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Abstract: The process of sorting or categorizing objects or information about these objects into
clusters according to certain criteria is a fundamental procedure in data analysis. Where it is feasible
to determine the distance metric for any pair of objects, the significance and reliability of the separation
can be evaluated by calculating the separation/segregation power (SP) index proposed herein. The
latter index is the ratio of the average inter distance to the average intra distance, independent of the
scale parameter. Here, the calculated SP value is compared to its statistical distribution obtained by a
simulation study for a given partition under the homogeneity null hypothesis to draw a conclusion
using standard statistical procedures. The proposed concept is illustrated using three examples
representing different types of objects under study. Some general considerations are given regarding
the nature of the SP distribution under the null hypothesis and its dependence on the number of
divisions and the amount of data within them. A detailed modus operandi (working method) for
analyzing a metric data partition is also offered.

Keywords: statistical models and methods; statistical inference; reliability; quality; data partitioning;
statistical significance; metric space
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1. Introduction

Attempting to understand, take control of, or resolve a particular quality or reliability
problem, initially we often try to classify the objects under study (OUS) into relatively
homogeneous groups. For example, when analyzing the problem of accumulating a large
inventory of faulty products of a certain type, we will likely try to divide them into groups
provided by different suppliers and, if such a division makes sense, we will use methods
that will force these suppliers to compete to supply higher quality products in the hope of
being the supplier of choice—divide et impera!

In recent decades, new types of quality and reliability data have been appearing at
a pace that sometimes exceeds our ability to comprehend and interpret them [1–5]. The
partition of data arrays into clusters, in accordance with some criterion, is a necessary step
in the study of a particular phenomenon. The subsequent investigation must confirm or
refute the expediency of such a division. If confirmed, the criterion’s discriminatory power
must be assessed (or, in other words, the influencing power of a factor in accordance with
the levels of which the data were partitioned must be evaluated). If the data come from a
metric space, then for any pair of data, a distance characterizing the dissimilarity between
them is defined. Choosing the appropriate distance metric is a fundamental problem in
quality control, pattern recognition, machine learning, cluster analysis, etc.

Data do not necessarily mean numbers; data can be information of any kind about
the OUS, obtained as a result of tests, measurements, observations, inquiries, etc. The
distance between data, however, indicating how far apart the studied objects are (i.e.,
dissimilar), is represented by a scalar/number. Notwithstanding all the shortcomings of
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such a simplification of the representation of the distinction between complex objects, this
idea has one undeniable advantage: simplicity.

In metric space, distance d satisfies the following four axioms:

1. The distance from a data point to itself is zero: d(x, x) = 0.
2. The distance between two distinct points x and y is always positive: d(x, y) > 0.
3. The distance from x to y is always the same as the distance from y to x: d(x, y) = d(y, x).
4. There is a triangle inequality: d(x, y) + d(y, z) ≤ d(x, z).

The OUS, as well as the data characterizing them, can be very diverse. In our recent
article [1], we considered some new types of quality data: categorical, preference chains,
strings, shapes, images, tree structured, and product/process distributions. In the short
time since the paper was published, not surprisingly, more and more data types have
emerged. The continually expanding spectrum of distance metrics used in quality and
reliability engineering is also diverse (Figure 1); e.g., see [6] for the use of Wasserstein and
Hausdorff metrics for quality control and cyber-attack detection.
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Figure 1. Examples of distance metrics.

Here we assume that in accordance with a selected metric, for a data set {Xi}N
i=1, of

size N, related to the phenomenon under study, a matrix dij = d(xi, xj) of mutual distances
for each pair of data xi and xj can be determined. This is a symmetric square matrix with
non-negative entries and zeros on the main diagonal. From the triangle inequality (axiom 4),
it follows that dik + dkj ≤ dij for any triad of i, j, and k.

To ascertain the influencing factors, all the data are divided into m groups/segments
of size n1, n2, . . . , nk, . . . , nm (∑m

k=1 nk = N) according to a criterion associated with the

levels of this/these factor/factors. Respectively, all
(

N
2

)
distances are split into two types

(Figure 2): those that refer to data pairs belonging to the same group (denoted here by
the prefix intra) and those that describe the distances between pairs of data belonging to
different groups (denoted here by the prefix inter).Mathematics 2024, 12, x FOR PEER REVIEW 3 of 19 
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To ascertain whether this partitioning is effective and, if so, to what extent, the degree
of distinction achieved, henceforth called segregation power—SP [7]—must be evaluated.
If the discrimination turns out to be weak (statistically insignificant), the hypothesis that
the partitioning criterion was chosen incorrectly could be accepted. If, on the other hand,
the discrimination is not weak (statistically significant), this evaluation should be compared
to other partitioning criteria. This article is devoted to the development of a measure
suitable for this purpose. The attentive reader will certainly find some analogies with
ANOVA; however, the proposed approach differs both in general and in specific details
from the latter.

2. Preliminary Materials: Some Definitions and Separation Power (SP)
Calculation Method

Before explaining our method, we define some of the concepts used herein.

2.1. Some Definitions

• Intra degrees of connection dcintra: The sum of data pairs belonging to the same groups,
i.e.,

• dcintra = ∑m
i=1

(
ni
2

)
=

(
n1
2

)
+

(
n2
2

)
+ . . . . +

(
nm
2

)
.

• Inter degrees of connection dcinter: The sum of data pairs belonging to the different
groups, i.e.,

• dcinter = ∑m
i=1 ∑m

j>1 ninj =
1
2 ∑i ̸=j ninj.

• Total degrees of connection dctotal : The sum of all data pairs, i.e.,

• dctotal =

(
N
2

)
. Obviously,

• dctotal = dcintra + dctotal = dcinter.
• Intra sum of distances SDintra: The sum of distances between data pairs belonging to

the same groups.
• Inter sum of distances SDinter: The sum of distances between data pairs belonging to

the different groups.
• Total sum of distances SDtotal : The sum of distances between all data pairs. Obviously

(see Figure 3 for an example),
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• SDtotal = SDintra + SDinter.
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• Intra mean distance MDintra: The sum of distances between data pairs belonging
to the same groups SDintra divided by the intra degrees of connection—dcintra—i.e.,
MDintra =

SDintra
dcintra

;
• Inter mean distance MDinter: The sum of distances between data pairs belonging to

the different groups SDinter divided by the inter degrees of connection—dcinter—i.e.,
MDinter =

SDinter
dcinter

.
• Separation/segregation power—SP: MDinter divided by MDintra, i.e.,

SP =
MDinter
MDintra

=
SDinter/dcinter
SDintra/dcintra

(1)

2.2. Some Illustrative Examples of SP Calculation for the Different Kinds of Data

We start with the simplest example and continue with more complex ones.

2.2.1. Data Represented by Real Numbers

Times to failure (TTFs) of two products (A and B) randomly selected from the batch sup-
plied by supplier I were 24,000 and 30,000 h, respectively, while the TTFs of two other prod-
ucts (C and D) randomly selected from the batch supplied by supplier II were 17,000 and
19,000 h, respectively. In other words, XA = 24,000 and XB = 30,000, whereas XC = 17,000
and XD = 19,000. Given this information, let us divide these data into two groups as in
Figure 3. The first is A, B (supplier I), and the second is C, D (supplier II). Choosing the
range between the TTFs as the distance measure (Euclidean distance), we obtain the matrix
of mutual distances shown in Table 1.

Table 1. The matrix of mutual distances between TTFs.

A B C D

A 0 6000 7000 5000
B 6000 0 13,000 11,000
C 7000 13,000 0 2000
D 5000 11,000 2000 0

Hence, in line with definitions provided above and in Figure 3:

SDintra = dA,B + dC,D = 6000 + 2000 = 8000

dcintra = 2

SDinter = dA,C + dA,D + dB,C + dB,D = 7000 + 5000 + 13000 + 11000 = 36000

dcinter = 4

Accordingly,

MDintra =
8000

2
= 4000; MDinter =

36000
4

= 9000

and finally:

SP =
MDinter
MDintra

=
9000
4000

= 2.25

2.2.2. Each Datum Is a Discrete Distribution over Categories (as in a Pie Chart)

Below are real data on the distribution of quality cost proportions by four categories
defined by [8] for eight Israeli companies engaged in residential construction in Israel [9]
(see Table 2 and Figure 4). Although all surveyed companies were certified to the interna-
tional quality standard, it was striking that companies 1, 2, 3, and 6 spent relatively much
more on external failures than the other companies (4, 5, 7, and 8). Let us now calculate the
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SP between these two clusters. Four proportions reflecting the distribution of quality costs
across the whole spectrum of possible costs are known for each company.

Table 2. Distribution of proportions of quality costs in four categories ([9], p. 109).

Company 1 Company 2 Company 3 Company 4 Company 5 Company 6 Company 7 Company 8

Prevention costs 0.19 0.05 0.07 0.19 0.11 0.31 0.19 0.23
Appraisal costs 0.22 0.15 0.13 0.35 0.47 0.12 0.32 0.23

Internal failure costs 0.14 0.28 0.18 0.27 0.19 0.14 0.27 0.27
External failure costs 0.45 0.52 0.62 0.19 0.23 0.43 0.22 0.27

Total 1 1 1 1 1 1 1 1
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The most appropriate distance measure for comparing two distributions
(p1, . . . pi, . . . , pr) and (q1, . . . qi, . . . , qr) on a nominal scale is the Hellinger distance, defined
as [10]:

H(P, Q) =
1√
2

√
r

∑
i−1

(
√

pi −
√

qi)
2

In our case, because we have four quality cost categories, r = 4. Using this distance
measure, we obtain the matrix of mutual distances shown in Table 3.

Table 3. Matrix of mutual distances between companies.

Company 1 Company 2 Company 3 Company 4 Company 5 Company 6 Company 7 Company 8

Company 1 0.000 0.198 0.169 0.214 0.222 0.122 0.189 0.152
Company 2 0.198 0.000 0.094 0.290 0.290 0.265 0.265 0.240
Company 3 0.169 0.094 0.000 0.328 0.320 0.230 0.302 0.266
Company 4 0.214 0.290 0.328 0.000 0.120 0.269 0.030 0.104
Company 5 0.222 0.290 0.320 0.120 0.000 0.317 0.127 0.191
Company 6 0.122 0.265 0.230 0.269 0.317 0.000 0.244 0.178
Company 7 0.189 0.265 0.302 0.030 0.127 0.244 0.000 0.077
Company 8 0.152 0.240 0.266 0.104 0.191 0.178 0.077 0.000
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The total degrees of connection are dctotal = 28 (“two out of eight” combinations) split
into dcintra = 12 (twice “two out of four”) and dcinter = 16 (combinations of each of the four
proportions in the first cluster with each of the four proportions in the second cluster).
Skipping the routine of calculating the sums of the intra and inter distances, in Table 4 we
present only the results.

Table 4. The total degree of connection split.

SDintra = 1.727 dcintra = 12 MDintra = SDintra
dcintra

= 0.144
SDinter = 4.082 dcinter = 16 MDinter =

SDinter
dcinter

= 0.255
SDtotal = 5.809 dctotal = 28

And finally, SP = MDinter
MDintra

= 1.773.

2.2.3. Each Datum Is a Preference Chain of Alternatives

Preference/prioritization chains (PC), along with other new types of structured data,
are widely used in engineering, quality management, risk management, genetics, health-
care, customer research, decision making, etc. Let the symbol “>” depict the relationships
between two alternatives, i.e., A1 > A2 means that A1 is preferable to A2. A set of n pre-
determined alternatives arranged as a string by this symbol (e.g., A1 > A2 > A3> . . . > An)
forms a strict preference chain. Obviously, there are n! such chains obtained by permuta-
tion of the alternatives. The construction of a chain is based only on relationships among
the predetermined alternatives without necessarily being related to the evaluation of the
property under study.

According to [11,12], all feasible PCs are scattered on the surface of the n(n − 1)/2-
dimensional sphere. If one of them—for example, the naturally ordered chain A1 > A2
> A3 > . . . > An—is considered as a base, the north pole ([N]), then the reverse chain is
located on the south pole [S] of this sphere and all the remaining (n! − 2) PCs are located on
[n(n − 1)/2] − 1 parallels formed by flat disks, which cut the N–S axis equidistantly. The
so-called geodesic distance between two PCs is proportional to the length of the geodesic
arc connecting them on the surface of a multidimensional globe. The radius of this globe,
for convenience, is chosen so that the maximum possible distance (e.g., from [N] to [S])
is equal to 1. For details regarding calculation of the geodetic distance, we refer readers
to [11].

In one of the experiments described in [11], five experts/judges prioritize five alterna-
tives. Judges two and three are women, while judges one, four, and five are men. Table 5
shows the mutual distances between the respective preference chains.

Table 5. Distance matrix between each pair of judges.

Judge j

1 2 3 4 5

Judge i

1 0 0.59 0.73 0.33 0.38
2 0.59 0 0.46 0.45 0.44
3 0.73 0.46 0 0.65 0.61
4 0.33 0.45 0.65 0 0.37
5 0.38 0.44 0.61 0.37 0

To check the discrimination power of gender (if such exists), we divide the five judges
into two clusters (2, 3) and (1, 4, 5) according to gender; see Figure 5.
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Then,

• MDintra =
[d2,3+(d1,4+d1,5+d4,5)]

4 = 0.385

• MDinter =
[(d2,1+d2,4+d2,5)+(d3,1+d3,4+d3,5)]

6 = 0.578

This implies SP = MDinter
MDintra

= 1.502.

2.3. Checking the Homogeneity Hypothesis H0

In its most general form, the conservative (null) hypothesis of homogeneity H0 means
that data being studied across all groups are drawn from the same initial original population
distribution. In other words, the scatter of data, of course, reflects the scatter of data
within the population itself, but in no way indicates the influence of the level of the
factor, in accordance with which the partitioning into groups was made, on the data being
studied. Thus, the division of data into groups/segments does not make any sense, and
the difference in the data is due to noise factors only. For example, when analyzing the
academic achievements of students, an assumption H0 can mean the independence of the
latter from a characteristic/factor such as gender or hair color.

As in ANOVA, we assume that if SP exceeds a certain threshold, determined for
a given risk by the distribution of the SP under H0, it can serve as an indicator of the
influence of a discriminating/segregating factor. The p-value can also serve as an indicator
of discrimination/segregation: the smaller it is, the greater the influence of the segregating
factor. The considerations given in Section 3.1 and Appendices A–C support the proposition
that, for a given H0, the distribution of SP depends only on the type of partition, i.e.,
vector ( n1, n2, . . . , nk, . . . , nm). Some general conclusions about the SP distribution can be
made on the basis of an analytical analysis supported by simulation (see Section 3 and
Appendices A–C).

2.4. Some Simple Examples of Distance Metric Distribution

Suppose we have a pair of data points randomly and independently drawn from the
same distribution and the distance d is defined as a range between them.

2.4.1. Normal Distribution

If the distribution is normal, then d is distributed according to (2a) (see Figure 6a [13,14]):

f (d) =
1

σ
√

π
e−( d

2σ )
2

(d ≥ 0), (2a)

where σ is the standard deviation of the original normal distribution N
(
µ, σ2) and f (d)

means the probability density function (PDF).
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Clearly, the mean distance as well as its variance depend on the scale parameter σ of
the native normal distribution only:

E(d) =
2√
π

σ (3a)

VAR(d) =
(

2 − 4
π

)
σ2 (4a)

2.4.2. Uniform Distribution

Now suppose a pair of data points are randomly and independently drawn from
the same uniform distribution U(a, b); then the distance d between them is distributed
according to the triangular distribution (2b) (see Figure 6b [15,16]):

f (d) =
2

b − a

(
1 − d

b − a

)
, (0 ≤ d ≤ b − a) (2b)

with
E(d) =

2√
3

σ (3b)

VAR(d) =
2
3

σ2 (4b)

where σ2 = (b−a)2

12 denotes the variance of the uniform distribution U(a, b). Both Equations
(3b) and (4b) do not depend on the location parameter (a + b)/2 of U(a, b).

2.4.3. Exponential Distribution

Finally, in the case of an exponential distribution Exp(x0, λ), anchored at the “starting”
value x0 (location parameter), and the spread reciprocal λ, the distance d is distributed
according to Equation (2c) (see Figure 6c [15,16]):

f (d) = λe−λd (d ≥ 0) (2c)

with
E(d) = σ (3c)

VAR(d) = σ2 (4c)

where σ = 1
λ denotes the standard deviation of the exponential distribution Exp(x0, λ).
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2.4.4. Conclusions Derived from the above Examples

Naturally, independence of the pairwise distance distribution on the location parame-
ter of the original native data distribution holds not only for the distributions mentioned
above. It holds for any kind of data distribution for which the location and the scale
parameters can be determined independently. In this sense, we can talk about the transla-
tional invariance of the distance distribution. Consequently, under H0, both E(SDintra) and
E(SDinter), given partitioning, do not depend on the location parameter and are proportional
to the scale parameter σ. Thus, the ratio E(MDinter)/E(MDintra) does not depend on either
the location or the scale parameter, and equals one. The latter gives us a reason to assume
that under H0, the distribution of SP = MDinter/MDintra also does not depend on these
parameters, but is determined only by the method of partitioning and type of original
data distribution. Detailed proof of this statement is given in Appendix A and simulation
studies provided by the authors for normal, uniform, and exponential original distributions
confirm this assumption. Figure 7 illustrates this universal SP distribution for a partition of
four data sets as shown in Figure 3. The authors experimented with many different location
and scale parameters, and the results were always repeatable. The same thing happened
with other types of partitioning, different from those shown in Figure 3 (e.g., A-BCD or
more data), used by the authors.
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3. Results of the Theoretical and Simulation Studies
3.1. Some General Considerations Regarding SP Distribution under H0

As noted in Section 2.4.4, expectations of the numerator and denominator of SP under
H0 are equal: E(MDinter) = E(MDintra). Simple conclusions could be drawn regarding the
variances of the numerator and denominator of SP, if not for the fact that the terms in
both the numerator and the denominator are distributed identically, but not independently;
additionally, two distances from a common vertex datum are correlated, not independent
(see Appendix B). The specific value of the correlation coefficient ρ (the same for all pairs
of correlated distances) depends on the type of original data distribution. In the case of
a normal original data distribution, for example, it equals 0.224. It should be noted that
correlations exist not only between pairs of distances that are terms in the numerator (or
denominator), but also between distances, one of which belongs to the inter connection and
the other to the intra connection, if they come from a common vertex datum (e.g., d(A,C)
and d(A,B) with common vertex A in Figure 3). It is not difficult to prove that:

VAR(SDinter) = dcinter·VAR(d) + 2·cov·
m

∑
i=1

[
ni·
(

N − ni
2

)]
(5)
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VAR(SDintra) = dcintra·VAR(d) + 6·cov·∑
i

(
ni
3

)
(6)

COV(SDintra, SDinter) = 2·cov·∑
i ̸=j

[
ni·
(

nj
2

)]
(7)

where VAR(d) means variance of d, e.g.,
(

2 − 4
π

)
σ2 for distribution (2a) and cov means

covariance between two distances with a common vertex, e.g., cov = ρ ∗ VAR(d) ≈ 0.163σ2

for distribution (2a).
Accordingly,

VAR(MDinter) =
VAR(d)
dcinter

+

2·cov·∑m
i=1

[
ni·
(

N − ni
2

)]
dc2

inter
(8)

VAR(MDintra) =
VAR(d)
dcintra

+

6·cov·∑m
i=1

(
ni
3

)
dc2

intra
(9)

COV(MDintra, MDinter ) =

2·cov·∑i ̸=j

[
ni·
(

nj
2

)]
dcintra·dcinter

(10)

If there is only a small number of OUS, it is impossible to draw general theoretical
conclusions about the shape of the SP distribution under H0 using Equations (8)–(10)
only. In such cases, only multiple simulations under a given partitioning, such as the
one discussed in Section 2.4.4, Figure 7, can help. The situation, however, is greatly
facilitated when the number of OUS (data) in groups or the number of groups increases
(see Appendix C). The more OUS there are, the closer E(SP) is to 1, and the distribution
itself narrows. In the limiting case, E(SP) → 1, VAR(SP) → 0 . Figure 8a,b illustrate the
effect of the number of partition groups m on the cumulative distribution function (CDF)
and the PDF of the SP distribution (under H0, the original data are distributed according to
normal distribution, ∀n = 10). Figure 9 illustrates the effect of the amount of data in every
one of ten equally sized groups (m = 2).
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3.2. Some Remarks on Deriving the SP Distribution from a Simulation Process under H0

Since different null hypotheses are possible for different types of OUS, there is no
universal SP distribution for a certain partition. Nevertheless, under a certain null hy-
pothesis, such a distribution can be obtained by repeating the data simulation over and
over and doing the subsequent SP calculations. The data structure significantly affects
the simulation model. This is demonstrated in Sections 3.2.1–3.2.3 using the examples
described in Sections 2.2.1–2.2.3.

3.2.1. The Case Described in Section 2.2.1

In general, the process is clear. We simulate four pieces of data according to the normal,
uniform, or other assumed distribution and compare the calculated SP and the SP(1−α)
percentile or, alternatively, calculate the corresponding p–value. In our case, the SP0.95
percentile equals 3.43 (assuming normal, uniform, or exponential distribution; see also
Figure 7) and the p–value is 10.6%. Accordingly, the conclusion is that the available data
are not enough, i.e., are insufficient, to establish that products supplied by two suppliers
differ in their reliability level.
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3.2.2. The Case Described in Section 2.2.2

The H0 hypothesis determines the distribution of the categories’ proportions. In the
simplest, binary case, for example, this may be the expected proportions of satisfactory and
faulty products in a supplied batch of a certain size N. Let us assume that all batches are
the same size and that the null hypothesis H0 assumes the same level of quality from all
suppliers. In this case, one can use the binomial (and in the general case, the multinomial)
distribution for simulating the number/proportion of satisfactory and faulty products in
a batch.

Let us further assume that batch sizes can vary from supplier to supplier. In this case,
for the simulation, we need the Beta distribution of the proportions of bad (or good) items or,
in the general multicategory case, the Dirichlet distribution Dir(γ). The latter is a continuous
multivariate probability distribution parameterized by a vector γ = (γ1, γ2, . . . , γr) of
positive reals and is known as the multivariate generalization of the Beta distribution that
describes the bivariate case only. The procedure for determining the parameters of these
distributions (out of the scope of this article) is based on preliminary information (both
theoretical and experimental) and is described in detail in [17]. We restrict ourselves to
saying that the more accurate the preliminary information, the smaller the scale parameter
that determines the variance of the simulated data. Unfortunately, in [9], which is where
the example given in Section 2.2.3 is taken from, such preliminary information (total cost of
quality at each company) is missing, thus making it impossible to formulate H0.

3.2.3. The Case Described in Section 2.2.3

In this example, gender equality and the absence of real preferences between alterna-
tives were chosen as the null hypothesis H0.

The SP distribution under this assumption for the (2,3) partition (see Figure 5) is
shown in Figure 10. For α = 5%, the critical SP0.95 = 1.476 and the p–value for the cal-
culated SP = 1.502 equals 4.39%. Thus, we can conclude that gender has a small effect
on preferences.
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Another type of assumed distribution may be the so-called Mallow’s distribution,
according to which preference chains are dispersed (spread) around a certain dominant
preference chain serving as a “gold standard”. We refer the readers to [12] for details.

3.3. General Methodology: Modus Operandi for Analyzing a Metric Data Partition (10 Steps)

1. Decide on the OUS population.
2. Make an assumption about the type of the expected distribution of these objects

within a homogeneous population.
3. Choose a distance metric suitable for this distribution (see Figure 1).
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4. Decide on the factor that, in your opinion, can discriminate/distinguish between
the OUSs (heterogeneity hypothesis), and which levels serve as the basis for divid-
ing/separating objects into groups (partitioning).

5. Provide a corresponding data partitioning/division.
6. Calculate the SP (as in Section 3, for example)
7. Simulate the SP distribution under H0 in accordance with the vector of the partition

just made (n1, n2, . . . , nk, . . . , nm) and the chosen distance metric. Every simulation
process cycle includes:

(a) Random generation of N data from a population of OUS (as per step 1) charac-
terized by the assumed distribution (as per step 2).

(b) Distance matrix calculation (as per step 3).
(c) Partitioning these distances into their inter and intra components (as per steps

4 and 5).
(d) SP calculation, which ends the cycle and returns us to (a).

8. Determine the alpha risk α of homogeneity hypothesis H0 rejection.
9. Find the (1 − α) percentile of the simulated SP distribution, or alternatively, the

p–value of the calculated SP.
10. Make a final decision according to the results of step 9.

4. Discussion

This article continues the theme previously raised by a number of authors about
processing new types of quality and reliability data and related problems [1–5].

The main goal of clustering OUS is to divide them into distinctively dissimilar but
internally homogeneous groups. Such partitioning makes sense only if inter group dif-
ferences significantly exceed intra group differences. This task becomes markedly easier
when the difference between OUS can be expressed using a distance metric. In this case,
we suggest that the verification of the correctness of the partition according to a certain
criterion (for example, the level of a potentially influencing factor) can be carried out by
comparing the average inter group and intra group distances. More precisely, the authors
propose to use a ratio between these distances they call separation/segregation power (SP)
as an indicator of such a comparison.

It is well known that even in a homogeneous population, objects are not absolutely
identical, but differ due to random, noisy disturbances/perturbations (the so-called null
hypothesis H0). This, in turn, means that even for a homogeneous population, the distances
between objects are neither zero nor constant; rather, they are characterized by a certain
distribution, the type and parameters of which can be very different depending on the
OUS. Usually, these distributions are characterized by a so-called scale parameter, to which
the mean distance is proportional. The SP distribution, as shown in the paper, however, is
insensitive to this as well as to any location parameter.

For a given H0 about the behavior of a homogeneous set of OUS, the SP distribution
depends only on the kind of partitioning (partition vector). Its universal theoretical analysis
is barely possible because of, among other reasons, the fact that two distances with a
common datum are correlated. Nevertheless, it can be calculated by simulation methods
(step 7 in Section 3.3).

Three examples of different OUS and corresponding SP distributions under the H0 are
discussed in the article. As the amount of data increases, the mean SP tends to be 1, and
the distribution itself narrows.

The location of the calculated SP value compared to its distribution under the H0
makes it possible to draw a conclusion about the expediency of the generated partition
and its discrimination/separation/segregation power using standard statistical methods
(comparing SPcalculated to SP1−α or the p-value to the α risk).

Though the proposed approach (see the general methodlogy in Section 3.3) is similar
in spirit to ANOVA, it is innovative in that it is applicable to any type of object whose
dissimilarity can be described by means of a distance metric: pie charts, prioritization
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chains, strings, tree structured data, etc. A certain disadvantage is the need to conduct a
simulation study of the SP distribution when partitioning different kinds of OUS and the
type of their spread in a homogeneous population as described in Section 3.3 (step 7). One
way to circumvent this issue would be by creating a bank of such calculators along the
lines of those given in [18].

We hope that the potential inherent in the analysis of metric space quality/reliability
data provided here will inspire reliability engineers to explore other territories such as
data-collecting sensor systems [19], clustering, discriminant analysis, experimental de-
sign, and so on. We hope that this work will serve as a catalyst for the development
of new methodologies where data-driven conclusions will become the driving force of
the investigation.
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Appendix A

Appendix A.1. How Does the Scale Parameter Influence the Sum of Distances (SD) and the
SP Distributions?

Let us start with a definition. If we can write the probability distribution function f (d)
in terms of d/s as follows:

f (d) =
φ
(

d
s

)
s

, (A1)

then s is called a scale parameter, and we call dst =
d
s the standardized non-dimensional

random distance. For example, in Equation (2a), s means σ and

φ(dst) =
1√
π

e−(
dst
2 )

2

, (dst ≥ 0) (A2)

is a free scale factor function.

Appendix A.2. How Does the Scale Parameter Influence the SD Distribution?

When considering the SD between data pairs, we must take into account that two pairs
having a common datum are not independent, so the SD may include both independent and
dependent random distances. Consider first the sum of only two distances: d1 and d2 under
the H0 hypothesis. If, in addition, they have no common datum, they are independent, and
the joint density function is inversely proportional to the squared scale parameter s:

f (d1, d2) =
φ(d1,st)

s
× φ(d2,st)

s
=

φ(d1,st)× φ(d2,st)

s2 =
φ(d1,st, d2,st)

s2 (A3)
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In this case, the sum of the two distances is distributed in such a way that s is also a
scale parameter for the SD (SDst means SD/s):

f (SD) =
∫

f (d1) f (SD − d1)d(d1) =

∫
φ(d1,st)φ(SDst − d1,st)d(d1,st)

s
(A4)

If two distances contain one common datum, the proof is more complicated. Imagine
that three pieces of data, xi, xk, and xj, are randomly and independently selected from
the same distribution and we are interested in the joint distribution of d1 = |xi − xk| and
d1 =

∣∣xk − xj
∣∣. It is obvious that marginal distributions of d1 and d2 are the same, but the

joint distribution f (d1, d2) ̸= f (d1)· f (d2). Nevertheless,
x

f (d1, d2)d(d1)d(d1) = s2
x

f (d1, d2)d(d1,st)d(d2,st) = 1 (A5)

from which it follows that f (d1, d2) = φ(d1,st, d2,st)/s2, where d1,st, d2,st and φ are dimen-
sionless quantities. That is why

f (SD) =
∫

f (d1, SD − d1)d(d1) ∼ 1
s

(dst ≥ 0) (A6)

It is easy to show that under H0, f (SD) ~ 1/s can be generalized to any number of terms.
To summarize, we can conclude that the distribution function of both the numerator

and the denominator of SP are inversely proportional to the scale parameter. The latter
implies that the distribution of SP does not depend on the scale parameter at all, but
is determined only by the type of the initial data distribution and the method of their
partitioning into groups.

Appendix A.3. How Does the Scale Parameter Influence the SP Distribution?

First, let us note that the two-dimensional distribution f (SDinter, SDintra), a result
of the same normalization considerations that were used in Appendix A.2, is inversely
proportional to the squared scale parameter.

The ratio r = SDinter/SDintra has the following distribution function:

f (r) =
∫

SDintra· f (r·SDintra, SDintra)d(SDintra)

=
∫

SDintra·
φ
(

r· SDintra
s , SDintra

s

)
s2 d(SDintra)

=
∫ SDintra

s ·
φ
(

r· SDintra
s , SDintra

s

)
s2 d

(
SDintra

s

) (A7)

where SDintra
s and φ are dimensionless and scale free. Accordingly, the distribution of SP

differing from r by a constant factor dcintra/dcinter is also dimensionless and scale free.

Appendix B

Why Is There a Correlation between Two Distances with a Common Vertex Datum?

Let us consider three arbitrarily drawn random data points (A, B, C) for which the
triangle inequality between distances dA,B, dB,C, and dC,A holds. Consider also a circle
circumscribing the triangle consisting of three arcs based on three chords (see Figure A1). It
is well known from trigonometry that according to the sine theorem (r denotes the radius
of the circle proportional to the scale factor):

dB,C = 2 r·sinα; dC,A = 2 r·sinβ; dA,B = 2 r·sinγ (A8)

whereas
arc (BC) = 2 r·α; arc (CA) = 2 r·β; arc (AB) = 2 r·γ (A9)

The three angles α, β, and γ are not independent, but connected due to
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α + β + γ = 2π (A10)

and, therefore, both arcs and chords turn out to be mutually correlated.
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Appendix C

Asymptotical Behavior of the SP Distribution

To this end, consider Equations (7)–(9) in the main text, assuming for simplicity, all
groups are equal in size (as in a balanced design), i.e., ∀ ni = n. Then,

dcinter =

(
m
2

)
·n2 (A11)

dcintra = m
(

n
2

)
=

m·n·(n − 1)
2

(A12)

VAR(MDinter) = VAR(d)(
m
2

)
·n2

+

2·cov·∑m
i n·

(
mn − n
2

)
(

m
2

)2

·n4

= 2·VAR(d)
m·(m−1)·n2

4·cov·[n·(m−1)−1]
m·(m−1)·n2

(A13)

VAR(MDintra) =
2 ∗ VAR(d)
m·n·(n − 1)

+
4·cov·(n − 2)
m·n·(n − 1)

(A14)

COV(MDintra, MDinter) =
4·cov
m·n (A15)

or, in the asymptotic approximation for large n values,

VAR(MDinter) ≈
4·cov
m·n (A16)
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VAR(MDintra) ≈
4·cov
m·n (A17)

COV(MDintra, MDinter) =
4·cov
m·n (A18)

Since as n (as well as m) increases, the standard deviations of the SP numerator and
denominator according to (A16) and (A17) decrease, for sufficiently large n, one can use
the Taylor approximation [20], according to which:

E
(

R
S

)
≈ µR

µS
− COV(R, S)

(µS)
2 +

VAR(S)·µR

(µS)
2 (A19)

VAR
(

R
S

)
≈ (µR)

2

(µS)
2 ·
(

σ2
R

(µR)
2 − 2

COV(R, S)
µR·µS

+
σ2

S

(µS)
2

)
(A20)

and, therefore,
E(SP) ≈ 1 + VAR(MDintra)−COV(MSinter ,MSintra)

E2(d)

≈ 1 + 2·VAR(d)−4·cov
m·n·(n−1)·E2(d)

(A21)

VAR(SP) ≈ 1
E2(d)

· 1
m·n (2·VAR − 4·cov)·

(
1

(m − 1)·n +
1

n − 1

)
(A22)

For m = 2, it follows from (26) that VAR(SP) < VAR(D)
E2(d) · 2

(n−1)2 .

Since both VAR and COV are proportional to the square of the scale factor of the
original distribution, as well as E2(d), expectation E(SP) and VAR(SP), as expected, do not
depend on either the location or scale factor of this distribution. For sufficiently large n (or
m): E(SP) → 1, VAR(SP) → 0 .
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