y1, y2) ∈ R2. To compute a
numerical solution, we consider a truncated finite domain Ω = [y1min , y1max ]× [y2min , y2max ]
and assume that (22) is fulfilled at the boundaries of Ω, which can then be used as the
boundary conditions. Note that the rectangular domain Ω after applying the inverse trans-
formation (19) becomes a non-rectangular one. However, it is always possible to choose Ω
to represent the zone of interest.

Our goal is to construct a numerical solution for the transformed PDE problem (22)
with initial conditions (23) on the truncated domain Ω. The ETD method is based on matrix
exponentials for an exact solution of a system of ordinary differential equations (ODE).
Therefore, as a preliminary step, we need to perform spatial semi-discretization.

For this purpose, we introduce a uniform mesh with step sizes in each spatial dimen-
sion given by

h1 =
y1max − y1min

N1 − 1
, h2 =

y2max − y2min

N2 − 1
, (24)

where N1, N2 is the number of computational nodes in y1 and y2, respectively. Then, the
spatial nodes are

yj
i = yimin + jhi, j = 0, . . . , Ni − 1, i = 1, 2. (25)

Let us define an approximated solution at each spatial node by ui,j(τ) ≈ U(τ, yi
1, yj

2).
Then, for interior nodes (j ̸= 0, j ̸= Ni − 1, i = 1, 2), the differential operators in
the y1-dimension are discretized using the central finite difference (FD) schemes of the
second order.

∂U
∂y1

(τ, yi
1, yj

2) =
ui+1,j(τ)− ui−1,j(τ)

2h1
+ O(h2

1), (26)

∂2U
∂y2

1
(τ, yi

1, yj
2) =

ui+1,j(τ)− 2ui,j(τ) + ui−1,j(τ)

h2
1

+ O(h2
1). (27)

At the boundary nodes, Equation (22) holds; thus, the discretization of the spatial
derivatives is established by using a one-sided FD of the second order, j = 1, . . . , N1 − 2,

∂U
∂y1

(τ, y0
1, yj

2) =
1

2h1

(
−3u0,j(τ) + 4u1,j(τ)− u2,j(τ)

)
+ O(h2

1), (28)

∂U
∂y1

(τ, yN1−1
1 , yj

2) =
1

2h1

(
3uN1−1,j(τ)− 4uN1−2,j(τ) + uN1−3,j(τ)

)
+ O(h2

1), (29)

∂2U
∂y2

1
(τ, y0

1, yj
2) =

1
h2

1

(
2u0,j(τ)− 5u1,j(τ) + 4u2,j(τ)− u3,j(τ)

)
+ O(h2

1), (30)

∂2U
∂y2

1
(τ, yN1−1

1 , yj
2) =

1
h2

1

(
2uN1−1,j(τ)− 5uN1−2,j(τ) + 4uN1−3,j(τ)− uN1−4,j(τ)

)
+O(h2

1), (31)

Analogously, FD approximations can be obtained for derivatives with respect to y2.
Substituting the spatial derivatives in (22) by the finite-difference approximations

(26)–(31) at each spatial node (yi
1, yj

2), i = 0, . . . , N1 − 1, j = 0, . . . , N2 − 1, one obtains a
system of N = N1 × N2 nonlinear ODEs, which can be written in the following matrix form

du
dτ

(τ) = Au(τ) + f (u(τ)), (32)
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where u(τ) is a vector obtained by reshaping the matrix {ui,j}0≤i≤N1−1, 0≤j≤N2−1 column-
wise such that

ui,j(τ) = um(τ), m = i + jN1. (33)

In (32), A = {aij}0≤i,j<N is sparse and contains constant coefficients of the FD approx-
imations; see [17] for details. f (u) is the penalty term

f (u(τ)) = µ
(
(1 − s)+ − u(τ)

)+, µ ≫ 1, (34)

where s is a vector of the following components.

sm = exp
(

σS(ρ
i
1 + yj

2)
)

, m = iN2 + j, 0 ≤ i ≤ N1 − 1, 0 ≤ j ≤ N2 − 1. (35)

Let us consider the ETD method [14] for the system (32). To achieve temporal dis-
cretization, the time step k = T

Nτ
is chosen, and the solution at each moment τn = nk is

obtained.

u(τn+1) = eAku(τn) +
∫ k

0
eAs f (u(τn+1 − s))ds. (36)

According to [14], Section 2.1, the integral Equation (36) is equivalent to the system
(32) in some given interval [τn, τn+1].

Approximating unknown values u(τn+1 − s) by known u(τn) for s ∈ [0, k], which
has the local truncation error O(k2) [14,17], and applying the Simpsons’s quadrature rule
for the integral term, one obtains the explicit formula for u(τn+1)

u(τn+1) = eAku(τn) +
k
6

(
eAk + 4eAk/2 + I

)
f (u(τn)) + O(k2), (37)

where I is the identical N × N matrix. Note that the approximation of the integral term us-
ing the the Simpson’s quadrature rule avoids the computation of the matrix inverse, which
is analytically impossible for a singular matrix A and a very challenging numerical task for
its approximation. Moreover, the second-order discretization scheme provides an optimal
balance between computational efficiency and accuracy, combining simplicity in imple-
mentation with robust performance. Although higher-order schemes can achieve greater
precision, this advantage often comes at the cost of increased computational resources.

The explicit formula (37) finds the solution u(τn+1), n = 0, . . . , Nτ − 1, level-by-level,
starting from the initial value u(0) given by (23).

3.3. Default Case Solution

The problem of pricing vulnerable American options is highly challenging due to its
multidimensionality, the presence of mixed derivative terms, early exercise options, and the
possibility of default. In the event of a default prior to maturity, the option price is calculated
using Equation (11), while the non-vulnerable American option price is determined by
solving the free-boundary PDE problem (6)–(10).

Several numerical methods have been proposed in the literature for American op-
tion pricing, including finite difference methods (FDM) [18,19], analytical approxima-
tions [20,21], and mesh-free methods [22,23], among others. In this paper, we adopt the
numerical algorithm proposed in [24], which is based on the front-fixing transformation
combined with explicit FDM. The algorithm computes the solution at all time levels using
a pre-determined time step k and an appropriate spatial step size h to ensure the stability
of the numerical solution. Since the explicit FDM is used, and no matrix computations are
required, the algorithm is both robust and fast.

After computing the value of the non-vulnerable American option, it can be incor-
porated into the proposed algorithm through interpolation. In the case of default, when
S ≤ K, the vulnerable option price is computed using (11), which also requires the values
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of the corresponding non-vulnerable option. Therefore, for every node (yi
1, , yj

2) at time τn,
the solution can be found using the following algorithm.

1. Compute the corresponding values S and V using inverse transformation (19).
2. If V ≤ D∗ + Pv(τn, S) (default occurs prior maturity) and S ≤ K, then

ui,j(τ
n) = (1 − α)

V
D∗ + Pv(τ, S)

1
K

Pv(τ, S),

3. If V > D∗ + Pv(τn, S) (no default), then

ui,j(τ
n) = um(τ

n), m = iN2 + j,

where um(τn) is calculated by (37).

To evaluate the performance of the proposed numerical algorithm for pricing vulnera-
ble American options subject to default risk, we implemented the algorithm in MATLAB
R2022b. In the following section, we present the numerical results obtained for different
parameter values and compare them with benchmark results from the literature.

4. Numerical Results

In this section, we present the results of our simulations and compare them with
existing methods from the literature. We also provide an analysis of the numerical errors
and convergence rates of the proposed algorithm.

The example is based on the vulnerable American option pricing problem given in [6].
We consider an option with maturity T = 2 years, strike price K = 200, and volatility of
the underlying asset σS = 0.2. The dividend yield is assumed to be zero (q = 0), and the
interest-free rate r = 0.05. The option writer is assumed to be highly levered, D∗ = 900,
V = 1000, the volatility of the writer’s assets is σV = 0.2, and the deadweight cost is
α = 0.25. We assume that underlying asset S and the return on the writer’s assets V are
correlated with some ρ.

Detailed numerical solutions for scenarios when ρ = 0 and ρ = 0.4 have been plotted
and compared with non-vulnerable options in Figures 1 and 2, respectively. It is worth
noting that in cases where ρ = 0, the equation is devoid of a mixed derivative term, and
only the transformation as per Equation (15) is implemented, given that the correlation
matrix R is identical. As for scenarios where ρ = 0.4, both the payoff and the numerical
solution corresponding to τ = T are graphically represented in Figure 3.

0 50 100 150 200 250 300 350

S

0

20

40

60

80

100

120

140

160

P
(S

)

Numerical solution

Vulnerable AO, =0

Vulnerable AO, = T

Non-vulnerable AO

Figure 1. Payoff of the vulnerable option (blue line), vulnerable American option price at τ = 0
(orange line) for V = 1000 and ρ = 0.0, non-vulnerable American option price (dashed black line).
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P
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)

Numerical solution

Vulnerable AO, =0

Vulnerable AO, = T

Non-vulnerable AO

Figure 2. Payoff of the vulnerable option (blue line), vulnerable American option price at τ = 0
(orange line) for V = 1000 and ρ = 0.4, non-vulnerable American option price (dashed black line).

Figure 3. Vulnerable American option price (ρ = 0.4) at maturity (left) and at τ = T (right).

Table 1 provides a detailed comparison of option prices for varying values of ρ, in
accordance with the solution proposed by [6]. The computations cover a range denoted
by Ω = [−2, 10]× [−10, 1], strategically selected to represent the most significant area of
interest. For the discretization parameters, N1 and N2 are both set at 100, and the temporal
step size is determined as k = 0.01 · min(h1, h2)

2. Comparing our findings with those of [6],
a slight discrepancy becomes noticeable. This deviation may be attributable to the linear
interpolation error that arises when determining the price at the specifically designated
point S.

In all the considered scenarios, it is evident that the price of a vulnerable option is
invariably lower than that of its non-vulnerable counterpart. This observation is largely
ascribed to the default risk associated with the option writer, as discussed in [6].
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Table 1. Price of vulnerable and non-vulnerable American options for various values of correlation ρ.
Prices in the corresponding left columns are obtained by following the three-dimensional binomial
tree approach [25] and published in [6]. Prices in the corresponding right columns for each ρ are
calculated by the proposed method.

S ρ = 0.0 ρ = 0.4 ρ = 0.8 Non-Vulnerable

157 43 42.99 43 42.99 43 43.00 43
158 42 41.99 42 41.99 42 42.00 42.00
159 41 40.99 41 40.99 41.01 41.03 41.08
160 40 39.99 40 39.99 40.07 40.09 40.17
161 39 38.99 39 39.02 39.14 39.13 39.27
162 38 37.99 38 38.05 38.22 38.22 38.37
163 37 37.01 37.02 37.09 37.30 37.32 37.49
164 36 36.02 36.11 36.14 36.38 36.42 36.65
165 35 35.08 35.18 35.22 35.47 35.52 35.83
166 34.03 34.14 34.26 34.31 34.56 34.63 35.01
167 33.10 33.18 33.34 33.40 33.72 33.74 34.19
168 32.16 32.30 32.43 32.52 32.84 32.85 33.40
169 31.23 31.42 31.52 31.66 31.96 31.97 32.63
170 30.39 30.55 30.63 30.79 31.11 31.12 31.89

Numerical methods require two fundamental qualities: stability and convergence.
Stability, in the context of numerical methods, refers to the method’s capacity to limit
errors during computation. On the other hand, convergence refers to the ability of the
numerical method to approach the exact solution as the computation progresses or the step
size decreases.

However, due to the intricate nature of numerical algorithms, it is often tedious and
even not feasible to analytically study these properties. The complexity inherent in these
algorithms often precludes a straightforward mathematical analysis of their stability and
convergence characteristics. When it comes to ETD schemes, there are not many studies
that look into their theoretical stability and convergence. A few studies, like [16,26,27],
have made some progress in this area. However, our main interest is in examining these
algorithms through numerical studies and experiments. We focus on using numerical
methods and experiments to understand the qualitative properties of these algorithms.
This approach helps us learn about the stability and convergence of these algorithms in a
practical way, filling the gap left by the lack of theoretical studies. Moreover, this methodol-
ogy allows us to assess the algorithm’s performance under various conditions, scrutinizing
its consistency in preserving the essential characteristics of stability and convergence.

4.1. Numerical Stability

First, let us examine the aspect of numerical stability. For this purpose, we revisit
the previously discussed example, fixing the spatial discretization steps at h1 and h2. We
aim to identify the parabolic mesh ratio δ, such that k = δ min{h2

1, h2
2} ensures a stable

solution. It is evident that this ratio is influenced by the specific parameters of the problem.
However, it was also observed that it depends on the penalty parameter µ that is related to
the nonlinearity of the PDE. Therefore, in our study, we will also vary this parameter to
explore its influence on stability.

For the previously discussed example, wherein [N1, N2] = [50, 50] are held constant,
and the values of µ are varied, the corresponding parabolic mesh ratios, δ, are tabulated in
Table 2. Notably, up to µ = 103, the parabolic mesh ratio remains unchanged. This implies
that for such values of µ, the stability is primarily determined by the problem parameters,
and k should be selected accordingly to ensure this stability condition. However, as µ
becomes significantly large, the influence of the penalty term starts to dominate over the
problem parameters.
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Table 2. The approximate parabolic mesh ratio δ for stable numerical solution by the proposed
algorithm with respect to the penalty parameter µ.

µ 0 10 102 103 104

[N1, N2] = [50, 50] 0.094 0.094 0.094 0.038 0.003

4.2. Numerical Convergence

Drawing upon the ideas presented in [24], it is straightforward to demonstrate that
the proposed scheme is consistent with the PDE problem, with a local truncation error
of O(h2, k). In this subsection, our aim is to numerically study the convergence of the
proposed method. We revisit the previous example with all but one step size held constant,
which allows us to analyze the convergence with respect to the chosen variable.

We calculate the approximated option value for integer values of S in the interval
[157, 170], replicating the process used in the previous example. The option price computed
using the binomial tree approach, as described in [6], is used as our reference value. For
each simulation—that is, for each set of fixed step sizes—we compute the maximum relative
error as follows.

Error(N1, N2, k) =
∥∥∥∥Pref(S, 0)− Pnum(S, 0)

Pref(S, 0)

∥∥∥∥
∞
= max

S=157,...,170

|Pref(S, 0)− Pnum(S, 0)|
|Pref(S, 0)| , (38)

where Pref is the reference value, and Pnum is the computed numerical solution.
The errors for various N1 and fixed N2 = 100 and k = 10−4, as well as corresponding

errors for various N2 (fixed N1 = 100 and k = 10−4) are plotted in Figure 4. As expected,
an increasing number of steps leads to a more precise solution.

A similar plot for errors with respect to time step k for fixed N1, N2 = 100 is presented
in Figure 5. Note that, apart from k = 1.6 × 10−3, the behavior of error grows exponentially
due to the broken stability condition. Obviously, if k is not small enough to guarantee the
stability of the numerical solution, the relative error increases.
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Figure 4. Maximum relative errors with respect to the number of spatial steps N1 and N2.
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Figure 5. Maximum relative errors with respect to temporal step size k.

Let us define the log-ratios of errors as in [28]:

γN1 = log2
Error(N1, N2, k)

Error(2N1, N2, k)
, γN2 = log2

Error(N1, N2, k)
Error(N1, 2N2, k)

(39)

γk = log2
Error(N1, N2, 2k)
Error(N1, N2, k)

. (40)

These ratios are calculated for all possible pairs, and the mean values are reported in
Table 3.

Table 3. Numerical convergence rates in directions y1, y2 and time τ.

γN1 1.9246
γN2 1.7748
γk 1.0765

5. Conclusions

The present study addresses the challenging problem of pricing vulnerable American
options through the development of a novel numerical algorithm. We focus on the two-
dimensional Black–Scholes equation, which presents several computational difficulties that
must be overcome to obtain an accurate and stable solution.

One of the main challenges is the presence of a cross-derivative term in the PDE, which
is caused by the correlation between the asset price and the value of the writer’s assets. This
term requires a larger computational stencil and may lead to instabilities. To address this
issue, we apply a cross-derivative removing transformation, which simplifies the numerical
scheme and improves its stability.

Another difficulty arises from the early-exercise opportunity of American-style options,
which requires the consideration of a linear complementarity problem. We propose a
penalty method to convert this problem into a nonlinear PDE, which can be more easily
solved numerically.

The choice of appropriate boundary conditions is also crucial for obtaining an accurate
solution. We take advantage of the cross-derivative removing transformation to assume that
the PDE holds at the boundaries of the computational domain. As a result, we substitute
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fixed boundary conditions with one-sided finite difference schemes, which provide greater
flexibility and versatility in the algorithm.

To solve the resulting numerical problem, we utilize the ETD method, which is a fast
and easy-to-implement approach that allows us to compute the option value for a range of
reasonable values of the writer’s assets. We conduct numerical experiments to compare our
proposed method with other approaches in the literature and to establish its convergence
rate and study the stability. Our results demonstrate the effectiveness of the proposed
algorithm in accurately and efficiently pricing vulnerable American options.

In conclusion, the proposed numerical algorithm provides a valuable tool for risk
management in financial markets, offering a reliable and efficient solution for pricing
vulnerable American options.
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