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Abstract: We explore strong Nash equilibria in the max k-cut game on an undirected and unweighted
graph with a set of k colors. Here, the vertices represent players, and the edges denote their relation-
ships. Each player, v, selects a color as its strategy, and its payoff (or utility) is determined by the
number of neighbors of v who have chosen a different color. Limited findings exist on the existence
of strong equilibria in max k-cut games. In this paper, we make advancements in understanding
the characteristics of strong equilibria. Specifically, our primary result demonstrates that optimal
solutions are seven-robust equilibria. This implies that for a coalition of vertices to deviate and shift
the system to a different configuration, i.e., a different coloring, a number of coalition vertices greater
than seven is necessary. Then, we establish some properties of the minimal subsets concerning a
robust deviation, revealing that each vertex within these subsets will deviate toward the color of one
of its neighbors.

Keywords: max k-cut problem; game theory; optimal colorings; coalitions; Nash equilibrium

MSC: 05C57; 05C15; 90C27

1. Introduction

The maximum k-cut problem entails the assignment of colors or the implementation of
a cut to the vertices of a graph, ensuring that adjacent vertices have different colors, thereby
maximizing color heterogeneity within the graph. This challenge is not only theoretically
captivating but also holds practical significance, particularly in real-world applications
involving self-interested agents.

For instance, in wireless communication networks, optimizing frequency allocation
among transmitters corresponds to solving the maximum k-cut problem. Similarly, in social
network analysis, where vertices represent individuals and edges signify relationships,
maximizing the heterogeneity of the opinions or preferences among connected individuals
aligns with addressing the maximum k-cut problem.

A strategic variation of the maximum k-cut problem is the max k-cut game played on
an undirected and unweighted graph with a set of k colors. In this scenario, the vertices
represent players, and the edges denote their interpersonal connections. Each player
chooses one of the available colors as their strategy, and their payoff is determined by the
number of neighbors who have chosen a different color [1,2].

The primary concern in the max k-cut game is the potential for players to indepen-
dently reach a social optimum without external regulation. In these graph-based games,
players may intentionally misalign their choices with their neighbors by selecting dissimilar
colors, seeking to enhance their utility by aligning decisions within groups, referred to
as coalitions.

The max k-cut game, extensively studied for its real-world applications involving
selfish agents, has been proven NP-complete for finding an optimal solution [3–11].

A key challenge in the max k-cut game is establishing the existence of strong Nash
Equilibria (abbreviated as SE). Strong equilibrium implies colorings where no coalition
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can co-operatively deviate to the benefit of all its members. A less stringent version is the
q-strong equilibrium (abbreviated as q-SE), where only coalitions of more than q players
are permitted to co-operatively change their strategies.

Trivially, the 1-SE aligns with the Nash equilibrium (abbreviated as NE), and the n-SE
corresponds to the general SE. Existing insights into the existence of strong equilibria in
max k-cut games are limited. In [1], optimal strategy profiles are shown to be a SE for
the max two-cut game and a 3-SE for the max k-cut game with k ≥ 2. Additionally, it is
demonstrated that an optimal strategy profile may not necessarily be a 4-SE for any k ≥ 3.
In [12], it is shown that if the number of colors is at least the same as the number of players
minus two, then an optimal strategy profile is a SE. An optimal coloring in graph theory
refers to a coloring of the vertices of a graph where no two adjacent vertices share the same
color, and this coloring utilizes the minimum possible number of colors. The objective is
to minimize the number of colors while satisfying the condition that the adjacent vertices
have distinct colors. The pivotal outcome in [13] reveals that optimal colorings are 5-SE
in undirected unweighted graphs. By building upon the findings of [13,14], our paper
employs an innovative combinatorial approach, illustrating that optimal colorings extend
to 7-SE.

This discovery holds significant conceptual implications and applications, empha-
sizing the resilience of optimal colorings against larger coalitions attempting to induce
selfish divergence from the optimal equilibrium. In contrast to relying solely on game
theory concepts and tools, our approach utilizes combinatorial properties that characterize
graphs concerning optimality and the potential for achieving SE. Finally, to investigate
the conjecture asserting that every optimal coloring is a SE, we propose an innovative
approach incorporating combinatorial properties and algorithms on permutations.

The organization of this work is as follows. Initially, the subsequent section provides
essential definitions for our investigation, highlights the pertinent findings, and introduces
the central problem. Following that, in Section 2, we establish the 7-SE property of optimal
colorings. Our discussion concludes by highlighting unresolved questions and presenting
our preliminary findings that might prove valuable in the examination of these issues in
Section 3.

A preliminary version of this paper was initially uploaded to arXiv. Subsequently,
a subset of the authors presented an early version of the results, providing a strategic
approach to problem resolution at the “GASCom on random generation of combinatorial
structures, 12th edition” conference (GASCom2022). In [15], we presented a conceptual
outline of our innovative problem-solving approach; however, it lacked the essential
lemmas, propositions, and theorems crucial for a formal proof. Given the substantial
interest generated by this work, we decided to revisit and expand upon it, presenting our
approach with clarity and precision. Thus, in the subsequent development of our work,
we have filled these gaps, providing a comprehensive and formal demonstration of the
proposed strategy. The additional lemmas and theorems are not merely instrumental in
proving that optimal solutions are 7-robust equilibria. They hold intrinsic value, serving as
building blocks for further insights into the properties of the max k-cut game. This paper
delves deeper into the subject, offering a comprehensive and formal presentation of our
innovative game theory-based approach, which incorporates combinatorial techniques.

It is essential to emphasize the distinctiveness and comprehensiveness of this paper
compared to its predecessors by underscoring its significance in the field since this new
version provides formal and complete proofs, yielding novel results and implications that
contribute to the study of strong Nash equilibria in the max k-cut game.

Additionally, some authors pursued alternative approaches within this research, yield-
ing outcomes pertinent to a distinct class, detailed in [16]. In the context of max k-cut games
on undirected and unweighted graphs, the study formally establishes that optimal color-
ings prevent the formation of nearly any strongly divergent coalition. This is accomplished
through a novel game theory-based method, categorizing graph nodes into three subsets:
the coalition itself, the coalition boundary, and unrelated nodes.
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2. Materials & Methods

Consider an undirected, unweighted graph denoted as G = ⟨V, E⟩, where V represents
a finite set comprising n vertices, and E denotes the set of m edges, forming a collection
of pairs within V. Our assumption is that the graph has no self-loops, and for any two
vertices, there is one edge (at most) connecting them. For v ∈ V, the degree of the vertex v
is δ(v) =

∣∣{j ∈ V : {v, j} ∈ E}
∣∣. Given G and a set of colors K = {1, . . . , k}, the degree of

v in the coloring σ with respect to the color a is δ(v, σ, a) :=
∣∣{j ∈ V : {v, j} ∈ E, σj = a}

∣∣.
The max k-cut problem consists of partitioning the vertices of G into k subsets, denoted by
V1, . . . , Vk, such that the number of vertices having neighbors in different sets is maximized.
The max k-cut game constitutes a strategic version of the max k-cut problem, as it is defined
below. There are |V| players, each of which have the same strategy set, that is the set
of colors K. A strategy profile, also called coloring, denoted by σ ∈ Kn, with n equal to
the number of vertices of G, represents a labeling of vertices of G, in which a color σv is
assigned to each player v. A strategy profile can be seen as a vector σ ∈ Kn containing the
strategies chosen by each vertex. Given a graph G and a coloring σ ∈ Kn, we define the cut
of a graph G and the set E(σ) := {{i, j} ∈ E : σi ̸= σj}. The cardinality of E(σ) is called
the cut value, or size of the cut, and it is denoted by CV(σ). The cut difference between
two colorings γ and σ is ∆CV(σ, γ) := CV(γ)− CV(σ). Referring to σ, for each v ∈ V, the
utility, or payoff, of player v is defined as µv(σ) =

∣∣{u ∈ V : {u, v} ∈ E, σu ̸= σv}
∣∣. We

recall that given a graph G = (V, E), |V| = n, |E| = m, its adjacency matrix is the binary
matrix A = {av,w} ∈ {0, 1}n×n such that av,w = 1 if and only if (v, w) is an edge in E. Now,
using the formalization introduced by the adjacency matrix A, we can also write the payoff
as the following:

µv(σ) = ∑
u∈V

σu ̸=σv

av,u. (1)

Thanks to the symmetry of A, and given a coloring σ and two disjoint subsets of the vertices
V1, V2 ⊆ V, we have the following:

∑
v∈V1

∑
u∈V2

σu ̸=σv

av,u = ∑
u∈V2

∑
v∈V1

σv ̸=σu

au,v. (2)

Both Equations (1) and (2) will be used in the proof of the main results of this work.
An optimal strategy profile, also known as an optimal coloring, refers to a strategy

profile that maximizes the social welfare, denoted as SW(σ) = ∑v∈V µv(σ) = 2CV(σ). It is
important to note that if a coloring is optimal, then all permutations of the set of colors K
within it are also optimal.

In order to illustrate this concept, let us consider an example of the game and clarify the
notation. Imagine a graph G, depicted in Figure 1a, with a color set K = red, blue, green. The
six players are denoted as v1, v2, v3, v4, v5, v6. Figure 1a,b showcase two distinct colorings:
σ = (red, blue, red, blue, green, red) and γ = (green, blue, green, blue, red, red).

Let’s focus on σ. The cut of G is defined as

E(σ) = {{v1, v2}, {v1, v4}, {v2, v3}, {v3, v4}, {v3, v5}, {v4, v5}, {v4, v6}, {v5, v6}},

and the corresponding cut value is CV(σ) = 8. The payoff of v1 is µ1(σ) = 2, as only two
of its three neighbors have a color different from its own. By extending this reasoning,
we can determine the payoffs for the other five vertices: µ2(σ) = 2, µ3(σ) = 3, µ4(σ) = 4,
µ5(σ) = 3, and µ6(σ) = 2. Therefore, the social welfare of σ is SW(σ) = 16.
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Figure 1. Main notions on colorings and coalitions. In this case, the deviating coalition from σ (a ) to
γ (b) is C = {v1, v3, v5}.

A coalition C is a subset of nodes able to increase their own payoffs simultaneously.
For a coalition, C ⊆ V, and a given coloring, σ, we initially define the set of colors

used by the coalition C in σ as KC(σ) = {a ∈ K : ∃v ∈ C : σv = a}. Subsequently, for each
color a, we establish the set of players in C that possess color a in σ as

Ca(σ) = {v ∈ C : σv = a}. (3)

Furthermore, if for any player v ∈ C, γv ̸= σv, and if for any player w /∈ C, γw = σw,
then we characterize the coalition C as deviating from the coloring σ towards the coloring γ.
In order to clarify this, this deviation implies that within the coalition C, the players adopt
colors different from their original ones in σ, whereas the players outside of C maintain the
same colors as in σ.

A strong deviation occurs when a coalition, C, deviates in a manner that ensures all of
its members strictly improve their utility. Such a strong deviation is deemed minimal if no
proper subset of the deviating coalition can achieve an improvement. The coalition itself is
then referred to as minimal.

Furthermore, given a coloring, σ, if a coalition, C, induces a new coloring, γ, after
deviating, then we say that the set of edges E(σ)\E(γ) enters the cut and that the set of
edges E(γ)\E(σ) leaves the cut.

For instance, let us consider again the graph G and coloring σ reported in Figure 1a.
Let C be the coalition composed of the players {v1, v3, v5}.

The set of colors utilized by the coalition C in σ is KC(σ) = {red, green}. Furthermore,
the set of players in C with the color red in σ is Cred(σ) = {v1, v3}, and those with the color
green are Cgreen(σ) = {v5}.

The coloring γ illustrated in Figure 1b represents a deviation from the coloring σ, which
is not considered strong since not all members of the coalition experience an improvement
in their utility. Specifically, v1 maintains the same payoff in both the σ and γ colorings,
while in the new coloring γ, v5 actually worsens its payoff.

We denote µC(σ) = ∑v∈C µv(σ) as the total payoff obtained by coalition C. Addition-
ally, σC represents the coloring σ restricted solely to players in C.

A Nash equilibrium (abbreviated as NE) is characterized by σ if no player can uni-
laterally improve their payoff by deviating from σ. For each 1 ≤ q ≤ n, σ is a q-strong
Equilibrium (abbreviated as q-SE) if there exists no coalition C with |C| ≤ q that can co-
operatively deviate from σC to γC in a way that each player in C strictly improves their
utility. A n-strong Equilibrium is simply referred to as a strong Equilibrium (abbreviated
as SE).

Given two colorings, γ and σ, and C ⊆ V, we represent PC(σ, γ) :=
∣∣{{v, j} ∈ E :

v, j ∈ C, σv = σj, γv ̸= γj}
∣∣. It is worth noting that PC(σ, γ) can be expressed as follows:
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PC(σ, γ) =
1
2 ∑

v∈C
∑
j∈C

γj ̸=γv
σj=σv

av,j. (4)

It is straightforward to demonstrate that the set of optimal colorings of a graph
encompasses all permutations of colors. This is because, through permutations, the inherent
structure of the graph is maintained, particularly concerning the relationships between the
vertices and their neighbors with different colors. If a coloring yields a certain payoff, then
its permutation of colors also yields the same payoff. Therefore, the set of optimal colorings
can be categorized into equivalence classes based on the permutation of colors. However,
it is important to emphasize that not all optimal colorings are permutations of each other.
In other words, among the optimal colorings, there are some that are not permutations
of one another, but for each of these, all the permutations of the colors are included. We
emphasize that if a coloring is not a strong deviation, then neither are all its permutations
of colors.

In the forthcoming discussion, we elucidate the rationale behind Formula (4) for
permutations in the context of the colorings γ and σ, focusing on the representation
PC(σ, γ) and its explicit expression in Equation (2).

Consider two colorings, γ and σ, defined on a graph with vertices V and edges E.
Let C ⊆ V be a subset of vertices. The expression PC(σ, γ) represents the count of edges
{v, j} ∈ E where v and j both belong to C, σv = σj, and γv ̸= γj.

The formula essentially calculates half the sum of the adjacency matrix entries av,j for
pairs of vertices, v and j in C, where γv ̸= γj but σv = σj.

The reasoning behind this formula is grounded in the observation that the optimal
colorings of a graph encompass all possible permutations of colors. If a particular coloring
yields a certain payoff, then any permutation of colors for that same coloring also results in
the same payoff. Consequently, the set of optimal colorings can be grouped into equivalence
classes based on the permutation of colors.

However, it is crucial to note that not all optimal colorings are permutations of each
other. In other words, within the set of optimal colorings, there exist instances where some
are not permutations of one another. Despite this, for each nonpermutated coloring, all
possible permutations of colors are included within the set.

It is also emphasized that if a coloring is not a strong deviation, neither are any of its
permutations of colors. This observation reinforces the idea that certain properties related
to deviations are preserved across all permutations within the set of optimal colorings.

Lastly, we define G(C) as the restriction of the graph G to the members of the coalition
C, i.e., the set of vertices of G(C) is C. Moreover, we say that H is an isolated component of
the graph G if G(H) is a connected subgraph of G and, for each vertex i ∈ V(H), and for
each vertex j /∈ V(H), {i, j} /∈ E.

Now, we report an important result of [13] that we will use alongside the pigeon-hole
principle.

Proposition 1. Let σ be a coloring for a graph, G, and let C ⊆ V, with |C| > 1, be a minimal
subset that can perform a strong deviation from one coloring, σ, to another coloring, γ; then,
KC(σ) = KC(γ).

An Applicative Example

We conclude this subsection by defining an applicative example that we will cover in
the next section. Let us consider the following situation.

Example 1. An R&D department of a company must be divided into three teams, each of which
will work on a product; however, each of the 12 employees of that department wishes not to work
together with some of his colleagues. Figure 2a reports a graphical representation of the example,
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where the vertices correspond to employees, and the edges denote the desire of connected vertices
not to belong to the same team. Figure 2b shows a generic assignment, α, of employees to the three
projects, represented by different colors. Profit means having the greatest number of people you do
not want to work with on projects other than your own. Some employees assigned to some team
colors are assumed to be unhappy (for example, vertices v5 and v11) since they must work with
undesired colleagues. Is it possible to find an optimal allocation, for example, the one reported in
Figure 2c, which maximizes the profit by minimizing the number of unhappy people?

This game can also be seen as an adaptation to game theory regarding the max k-cut problem.
Indeed, by optimal coloring, in this case, we intend to minimize the number of pairs of employees
who do not want to work together and who are assigned to the same project. To deviate means
to change projects. A strong equilibrium designates the configuration such that if any number of
players tried to change the project all at the same time, they would find themselves working on a
project with a number of people with whom they would not want to work with (greater or equal
than the previous one). In this context, then, if δv is the maximum number of people to which an
individual v is connected, we indicate with δv(Va(σ)) ≤ δv the number of those she does not want
to work with who are undertaking the project, a.

Figure 2. (a): A network with n = 12 vertices representing the R&D department described in
Example 1. (b): A generic coloring σ with k = 3 colors. (c): An optimal coloring γ with k = 3 colors.

3. Results

In [13], the existence of a 5-SE in unweighted, undirected graphs is shown. In this
subsection, we extend this result by proving the existence of a 7-SE.

We start by showing two propositions that form the core of our main result.

Lemma 1. Given a graph, G, and σ, γ ∈ Kn, let σ be an NE for G, and let C ⊆ V strongly deviate
from σ to γ. Then, ∆CV(γ, σ) ≥ |C| − PC(σ, γ).

Proof. We start by noticing that for both γ and σ, the cut value can be calculated by
considering the vertices that belong to C and V \ C separately:

CV(σ) =
1
2

 ∑
v∈C

 ∑
w∈C

σw ̸=σv

av,w + ∑
w∈V\C
σw ̸=σv

av,w

+ ∑
v∈V\C

 ∑
w∈C

σw ̸=σv

av,w + ∑
w∈V\C
σw ̸=σv

av,w


,

and

CV(γ) =
1
2

 ∑
v∈C

 ∑
w∈C

γw ̸=γv

av,w + ∑
w∈V\C
γw ̸=γv

av,w

+ ∑
v∈V\C

 ∑
w∈C

γw ̸=γv

av,w + ∑
w∈V\C
γw ̸=γv

av,w


,

Since the colors of the vertices in V \ C do not change, we see that

∑
v∈V\C

∑
w∈V\C
σw ̸=σv

av,w = ∑
v∈V\C

∑
w∈V\C
γw ̸=γv

av,w.
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Additionally, we see that

∆CV(γ, σ) = CV(γ)− CV(σ) =

=
1
2 ∑

v∈C


 ∑

w∈C
γw ̸=γv

av,w + 2 ∑
w∈V\C
γw ̸=γv

av,w

−

 ∑
w∈C

σw ̸=σv

av,w + 2 ∑
w∈V\C
σw ̸=σv

av,w




=
1
2 ∑

v∈C


2 ∑

w∈C
γw ̸=γv

av,w + 2 ∑
w∈V\C
γw ̸=γv

av,w

−

2 ∑
w∈C

σw ̸=σv

av,w + 2 ∑
w∈V\C
σw ̸=σv

av,w




−1
2 ∑

v∈C

 ∑
w∈C

γw ̸=γv

av,w − ∑
w∈C

σw ̸=σv

av,w

.

Moreover, using Equation (1), we see that

∆CV(γ, σ) = ∑
v∈C

(µv(γ)− µv(σ))−
1
2 ∑

v∈C

 ∑
w∈C

γw ̸=γv

av,w − ∑
w∈C

σw ̸=σv

av,w



= ∑
v∈C

(µv(γ)− µv(σ))−
1
2 ∑

v∈C

 ∑
w∈C

γw ̸=γv
σw=σv

av,w + ∑
w∈C

γw ̸=γv
σw ̸=σv

av,w − ∑
w∈C

σw ̸=σv
γw=γv

av,w − ∑
w∈C

σw ̸=σv
γw ̸=γv

av,w



= ∑
v∈C

(µv(γ)− µv(σ))−
1
2 ∑

v∈C

 ∑
w∈C

γw ̸=γv
σw=σv

av,w − ∑
w∈C

σw ̸=σv
γw=γv

av,w

.

By using Equation (2), we finally obtain

∆CV(γ, σ) = ∑
v∈C

(µv(γ)− µv(σ))− PC(σ, γ) + PC(γ, σ).

On the other hand, since C strongly deviates, then

µv(γ) ≥ µv(σ) + 1 ∀v ∈ C.

This yields

∑
v∈C

(µv(γ)− µv(σ)) ≥ ∑
v∈C

1 = |C|.

Hence,
∆CV(γ, σ) ≥ |C| − PC(σ, γ) + PC(γ, σ)

≥ |C| − PC(σ, γ).

The last inequality holds since PC(γ, σ) ≥ 0.

Theorem 1. Given a graph, G, let σ be an NE for it, and let C ⊆ V be a minimal coalition that
strongly deviates from one coloring, σ, to a different coloring γ. If |KC(σ)| ∈ {|C| − 3, |C| − 2},
then ∆CV(γ, σ) > 0.

Proof. The aim is to use Lemma 1 to lower bound the ∆CV quantity and conclude the
proof. First, we remark that in what follows, a, b, c, d are colors in KC(σ), with |C| ≥ 6. For
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each feasible dimension of C, we consider the maximum PC(σ, γ) in each configuration.
For the definition of the set Cx(σ) with x ∈ {a, b, c, d}, we remand to Equation (3).

• Case 1: |KC(σ)| = |C| − 2
In this situation, for the pigeon-hole principle, we have the following subcases:

(1.1) |Ca(σ)| = 3, |Cb(σ)| = 1 ∀b ∈ KC(σ) \ {a}. By assuming that there are at least
two colors in C, we see that |C| ≥ 4.

(1.2) |Ca(σ)| = |Cb(σ)| = 2, |Cc(σ)| = 1 ∀c ∈ KC(σ) \ {a, b}. The presence of a single
color, c, is not required. Moreover, in this case, |C| ≥ 4 guarantees the presence of
at least two colors.

• Case 2: |KC(σ)| = |C| − 3
In this situation, for the pigeon-hole principle, we have the following subcases:

(2.1) |Ca(σ)| = 4, |Cb(σ)| = 1 ∀b ∈ KC(σ) \ {a}. For this case, |C| ≥ 5 in order to have
at least two colors.

(2.2) |Ca(σ)| = 3, |Cb(σ)| = 2, |Cc(σ)| = 1 ∀c ∈ KC(σ) \ {a, b}. Here, the presence of
single colors is not required, and |C| ≥ 5 in order to have at least two colors.

(2.3) |Ca(σ)| = |Cb(σ)| = |Cc(σ)| = 2, |Cd(σ)| = 1 ∀d ∈ KC(σ) \ {a, b, c}. The single
colors are not required. In this case, |C| ≥ 6, and the number of colors is at least 3.

For each case and for each feasible value of |C|, we evaluate the maximum value
of PC(σ, γ). This evaluation is graphically depicted in Figure 3, where each γ coloring
maximizes the number of edges connecting the vertices with different colors, which were
sharing the same colors in the corresponding σ coloring. Notice that since C is minimal, all
colors in γ are the same as in σ. This is consistent with Proposition 1. The maximum value
of PC(σ, γ), as well as the minimum value of ∆CV(γ, σ) are calculated in Table 1 according
to Lemma 1, i.e., ∆CV(γ, σ) ≥ |C| − PC(σ, γ).

As shown in Table 1, ∆CV(γ, σ) > 0 in all cases.

Figure 3. Graphical representation of the configurations analyzed in Theorem 1. n.a. entries indicate
nonfeasible cases.

The configurations analyzed in Theorem 1, depicted below, symbolize different sce-
narios where a minimal coalition, C, strongly deviates from a coloring, σ, towards an
alternative coloring, γ. The non-applicable (n.a.) entries in the graphical representation
indicate cases that are not feasible.

In order to elaborate on what these configurations symbolize, let us delve into the
details of the cases considered:

• Case 1: |KC(σ)| = |C| − 2
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– Subcase 1.1: One color (a) has a coalition of size 3, while the other colors have
single coalitions.

– Subcase 1.2: Two colors (a and b) have coalitions of size 2, and the remaining
color has a single coalition.

• Case 2: |KC(σ)| = |C| − 3

– Subcase 2.1: One color (a) has a coalition of size 4, while the other colors have
single coalitions.

– Subcase 2.2: One color (a) has a coalition of size 3, another color (b) has a coalition
of size 2, and the remaining colors have single coalitions.

– Subcase 2.3: Three colors (a, b, and c) have coalitions of size 2, and the remaining
color has a single coalition.

These configurations are crucial in establishing the conditions for the existence of a
Nash equilibrium (NE). The theorem highlights situations where deviations from a given
coloring result in a positive change in the value of ∆CV (change in the number of edges
connecting the vertices with different colors).

Table 1. Evaluation of ∆CV(γ, σ) for the different configurations analyzed in Theorem 1, depending
on |C| and PC(σ, γ). n.a. entries indicate nonfeasible cases.

|C| = 4 |C| = 5 |C| = 6 |C| = 7 |C| ≥ 8

a.1
max PC(σ, γ) 0 2 3 3 3

∆CV(γ, σ) 4 3 3 4 ≥5

a.2
max PC(σ, γ) 0 2 2 2 2

∆CV(γ, σ) 4 3 4 5 ≥6

b.1
max PC(σ, γ) n.a. 0 4 5 6

∆CV(γ, σ) n.a. 5 2 2 ≥2

b.2
max PC(σ, γ) n.a. 0 3 4 4

∆CV(γ, σ) n.a. 5 3 3 ≥4

b.3
max PC(σ, γ) n.a. n.a. 3 3 3

∆CV(γ, σ) n.a. n.a. 3 4 ≥5

The proposition below demonstrates that within the coalition, a rearrangement of
colors occurs as a result of a significant deviation. This deviation is such that each vertex
within the coalition takes on the color of another vertex within the same coalition.

Proposition 2. Given a graph, G = (V, E), let σ be an NE for G, and let C ⊆ V be a minimal
subset with respect to strongly deviating from one coloring, σ, to another, γ, with σ ̸= γ. Then,
for each vertex, v ∈ C, there exists a vertex w ∈ C such that v ̸= w, σv ̸= σw, {v, w} ∈ E and
γv = σw.

Proof. The proof will be split into two parts:

1. We show that each vertex in C deviates towards the color that one of its neighbors has
in σ.

2. We prove that such a neighbor must be in C, meaning that each vertex deviates to a
color used in C.

Concerning part 1, we show that for each vertex, u ∈ C, it holds that δu(Vγu(σ)) > 0
(we recall that according to Equation (3) δu(Vγu(σ)) indicates the number of neighbors of u
having color σu in the coloring σ). Indeed, let us assume by contradiction that there exists a
vertex, t ∈ C, such that δt(Vγt(σ)) = 0. We distinguish the two subcases:

1. If δt(Vσt(σ)) = 0, then t does not need to improve its payoff, as it is already earning its
maximum payoff; however, this contradicts the hypothesis that C is a strong deviation.
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2. If δt(Vσt(σ)) > 0, since δt(Vγt(σ)) = 0, we see that {t} is a minimal strong deviation
from σ. However, this contradicts the hypothesis that σ is an NE and that C is minimal
with respect to strongly deviating from σ.

Therefore, for each vertex u ∈ C, δu(Vγu(σ)) > 0. Notice that this fact also holds if u
deviates towards the color of one of its neighbors that is not in C.

Concerning part 2, let u ∈ C be such that γu = σt for some t ∈ V\C, and {s, t} ∈ E
with σs ̸= σt for each vertex s ∈ C.

Since σ is an NE, it holds that δu(Vσt(σ)) ≥ δu(Vσu(σ)).
Moreover, assuming that C strongly deviates, we see that µu(γ) > µu(σ), which

means that δu(Vσt(γ)) < δu(Vγu(γ)). Hence, δu(Vσt(σ)) > δu(Vσt(γ)).
Anyway, it might happen that some of the neighbors of u in γ deviate towards σt,

meaning that δu(Vσt(γ)) ≥ δu(Vσt(σ)), thus obtaining a contradiction.
Therefore, for each vertex v ∈ C, there must be a vertex w ∈ C such that w ̸= v,

{v, w} ∈ E and γv = σw. This means that a vertex, u ∈ C, must deviate to the color of one
of its neighbors in C.

When referring to Example 1, Proposition 2 asserts that one member of the coalition is
so disliked by another that he leaves the project to him.

Lemma 2. Let G = (V, E) be a graph, σ be an NE for G = (V, E), and C ⊆ V be a strongly
deviating coalition from one coloring, σ, to another, γ, with σ ̸= γ. Then, |C| ≥ 2.

Proof. Suppose that C = {v} for a vertex v ∈ V. If C is a strong deviation, then v is able to
change its color in order to improve its payoff unilaterally, namely µv(γ) > µv(σ). This
contradicts the fact that σ is NE.

The following proposition allows for ignoring nonconnected subgraphs in the proof
of Theorem 1.

Proposition 3. Let G be a graph, K be the set of all possible colors, σ be an NE for G, and C ⊆ V
be a minimal subset with respect to a strong deviation from one coloring, σ, to another, γ, with
σ ̸= γ. Then, G(C) is an isolated component of G.

Proof. First, we show that no isolated component of G(C) can be monochromatic, i.e.,
every isolated component H = (VH , EH) of G(C) is such that there is no color, a, in K such
that for every vertex, v, in VH , σv = a. In other words, we will show that each isolated
component of G(C) must have representatives of at least two colors.

From Lemma 2, |VH | ≥ 2. Assuming (by absurdity) that all members of VH have the
same color, a, we see that in the profitable deviation, each vertex of VH helps the other
vertices of VH to increase their profits. This means that each vertex of VH would make a
greater profit by deviating itself towards γ, contradicting the minimality of C.

Now, we are able to show that under the considered assumptions, G(C) is an isolated
component. We reason via a contrapositive. Suppose that the number of isolated compo-
nents of C is greater than 1. We have just shown that none of these isolated components can
be monochromatic. Let us consider two of these isolated components, C1 and C2, and by
using d(u, v), denote the length of the shortest path between the vertices u ∈ C1 and v ∈ C2
in terms of edges. If minu∈C1,v∈C2 d(u, v) ≥ 1, then the shortest path between any vertex of
C1 and any vertex of C2 passes through at least one vertex of V\C. According to Theorem 1,
each vertex of C can only deviate towards the color of one of its neighbors; therefore, a
vertex of C1 deviates towards the color in σ of another vertex of C1. The same situation
happens for C2. Hence, C1 does not need C2 to deviate and vice versa. This contradicts
the minimality of C in strongly deviating. Therefore, G(C) must be an isolated component
of G.
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Now, we prove that for all the cases where a minimal strongly deviating coalition, C,
has, at most, 7 vertices, the cut value increases. This result was presented at the conference
mentioned in the introduction [15].

Theorem 2. Let σ be an NE for G, and let C ⊆ V be a minimal subset that strongly deviates from
one coloring, σ, to another γ. If |C| ≤ 7, then ∆CV(σ, γ) > 0.

Proof. We need to consider all the cases for which |C| ≤ 7. Notice that the cases |C| ≤ 5 are
already covered by [13]. Moreover, in Proposition 4 of [13], it was proven that C is a minimal
strongly deviating coalition for |KC(σ)| ∈ {2, 5, 6} with |C| = 6 and |KC(σ)| ∈ {2, 6, 7}
with |C| = 7.

From Theorem 1, we know that in the cases |C| = 6 and |C| = 7, if |KC(σ)| ≥ 6− 3 = 3
or |KC(σ)| ≥ 7 − 3 = 4, then ∆CV(γ, σ) > 0. Then, only the case |KC(σ)| = 3 must be
accounted for.

Let us assume that KC(σ) = {a, b, c}. The only possible configurations up to the
permutations of the colors are the following four:

Configuration 1 . |Ca(σ)| = 3, |Cb(σ)| = |Cc(σ)| = 2.

Configuration 2. |Ca(σ)| = |Cb(σ)| = 3, |Cc(σ)| = 1.

Configuration 3. |Ca(σ)| = 4, |Cb(σ)| = 2, and |Cc(σ)| = 1.

Configuration 4. |Ca(σ)| = 5, |Cb(σ)| = |Cc(σ)| = 1.

These configurations are briefly reported in Figure 4.

Figure 4. Pictorial representation of the coalition colorings covered by Theorem 2.

Concerning Configurations 1 and 2, the upper limit for PC(σ, γ) is less than 7. Specif-
ically, PC(σ, γ) = 5 for Configuration 1 and PC(σ, γ) = 6 in Configuration 2. As a result,
∆CV(γ, σ) ≥ 1.

For Configuration 3, PC(σ, γ) = 7 only if each of the four vertices of color a in σ
deviates toward a different color from the other three. However, it is evident that at least
two other colors and corresponding vertices are required to ensure this deviation. Even if a
vertex of color b and one of color a exchange colors, and the remaining vertex of color b
deviates, with another vertex of color a, toward the color c, PC(σ, γ) < 7. Consequently,
∆CV(γ, σ) ≥ 1.

Finally, in Configuration 4, the feasible values for PC(σ, γ) are PC(σ, γ) ∈ {10, 9, 8, 7}.
For PC(σ, γ) ∈ {10, 9, 8}, where similar reasoning as in Configuration 3 applies. Con-
versely, if PC(σ, γ) = 7, it is impossible for Ca to represent a subgraph without loops of
length 3. The presence of all possible graphs with 5 vertices and 7 edges is illustrated in
Figure 5. The existence of a loop of length 3, coupled with only two available colors, implies
that PC(σ, γ) ̸= 7. Hence, PC(σ, γ) ≤ 6, and consequently, in any case, ∆CV(γ, σ) > 0,
indicating that CV(γ) > CV(σ).
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Figure 5. All possible ways in which 5 vertices can be connected, according to Configuration 4 of
Theorem 2 for PC(σ, γ) = 7.

We are now ready to prove the main result of the section. Note that this result was
presented at the conference mentioned in the introduction [15].

Theorem 3. Let σ be an optimal coloring for G. Then, σ is also a 7-SE.

Proof. Assume, for the sake of contradiction, that the optimal coloring σ is not a 7-SE.
According to Theorem 2, this assumption would lead to a contradiction.

Recall that Theorem 2 establishes that for any minimal subset, for a C that strongly
deviates from the coloring σ to an alternative coloring γ with |C| ≤ 7, the change in the
number of edges connecting the vertices to different colors, denoted by ∆CV(σ, γ), is
greater than 0.

Now, suppose σ is not a 7-SE. This implies the existence of a coalition, C, with
|C| ≤ 7 such that there is a co-operative deviation from σ to an alternative coloring γ where
∆CV(σ, γ) ≤ 0. However, Theorem 2 contradicts this scenario, stating that for such a C
and γ, ∆CV(σ, γ) > 0.

Therefore, our assumption that σ is not a 7-SE leads to a contradiction. Hence, we
conclude that the optimal coloring σ must be a 7-SE.

When referring to Example 1, Theorem 3 can be read as follows: if management
allocates employees to projects in order to minimize the number of pairs of people who do
not want to work together and who are assigned to the same project, then groups of at most
seven employees are unable to apply for a transfer to other projects to minimize the number
of undesired collaborations. Therefore, it can be seen that the seven employees have no
way to move to other projects without having to work alongside people they do not want to
work with. Figure 6 depicts all the optimal colorings available for the network introduced
in Example 1. In particular, we assign them the following names: σ is the benchmark
case, reported in Figure 2c and in Figure 6a, γ1, γ2, γ3, γ4, and γ5 are all the other optimal
configurations, as shown in Figure 6b–f. The last five optimal colorings were compared to
σ, and the corresponding deviating coalition, C, between each couple of optimal colorings
were computed in terms of deviating colors. Specifically, the members of the coalition σ
that deviate to another optimal coloring γi, with i ∈ {1, . . . , 5} are highlighted by bold
black borders. We notice that in all cases, the payoffs, µC(γ

i), collected by the members
of these coalitions are equal to µC(σ) for the one obtained in the benchmark σ. This result
shows that no strong deviating coalitions of 7 (or more) members exist in the considered
game. Additionally, we also verified that µv(σ) = µv(γi) ∀v ∈ C and for i ∈ {1, . . . , 5}.
Furthermore, the figure shows that the colorings that are color permutations of each other
have the same payoff.
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Figure 6. Comparison of the six optimal colorings (σ, γ1, γ2, γ3, γ4, and γ5) in a network with
12 vertices and 3 colors. (a): Optimal coloring σ. (b–f): Comparison of the optimal colorings σ, γ1, γ2,
γ3, γ4, and γ5. The vertices with black edges represent the deviating coalitions from σ.

4. Conclusions

In this work, some results on the robustness to 7-deviating coalitions of optimal
colorings are proposed. The method is innovative, leveraging game theory as its foundation.
This allows us to apply the Nash equilibrium concept to analyze the emergence of coalitions
deviating from optimal configurations. However, we also employ combinatorial properties
specific to graphs in relation to optimality and the potential for achieving a SE.

The central outcome of this study is encapsulated in Theorem 3, establishing that
the optimal colorings of graphs are 7-strong equilibria. This implies that, for the system
to transition from one configuration to another, a coalition exceeding seven divergent
elements must be identified. Nonetheless, smaller coalitions within optimal colorings may
still deviate toward other existing optimal solutions.

Extending our proof strategy to the case of m-strong equilibria with m > 7 presents
challenges due to the substantial increase in the number of color configurations.

Despite these challenges, we posit that it might be feasible to extend our findings
to larger coalitions, reinforcing the strength of optimal colorings to prevent divergent
solutions. We reiterate a conjecture previously formulated (see also [13]):

Conjecture 1. Every optimal coloring is a strong equilibrium.

It is noteworthy that a random graph, G, is a graph with n vertices where each potential
edge has a probability p of existence. The number of edges in such a graph is a random
variable with an expected value of (n

2)p. Specifically, an Erdös-Renyì graph on the vertex
set V is a random graph that connects each pair of vertices {i, j} with a probability, p,
independently. This model is defined by the number of vertices N = |V| and p.

Figure 7 serves as motivation for the conjecture. A numerical experiment, considering
two sets of Erdös-Renyì graphs with 10 instances each, involving n = 15 vertices with
average degrees of 5 and 10, respectively, was conducted. The distribution of optimal
colorings across 10 runs for each case is presented. It is evident that optimal colorings of
various sizes are present, and notably, none of them qualify as strong, as the payoff of the
deviating coalitions consistently fails to increase.

In order to substantiate Conjecture 1, further exploration of the properties of optimal
colorings is imperative [17–20]. For instance, a deeper examination of how the neighbor-
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hood of a deviating subset is colored in an optimal coloring or the clustering of colors in an
optimal coloring could provide valuable insights.

Figure 7. Distribution of the size of the deviating coalitions for different average degrees of
n = 15 Erdös-Renyì random graphs. Notably, this analysis considers all possible permutations
of colorings within each coalition, providing a comprehensive view of the distribution. The results
reveal that optimal colorings of diverse sizes are present, and interestingly, none of them qualify as
strong deviations, as the payoff of deviating coalitions consistently fails to increase.
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