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Abstract: We propose new multistart techniques for finding good local solutions in global optimiza-
tion problems. The objective function is assumed to be differentiable, and the feasible set is a convex
compact set. The techniques are based on finding maximum distant points on the feasible set. A
special global optimization problem is used to determine the maximum distant points. Preliminary
computational results are given.
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1. Introduction

Within the concept of a “smart” digital environment, methods of mathematical mod-
eling and machine learning are actively used to design and implement digital twins of
complex technical, technological, and organizational systems. In this case, it is usually
necessary to solve complex global optimization problems to automate the selection of
effective structures and parameters of the corresponding models of these digital twins.
The effectiveness of global optimization methods depends significantly on the choice of
the initial set of solutions, which are subsequently used to find the global optimum or a
good local optimum that approximates the global one. This is especially important when
using global optimization methods for the continuously differentiable functions of real
variables, because in this case, it is possible to obtain optimal solutions guaranteed by the
strict mathematical apparatus of applied mathematics.

Let a differentiable function f : Rn → R and a convex compact set X ⊂ Rn with a
nonempty interior, int(X) ̸= ∅, be given. The problem considered in this paper consists
in finding a good local minimum using the multistart strategy. In order achieve this, it is
necessary to allocate p starting points x1, . . . , xp in X, such that they cover X “more or less
uniformly”. The proposed multistart strategy is based on the CONOPT solver [1].

Various uniform sampling procedures can be used for this purpose. A survey of
special methods for allocation points on spheres is presented in [2]. If X is a polytope,
sampling based on simplicial decomposition of X is applied, as given in [3]. In [4], a class
of Markov chain Monte Carlo (MCMC) algorithms for distribution points on polytopes is
described. In a more general case, when X is a convex body, a random walk strategy [5]
based on the MCMC technique is successfully applied. A brief review of different kinds
of random walk can be found in [4]. However, uniform random sampling algorithms are
of exponential complexity [6]. Uniform sampling is usually used for the approximate
calculation of an integral or volume of X. We are interested in finding a good local solution
in global optimization problems. The most attractive feature of uniform sampling consists
in the following: a global minimum solution can be found with a probability of one as the
length of the sampling tends to infinity. However, due to the specifics of high-dimensional

Mathematics 2024, 12, 606. https://doi.org/10.3390/math12040606 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12040606
https://doi.org/10.3390/math12040606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8021-0205
https://orcid.org/0000-0002-3776-5707
https://orcid.org/0000-0003-4263-2367
https://doi.org/10.3390/math12040606
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12040606?type=check_update&version=2


Mathematics 2024, 12, 606 2 of 21

spaces [7], random sampling is not efficient from a practical point of view. Nevertheless,
uniform sampling continues to draw attention, and investigations on this topic are of
serious interest [8]. Approaches based on the p-location problem [9] and p-center method-
ology [10] can also be used for solving the problems considered in our paper. However, we
aimed to check the efficiency of a global optimization approach.

In our paper, we propose a procedure for the good allocation of points on a convex
compact set X. The idea is to use a special global optimization problem as an auxiliary
one for allocation. The special global optimization problem consists in maximizing the
Euclidean norm plus a linear term over a convex compact set. Because of the particular
form of the problem, it can be solved to global optimality for a sufficiently large number
of variables, for example, for n ∼ 30 − 50. In doing so, we achieve a better covering of
set X by a family of points. We believe that a combination of the proposed approach and
advanced metaheuristics [11] will be of serious practical importance.

The first approach. The most attractive statement of the problem can be formalized as
follows:

t → max, t = ∥xi − xj∥2, xi, xj ∈ X, 1 ≤ i < j ≤ p. (1)

Problem (1) means that it is necessary to allocate p points such that the distance between
any two points is the same and is as maximal as possible. In this case, the set {x1, . . . , xp} is
called the set of equidistant points . However, it is well known that Problem (1) is solvable
only if p ≤ n + 1. When p = n + 1, then points {x1, . . . , xn+1} are vertices of a regular
simplex. If ∥xi − xj∥ = δ, 1 ≤ i < j ≤ n + 1, all points xi belong to the sphere of radius

R = δ

√
n

2(n + 1)
(2)

centered at

xc =
1

n + 1

n+1

∑
j=1

xj.

However, in many applications, it is necessary to allocate more than n + 1 points.
The second approach. We move to another problem of the following form:

min
1≤i<j≤p

{∥xi − xj∥2} → max, xi, xj ∈ X. (3)

We want to allocate p points such that the minimum distance between any two of them
is as maximal as possible. Problem (3) always has a solution since the objective function
is continuous and the feasible set is nonempty and compact. The objective function is
nonsmooth, but this can be avoided by the standard reduction of Problem (3) to the
following one:

t → max, t ≤ ∥xi − xj∥2, xi, xj ∈ X, i, j = 1, . . . , p, j > i. (4)

Two main difficulties are unavoidable when solving Problem (4). Firstly, the number of
variables is equal to p(p−1)n

2 . Secondly, the feasible domain is nonconvex. Hence, we have
to overcome the nonconvexity of the feasible domain, but we are seriously restricted in
dimension n.

The third approach. Given p − 1 points vi ∈ X, find point vp as a solution to the
problem

φp(x) = min
1≤j≤p−1

{∥x − vj∥2} → max, x ∈ X. (5)

As a result, set X is covered by p balls centered at v1, . . . , vp with radius rp equal to
√

φp(vp).

We start from an arbitrary point v1 ∈ X and sequentially determine points v2, v3, . . . and
functions φ2, φ3, . . . according to (5). Let θ(x) = 0 ∀x ∈ X be identical a zero function on X.
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The theoretical foundation of the approach based on solving Problem (5) is given by the
following theorem.

Theorem 1. The sequence of functions φp, p = 2, 3, . . . uniformly converges to function θ over X.

Proof. Functions φp, p = 2, . . . are Lipschitz functions with the same Lipschitz constant.
Therefore, φp, p = 2, . . . is an equicontinuous sequence of functions. Since X is a compact
set, then φp(x) ≤ D(X) < +∞, where D(X) is the diameter of X, and functions φp,
p = 2, . . . are uniformly bounded. By construction φp(x) ≤ φp−1(x) ∀x ∈ X. Hence,
due to the Arzelà–Ascoli theorem, φp, p = 2, . . . is a sequence of functions uniformly
convergent to a continuous function η : η(x) ≤ φp(x) ∀x ∈ X, p = 2, . . .. By construction
φp(vi) = 0 ∀i < p; hence,

η(vp) = 0 ∀p. (6)

Assume that lim
p→∞

φp(vp) = ρ > 0. Let vpj , j = 1, 2, . . . be a subsequence conver-

gent to a point v♯ such that η(v♯) = ρ. From (6), due to the continuity of η, we have
lim
j→∞

η(vpj) = η(v♯) = 0, a contradiction, which proves the theorem.

Hence, we can theoretically achieve the covering of X by a number of balls with
sufficiently small radius. In practice, especially in high dimensions we restrict ourselves to
a reasonable value of p.

Let us rewrite Problem (5) in a more computationally tractable form. Point vp is
the maximum distant point from points vj, j = 1, . . . , p − 1. Since ∥x − vj∥2 = ∥x∥2 −
2x⊤vj + ∥vj∥2 and min

1≤j≤p−1
{∥x∥2 − 2x⊤vj + ∥vj∥2} = ∥x∥2 + min

1≤j≤p−1
{∥vj∥2 − 2x⊤vj}, we

can rewrite Problem (5) in the form

∥x∥2 + t → max, t ≤ ∥vj∥2 − 2x⊤vj, j = 1, . . . , p − 1, x ∈ X. (7)

The feasible domain in (7) is convex, and the objective function is convex. Therefore, we
have a convex maximization problem, and special advanced methods [12] can be used for
solving (7).

In our paper, we develop the iterative scheme of the third approach based on solving
problems of type (7). The description is the following. Take an arbitrary first point v1.
The other points are determined according to the solutions to problem (7) for p = 2, 3, . . ..
Points are found sequentially: the new point is determined after finding the previous ones.
This is why we call points v1, v2, . . . , vp obtained on the base of the iterative solution of
problem (7) sequentially maximum distant pointsor simply sequentially distant points .
Notation:
ej, j = 1, . . . , n are unit vectors with 1 on the j-th position and 0 on the others;
xj is the j-th component of vector x ∈ Rn;
xi is the i-th vector in a sequence of n-dimensional vectors x1, . . . , xi, . . .;
x⊤y is the dot (inner) product of vectors x, y ∈ Rn.

2. Allocation of Points in the Unit Ball

Assume that X is the unit ball, that is,

X = B = {x ∈ Rn : ∥x∥2 ≤ 1}.

In this case, Problem (5) can be solved analytically. The obtained points are called ball
sequentially distant points . We start with the problem of setting the n + 1 equidistant point
in B that is equivalent to inscribing a regular simplex in B. The distance between points
can be determined from (2) with R = 1,

δ =

√
2(n + 1)

n
=

√
2

√
1 +

1
n

. (8)



Mathematics 2024, 12, 606 4 of 21

Since the points are equidistant:

∥xi − xj∥2 = ∥xi − xk∥2 ⇔ (xk − xj)⊤xi = 0, 1 ≤ i < j < k ≤ n + 1.

Due to the symmetry of B, we can set x1 = e1 = (1, 0, . . . , 0)⊤. Then, from (2),

xj
1 = xk

1, 2 ≤ j < k ≤ n + 1. (9)

Since points xj, j = 2, . . . , n + 1 belong to the intersection of a plane orthogonal to x1

and a boundary of B, we also can choose the point x2 as a point with maximal zero
components. Therefore, we set x2

l = 0, l = 3, . . . , n. The distance ∥x1 − xj∥2 = (1 −
x2

1)
2 + (x2

2)
2 = δ2, and (x2

1)
2 + (x2

2)
2 = 1. From these two equations and (9), we obtain

xj
1 = − 1

n , j = 2, . . . , x2
2 =

√
(n−1)(n+1)

n2 . Now, let us repeat the same consideration for the
n − 1-dimensional ball centered at x2 and obtained as an intersection of the plane {x ∈ Rn :

x1 = − 1
n} and B. Then, we determine x3 =

(
− 1

n ,−
√

n+1
n · 1

n(n−1) ,
√

n+1
n · n−2

n , 0, . . . , 0
)

.

After repeating this consideration similarly for the remaining cases, we obtain the final
description of the equidistant point in the unit ball:

xk
j =


−
√

n+1
n · 1

(n−j+2)(n−j+1) , 1 ≤ j < k,√
n+1

n · n−k+1
n−k+2 , j = k,

0, k < j ≤ n,

, k = 1, . . . , n + 1. (10)

Let us switch now to the construction of the sequentially maximum distant points.
Again, due to the symmetry of B, the starting point v1 = e1. The next point, which is
denoted by vn+1, is determined as vn+1 = arg max{∥x − v1∥2 : x ∈ B} = −e1. Point v2 is a
solution to the problem

min{∥x − v1∥2, ∥x − vn+1∥2} → max, x ∈ B. (11)

Let us introduce the sets

X21 = {x ∈ B : ∥x − v1∥2 ≤ ∥x − vn+1∥} = {x ∈ B : x1 ≥ 0},

X22 = {x ∈ B : ∥x − vn+1∥2 ≤ ∥x − v1∥} = {x ∈ B : x1 ≤ 0}.

Then, solving Problem (11) is reduced to solving the following two problems:

f21(x) = ∥x − v1∥2 → max, x ∈ X21 (12)

and
f22(x) = ∥x − vn+1∥2 → max, x ∈ X22. (13)

Since f21(x) = ∥x∥2 − 2x1 + 1 ≤ 2 − 2x1 ∀x ∈ B, the upper bound for the maximum
value in (12) is given by max{2 − 2x1 : x ∈ X21} = 2 and is achieved, for example,
at point e2. The value f21(e2) = 2. Therefore, e2 is a solution to problem (12). Similarly,
f22(x) = ∥x∥2 + 2x1 + 1 ≤ 2+ 2x1 ∀x ∈ B, the upper bound max{2+ 2x1 : x ∈ X22} = 2 is
also achieved at e2 and f22(e2) = 2. Hence, point e2 is a solution to problem (13). The latter
means that e2 is a solution to Problem (11), and we can set v2 = e2.

Consider now the problem

min{∥x − v1∥2, ∥x − v2∥2, ∥x − vn+1∥2} → max, x ∈ B. (14)

Determine sets
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X31 = {x ∈ B : ∥x − v1∥2 ≤ ∥x − v2∥2, ∥x − v1∥2 ≤ ∥x − vn+1∥2} =

= {x ∈ B : − x1 + x2 ≤ 0, x1 ≥ 0},

X32 = {x ∈ B : ∥x − v2∥2 ≤ ∥x − v1∥2, ∥x − v2∥2 ≤ ∥x − vn+1∥2} = {x ∈ B : x2 ≥ |x1|},

X33 = {x ∈ B : ∥x − vn+1∥2 ≤ ∥x − v1∥2, ∥x − vn+1∥2 ≤ ∥x − v2∥2} =

= {x ∈ B : x1 + x2 ≤ 0, x1 ≤ 0}.

Problem (14) is reduced to find solutions to the three auxiliary problems

f3i(x) = ∥x − vi∥2 → max, x ∈ X3i, i = 1, 2,

f33(x) = ∥x − vn+1∥2 → max, x ∈ X33.

Again, f31(x) ≤ 2 − 2x1 ∀x ∈ X31 and f33(x) ≤ 2 + 2x1 ∀x ∈ X33. In both cases,
the maximum value 2 is attained at the point −e2. For the last auxiliary problem, we
have f32(x) ≤ 2 − 2x2 ∀x ∈ X32, that is, the corresponding maximum value cannot be
greater than 2. Therefore, point vn+2 = −e2 is a solution to Problem (14).

So far, four points vi = ei, vn+i = −ei, i = 1, 2 are obtained. We are going to prove
by induction that the same principle is true for 2n points: vi = ei, vn+i = −ei, i = 1, . . . , n.
The basis of induction: the hypothesis is true for k = 2. The induction step: let us prove
that the hypothesis is true for the case k + 1. Consider the problem

min
1≤i≤k

{∥x − vi∥2, ∥x − vn+i∥2} → max, x ∈ B. (15)

Define for i ∈ K = {1, . . . , k} the following sets

Xk+1,i = {x ∈ B : ∥x − vi∥2 ≤ ∥x − vj∥2, j ∈ K \ {i}, ∥x − vi∥2 ≤ ∥x − vn+j∥2, j ∈ K},

Xk+1,n+i = {x ∈ B : ∥x − vn+i∥2 ≤ ∥x − vj∥2, j ∈ K, ∥x − vn+i∥2 ≤ ∥x − vn+j∥2, K \ {i}}.

Then, Problem (15) disintegrates into 2k problems

fk+1,i = ∥x − vi∥2 → max, x ∈ Xk+1,i = {x ∈ B : xi ≥ 0, xi ≥ |xj|, j ∈ K \ {i}}, (16)

fk+1,n+i = ∥x − vn+i∥2 → max, x ∈ Xk+1,n+i = {x ∈ B : xi ≤ 0, xi ≤ −|xj|, j ∈ K \ {i}}. (17)

As above, fk+1,i(x) ≤ 2 − 2xi ≤ 2 ∀x ∈ Xk+1,i, i ∈ K, fk+1,i(ek+1) = 2 and
ek+1 ∈ Xk+1,i i ∈ K. Similarly, fk+1,n+i(x) ≤ 2 + 2xi ≤ 2 ∀x ∈ Xk+1,n+i, i ∈ K. Therefore,
we can take ek+1 as a solution to Problem (15) and set vk+1 = ek+1.

Let us consider now the next problem:

fk+2(x) = min
{

min
1≤j≤k+1

∥x − vj∥2, min
1≤j≤k

∥x − vn+j∥2
}

→ max, x ∈ B. (18)

Using the same arguments as earlier, it is easy now to see that fk+2(x) ≤ 2 ∀x ∈ B and
fk+2(−ek+1) = 2. Hence, we can accept −ek+1 as a solution to (18) and set vn+k+1 = −ek+1.

Therefore, the first 2n points are determined as

vi = ei, vn+i = −ei, i = 1, . . . , n. (19)
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The maximum distance between any two points in (19) is equal to 2, and the minimum
distance between any two points is equal to

√
2.

Let us now determine point v2n+1. In order to do this, we have to solve the problem

f2n+1(x) = min{ min
1≤j≤n

∥x − vj∥2, min
1≤j≤n

∥x − vn+j∥2} → max, x ∈ B. (20)

Rewrite f as follows:

f2n+1(x) = min
1≤j≤n

{
min{∥x − vj∥2, ∥x − vn+j∥2}

}
= min

1≤j≤n

{
∥x∥2 + 1 − 2|xj|

}
=

= ∥x∥2 + 1 − 2 max
1≤j≤n

|xj| = ∥x∥2 + 1 − 2∥x∥∞ ≤ ∥x∥1∥x∥∞ + 1 − 2∥x∥∞ =

= (∥x∥1 − 2)∥x∥∞ + 1. (21)

The maximal value of the expression in (21) over B is obviously equal to 1 and is achieved
at the origin 0 = (0, . . . , 0)⊤. From (19) and (20), we have f2n+1(0) = 1; hence, v2n+1 = 0.
The maximum distance between any two points in the set {vi, vn+i, i = 1, . . . , n, v2n+1} is
equal to

√
2, and the minimum distance is equal to 1.

The solution to the problem

f2n+2(x) = min{ min
1≤j≤n

∥x − vj∥2, min
1≤j≤n

∥x − vn+j∥2, ∥x∥2} → max, x ∈ B.

is given by the point v2n+2 = ( 1√
n , 1√

n , . . . , 1√
n )

⊤, since f2n+2(v2n+2) = 1 and
f2n+2(x) ≤ 1 ∀x ∈ B. Due to the symmetricity of B, the next 2n − 1 points are other
vertices of cube C̃ = {x ∈ Rn : − 1√

n ≤ xj ≤ 1√
n , j = 1, . . . , n}.

Finally, sequentially distant 2n + 1 + 2n points for the unit ball are given by

vi = ei, vn+i = −ei, i = 1, . . . , n, v2n+1 = (0, . . . , 0)⊤, (22)

v2n+1+i, i = 1, . . . , 2n, are vertices of the cube C̃. (23)

The maximum distance between any two points is obviously equal to 1. Due to the
symmetricity of the ball, the minimum distance can be determined as the distance between
v2n+2 and any point vj, j = 1, . . . , n. For example, ∥v2n+2 − v1∥ =

√
2
√

1 − 1√
n . Points in

(22) and (23) are calculated without solving the corresponding optimization problems.
The above procedures can be generalized for the allocation of points in a general ball

B(xc, R) = {x ∈ Rn : ∥x − xc∥ ≤ R}.
Case A. Generalization of the n + 1 equidistant points. We add the center xc to the

set of points and obtain the following n + 2 ball sequentially distant points v1, . . . , vn+2

with (10)

vk
j =


xc

j − R
√

n+1
n · 1

(n−j+2)(n−j+1) , 1 ≤ j < k,

xc
j + R

√
n+1

n · n−k+1
n−k+2 , j = k,

xc
j , k < j ≤ n,

, k = 1, . . . , n + 1, (24)

vn+2 = xc. (25)

The obtained points are not equidistant. The maximum distance between any two points is

equal to R, and the minimum distance is equal to R
√

2
√

1 + 1
n (see (8)).

Case B. Ball sequentially distant 2n + 1 points. These points are just a direct general-
ization of (22),

vi = xc + Rei, vn+i = xc − Rei, i = 1, . . . , n, v2n+1 = xc. (26)
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The maximum distance is equal to R, and the minimum distance is equal to R
√

2.
Case C. Ball sequentially distant 2n + 2n + 1 points. Introduce cube Ĉ = {x ∈ Rn :

xc
j − R ≤ xj ≤ xc

j + R, j = 1, . . . , n}. Then, the points are determined as follows:

vi = xc + Rei, vn+i = xc − Rei, i = 1, . . . , n, v2n+1 = xc, (27)

v2n+1+i, i = 1, . . . , 2n, are vertices of the cube Ĉ. (28)

The maximum distance between any two points is equal to R, and the minimum distance is
equal to R

√
2
√

1 − 1√
n .

Let us compare the allocation of a ball sequentially 2n + 1 from (26) without the center
v2n+1 and with a uniform distribution over a unit sphere. We take the minimum distance
between two points as a measure of allocation efficiency: the greater minimum distance,
the better the allocation. The uniform distribution over the unit sphere is obtained using
normal distribution with mean 0 and standard deviation 1 by normalization. The minimum
distance between two ball sequentially distant points is

√
2 ≈ 1.414 for any n. If we

uniformly distribute 200 points over the unit sphere in a 100-dimensional case, then the
minimum distance is on average 1.098 (after 10 repetitions). Therefore, the ball sequentially
distant points allocation is almost 40% better than the uniform allocation.

3. Mapping the Ball Sequentially Distant Points on a Compact Convex Set

Let X be a convex compact set defined by a system of inequalities

X = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . , m},

gi, i = 1, . . . , m are convex and twice continuously differentiable functions, and int(X) ̸= ∅.
We use the concept of an analytical center xa [13]. The point xa is the solution to the convex
optimization problem

F(x) → max, x ∈ X, (29)

F(x) =
m
∑

i=1
ln(−gi(x)), and F is a twice continuously differentiable concave function. Since

int(X) ̸= ∅, we have gi(xa) < 0, i = 1, . . . , m, so the following ellipsoid can be defined:

E = {x ∈ Rn : (x − xa)⊤H(x − xa) ≤ 1}, (30)

H = −∇2F(xa) =
m

∑
i=1

(
1

g2
i (xa)

∇gi(xa)∇gi(xa)⊤ − 1
gi(xa)

∇2gi(xa)

)
.

Then, X ⊃ E. The Hessian H can be represented as H = U⊤ΛU, U is an n × n or-
thonormal matrix with eigenvectors of H as columns, and Λ is an n × n diagonal matrix
with eigenvalues λi > 0, i = 1, . . . , n on the main diagonal. Let us introduce new
variables y = Λ

1
2 U(x − xa). Then, in variables y, ellipsoid E in (30) is the unit ball

B = {y ∈ Rn : y⊤y ≤ 1}. Let {vi, i = 1, . . . , N} be ball sequentially distant points
in y-space constructed in correspondence to the cases A (N = n + 2), B (N = 2n + 1) or C
(N = 2n + 2n + 1) from the previous section. In the x-space, we define points

wi = xa + U⊤Λ− 1
2 vi, i = 1, . . . , N. (31)

Images wi of the ball equidistant points (i = 1, . . . , n + 1) are solutions to the problem

t → max, t = (xi − xj)⊤H(xi − xj), xi, xj ∈ E, 1 ≤ i < j ≤ n + 1.
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Images wi of the ball sequentially distant points (cases D or C, i = 1, . . . , N, n = 2n + 1
or N = 2n + 2n + 1) are solutions to the problem

min
1≤j≤i−1

{(x − wj)⊤H(x − wj)} → max, xj ∈ E.

Example 1. Consider the following problem:

f (x1, x2) = −1 + cos(12
√
(x1 − 0.7)2 + (x2 − 3)2)

0.5((x1 − 0.7)2 + (x2 − 3)2) + 2
→ min, x ∈ X,

X = {x ∈ R2 : g1(x) = x2
1 − x2 ≤ 0, g2(x) = −x1 + 3x2 − 10 ≤ 0, g3(x) = −7x1 + x2 ≤ 0},

f is the shifted drop-wave function [14], and global minimum x∗ = (0.7, 3.0), f (x∗) = −1. After
solving the corresponding problem (29), we determine the analytical center xa = (0.982, 2.125)⊤

and matrices

H = −∇2F(xa) =

(
6.806 −1.909

−1.909 1.210

)
, U =

(
−0.956 −0.296

0.296 −0.956

)
, Λ =

(
7.395 0

0 0.621

)
.

We use Case C from the previous section, so N = 2n + 2n + 1 = 9 for n = 2. Points
vi, i = 1, . . . , 9 are determined in (27) and (28) with R = 1, points wi = xa + U⊤Λ− 1

2 vi,
i = 1, ...9, points x∗,i are stationary points determined by the CONOPT solver [1] starting
from points wi, and f ∗,i = f (x∗,i) are the corresponding objective function values (see
Table 1).

Table 1. Starting and stationary points in Example 1.

i vi wi x∗,i f∗,i

1 ( 1, 0)⊤ (0.631, 2.233)⊤ (0.700, 3.000)⊤ −1.000

2 (−1, 0)⊤ (1.333, 2.016)⊤ (1.256, 1.665)⊤ −0.656

3 ( 0, 1)⊤ (0.607, 0.912)⊤ (1.804, 3.935)⊤ −0.656

4 ( 0,−1)⊤ (1.356, 3.337)⊤ (0.231, 1.452)⊤ −0.605

5 ( 0, 0)⊤ (0.982, 2.125)⊤ (1.227, 2.560)⊤ −0.885

6 ( 1√
2

, 1√
2
)⊤ (0.469, 1.344)⊤ (1.358, 2.218)⊤ −0.793

7 (− 1√
2

,− 1√
2
)⊤ (1.495, 2.905)⊤ (0.700, 3.000)⊤ −1.000

8 (− 1√
2

, 1√
2
)⊤ (0.965, 1.190)⊤ (1.357, 2.702)⊤ −0.885

9 ( 1√
2

,− 1√
2
)⊤ (0.998, 3.058)⊤ (0.700, 3.000)⊤ −1.000

We can see from Table 1 that the global minimum point was determined three times.
In the other six cases, different stationary points were found with two points x∗,2 and x∗,3

with the same value −0.656, and two points x∗,5 and x∗,8 with the value −0.885.
Geometrical interpretation of points wi, i = 1, . . . , 9 and the ellipsoid as a dashed

curve are given in Figure 1.
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Figure 1. Starting points wi in feasible domain and the inscribed ellipsoid in Example 1.

The advantage of the proposed approach consists in the following: well-allocated
points in “narrow and arbitrary oriented” convex compact sets can be determined since the
ellipsoid (30) provides a good inner approximation of X.

Example 2. We extend the proposed approach to solve the following problem [15]:

f (x) = 5
4

∑
j=1

xj − 5
4

∑
j=1

x2
j −

13

∑
j=5

xj → min .

Set X is determined by the following system:

2x1 + 2x2 + x10 + x11 ≤ 0,

2x1 + 2x3 + x10 + x12 ≤ 0,

2x2 + 2x3 + x11 + x12 ≤ 0,

−2x4 − x5 + x10 ≤ 0,

−2x6 − x7 + x11 ≤ 0,

−2x8 − x9 + x12 ≤ 0,

−8x1 + x10 ≤ 0,

−8x2 + x11 ≤ 0,

0 ≤ xj ≤ 1, j = 1, . . . , 9,

0 ≤ xj ≤ 100, j = 10, 11, 12,

0 ≤ x13 ≤ 1.
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Points vi, i = 1, . . . , 2n + 1 = 27 were determined according to Case B (26). Points
wi, i = 1, . . . , 27 were computed by (31), and xa is the analytical center of X. Since the
objective function is nonconvex and quadratic, the global minimum is achieved on the
boundary of X. Points ui were obtained as intersections of rays xa + τ(wi − xa), τ ≥ 0,
i = 1, . . . , 27 with the boundary of X. Then, the multistart procedure started from points ui

was applied, and the global minimum x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)⊤, f (x∗) = −15
was found.

4. Allocation of an Arbitrary Given Number of Points

In the previous section, the number of allocated points was equal to n + 2 or 2n + 1
or 2n + 2n + 1. The allocation procedure was based on setting the points in a ball. In this
section, we assume that the number of allocated points is p, which is different from
the previous values, and, more importantly, the allocation procedure is not connected
to the ball. The price for such an approach is a sequential solution to a special global
optimization problem.

Problem (7) is to be iteratively solved as was announced in Section 1. This problem
is a problem of the global maximization of a convex quadratic function over a bounded
polyhedral set. Hence, special methods can be used for the solution.

Let the number p of allocated points be given. The first point v1 can be chosen
arbitrarily. The remaining points are found by solving the global optimization problem

vk+1 ∈ Arg max{∥x∥2 + t : 2x⊤vj + t ≤ ∥vj∥2, j = 1, . . . , k, x ∈ X}, k = 1, . . . , p − 1. (32)

In solving the examples below, we used the solver SCIP [16] for finding the global maximum
in Problem (32).

Example 3. The number of allocated points p = 16, set X = {(x1, x2) : x1 + 2x2 ⩽ 2, x1 ⩾ 0,
x2 ⩾ 0}. Since the feasible set is polytope, it was decided to start from the vertex v1 = (0, 0)⊤.
In Figure 2, a geometrical interpretation of the allocated points is given.

x1

x2

0.5

1

0.5 1 1.5 2v1

v2

v3

v4

v5

v6v7

v8

v9v10

v11

v12

v13

v14

v15
v16

Figure 2. Allocation of the starting points in Example 3.

In Table 2, the coordinates of vectors vi are given, and r2 is the squared maximum
distance from the current point to the previous ones.

Example 4. The number of allocated points p = 16, set X = {(xx, x2) : −x1 + x2 ⩽ 3, x1 +
2x2 ⩽ 15, 2x1 − x2 ⩽ 10, −3x1 − 5x2 ⩽ −15}. The starting vertex v1 = (0, 3)⊤. The deter-
mined vertices are shown in Figure 3.
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Table 2. Points and distances in Example 3.

i vi
1 vi

2 r2 i vi
1 vi

2 r2

1 0 0 — 9 1.031 0.133 0.136

2 2 0 4 10 0.344 0.133 0.136

3 1 0.5 1.25 11 1.313 0.344 0.122

4 0 1 1 12 0.687 0.656 0.122

5 0.375 0.5 0.391 13 1.688 0.156 0.122

6 1.375 0 0.391 14 0.313 0.844 0.122

7 0.867 0 0.348 15 0.719 0.328 0.109

8 0 0.609 0.153 16 0.080 0.305 0.099

x1

x2

1

2

3

4

5

6

1 2 3 4 5 6 7

v1

v2

v3

v4

v5

v6

v7
v8

v9

v10

v11

v12
v13

v14

v15

v16

Figure 3. Allocation of starting points in Example 4.

Table 3 contains the coordinates of vi and again the squared maximum distances (r2)
from the current point to the previously found ones.

Table 3. Points and distances in Example 4.

i vi
1 vi

2 r2 i vi
1 vi

2 r2

1 0 3 — 9 1.535 2.079 3.303

2 7 4 50 10 3.465 0.921 3.203

3 5 0 20 11 3.273 4.221 2.337

4 3.154 5.923 18.491 12 4.471 3.108 1.748

5 3.216 2.693 10.436 13 5.779 3.532 1.711

6 5.484 2.258 5.333 14 4.703 1.245 1.637

7 4.792 4.391 5.029 15 1.178 3.224 1.438

8 1.745 4.280 4.684 16 4.200 5.400 1.368
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Example 3 shows that vertices of the given polytope are not necessarily covered by
points vi. The vertex (3, 6)⊤ is not covered.

In practice, it is enough to find a new point, which is sufficiently far from the previous
points. Hence, a good local solver can be used for finding the solution to Problem (32).
In the testing below, we used the IPOPT solver [17] for this purpose. In the testing problems,
the feasible set X was a bounded polyhedral set

X = {x ∈ Rn : Ax ≤ b, x ≤ x ≤ x},

with m × n matrix A. Vectors b ∈ Rn, x, x ∈ Rn were determined randomly in a such a way
that int(X) ̸= ∅. The first two points v1 and v2 are approximate solutions to the problem

∥x − y∥2 → max, x ∈ X, y ∈ X, (33)

where v1 = x∗, v2 = y∗. For solving Problem (33), the SCIP solver was used with
the solution time limitation increased by 30 s. The number of points was equal to 100.
The solution to the corresponding problems (32) for k = 3, . . . , 99 were obtained by the
IPOPT solver. The last point, v100, was obtained by the SCIP solver with the time limitation
increased to 300 s. In Table 4, n is the number of variables, m is the number of rows in
matrix A, ∆12 = ∥v1 − v2∥, δ is the obtained maximum distance from the last point v100 to
the previous ones, and T is the solving time in seconds. Testing was performed on IntelCore
i7-3610QM (2.3 Ghz, 8 GB DDR3 memory).

Table 4. Initial and final distances for testing Problem (33).

n m ∆12 δ T

5 10 1043.004 243.887 29.125

10 20 1931.523 608.201 116.189

20 30 2972.218 1272.148 414.603

30 45 3162.046 1430.453 461.576

40 60 4074.319 2166.210 551.885

50 75 4274.107 2145.411 630.431

In problems with five and ten variables, globally optimal solutions were found.
In other words, for example, when n = 10, the diameter of X was equal to 1931.523,
and the exact maximum distance from the 99 previous points to the point x100 was equal
to 608.201. In higher-dimensional problems, approximate solutions were determined.

5. Two Kinds of Multistart Strategy

We know that the feasible set X can be covered by p balls with centers at v1, . . . , vp

and with radius rp =
√

φ(vp) (see Problem (5)). Consider the p optimization problem

f (x) → min, ∥x − vj∥2 ≤ r2
p, x ∈ X, (34)

where j = 1, . . . , p. Let x♯,j, j = 1, . . . , p be points obtained as a result of the application of
the CONOPT solver to Problem (34) using vj, j = 1, . . . , p as the starting points. Compare
Problem (34) with the following one:

f (x) → min, x ∈ X, (35)

Let x∗,j, j = 1, . . . , p be solutions of (35) obtained also by the CONOPT solver applied p
times also from points vj, j = 1, . . . , p as the starting points. Points x♯,j, j = 1, . . . , p have a
“local nature” because of constraints ∥x − vj∥ ≤ r2

p, j = 1, . . . , p. Therefore, we can make

the following assumption: the set Ω♯
p = {x♯,j : j = 1, . . . , p} contains more different local
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minima than the set Ω∗
p = {x∗,j : j = 1, . . . , p}. It is not difficult to construct an example,

in which all points x♯,j, j = 1, . . . , p as well as points x∗,j, j = 1, . . . , p are points of different
local minima. The first multistart strategy is connected to the construction of the sets Ω∗

p.

The second multistart strategy is connected to the construction of the sets Ω♯
p. However,

in practice there can be a significant difference between these sets of points for particular
cases. Let us consider the following examples.

Example 5. Consider the Bird problem:

f (x1, x2) = (x1 − x2)
2 + e(1−sin(x1))

2
cos(x2) + e(1−cos(x2))

2
sin(x1),

xi ∈ [−2π, 2π], i = 1, 2.

This problem has many local minima and two global minimum points, xg,1 = (4.701, 3.152)⊤ and
xg,2 = (−1.582,−3.130)⊤ with f (xg,1) = f (xg,2) = −106.765. For p ≤ 5, sets Ω♯

p and Ω∗
p do

not contain global minimum points. When p = 6, the set Ω♯
6 contains five different local minima,

and one of them is a global minimum. The set Ω∗
6 contains four different local minima, and one of

them is a global minimum. In total, the set Ω∗
6
⋃

Ω♯
6 contains six different points of minimum, and

one of them is a global minimum. The set Ω∗
7 contains five local minima and two of them are global

minima. The set Ω♯
7 contains the same of local minima as Ω♯

6. In total, the set Ω∗
6
⋃

Ω♯
6 contains

seven different local minima, and two of them are global minima.

Example 6. Consider the Branin problem:

f (x1, x2) =

(
−1.275

x2
1

π2 + 5
x1

π
+ x2 − 6

)
+

(
10 − 5

4π

)
cos(x1) cos(x2)+

+ log(x2
1 + x2

2 + 1) + 10,

xi ∈ [−5, 15], i = 1, 2.

The global minimum is unique, xg = (−3.2, 12.53)⊤, f (xg) = 5.559. When p ≤ 17, the sets Ω♯
17

and Ω∗
17 do not contain the global minimum point. The set Ω∗

18 contains nine different local minima,
and one of them is the global minimum. The set Ω♯

18 also contains nine different local minima, and
one of them is the global minimum. Sets Ω∗

18 and Ω♯
18 do not coincide, and their union Ω∗

18
⋃

Ω♯
18

contains 10 different local minima, and one of them is the global minimum.

Example 7. Consider the egg crate problem:

f (x1, x2) = x2
1 + x2

2 + 25
(

sin2(x1) + sin2(x2)
)

,

xi ∈ [−5, 10].

The global minimum is unique, xg = (0, 0)⊤, f (xg) = 0. The set Ω∗
5 contains five different local

minima, and one of them is the global minimum. When p ≤ 4, the sets Ω∗
p do not contain the global

minimum. As for the sets Ω♯
p, they contain the global minimum for p ≥ 26. The set Ω♯

26 contains
twenty-five different local minima, and one of them is the global minimum. In comparison, the set
Ω∗

26 contains eighteen different local minima, and one of them is the global minimum.
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Example 8. Consider the Mishra problem:

f (x1, x2) =
[
sin2

(
(cos(x1) + cos(x2))

2
)
+ cos2

(
(sin(x1) + sin(x2))

2
)
+ x1

]2
+

+0.01(x1 + x2),

xi ∈ [−10, 10], i = 1, 2.

The problem has the unique global minimum xg = (−1.987,−10)⊤, f (xg) = −0.1198. The sets
Ω∗

p contain the global minimum for p ≥ 6, while the set Ω∗
6 contains five different local minima, and

one of them is global. The sets Ω♯
p do not contain the global minima for p ≤ 600. The corresponding

radius of each covering ball for p = 600 is equal to 0.625. Hence, the Mishra problem has very
many “narrow” points of local minima.

Example 9. Consider the Price problem:

f (x1, x2) = 1 + sin2(x1) + sin2(x2)− 0.1e−x2
1−x2

2 ,

xi ∈ [−5, 10], i = 1, 2.

The global minimum is unique, xg = (0, 0)⊤, f (xg) = 0.9. The sets Ω∗
p contains the global

minimum for p ≥ 26. The set Ω♯
p contains the global minimum for p ≥ 13.

Example 10. Consider the Shubert problem:

f (x1, x2) =

(
5

∑
i=1

i cos((i + 1)x1 + i)

)(
5

∑
i=1

i cos((i + 1)x2 + i)

)
,

xi ∈ [−10, 10], i = 1, 2.

There are many global minima, one of them being xg = (−7.084, 4.858)⊤, f (xg) = −186.7309.
The sets Ω∗

p start to contain a global minimum from p = 5. The set Ω∗
5 contains only two different

local minima, and one of them is global. The sets Ω♯
p contain a global minimum when p ≥ 29, and

all twenty-nine local minima of the set Ω♯
29 are different.

Example 11. Consider the Trefethen problem:

f (x1, x2) = 0.25x2
1 + 0.25x2

2 + esin(50x1) − sin(10x1 + 10x2) + sin(60ex2)+

+ sin(70 sin(x1)) + sin(sin(80x2)),

xi ∈ [−10, 10], i = 1, 2.

The global minimum is unique, xg = (−0.0244, 0.2106)⊤, f (xg) = −3.3069. This
problem has very many local minima. For example, the set Ω∗

30 consists of thirty different
local minima, with no global minimum among them. The set Ω♯

30 contains twenty-eight
new different local minima in addition to the set Ω∗

30, again with no global minimum among
them. Therefore, the union Ω∗

30
⋃

Ω∗
30 contains the fifty-eight different local minima and no

global minimum. Only for p ≥ 570, the sets Ω∗
p contain the global minimum. The set Ω♯

570
contains the five hundred seventy different local minima and no global minimum. Each
radius of the five hundred seventy balls, which cover the feasible set, is equal to 0.625.

In all considered examples, the following properties should be mentioned. As a rule,
the sets Ω∗

p need fewer points to detect a global minimum. Example 8 with the Mishra
function provides a very remarkable confirmation of this assumption: only six points were
used in the set Ω∗

6 to cover the global minimum, whereas even six hundred points were
not enough to detect the global minimum in the case of the set Ω♯

600. The price for such a
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behaviour is that many points in the sets Ω∗
p are found several times, in contrast to the sets

Ω♯
p. We also have to keep in mind that in example 9 with the Price function, the situation is

opposite: thirteen points to detect the global minimum for the set Ω♯
13 and twenty-six points

to detect the global minimum for the set Ω∗
26. The number of different local minimum

points in the sets Ω♯
p is usually larger than in the sets Ω∗

p. Nevertheless, local minimum
points in the sets Ω∗

p being smaller in number, usually (not always) have lower objective
function values.

Let us compare the sets Ω∗
p and Ω♯

p for all tested problems and for the same number

of points p = 20, that is, we compare the sets Ω∗
20 and Ω♯

20. The results of the comparison
are given in Table 5. Column N∗

L(N∗
G) shows the number N∗

L of the different local minima
in the corresponding sets Ω∗

20, with N∗
G being the number of global minima among them.

Similarly, column N♯
L(N♯

G) shows the number N♯
L of different local minima in the sets Ω♯

20

with the number N♯
G of global minima among them. Column New N♯

G shows the number
of global minima in the sets Ω♯

20 \ Ω∗
20 (new global minima). Column New N♯

L shows the
number of local minima in the sets Ω♯

20 \ Ω∗
20 (new local minima). Column NT

L (NT
G) shows

total number NT
L of different local minima and total number NT

G of different global minima
obtained by determining both sets Ω∗

20 and Ω♯
20. For example, for the Shubert problem, we

have 13(3) in the column N∗
L(N♯

G), which means that the corresponding set Ω∗
20 contains

thirteen different local minimum points and three of them are global minimum points.
In the column N♯

L(N♯
G), we have 18(3) that means that the corresponding set Ω♯

20 contains
eighteen different local minima and three of them are global minimum points. Column New
N♯

G shows that one new global minimum point is contained in the set Ω♯
20 in comparison

to the set Ω∗
20, and column New N♯

L shows that the set Ω♯
20 contains fourteen new local

minimum points in comparison to the set Ω∗
20. Finally, in column NT

L (NT
G), we have 27(4),

which means that twenty-seven different local minimum points were determined, and four
of them are global minimum points.

Table 5. Comparison of two multistart strategies.

Problem N∗
L(N∗

G) N♯
L(N♯

G) New N♯
G New N♯

L NT
L (NT

G)

Bird 7(2) 7(2) 0 0 7(2)

Branin 10(1) 11(1) 0 2 12(1)

Egg Crate 15(1) 13(0) 0 8 23(1)

Mishra 12(1) 11(0) 0 6 18(1)

Price 6(0) 17(1) 1 12 18(1)

Shubert 13(3) 18(3) 1 14 27(4)

Trefethen 19(0) 15(0) 0 12 31(0)

Assuming the differentiability of the objective function and finiteness of the set of local
minima, it is not possible to assess the number of local minima. Therefore, we propose the
following approach. Assess the number p of local minima from some additional practical
considerations. Then, construct the set Ω∗

p containing a good local minimum point or even

a global minimum point. After that, construct the set Ω♯
p to enlarge the number of local

minima to catch situations similar to the Price function. Due to the very high efficiency of
the CONOPT solver, finding the sets Ω∗

p and Ω♯
p is not too computationally demanding.

We can obtain a practical assessment of the number of minima of the objective function
by using such a mixture of these two kinds of the multistart strategy. If the number of
total determined local minima is not very large (for example, many of them are found
many times), then we can conclude that we performed a good exploration of the objective
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function. Otherwise, we can reach the conclusion that the objective function is of a very
complicated structure.

6. Testing Sequentially Distant Points in Optimization Problems

We present the results of testing the comparative efficiency of using sequentially distant
and randomly generated points in solving optimization problems. Three strategies, A, B,
and C, based on the cases from Section 1, are tested. Optimization problems are problems of
minimizing highly nonlinear functions over a box or parallelepiped. Firstly, the maximum
radius ball centered at the center of the parallelepiped is constructed. Secondly, for strategy
A, n + 2 ball sequentially points corresponding to (24)–(25) are determined. For strategy B,
2n + 1 points based on (26) are determined. For strategy C, we use the points (28) plus the
center of the parallelepiped, in total 2n + 1 points.

We used the multistart strategy with the generated points as the starting points.
Strategies A, B, and C are compared with random strategies RndA, RndB, and RndC of the
corresponding sizes. In strategy RndA, n + 2 uniformly distributed points are generated;
in strategy RndB, the number of uniformly distributed points is 2n + 1; and in strategy
RndC, the number of uniformly distributed points is 2n + 1. In all strategies, a parallel local
search process based on the CONOPT solver was started.

In Tables 6–9, the column “Duplicated Solutions” shows the number of points, which
were found several times; the column “Different Solutions” shows the number of different
found points; the column “Different Minimum Values” shows the number of different local
minimum values among different solutions (i.e., there could be different local minimum
points with the same objective value); the column “Record Value” shows the value of the
objective function at the best point; in the column “Global Minimum,” the sign “+” means
that the global minimum was found, otherwise the sign “−” is used; and the column
“Time” shows the total solution time in seconds. Testing was performed on an Intel Core
i7-3610QM computer (2.3 GHz, 8 GB DDR3 memory). All computations were done in
GAMS Demo version.

Strategies C and RndC were used for dimensions n = 5 and n = 10, since they are of
exponential complexity.

Griewank function. Consider the optimization problem

f (x) =
1

4000

n

∑
i=1

x2
i −

n

∏
i=1

cos
(

xi√
i

)
→ min,

x ∈ Π = {x ∈ Rn : −600 ≤ xi ≤ 900, i = 1, . . . , n}.

Global minimum x∗ = (0, . . . , 0)⊤, f (x∗) = 0. Testing results are given in Table 6. Proper-
ties of the Griewank function are studied in [18].

Table 6. Testing results for the Griewank function.

Strategy
Number of

Starting
Points

Duplicated
Solutions

Different
Solutions

Different
Minimum

Values
Record Value

Global
Minimum

(+/−)
Time (s)

n = 5

A 7 0 7 7 0.473 − 0.531

RndA 7 0 7 7 0.418 − 0.500

B 11 0 11 4 0.118 − 0.764

RndB 11 0 11 11 0.024 − 0.843

C 33 0 33 33 0.000 + 2.482

RndC 33 0 33 27 0.000 + 2.559
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Table 6. Cont.

Strategy
Number of

Starting
Points

Duplicated
Solutions

Different
Solutions

Different
Minimum

Values
Record Value

Global
Minimum

(+/−)
Time (s)

n = 10

A 12 1 11 11 0.000 + 0.858

RndA 12 4 8 8 0.000 + 0.889

B 21 0 21 21 0.000 + 1.388

RndB 21 5 16 13 0.000 + 1.373

C 1025 512 513 208 0.000 + 98.109

RndC 1025 499 526 202 0.000 + 92.259

n = 50

A 52 38 14 14 0.000 + 4.680

RndA 52 51 1 1 0.000 + 3.573

B 101 11 90 84 0.000 + 8.548

RndB 101 100 1 1 0.000 + 8.596

n = 100

A 102 91 11 11 0.000 + 8.938

RndA 102 101 1 1 0.000 + 9.142

B 201 42 159 149 0.000 + 22.089

RndB 201 200 1 1 0.000 + 19.968

n = 300

A 302 184 118 76 0.000 + 38.923

RndA 302 301 1 1 0.000 + 37.768

B 601 269 332 286 0.000 + 83.617

RndB 601 600 1 1 0.000 + 76.893

n = 500

A 502 398 104 71 0.000 + 76.877

RndA 502 501 1 1 0.000 + 76.581

B 1001 595 406 332 0.000 + 169.198

RndB 1001 1000 1 1 0.000 + 138.054

Rastrigin function. Consider the optimization problem

f (x) = 10n +
n

∑
i=1

(
x2

i − 10 cos(2πxi)
)
→ min,

x ∈ Π = {x ∈ Rn : −5.12 ≤ xi ≤ 7.68, i = 1, . . . , n}.

Global minimum x∗ = (0, . . . , 0)⊤, f (x∗) = 0. Testing results are given in Table 7.
Let us make some comments on the results in Table 7. A uniform distribution of

the starting points happened to be very inefficient: the best solution is very far from the
optimum. Take, for example, the case n = 300. Strategy A found 302 different local minima
with 11 different objective function values. Checking the list of local minimum points
shows that there are 78 different local minimum points, with the best value being 0.995.
Therefore, strategy A shows that there are quite a number of different local minima with
objective value close to the optimal one. Formally, the same can be said about strategies
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RndA and RndB. These random strategies also found a large number of different local
minima; however, the objective function values are very far from the optimal value.

Schwefel function. Consider the optimization problem

f (x) = 418.9829n −
n

∑
i=1

xi sin(
√
|xi|) → min,

x ∈ Π = {x ∈ Rn : −500 ≤ xi ≤ 500, i = 1, . . . , n}.

Global minimum x∗ = (420.9687, . . . , 420.9687)⊤, f (x∗) = 0. Testing results are given in
Table 8.

Table 7. Testing results for the Rastrigin function.

Strategy
Number of

Starting
Points

Duplicated
Solutions

Different
Solutions

Different
Minimum

Values
Record Value

Global
Minimum

(+/−)
Time (s)

n = 5

A 7 0 7 7 0.995 − 0.780

RndA 7 0 7 7 18.904 − 0.515

B 11 1 10 4 0.995 − 0.781

RndB 11 0 11 11 3.979 − 0.765

C 33 1 32 23 0.000 + 2.527

RndC 33 0 33 27 17.909 − 2.480

n = 10

A 12 0 12 9 0.995 − 0.858

RndA 12 0 12 12 39.798 − 0.890

B 21 2 19 5 0.000 + 1.576

RndB 21 0 21 21 39.798 − 1.638

C 1025 53 972 162 0.000 + 101.790

RndC 1025 0 1025 680 21.889 − 96.971

n = 50

A 52 0 52 9 0.000 + 3.354

RndA 52 0 52 52 198.992 − 3.604

B 101 16 85 7 0.000 + 8.549

RndB 101 0 101 101 198.992 − 8.347

n = 100

A 102 0 102 11 0.995 − 12.620

RndA 102 0 102 102 397.983 − 10.188

B 201 43 158 6 0.000 + 21.013

RndB 201 0 201 200 397.983 − 20.124

n = 300

A 302 0 302 11 0.995 − 37.378

RndA 302 0 302 302 1193.949 − 39.503

B 601 87 514 7 0.000 + 79.701

RndB 601 0 601 601 1193.949 − 74.911

n = 500

A 502 3 499 11 0.000 + 76.995

RndA 502 0 502 501 1989.915 − 36.331

B 1001 153 842 7 0.000 + 171.975

RndB 1001 0 1001 1000 1989.915 − 168.044
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Table 8. Testing results for the Schwefel function.

Strategy
Number of

Starting
Points

Duplicated
Solutions

Different
Solutions

Different
Minimum

Values
Record Value

Global
Minimum

(+/−)
Time (s)

n = 5

A 7 0 7 7 929.319 − 0.515

RndA 7 0 7 7 475.270 − 0.531

B 11 1 10 7 238.915 − 0.764

RndB 11 0 11 11 455.533 − 0.749

C 33 1 32 22 118.438 − 2.199

RndC 33 0 33 31 455.533 − 2.480

n = 10

A 12 0 12 12 1562.522 − 0.905

RndA 12 0 12 12 1383.337 − 0.904

B 21 4 17 7 0.000 + 1.388

RndB 21 0 21 21 1223.898 − 1.591

C 1025 165 860 105 0.000 + 99.997

RndC 1025 5 1020 872 651.829 − 100.121

n = 50

A 52 0 52 52 2349.118 − 3.900

RndA 52 0 52 52 8164.279 − 4.040

B 101 25 76 23 0.000 + 8.502

RndB 101 0 101 101 7859.295 + 7.878

n = 100

A 102 0 102 102 296.108 − 9.016

RndA 102 0 102 102 16,993.912 − 8.611

B 201 55 146 31 0.000 + 21.231

RndB 201 0 201 201 16,948.095 − 18.441

n = 300

A 302 0 302 294 5909.961 − 33.119

RndA 302 0 302 302 53,468.437 − 32.479

B 601 215 386 39 0.000 + 68.984

RndB 601 0 601 601 50,650.766 − 69.732

n = 500

A 502 3 502 483 214.513 − 70.747

RndA 502 0 502 502 89,847.498 − 74.974

B 1001 328 673 43 0.000 + 168.498

RndB 1001 0 1001 1000 89,104.515 − 167.998

Again, pure random strategies show the worst results.
Levy function. Consider the optimization problem

f (x) = 10 sin2(πx1) +
n−1

∑
i=1

(xi − 1)2(1 + 10 sin(πxi+1))
2 + (xn − 1)2 → min,

x ∈ Π = {x ∈ Rn : −10 ≤ xi ≤ 10, i = 1, . . . , n}.

Global minimum x∗ = (1, . . . , 1)⊤, f (x∗) = 0. Testing results are given in Table 9.
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Table 9. Testing results for the Levy function.

Strategy
Number of

Starting
Points

Duplicated
Solutions

Different
Solutions

Different
Minimum

Value
Record Value

Global
Minimum

(+/−)
Time (s)

n = 5

A 7 0 7 5 0.001 − 0.546

RndA 7 0 7 7 0.337 − 0.515

B 11 1 10 6 1.064 − 0.858

RndB 11 0 11 10 1.064 − 0.764

C 33 0 33 28 0.0005 − 2.465

RndC 33 0 33 31 0.0004 − 2.446

n = 10

A 12 1 11 4 1.064 − 0.858

RndA 12 0 12 12 0.937 − 0.983

B 21 1 20 5 1.064 − 1.575

RndB 21 0 21 19 0.0005 − 1.388

C 1025 0 1025 252 0.0004 − 94.849

RndC 1025 1 1024 568 0.0004 − 94.817

n = 50

A 52 1 51 7 0.0005 − 4.197

RndA 52 0 52 51 0.0005 − 3.728

B 101 1 100 4 1.064 − 8.502

RndB 101 0 101 98 0.001 − 8.377

n = 100

A 102 1 101 4 0.0005 − 8.486

RndA 102 0 102 101 0.0005 − 8.361

B 201 1 200 5 1.064 − 18.939

RndB 201 0 201 199 0.002 − 19.355

n = 300

A 302 1 301 6 0.937 − 33.665

RndA 302 0 302 302 1.064 − 40.778

B 601 1 600 12 1.064 − 76.332

RndB 601 0 601 601 1.064 − 75.629

n = 500

A 502 1 501 7 1.064 − 74.210

RndA 502 0 502 502 1.064 − 94.257

B 1001 1 1000 20 0.0005 − 168.590

RndB 1001 0 1001 1000 1.064 − 171.942

The Levy function was the most difficult testing case for all strategies. Not one of
them could determine the global minimum. Nevertheless, strategies A and B are relatively
efficient in high-dimensional cases.

The total testing showed that the most effective was strategy B, in terms of both finding
the best solution and computational efforts. This effect can be explained in the following
way: strategy B explores the total area of the feasible set more efficiently than the others.

7. Conclusions and Future Work

Sequentially most distant points techniques were suggested for determining good
starting points in multistart strategies for problems of global optimization. Preliminary
testing showed that the new strategies find good local minima very fast. The sequentially
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distant points can be obtained either by using an inscribed ellipsoid centered at the ana-
lytical center of the feasible set or by approximately solving auxiliary global optimization
problems of special types.

Our future work will be devoted to an extension of the suggested techniques to solving
global optimization problems with nonconvex feasible sets and to solving special highly
nonlinear problems from practical applications.
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